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Church Turing thesis

It doesn’t matter what computer (or model of computation) you
use, they can all compute the same things.
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Strong Church Turing thesis

Oh, and they’re all about as fast as each other as well.

That is, up to polynomial factors in the length of the input (for
comparable algorithms).
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P and NP

L ∈ P There is a deterministic Turing machine, M, that,
on input x accepts if x ∈ L and rejects if x ∕∈ L, and
whose running time is bounded by a polynomial in
|x |

L ∈ NP There is a deterministic Turing machine, M, which,
given x ∈ L accepts (x , y) for some string y , but
given x ∕∈ L never accepts (x , y) and whose
running time is bounded by a polynomial in |x |
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P/poly and BPP

L ∈ P/poly There is a sequence of boolean circuits Cn of
polynomially bounded size in n such that for
|x | = n, Cn(x) = 1 if and only if x ∈ L.

L ∈ BPP There is a polynomial time Turing machine M and
a polynomial p such that for |x | = n, if r is a
uniformly random bit string of length p(n), then the
probability that M correctly identifies x on input
(x , r) is at least 2/3.
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Relationships

◮ P is a subset of all the others
◮ It is almost universally believed that P ∕= NP because, well

just because
◮ P/poly is weird because it contains undecidable languages
◮ It is widely believed that P = BPP and there are in some

sense “good reasons” for this to be true
◮ But it has never even been proven that BPP is a subset of

EXP (exponentially bounded time)
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Quantum computation without maths

◮ The universe solves some apparently very hard
computational problems all the time

◮ For a quantum system of n particles, each having two
possible states, quantum mechanics gives a system of 2n

partial differential equations
◮ Solving these classically is infeasible for any but the

smallest values of n
◮ And yet, the universe “solves” them in real time
◮ Can this power be harnessed?
◮ What would that even mean?

7



Bits and qubits

◮ The fundamental object of classical computing is the bit - a
system with two possible values, 0 or 1

◮ In quantum computing the analogous concept is a qubit
denoted |0〉 or |1〉

◮ It represents a system, e.g., a photon, that can be in two
possible states (vertically or horizontally polarised)

◮ Unlike a classical bit, it can also be in a superposition of
states:

α0 |0〉+ α1 |1〉

where α0,α1 ∈ C and |α0|2 + |α1|2 = 1.
◮ In such a superposition, a measurement might indicate 0 or

it might indicate 1 (with probability equal to the respective
amplitudes |α0|2 and |α1|2) – call this sneaky parallelism
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Quantum circuits

◮ This is one model of quantum computing – that gives a
complexity class BQP which is directly analogous to BPP
with a sort of P/poly twist

◮ We introduce gates that apply operations to qubits,
collections of qubits, and superpositions of collections of
qubits

◮ A computer is then a (normal) Turing machine that
describes how to build the circuits that are needed to solve
a problem

◮ But there’s a hitch
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Restrictions on gates

◮ Quantum gates can only apply unitary operations to their
input

◮ There are two key consequences of this:
reversibility All computations could be run in reverse – in

the absence of measurement, we could take
the output state apply the inverses of all the
gates, and recover the input

no cloning It is impossible to duplicate data/inputs
◮ So how could we implement even something as simple as

an and-gate?
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Quantum and-gate

◮ Suppose that we have two registers, i.e., qubits in states
|x〉 and |y〉

◮ We want to produce a qubit in state |x ∧ y〉
◮ Add a third input, and make sure it’s initialized to |0〉
◮ Now look at the operation:

(x , y , z) %→ (x , y , z ⊕ (x ∧ y))

◮ This one is unitary!
◮ So most quantum gates have control bits (x and y ) and

target bits (z)
◮ All classical logic gates can be simulated in this way
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Three algorithms (paraphrased)

Grover We can search in a set of size 2n in time
proportional to 2n/2 (quadratic speedup over
classical lower bound)

Simon A weird problem about some 2-to-1 functions on
2n described by a black box model can be solved
on a quantum computer in polynomial time, but not
classically in polynomial time

Shor Factoring integers can be done in polynomial time
on a quantum computer
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Quantum cryptography

◮ Basic quantum cryptography is really about key distribution
◮ Alice and Bob use a quantum channel (details to come) to

agree on a private key of whatever length they like
◮ Any attempt by Eve to eavesdrop is detectable, and the

protocol can be restarted, or mitigation techniques can be
employed

◮ In fact, there will be some error regardless of interception
so in any case there are some technical mitigation efforts
needed

◮ A technical part: information reconciliation and privacy
amplification

◮ A cool part: the key exchange protocol itself
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Information reconciliation

◮ Alice and Bob think they share a secret key k but worry
that some bits may not match (due to mistakes in
transmission, or tampering by Eve)

◮ They can use standard error correction techniques
(checksums for blocks etc.) to find and correct some errors

◮ The length of the resulting string which they are sure to
agree on may be somewhat shorter than the original key

◮ The communications are in the clear, so some information
about the key (some number of bits, parities etc.) leaks to
Eve
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Privacy amplification

◮ For privacy amplification we imagine that Alice and Bob
share a random key k ∈ 2n

◮ They worry that Eve has acquired some knowledge of k ,
i.e, a random variable that is somehow correlated with k

◮ If this correlation is not too strong, they can use universal
hash functions to map k to a shorter key in such a way that
any (weak) correlation becomes much much weaker (to
the point of being useless)

◮ This is all classical stuff from information theory
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A critical fact

◮ If |x〉 and |y〉 are two non-orthogonal quantum states, then
no circuit that accepts them on input lines (there may be
additional input lines) and outputs them undisturbed can
derive any information about which was input, i.e., the
remaining output lines will be the same as one another

◮ In conjunction with the no-cloning theorem this means that
if Eve overhears a signal from Alice to Bob, then provided
that not all parts of the signal are in orthogonal states she
cannot derive information from it without disturbing the
signal

◮ This is essentially what allows a key distribution protocol to
work
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The BB84 protocol (Bennet and Brassard)

◮ The underlying signal from Alice to Bob is a sequence of
photons. They wish to end up with an m bit key.

◮ Alice generates photons in either a vertically-horizontally
polarized basis, or a diagonally polarized basis. She and
Bob have the following correspondence in mind:

Bit Vert-Horiz Diagonal
0 |0〉 |0〉+ |1〉
1 |1〉 |0〉 − |1〉

◮ These are chosen to have the following property: if Bob
measures a photon in the same basis that it was
generated, then he gets its value. If he measures in the
other basis he gets a coin toss.
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BB84 continued

◮ Alice generates two random bit strings a and b of length
(4 + δ)n.

◮ She uses b and the correspondence to generate photons
encoding a (if a bit of b is 0 she uses VH encoding for the
corresponding bit of a, if it is 1 she uses D encoding)

◮ Bob receives the photons, tells the world he did, and
chooses his own random bit string b′ to try and decode
them.

◮ Alice announces b to the world. Bob compares b and b′

and announces to the world a set of 2n bit-indices where
he and Alice used the same basis (if unluckily there aren’t
enough, then restart)
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BB84 concluded

◮ Alice chooses randomly and announces n of the 2n
bit-indices.

◮ Alice and Bob publicly compare those n bits. If they
disagree too often (due to Eve’s actions or transmission
errors) they abort and retry.

◮ If not, then they are confident that the error level in the
remaining n bits is sufficiently low to allow information
reconciliation and privacy amplification obtaining an m bit
key.

◮ Note that all parts of this process can be automated, so in
effect “Alice presses a button and enters the number of bits
she wants to have in common with Bob” is what happens
at the end of the day.

◮ See wikipedia on quantum key distribution.
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