
COSC422 1

NEURON - tutorial C of Gillies & Sterratt (part 1)
http://www.anc.ed.ac.uk/school/neuron/

COSC422 – lecture 6
How to define multiple neurons
using templates

COSC422 2

Our goal

Our goal is to model and study small network of neurons in the rat
subthalamic nucleus.
So far, we created only one model neuron. In this lecture we will create
more model neurons.

Equivalent
human nucleus

COSC422 3

Our model so far sthB.hoc
We have a soma with two dendrites (dend[0] and dend[1]) and there is
a stimulating electrode in the soma, which injects a rectangular current
pulse into the soma lasting 100 ms with the delay of 100 ms.

We want to create a small network of such neurons. In this lecture we
will create only 4 neurons, but we will create them in a way that
increasing the number of neurons in the network is easy later on.

dend[0]

COSC422 4

Templates

A template is an object definition – it defines a prototype of an
object, from which we can create multiple copies.

After defining the template, we must declare the object variable that
we will use to reference these objects.

Then, we can create a new instance of the object from the template.
The new object is an exact copy of the template.

After we create the object from the template, we can either use it as
it is or we can modify it to fit our needs.

COSC422 5

Template: definition

The structure of a template:

Notation: name is the name of the template for future reference.

Square brackets [public names] mean this statement is optional.

begintemplate name
[public names]
create names
proc init() {
…
}
endtemplate name

COSC422 6

Template: example

The structure of our template:

Name SThCell is the name of the template for any future reference.

We must declare any array before the init procedure with dim = 1.

begintemplate SThCell
public soma, dend
create soma, dend[1]
proc init() {
…
}
endtemplate SthCell

COSC422 7

The public statement

The public statement is used to tell NEURON which parts of the
template can be accessed from outside of the template definition.

If there are no public names, then the code inside the template is
completely private and nothing, aside from the name of the template
itself, is accessible from the rest of the program code.

For example, if we create a neuron template and we want to be able
to put a current clamp in the soma of the neuron we create, we
would need to give access to the soma section via the public
command, e.g. we need to type public soma.

COSC422 8

Declarations before the init procedure

In general, the two rules we need to follow are:

1. A section or object must be created / declared before the
init (or any other) procedure, in which it is re-created.

2. When creating / declaring an array of sections or objects
that will be re-created inside a procedure, create an array of
dimension 1 before the procedure.

COSC422 9

What’s the code in the init procedure?

begintemplate SThCell

public soma, dend

create soma, dend[1]

proc init() {

ndend = 2

create soma, dend[ndend]

soma {
nseg = 1
diam = 18.8
L = 18.8
Ra = 123.0
insert hh

}

dend[0] {
nseg = 5
diam = 3.18
L = 701.9
Ra = 123
insert pas

}

dend[1] {…}

// Connect things

connect dend0,soma(0)
connect dend[1](0),soma(1)

}

endtemplate SThcell

COSC422 10

The init procedure

The templates have a special procedure called init() which is
automatically called when a new object is created from the template.

This procedure is used to initialise the newly created object.

In our init() procedure above, we have created and defined all
the sections of our model neuron and connected them together.

Thus, when a new neuron object is created from the template, with
the new command, an entire subthalamic neuron is built.

COSC422 11

Creating new neurons from a template

First, we define an array of object variables:

Second, we create four model neurons using the new command:

Each model neuron is an exact copy of the template.
We can create as many neurons as our computer can handle.

nSThcells = 4
objectvar SThcells[nSThcells]

SThcells[0] = new SThcell()
SThcells[1] = new SThcell()
SThcells[2] = new SThcell()
SThcells[3] = new SThcell()

COSC422 12

Creating new neurons in a loop

After defining an array of object variables:

Instead of creating each neuron with a separate command, we use
the new command within the so-called for loop:

Letter “i” denotes an index within an array. It can be any letter (a, b,
c, d, …) or even a word (index, loop, instance, cell, etc.).

nSThcells = 4
objectvar SThcells[nSThcells]

for i = 0, nSThcells-1 {
SThcells[i] = new SThcell()

}

COSC422 13

Arguments to the init procedure

Arguments can be passed to init() like to any other procedure.

This can be used to affect the properties of the object via the
parameters that you pass to the new command.

As an example of passing arguments to init() procedure, suppose
we wanted to have neurons with different numbers of segments in
their dendrites, i.e. variable nsegden will have different values for
different individual neurons.

We can do this in a single population of neurons creating multiple
copies of neurons with different nsegden values.

COSC422 14

Arguments to the init procedure: example

Let’s write
init() with an
argument for
nsegdend

Code for a variable
argument is $1

If we had more
than one argument
we will use $1,
$2, $3, etc.

proc init() {
nsegdend = $1

ndend = 2
create soma,dend[ndend]
...

dend[0] {
nseg = nsegdend
...
}

dend[1] {
nseg = nsegdend
...
}

}

COSC422 15

Arguments to the init procedure: example

To create a neuron (say neuron 0) with dendritic sections containing,
for example, 13 segments, we do it using the command:

to create all of our four cells with 3, 6, 9, and 12 dendritic segments
respectively we could type:

SThcells[0] = new SThcell(13)

SThcells[0] = new SThcell(3)

SThcells[1] = new SThcell(6)

SThcells[2] = new SThcell(9)

SThcells[3] = new SThcell(12)

COSC422 16

Arguments to the init procedure: example

Preferably, to create all of our four cells with 3, 6, 9, and 12 dendritic
segments respectively we use the for loop:

Finally, we need to remember to set a default section so that
graphing works:

There must be at least one access statement in the code.

for i = 0, nSThcells-1 {
SThcells[i] = new SThcell(3*(i+1))

}

access SThcells[0].soma

COSC422 17

Accessing parts of neurons from outside

After declaring the array with the objectvar command and
creating the objects with the new command, we can access the
sections using the dot notation (provided they are public !).

E.g, we can insert current clamps into all of four somas as follows:

Note: the NEURON code up to now is in the file SthC1.hoc

objectvar stim[nSThcells]

for i = 0, nSThcells-1 SThcells[i].soma {
stim[i] = new IClamp(0.5)
stim[i].del = 100
stim[i].dur = 100
stim[i].amp = 0.1

}

COSC422 18

Positioning neurons in 3D space
Each time we create a new section and
connect it to others, NEURON places
the section in a 3-D space and assigns
automatically X, Y and Z coordinates
to each end of the sections.

When creating more than one neuron,
each neuron is given a different Z
coordinate for all of its sections.

To see the default position of neurons,
open a space or shape plot (under the
Graph menu) right click on it and
choose 3D rotate.

COSC422 19

Re-positioning neurons in 3D space

The default X and Y coordinates of
each neuron are determined by how
the individual sections are connected.

This makes viewing the neurons
difficult since they are not arranged
how they are in reality.

NEURON has two inbuilt functions
to reposition each section:
pt3dclear() and pt3dadd().

COSC422 20

Re-positioning neurons in 3D space

The first function, pt3dclear(), will erase any 3D positioning
information associated with the section.

The second, pt3dadd(), takes four arguments (X, Y, Z, and diam)
and will add a new coordinate to the section.

Usually there are coordinates for each end of the section, which can be
set by making two calls to pt3dadd() – once for the "0" end of the
section and once for the "1" end of the section.

We will demonstrate the action of these functions on a more complex
dendritic trees in the next lecture.

