July 2020 COSC 412 PRGs and security

Security of PNGs and semantic security of stream ciphers

In these notes I will just look in a little more detail at the security material on pseudo
random generators (PRGs) and the semantic security of the associated stream ciphers
covered in “Stream Ciphers 4” in Week 1 of the Stanford cryptography course.

Pseudo Random Generators

For our purposes, a PRG is a function G : £ — 2" where the key space K is generally
2° for some s which is much smaller than n. The goal in having a PRG is that its output
should, in some sense, look like it's coming from 2" by choosing elements uniformly at
random.

Under the assumption that K is much smaller in size than 2" this is of course impossible
since the image of G is a tiny part of the set 2". In particular, suppose that we presented
an adversary with a string and asked them “I generated this either uniformly at random
in 2" or, by choosing k € K and then giving you G(k), which was it?” If they were able
to identify the elements of the image of G then they could guess correctly with proba-
bility 1 in the case where we had used G and with probability 1 — |K|/2" if we hadn’t
simply by guessing G if the string was in the image, and random if it wasn't.

So in particular if it's easy to identify the image of G then a PRG is fundamentally
broken. But this “identification” is a computational task —and if that task is difficult it’s
reasonable to say that G might still be secure. But asking for the identification of the
range of G is too weak a criterion for (in)security. For instance if we had some algorithm
that guessed whether a string was in the image of GG then even if it was correct only 3/4
of the time our opponent would have a significant advantage. Let’s try to make this
idea precise.

Statistical Tests and Advantage

A statistical test A against a PRG G is a formalisation of the protocol sketched above.
Namely it is an efficient algorithm which runs on input from 2" that outputs 0 or 1
(which could be interpreted as “not random” and “random” but are really just arbitrary
labels). We are interested in the question of whether A performs differently on pseudo
random input versus truly random input. So we define the advantage of A to be:

Adv(A,G) = |Pryyx) [A(G(k)) = 0] — Pr,y(an) [A(r) = 0]].

where k£ < U(K) means “k chosen uniformly at random from X and similarly r <
U(2") means “r chosen uniformly at random from 2".”

July 2020 COSC 412 PRGs and security

Note that we only use one of the outcomes in defining the advantage — but this doesn’t
matter since probabilities sum to one so any difference between G and “random” on
value 0 is exactly balanced by the difference between G and “random” on value 1.

In other words, the advantage of A over G is the difference in the probability that A
finds pseudo random strings look random, from the probability that it finds truly ran-
dom strings look random (note that there is no actual requirement that A do a good job
of identifying either type!) If the PRG is doing what it’s supposed to then it should not
be possible to find a statistical test with “non-negligible” advantage over it. This idea
is illustrated below:

The large outer rectangle represents all of 2". The test is some algorithm A which
returns either 1 or 0. The region where it returns 1 is represented in gray. Though
we interpret this as A saying “this is random” note there’s no requirement that this
actually be the case. The circle represents the image of some pseudo random generator
G, i.e., all the strings of the form G(k) for some k in 2°. The advantage of this test A
against this PRG is the absolute value of the difference between the proportion of gray
area to total area in the circle (the probability that “A thinks an output from the PRG
is random”), and the proportion of gray area to total area in the rectangle — assuming
of course that the areas faithfully represent the number of strings they contain. If this
advantage is 0 or very close to it then A cannot be used to guess effectively whether
strings are output from the PRG or from a truly random selection. If this advantage is
significantly different from 0 then A provides evidence for (or against) a string being an
output from the PRG.

Therefore, we say that G is secure if there is no efficient statistical test A whose advan-
tage over G is non-negligible. Notice that the word “efficient” here is critical — otherwise
we could simply use brute force — list all the strings G (k) and check whether the given
string is among them. Are there any secure PRGs? Well, we don’t know for sure be-
cause if we did we would have resolved the P = NP problem. The idea is very simple
- the PRG G is an algorithm in P. So the test “Output 0 if for some k£ € K the string
you are testing is G(k)” is in N P. This test certainly has non-negligible advantage (it’s
the test of the previous section) so it had better not be efficient — but if P = NP then
it could be converted into an efficient test. So the existence of a secure PRG requires

July 2020 COSC 412 PRGs and security

P #NP.

An important theorem that we won’t prove (one direction is easy, the other not so
much) is that security in the sense above is equivalent to unpredictability (where by
unpredictability we mean that there is no bit i whose value in G(k) can be efficiently
predicted from the preceding bits.)

Semantic Security of Stream Ciphers

Since stream ciphers use a particular key only once, when we are considering the secu-
rity of these we can assume that the attacker has access to only one ciphertext. What
then should we mean when we say that such a cipher is secure? The idea is to return
to Shannon’s definition of perfect secrecy that, for any two messages the distribution of
possible ciphertexts for the two messages be identical over the random choice of key.
However, this is achievable only if the key length is at least as great as the message
length. Instead we demand that these two distributions be “computationally indistin-
guishable” at least for messages which the attacker can exhibit.

I tend to think of this as requiring that an adversary not be able to tell the difference
between a message from Alice to Bob that says “Buy” versus one that says “Sell” — this
is not quite the same thing, but pretty nearly.

So now we have an encoding algorithm E. The adversary chooses two messages my
and m; of equal length. We choose a random key £ as usual and return either E(k, my)
or E(k,mp). The adversary now uses an efficient algorithm on E(k, m,) to guess whether
x = 0 or z = 1. Suppose they guess z = 1 — their “advantage” is the difference in the
probability that this happened according to whether we chose m(or m; (in absolute
value, since if they are consistently wrong, they can take advantage of that too!)

So let W, be the event “the algorithm guesses z = 1 when in fact + = 0” and W be the
event “the algorithm guesses x = 1 when in fact z = 1”. These events are relative to the
random choice of & alone, and we define:

Adv(A, E) = [Pr(Wp) — Pr(Wy)|.

We say that E is semantically secure if there is no efficient adversary having non-negligible
advantage.

July 2020 COSC 412 PRGs and security

Secure PRGs give Semantically Secure Stream Ciphers

It seems natural to believe that if we build a stream cipher out of a secure PRG then it
should be semantically secure. The idea is to show that the advantage of the adversary
in any efficient semantic security game is bounded by the sum of the advantages of two
efficient adversaries in the PRG security game (in fact these two adversaries are actually
the same, but that’s not relevant). So, if the PRG is secure, those two advantages are
negligible, and hence so is the advantage of the semantic security adversary.

Consider a semantic security adversary A and let Wy and W; be as above. We allow
the encoder to cheat and encode using a true one time pad. We let R, be the event
“the algorithm guesses = 1 when in fact + = 0 and a one time pad was used” and
R be the event “the algorithm guesses = 1 when in fact z = 1 and a one time
pad was used”. Note that the output from a one time pad is a truly random string
(every output is equally likely whether x = 0 or = 1) so it must be the case that
PI‘(R()) = PT(Rl)

The triangle inequality implies:

IPr(Wy) — Pr(W1)| < [Pr(Wo) — Pr(Ro)| + [Pr(Ro) — Pr(Ry)| + [Pr(Ry) — Pr(Wy)]
= [Pr(Wy) — Pr(Ro)| + [Pr(Ry) — Pr(W1)].

But each of the two remaining terms is the advantage of a statistical test against the
PRG. Namely, Pr(W)) is the probability of the event that an efficient algorithm outputs
1 when given G(k) @ my for some randomly chosen key & whereas Pr(Ryg) is the prob-
ability of the event that the same efficient algorithm outputs 1 when given r & mg for
some truly random r-.

So, each of these two terms is negligible, and hence the stream cipher is secure.

The other direction (if the PRG is insecure then so is the stream cipher) is easier - the
semantic security adversary can just supply mg = 0 and m; a truly random string.
They can then apply their efficient test with non-negligible advantage against the value
returned by the challenger (which is a random G (k) if = 0 and a truly random string if
x = 1), and their advantage is exactly the same as that in the PRG security game.

