
COSC421 2015 Assignment 2 (15%)

A simple recurrent network for encoding word forms

There are two options for this assignment. The first involves programming; the second is
an essay. Both options are based around Elman’s simple recurrent network (SRN):
a network which can learn sequences. In the assignment, you will be dealing with SRNs
which learn word forms, represented as sequences of phonemes.

Option 1: A neural network for learning word forms

In this option, your task is to implement an SRN which receives as input a sequence of
words, each of which is represented as a sequence of phonemes, and learns to recognise
words as frequently occurring patterns of phonemes. Phonemes are sound units (see Lecture
6): a convenient ASCII set to use for programming are the ARPABET phonemes used for
US English listed in Appendix 1. In this scheme, the word yield is represented as the
phoneme sequence Y,IY,L,D.1

Your SRN will simulate the phonological learning which happens in infants when they
hear words in their native language. You must create a vocabulary of English words
encoded as phoneme sequences, and present words from this vocabulary randomly to the
network, as sequences of phonemes. At each point, the network should be trained to predict
the next phoneme in the sequence.

After training, the network should learn three things. Firstly, it should learn general
rules about how phonemes can succeed one another (e.g. that the phoneme after B can
be AE or AY, but not P). Secondly, it should learn the forms of the training words it was
shown, so that when shown the start of a word, it can predict the rest of it (provided
there are no other words with the same starting sequence). Finally, it should learn to
recognise the boundaries between words: assuming that words are presented at random
during training, word boundaries will be places where the network is particularly unsure
about the phoneme which comes next.

The architecture of your network should look as shown in Figure 1. The network
comprises:

• An input layer, with one unit for each phoneme;

• An output layer, with one unit for each phoneme;

• A hidden layer of units in between the input and output layers;

• A context layer of units providing additional input to the hidden layer, representing
‘the current context’.

All units have real-valued activations in the range 0–1. Hidden layer units use a sigmoid
activation function, and output units use a linear activation function. The input and

1You can modify this set to represent NZ pronuncuation if you wish.

1



outputlayer: next phoneme

AA AE AH AO AW ZH

AA AE AH AO AW ZH...

...

context layer

hidden layer

input layer: current phoneme

Figure 1: Architecture of the network

output layers use a localist encoding scheme: to represent a given phoneme, we set the
activation of one unit to 1, and of all other units to 0. The input and context layers are fully
connected to the hidden layer, and the hidden layer is fully connected to the output layer.
The output layer is passed through a softmax function, which constrains the activations
of the output units to sum to 1, so they can be interpreted as a probability distribution.

Training happens in a sequence of time steps. At each time step, the network receives a
phoneme on its input layer, and makes a prediction about the next phoneme on its output
layer (through the weights which connect the input to the output layer). The network
is trained using the actual next phoneme as a training signal. (The training algorithm is
back-propagation: all you need to know about this algorithm is that it alters the weights
in the network to minimise the difference betweeen the predicted next phoneme and the
actual next phoneme.)

An SRN can learn to predict more than one time step ahead, because of its context
layer. The context layer is a copy of the hidden layer at the previous time step: so it holds
information about the previous phoneme—but also, recursively, about the previous con-
text. During training, it learns a representation of phonemes which captures the common
sequential patterns it was presented during training.

If you did the neural networks course last semester, you can use your own back-
propagation code to build the network. Alternatively, you can use some Java code written
in-house (by a recent postdoc, Martin Takac). The code is available on the 421 webpage,
under ‘Resources’. In either case, your task is to take a standard multilayer perceptron
trained using backprop, and turn it into a SRN. You will have to create a training regime
involving a series of time steps, and add special functionality to the network setting the
context layer of the current time step to the same values as the hidden layer at the previous
time step. Aside from this, the way training works is the same as in regular backprop: at
each time step there’s a training input (a vector on the input and context layers), which
is propagated forward to the hidden layer and then to the output layer, and then there’s
an error term created by comparing the actual activations of the output units with the
desired output for this input (i.e. the next phoneme).

You will train your word-learning SRN in a series of epochs. In each epoch, you will

2



present your SRN with each word in your vocabulary (one phoneme at a time). Words
must be presented in random orders, so the network can learn where word boundaries are.
In each epoch, you can keep a record of the average size of the error your SRN is making
in its prediction of the next phoneme: during training, this error should decrease. (It
won’t get anywhere near zero, because there are normally several possible next phonemes.)
When the error reaches an asymptote, you can stop training.

Here are some notes about the NNpackage code.

• There’s a small manual (NNManual.doc).

• MinimalNetwork.java holds the main functions for creating, training and testing a
network.

• To create a network, you need to create an object of the MinimalNetwork class. You
must also create a file holding various parameter values for your network. These
parameters are explained in the manual. To create an SRN, there are a couple of
ready-made parameters you must use:

– NNtype,SRN (automatically creates the context layer)

– useSoftmax,true (ensures that activations in the output layer sum to 1)

– formDim,[val] (where [val] is the size of the input layer).

• Two ways to train the network are shown in MinimalNetwork.java, illustrated by
exampleOfUse1 and exampleOfUse2.

– exampleOfUse1 is good for getting started you can just specify the sequence
of training inputs and outputs in two files. For instance, you could teach your
SRN one particular short sequence of phonemes.

– exampleOfUse2 is more configurable: here, the training data are specified di-
rectly in the code. This is better for learning a set of words (since the words
themselves have to be in random orders).

– To test the network, set a vector on its input units using myNet.setInput, then
run propagate to create an output value. To read the output, myNet.Output
returns an array of the output values.

Code

You are free to implement the network in any language.

Behaviour of the trained network

Your network should show three behaviours.

• When given the first few phonemes of a word, it should make sensible predictions
about the next phoneme.

3



• When given an initial sequence which identifies a single word uniquely, it should
predict the remaining sequence of phonemes of that word correctly.

• When it reaches the end of a word, there should be a sudden drop in its ability to
predict the next phoneme. (This drop should allow it to recognise word boundaries.)

Report

You should also submit a report about your code. The report should contain four sections:

• How the code implements the network model;

• How to run the code (so I can test it);

• Some examples of its results (including evidence of the three behaviours it must
show);

• A brief evaluation of how well it does, and what might be done to improve it.

Submission and marking

You should submit the code and the assignment by email to me (alik@cs.otago.ac.nz)
by 5pm on Monday of Week 9 (i.e. on Monday September 12th). 10% of available
marks will be deducted for each day late.

I’ll give equal weight to the code and the report. (But the ‘report mark’ is likely to
reflect the quality of the code, so in that sense the implementation is the main focus.)

4



Appendix 1: a set of phonemes

Here’s a set of phonemes in the ‘ARPABET’ phonetic alphabet for US English. Each
phoneme comes with an example of a word it occurs in (along with the full ARPABET
encoding of this word).

Phoneme Example word Encoding of example word
AA odd AA, D
AE at AE, T
AH hut HH, AH, T
AO ought AO, T
AW cow K, AW
AY hide HH, AY, D
B be B, IY
CH cheese CH, IY, Z
D dee D, IY
DH thee DH, IY
EH Ed EH, D
ER hurt HH, ER, T
EY ate EY, T
F fee F, IY
G green G, R, IY, N
HH he HH, IY
IH it IH, T
IY eat IY, T
JH gee JH, IY
K key K, IY
L lee L, IY
M me M, IY
N knee N, IY
NG ping P, IH, NG
OW oat OW, T
OY toy T, OY
P pee P, IY
R read R, IY, D
S sea S, IY
SH she SH, IY
T tea T, IY
TH theta TH, EY, T, AH
UH hood HH, UH, D
UW two T, UW
V vee V, IY
W we W, IY
Y yield Y, IY, L, D
Z zee Z, IY
ZH seizure S, IY, ZH, ER

5



Option 2: Essay

The second option for the assignment is an essay, with the following title:

Describe in detail Elman’s (1990) simple recurrent network (SRN) model, and
explain how it can be trained to learn sequences. Then describe Gaskell and
Marslen-Wilson’s (1997) adaptation of a SRN to model the perception of words.
Your description of should include (i) an account of the input representations
used in Gaskell and Marslen-Wilson’s network; (ii) the architecture of the net-
work; (iii) how it is trained; and (iv) what behaviour it produces, and how this
compares with human performance in the recognition of words.

To answer this question, your main reference should obviously be the two papers referred
to. But you can also briefly consult other papers—for instance, papers which are cited by
these papers, or which cite them.2

Submission and marking

You should submit the essay by email to me (alik@cs.otago.ac.nz) by 5pm on Monday
of Week 9 (i.e. on Monday 12th September). 10% of available marks will be deducted
for each day late.

You will be marked on the clarity and organisation of the essay, and on evidence that
you have read the assigned paper in detail and understood the model described.

References

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Gaskell, M. and Marslen-Wilson, W. (1997). Integrating form and meaning: a distributed
model of speech perception. Language and Cognitive Processes , 12, 613–656.

2You can get these papers online from Web of Science. Go to the Otago Library webpage, then
follow links to ‘Article Databases’ → ‘W’ → ‘Web of Science via Web of Knowledge’. This is a fantastic
resource—if you don’t already know about it, you should try it!

6


