
COSC422 1

NEURON - tutorial C (part 3) and tutorial E
of Gillies & Sterratt

http://www.anc.ed.ac.uk/school/neuron/

COSC422 – lecture 9
How to connect neurons using NetCon
Methods of getting data out of neuron to be stored,
visualised or analysed in other packages

COSC422 2

What we’ve got so far: sthC2.hoc
The final four neurons, each with a full dendritic tree morphology
are shown here in a shape plot (image on the left).
Next to it is the voltage trace in one of the model neurons, i.e.
SThcells[0].soma, as a result of the current pulse injection (recall
the cells are not connected yet).

COSC422 3

Connecting neurons with a delay line

Unless we need for some reason simulate explicitly propagation of
spikes along axons, then we can connect our neurons together
without considering axons at all !

That’s what we are going to do now. We would save a lot of
computation time doing it this way.

Since the information content of signals passing from one neuron to
another is carried by the times of spikes arriving at synapses, we will
model the connection from one neuron to another as a delay line.

Cell j Cell i
Delay line

COSC422 4

The delay line
The voltage in the soma of the presynaptic cell j is continuously
monitored.

If the voltage goes over a defined threshold, this signals the
occurrence of an output spike (action potential).

The delay line then signals this occurrence to the synaptic contact on
the postsynaptic neuron i at a defined time later (i.e. after some
delay Δt).

The delay is calculated based on the known velocity of spike
propagation along axons and the distance between the two neurons
as Δt = distance / velocity.

COSC422 5

Event based simulation model

We have not yet connected our neurons together. Currently, they are
operating as four independent subthalamic neurons, each with an
electrode injecting a current pulse into the soma.

The modern form of connecting neurons together is in an event
based simulation model (events are usually things like spikes).

By using an event based model, we can dramatically reduce the
amount of computation. This is important in simulation time
optimisation and in simulations on parallel machines as only spike
times need to be sent between processors.

COSC422 6

Connecting neurons together – NetCon
First we must add an additional public object variable to our neuron
template, the nclist, to be accessible from outside the template.

We have to declare a new object variable nclist that will refer to
a list that will hold an arbitrary number of NetCon objects.

So, now we begin our subthalamic neuron template with:

begintemplate SThCell

public soma, treeA, treeB, nclist

create soma, treeA[1], treeB[1]

objectvar f, nclist

COSC422 7

Connecting neurons together – List
Then we continue with the init() procedure like this:

The only thing we have to change is to add an object variable
nclist, make it public, and in the init() procedure, associate it
with a new List.
In NEURON, a List is an object that holds a list of other objects.
The advantage of a list is that we don't have to specify in advance
how big it will grow, as we have to for an array.

proc init() {

local i,me,child1,child2

create soma

nclist = new List()

COSC422 8

Changing the number of electrodes

At present, we insert current clamps into all of four somas as follows:

objectvar stim[nSThcells]

for i = 0, nSThcells-1 SThcells[i].soma {
stim[i] = new IClamp(0.5)
stim[i].del = 100
stim[i].dur = 100
stim[i].amp = 0.1

}

COSC422 9

Changing the number of electrodes

Let from 100 to 200 ms, only the neuron SThcells[1]
will be generating spikes.

The modified code looks like this:

objectvar stim[nSThcells]

i = 1
SThcells[i].soma {
stim[i] = new IClamp(0.5)
stim[i].del = 100
stim[i].dur = 100
stim[i].amp = 0.1
}

COSC422 10

Creating synapses
First, we only want to connect the stimulated neuron SThcells[1]
to model neuron SThcells[0] and observe the Excitatory Post
Synaptic Potentials at the soma of neuron 0.

In order to connect neurons, we must create one or more synapses.

Like IClamp stimulation, a synapse is an object that can be positioned
anywhere on a neuron.

For example, at the end of our current code we can define a new array
of objects for our synapses. Let’s have a maximum of 10 synapses:

maxsyn = 10
objectvar syn[maxsyn]

COSC422 11

ExpSyn (“exponential synapse”)

The built in synaptic type ExpSyn is a synapse whose conductance
instantaneously rises on receiving a spike and then exponentially
decays.

We position and create the synapse at a chosen section of a neuron:

Thus, a synapse 0 will be placed at the branch 7 of the neuron 0:

SThcells[0].treeA[7] syn[0] = new ExpSyn(0)

time

here

COSC422 12

Defining the source of events for synapses

To create a new NetCon object (the source for a synapse), we use the
command format:

source_v is the source voltage (from SThcells[1].soma);
synapse is the object variable that refers to the synaptic object
receiving the events (in our case syn[0]);
threshold is the threshold, which the voltage must reach for it to
be considered that a spike has occurred;
delay is the connection delay, and
weight is the connection weight strength of the synapse.

new NetCon(&source_v,synapse,threshold,delay,weight)

COSC422 13

Connecting synapse
So, to connect SThcells[1] to the dendritic branch 7 of treeA
on subthalamic neuron SThcells[0] we add the command:

First this command accesses SThcells[1].soma
then the nclist of SThcells[0] has a new NetCon object
appended. This NetCon object has a source voltage of
SThcells[1].soma.v(1) .
The NetCon object applies to syn[0] which we have already
attached to SThcells[0].treeA[7] .
Our threshold for action potentials is −20mV, our delay 1ms, and our
synaptic weight 0.5.

SThcells[1].soma SThcells[0].nclist.append(new
NetCon(&v(1), syn[0], -20, 1, 0.5))

COSC422 14

Simulation of sthC3.hoc
The last line of the code is: access SThcells[0].soma

If we run the simulation and plot the voltage at SThcells[0].soma
we see EPSPs resulting from the spikes of neuron SThcells[1]:

COSC422 15

Dealing with lists

The command nclist.append(obj) appends the object
specified by the object variable obj to the list nclist. E.g.

There are number of commands to manipulate nclists. One of them is

which returns the number of items in the list nclist.

SThcells[1].soma SThcells[0].nclist.append(new
NetCon(&v(1), syn[0], -20, 1, 0.5))

nclist.count()

COSC422 16

Dealing with lists

The command

returns the object at index i in the list nclist.

We can put these commands together to change properties of the
synaptic connections. For example:

Will change all of the weights onto SThcells[0] to 0.6.

for i = 0, SThcells[0].nclist.count()-1 {
SThcells[0].nclist.object(i).weight = 0.6 }

nclist.object(i)

COSC422 17

Working with NEURON: practical hints (tut E)

Quite often we want to analyse or record certain simulation results
and perform large numbers of simulations as fast as possible (for
example in parameter searching).

Thus, we will explore methods of getting data out of NEURON to
be stored, visualised or analysed in other packages.

We will also consider ways of speeding up the simulations and the
consequences and decision we take in doing this.

Much more can be found at: http://www.neuron.yale.edu/neuron/
by going to Documentation and/or Programmer’s Reference.

COSC422 18

The print & file window manager

This function enables you to
print selected windows from your simulation and also
to store the whole session, so that the next time you can
continue where you have stopped.

To open the Print & File Window Manager, select Print & File
Window Manager from the Window menu on the Main menu.

COSC422 19

The print & file window manager

The left most of the two red rectangles in this window represents
the entire NEURON display. Each smaller blue rectangle (with a
number in it) represents one of NEURON's windows.

The second red rectangle represents a sheet of paper--we will call
this the Selection rectangle. It is used to print selected windows to
a file or printer and to save selected windows in a session file.

NEURON
session

Selection
window

COSC422 20

Saving and retrieving sessions

After creating several graphs, you may want to save the windows
you have created (i.e., graphs and panels) to a file so that you can
recall them at a later time.

NEURON allows you to save either all or selected windows to a
session by selecting the Save selected or Save all option of the
Session menu in the Print & File Window Manager.

Save all will save the position and contents of all NEURON's
windows. Save selected will save only those windows that are
currently selected in the Selection rectangle in Print & File
Window Manager. Either of these options will pop up a window,
in which you can enter the filename of your saved session.

COSC422 21

If we save our session to a file (e.g., sthB.ses), we can
either load the session each time we load our program by
selecting the Retrieve option of the Session menu in the Print
& File Window Manager,
or we can have our program automatically load our session for
us. To do this, we need to add the following at the very end of
our program:

where sthB.ses is the name of the session we saved. The
next time we start our program, the session with our graphs and
menus will automatically be loaded into NEURON.

Saving and retrieving sessions

xopen("sthB.ses")

COSC422 22

Recording data with vectors (w/o plotting them)

It is often convenient to save the data for later re-use. This can be
done in the hoc file using Vector and File objects.

Let us record both the time and voltage at the soma of the 3rd model
neuron. Thus, we create 2 variables for holding the vector objects:

Now the vectors must be created. We do this with the new command:

We now have two vector objects.

objref rect, recv

rect = new Vector()
recv = new Vector()

COSC422 23

Recording voltage
Our subthalamic cells are defined as an array of object variables
(from SThcells[0] to SThcells[nSThcells]). Thus the
voltage at the soma of the 3rd model neuron is given by this variable:

To record this voltage, we prepend an "&" to this variable name, and
give it as an argument to the record function of the particular vector
object where we want it saved, i.e.:

The voltage in the centre of the 3rd cell’s soma will be recorded into
this vector on each simulation. Note: if a second simulation is run, it
will overwrite any previous simulation data in this vector !

SThcells[2].soma.v(0.5)

recv.record(&SThcells[2].soma.v(0.5))

COSC422 24

To record the time information, the second vector object (rect) can
be setup to record the time variable t, using this command:

Now, when we run a simulation, the time and voltage data from these
variables will be recorded in our two vectors (Note: "resize_chunk"
messages in the terminal just indicates the vector objects are growing).

To see the data in the vectors, we can use the vector object function
printf to display the data in the terminal, i.e.:

Recording time

rect.record(&t)

recv.printf()

COSC422 25

One way of doing this is to save each vector to a different file.

To do this we must create file objects for each file. First a variable
must be defined for the object (we will call ours savv and savt).

We now create the file objects using the new command:

Saving the vectors of data to a file

savv = new File()
savt = new File()

objref savv, savt

COSC422 26

The function wopen in the file object opens a file for writing to it.
It takes as an argument the name of the file, i.e.:

We can now save the data in our vectors (rect and recv) using,
the printf function with the file object as an argument:

Finally, don’t forget to close the files:

Opening, writing to and closing a file

recv.printf(savv)
rect.printf(savt)

savv.wopen("cell3somav.dat")
savt.wopen("cell3somat.dat")

savv.close()
savt.close()

COSC422 27

First, we create a new single file object:

Then we’ll open the file, e.g. "cell3soma.dat“, for writing to it:

We can also save useful information at the beginning of the file,
such as the variable name (e.g. SThcells[2].soma.v(0.5)), and
the number of data vectors in the file. We can write this to the file
using the printf function in the File object:

Saving the vectors in one file

objref savdata

savdata = new File()
savdata.wopen("cell3soma.dat")

COSC422 28

The printf function in a File object is somewhat
different from the printf in a Vector.

As it is used above, it has only one argument, which is the
text that will be printed to the file header. This text is
enclosed in quotes "." and in programming terms is
known as a string.

The "\n" at the end of the string inserts a newline.

The printf function in a file object

savdata.printf("t SThcells[2].soma.v(0.5)\n")

COSC422 29

The second time printf is used it has two arguments. The first
argument is a string, but this time it contains a percentage sign
followed by a single character, the letter "d". This "%d" is a
placeholder for an integer number that is given to the function as
an additional argument. The argument in this example is
rect.size().

The function size is in the Vector object and returns the size of
the vector, here, the size of the time vector rect.

The printf function in a file object

savdata.printf("%d\n",rect.size())

COSC422 30

Now we want each line of our file to have two numbers (time and
SThcells[2].soma.v(0.5) at that time). We use the for loop:

%g is a printing convention for real (floating point) numbers. These
real numbers are the data from the time and voltage vectors.

The x function in the Vector object returns the data at a given
location in the vector. For example, rect.x(0), is the first element
in the rect vector, rect.x(1), is the second element, etc. In our for
loop, we use x(i) to cycle through each vector element, so that each
data pair gets written to the file in sequence. Finally, we close the file:

Saving the vectors in one file

for i=0,rect.size()-1 {
savdata.printf("%g %g\n",rect.x(i),recv.x(i)) }

savdata.close()

