
COSC422 1

NEURON - tutorial D of Gillies & Sterratt (part 2)
http://www.anc.ed.ac.uk/school/neuron/

COSC422 – lecture 11
How to program ion channels with NMODL

COSC422 2

NMODL: creating the .mod file

A description of a membrane mechanism in NMODL in a text file is
divided into a number of blocks.

Each block begins with a keyword defining the type of block, then
an open brace "{", followed by block specific definitions, and
finally, the block is ended with a closing brace "}".

We will construct a NMODL file, called CaT.mod to calculate the
low threshold calcium channel kinetics. As with hoc files we can use
any text editor to create this file.

(Note: there are a number of NMODL examples provided with the
NEURON package.)

COSC422 3

The TITLE and UNITS blocks

We start the NMODL file with some standard definitions, i.e.:

The TITLE keyword identifies what this file is describing.
The UNITS block defines conventions for the units that will be used in
this file. It uses these units to check that equations are consistent.
By default, NMODL understands units in the UNIX units database (see
file /usr/share/units.dat or look at the units command).

TITLE Calcium T channel for Subthalamic Nucleus

UNITS {

(mV) = (millivolt)

(mA) = (milliamp)

}

COSC422 4

The NEURON block

The NEURON block is the public interface of the mechanism. It tells
the hoc interpreter how to refer to the mechanism and what variables
it can see or change. The structure of the block is as follows:

Now we will explain each line in turn.

NEURON {

SUFFIX suffix

USEION ions... READ vars... WRITE vars...

RANGE var,var,...

GLOBAL var,var,...

}

COSC422 5

The NEURON block: SUFFIX suffix

The first step is to identify this particular mechanism from all other
membrane mechanisms when referencing it from the hoc file.

This is done through the SUFFIX statement of the block.

Access to all variables in this mechanism from the hoc file is then done
using the suffix.

For example, we will call this channel mechanism "CaT", so to access
variables in the mechanism from hoc we use var_CaT (where var is
a variable in this mechanism).

COSC422 6

The NEURON block: USEION
The USEION specifies what ions this channel mechanism uses.

There are three implicitly defined ions NEURON knows about (na,
k, ca) however, others may also be defined via this statement.

NEURON can keep track of the intracellular and extracellular
concentrations of each ion.

Dealing with ions is difficult, because more than one mechanism may
affect a particular ion. For example, we may have more than one
calcium channel mechanism. Therefore, when dealing with ions use
exactly the same name used in all other mechanisms.

COSC422 7

USEION ions READ vars WRITE vars

The READ modifier lists ion variables needed in calculating the ion
channel current (usually the equilibrium potential, or concentration).

The WRITE modifier lists what ion variables are calculated in this
mechanism (usually the current). In our example we use Ca ion:

USEION ca READ eca WRITE ica

where eca is the equilibrium potential for ion ca (calcium),
ica is the calcium current

COSC422 8

Note on how NEURON deals with ions

Since we have just introduced ica, a calcium current, we may expect
NEURON will automatically adjust the intra- and extracellular calcium
concentrations. It doesn't !!!

NEURON does not change the ionic concentrations automatically. To
do this, we would need another mechanism defined in NMODL that
would WRITE cai and/or cao, the intra- and extracellular calcium
concentrations. However this mechanism would need to know the total
calcium current ica originating from our CaT mechanism and any other
mechanisms affecting calcium current. NEURON provides a means of
doing this – see the NMODL webpage.

Let’s continue without modelling calcium accumulation adjacent to the
membrane, either intracellularly or extracellularly.

COSC422 9

The NEURON block: Range and Global
The RANGE statement makes the following variables visible to the
NEURON interpreter and that they are to be functions of a position.

The GLOBAL statement specifies variables that are always the same for
the mechanism. CaT mechanism does not have any GLOBAL
variables. Our final NEURON block now has the form:

NEURON {

SUFFIX CaT

USEION ca READ eca WRITE ica

RANGE gmax

}

COSC422 10

The PARAMETER block

The PARAMETER block in CaT.mod is this:

For each parameter, we specify the name of the parameter, its default
value and its units (in parentheses).

The PARAMETER block specifies variables that:
are not changed as a result of the calculations in the mechanism;
are (generally) constant throughout time; and
can be changed in the hoc file, e.g. soma gmax_CaT = 0.001

PARAMETER {

gmax = 0.002 (mho/cm2)

}

COSC422 11

The ASSIGNED block

The ASSIGNED block declares variables that are either:

calculated by the mechanism itself or
computed by NEURON.

Variables that this mechanism will compute are the calcium current ica,
and variables for the rate equations ralpha, rbeta, salpha, etc.

The variables that the mechanism uses that are computed by
NEURON are the membrane potential V and the calcium equilibrium
potential eca.

COSC422 12

The ASSIGNED block

For CaT, the ASSIGNED block looks like this:
ASSIGNED {

v (mV)

eca (mV)

ica (mA/cm2)

ralpha (/ms)

rbeta (/ms)

salpha (/ms)

sbeta (/ms)

dalpha (/ms)

dbeta (/ms)

}

COSC422 13

The heart of CaT mechanism

Recall we want to calculate:

We wish to calculate the values of the state variables r, s and d in order
to calculate the calcium current from the above equation.
The state variables are given by the three kinetic differential equations:

ddsd

sdss
rrr

dd

ss

r

βα

βα
βα

−−−=

−−−=
−−=

)1(

)1(
)1(

&

&

&

()CaTT EVsrgI −= 3
(max)

COSC422 14

The STATE block

The STATE block declares state variables.

There are 3 state variables in our kinetic channel model, r, s and d.

For CaT, the STATE block looks like this:

STATE {

r s d

}

COSC422 15

PROCEDURE

However, we must first calculate each of the rate functions ralpha,
rbeta, salpha, sbeta, dalpha and dbeta.

We can create a PROCEDURE to do this.

A procedure is defined using the following format:

PROCEDURE name(vars) {

calculations...

}

COSC422 16

PROCEDURE settables(v (mV)) {

LOCAL bd

ralpha = 1.0/(1.7+exp(-(v+28.2)/13.5))

rbeta = exp(-(v+63.0)/7.8)/(exp(-(v+28.8)/13.1)+1.7)

salpha = exp(-(v+160.3)/17.8)

sbeta = (sqrt(0.25+exp((v+83.5)/6.3))-0.5) *

(exp(-(v+160.3)/17.8))

bd = sqrt(0.25+exp((v+83.5)/6.3))

dalpha = (1.0+exp((v+37.4)/30.0))/(240.0*(0.5+bd))

dbeta = (bd-0.5)*dalpha

}

COSC422 17

Why we call procedure settables

The above procedure takes the current voltage v as an argument
(vars) and calculates values of the rate functions ralpha, rbeta, etc.

The rate functions will need to be reevaluated at each time step.

However, as the voltage is changing, it is more computationally
efficient to create a table of values calculated at closely spaced voltages
at the start of a simulation, and use the table lookup with linear
interpolation based on the current voltage (memory is cheaper than
computation).

This can be done by adding a TABLE line to the procedure.

COSC422 18

Procedure settables

The TABLE command has the form:

Where funcs, are the variables representing the functions to create
tables for (e.g. the alpha and beta function variables)

vars are those variables, which if they change value then all tables
must be recalculated.

lowest and highest are the lowest and highest values of the
voltage we make the tables over, with steps steps between them.

TABLE funcs DEPEND vars FROM lowest TO highest WITH steps

COSC422 19

PROCEDURE settables(v (mV)) {

LOCAL bd

TABLE ralpha, rbeta, salpha, sbeta, dalpha, dbeta
FROM -100 TO 100 WITH 200

ralpha = 1.0/(1.7+exp(-(v+28.2)/13.5))

rbeta = exp(-(v+63.0)/7.8)/(exp(-(v+28.8)/13.1)+1.7)

salpha = exp(-(v+160.3)/17.8)

sbeta = (sqrt(0.25+exp((v+83.5)/6.3))-0.5) *

(exp(-(v+160.3)/17.8))

bd = sqrt(0.25+exp((v+83.5)/6.3))

dalpha = (1.0+exp((v+37.4)/30.0))/(240.0*(0.5+bd))

dbeta = (bd-0.5)*dalpha

}

COSC422 20

The DERIVATIVE block
The α and β rate functions are used in equations:

These are specified in the DERIVATIVE block, which we will call states.

Each time NEURON calculates the differential equations, the a and b must
be updated, so the first line calls the procedure settables with the current
voltage v.

ddsd

sdss
rrr

dd

ss

r

βα

βα
βα

−−−=

−−−=
−−=

)1(

)1(
)1(

&

&

&

DERIVATIVE states {

settables(v)

r' = ((ralpha*(1-r)) - (rbeta*r))

d' = ((dbeta*(1-s-d)) - (dalpha*d))

s' = ((salpha*(1-s-d)) - (sbeta*s))

}

COSC422 21

The BREAKPOINT block
The BREAKPOINT is the top level mechanism calculation block that
calculates the calcium current:

The Ca current is calculated according to the equation:

The SOLVE statement refers to the states defined in the DERIVATIVE
block. The METHOD cnexp part of the line tells NEURON to use the
"cnexp" method of integration, which is suitable for mechanisms of the
form: dx/dt = f (V, x), where f is linear in x and involves no other states.

BREAKPOINT {

SOLVE states METHOD cnexp

ica = gmax*r*r*r*s*(v-eca)

}

()CaTT EVsrgI −= 3
(max)

COSC422 22

The INITIAL block

This block is the last one. It is used to set the state variables r, d and s to
their initial values. The INITIAL block first calls the procedure
settables with the present voltage to calculate the values of the α ’s
and β ’s, which are used to calculate the initial values of r, d and s .

INITIAL {

settables(v)

r = ralpha/(ralpha+rbeta)

s = (salpha*(dbeta+dalpha) - (salpha*dbeta))/

((salpha+sbeta)*(dalpha+dbeta)- (salpha*dbeta))

d = (dbeta*(salpha+sbeta) - (salpha*dbeta))/

((salpha+sbeta)*(dalpha+dbeta)- (salpha*dbeta))

}

COSC422 23

Putting it all together

the commands UNITSON and UNITSOFF in the file activate the units
checking (e.g. mV, mA etc.) and deactivate it respectively.

TITLE Calcium T channel for Subthalamic Nucleus

UNITS {…}

NEURON {…}

PARAMETER {…}

ASSIGNED {…}

STATE {…}

BREAKPOINT {…}

INITIAL {…}

DERIVATIVE states {…}

UNITSOFF

PROCEDURE settables(v (mV)) {…}

UNITSON

COSC422 24

To speed up a simulation we can reduce the number of segments nseg
or increase dt. However, this will decrease the accuracy of results.

Another strategy is a variable time step method. The principle is that
the dt is longer when quantities are not changing much (such as
between spikes) and shorter when quantities are changing quickly (such
as during a spike).

By default, NEURON uses fixed time step integration. The command

returns 0, indicating that variable time step is turned off. To turn on the
variable time step integration we type:

Speed of simulation

cvode_active()

cvode_active(1)

