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Learning objectives and references

• You should be able to:  
• define the elements of the relational model; 
• determine functional dependencies (FDs) for example databases; 
• derive functional dependencies by applying inference axioms; 
• apply closures of FDs’ attributes to explore a relation’s structure; 
• understand and use the relational data operators and their notation; 
• define different types of database normalisation; 
• determine the normal form that a relation is in (1NF,2NF,3NF,BCNF); 
• decompose relations into a given normal form.  

• Elmasri chapters of relevance: 6th ed., ch3; ch6; ch14
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Example relational database
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An Example of 
Relational Database 

EMPLOYEE 

 

 

 

DEPARTMENT              DEPT_LOCATION   

 

 

 

 

 

 

 

 

 

PROJECT               WORKS_ON 

 

 

 

 

 

 

 

 

 

 

DEPENDENT 

 

 

 

 

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO 

John B Smith 123456789 9-Jan-1965 731 Fondren, Houston, TX M 30000 333445555 5 

Franklin T Wong 333445555 8-Dec-1955 638 Voss, Houston, TX M 40000 888665555 5 

Alicia J Zelaya 999887777 19-Jul-1968 3321 Castle, Spring, TX F 25000 987654321 4 

Jennifer S Wallace 987654321 20-Jun-1941 291 Berry, Bellaire, TX F 43000 888665555 4 

Ramesh K Narayan 666884444 15-Sep-1962 975 Fire Oak, Humble, TX M 38000 333445555 5 

Joyce A English 453453453 31-Jul-1972 5631 Rice, Houston, TX F 25000 333445555 5 

Ahmad V Jabbar 987987987 29-Mar-1969 980 Dallas, Houston, YX M 25000 987654321 4 

James E Borg 888665555 10-Nov-1937 450 Stone, Houston, TX M 55000 NULL 1 

 

 

 

 

 

DNAME DNUMBER MGRSSN MGRSTARTDATE 

Research 5 333445555 22-May-1988 

Administration 4 987654321 1-Jan-1995 

Headquarters 1 888665555 19-Jun-1981 

Dummies 0 111100000 31-Dec-2004 

 

 

PNAME PNUMBER PLOCATION DNUM 

ProductX 1 Bellaire 5 

ProductY 2 Sugarland 5 

ProductZ 3 Houston 5 

Computerisation 10 Stafford 4 

Reorganisation 20 Houston 1 

NewBenefits 30 Stafford 4 

 

 

DNUMBER DLOCATION 

1 Houston 

4 Stafford 

5 Bellaire 

5 Sugarland 

5 Houston 

 

ESSN DEPENDENT_NAME SEX BDATE RELATIONSHIP 

333445555 Alice F 5-Apr-1986 Daughter 

333445555 Theodore M 25-Oct-1983 Son 

333445555 Joy F 3-May-1958 Spouse 

987654321 Abner M 28-Feb-1942 Spouse 

123456789 Michael M 4-Jan-1988 Son 

123456789 Alice F 30-Dec-1988 Daughter 

123456789 Elizabeth F 5-May-1967 Spouse 

 

ESSN PNO HOURS 

123456789 1 32.5 

123456789 2 7.5 

666884444 3 40.0 

453453453 1 20.0 

453453453 2 20.0 

333445555 2 10.0 

333445555 3 10.0 

333445555 10 10.0 

333445555 20 10.0 

999887777 30 30.0 

999887777 10 10.0 

987987987 10 35.0 

987987987 30 5.0 

987654321 30 20.0 

987654321 20 15.0 

888665555 20 NULL 
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Relational schema of COMPANY database
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The Relational data model

• Invented by E.F. Codd, IBM Research in 1970 
• E.F. Codd, “A Relational Model for Large Shared Data Banks”, 

Communications of the ACM, 13:6, June 1970  

• Has formal basis in mathematics 
• Set theory 
• First order predicate logic 

• The dominant model for database systems 
• Oracle, 1979 
• IBM DB2, 1983 
• Microsoft SQL Server, 1989 
• ... and all the open source offerings
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Relational data model components

• The three core components in the relational model: 

• Objects or relations—the structure of data organisation 
• Integrity constraints—enforcing constraints and rules 

• Operators—manipulation of data 

• We first examine relations
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Fundamental terms

• relation—instance of a schema 
• attribute—one element within a tuple  
• domain—set from which attribute values can come 
• tuple—mapping from schema into attributes’ domain 

• cardinality—number of tuples 
• degree—number elements in tuple 

• key—means to identify tuple
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Formalisation of relations

• A relation scheme R denoted R(A1,A2,…,An) is made up of: 
• The name of the relation R 
• A set of attributes {A1, A2 .. An}. 

• Corresponding to each attribute name Ai is a set Di, 1 ≤ i ≤ n,  
called the domain of Ai, sometimes denoted by dom(Ai). 

• Let D = D1 ∪ D2 ∪ ....... ∪ Dn 

• A relation r on relation scheme R is a finite set of mappings 
{t1, t2, ..... tp} from R to D with the restriction that for each 
mapping t ∈ r, t(Ai) must be in Di, 1 ≤ i ≤ n. 

• The mappings are called tuples. 
(from David Maier, The theory of relational databases, Pitman, 1983)
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Relational data model components

• The three core components in the relational model: 

• Objects or relations—the structure of data organisation 
• Integrity constraints—enforcing constraints and rules 

• Operators—manipulation of data 

• Now let’s look at integrity constraints
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Constraints are everywhere

• Situations which lead to data restrictions or constraints 
in the modelled world: 
• Every student has a unique student ID 
• You can’t be in two places at the same time 
• A truck driver can drive for 11 hours max., and work for a 14 

hours max. in a day, before having to take 10 hours off duty 
or in the sleeper 

• Maximum room capacity 24 
• Speed limit 30
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Constraints in the relational model

• Domain constraints 

• Key constraints 
• superkey—set of attributes that can identify a tuple 
• candidate key—minimal super key 
• primary key—chosen candidate key 

• Entity Integrity constraint 
• No primary key values can be NULL 

• Referential Integrity constraint 
• Foreign keys interlink data in a valid way
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Constraints are everywhere

• Situations which lead to data restrictions or constraints in the 
modelled world: 
• Every student has a unique student ID 
• You can’t be in two places at the same time 
• A truck driver can drive for 11 hours max., and work for a 14 hours max. 

in a day, before having to take 10 hours off duty or in the sleeper. 
• Maximum room capacity 24 
• Speed limit 30 

• Some can be expressed by a functional dependency, e.g., 
• {person, time, date} → place → = “determines”
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Functional dependencies

The single most important concept in relational schema 
design is that of a functional dependency—Elmasri, p497 

• A functional dependency (dependence) is a many-to-
one relationship from one set of attributes to another 

• Given a relation R, attribute Y of R is functionally 
dependent on attribute X of R if and only if: 
• in every possible legal value of R each X-value has associated 

with it precisely one Y-value
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Healthy Harbour 
Watchers
• … is a community 

group that collects 
data about the 
quality of our 
foreshore 
environments
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FDs exist in every relation

Sample (S#, PLACE, DATE, TEAM, LNAME, LPH, HT, WT, WPH, …) where: 
• S#, Sample number 
• PLACE, Place where sample is taken 
• DATE, Date when sample taken 
• TEAM, Which team collected the sample 
• LNAME, Team leader’s name 
• LPH, Team leader’s contact phone 
• HT, High tide 
• WT, water temperature 
• WPH, water pH value … 

• List some functional dependencies in relation Sample, stating any 
assumptions you make. Identify a candidate key
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Sample data values

16COSC430 Lecture 2, 2020

Sample # Pla
ce

Date Team LName LPh WT …
81 PP d1 t1 Alex 021 123 10.3
82 PP d1 t1 Alex 021 123 10.3
83 BB d1 t1 Alex 021 123 10.9
84 MB d1 t1 Alex 021 123 11.0
81 PP d2 t1 Alex 021 123 9.9
82 PP d2 t1 Alex 021 123 9.9
83 BB d2 t2 Kathy 022 246 10.1
84 MB d2 t2 Kathy 022 246 10.4



Inference axioms

• For a relation R there is a family of FDs, F, that R satisfies 
• Finding F requires some semantic knowledge of R 

• Knowing some members of F, it is often possible to infer 
other members of F 

• An inference axiom is a rule that states if a relation 
satisfies certain FDs then it must satisfy certain other FDs
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For example, a transitive dependency

• If we have a relation 

• and: Staff_ID  → Full name 

• and: Full name  → Address 

• then we can infer: Staff_ID  → Address 

• if a relation satisfies certain FDs, it must satisfy certain other FDs
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Staff ID Full name Address
12345 Jo Smith 99 High Street
6789 Ken Jones 99 Leith Street



Maier’s list of inference axioms
F1 Reflexivity 
 X→X 

F2 Augmentation 
 X → Y implies XZ → Y 
 (Elmasri X → Y implies XZ → YZ) 

F3 Additivity (Union—Elmasri) 
 X → Y and X → Z implies X → YZ 

F4 Projectivity 
 (Decomposition—Elmasri) 
 X → YZ implies X → Y 

F5 Transitivity 
 X → Y and Y → Z implies X → Z 

F6 Pseudotransitivity 
 X → Y and YW → Z imply XW → Z
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See—David Maier, The theory of relational databases, Pitman, 1983



Armstrong’s axioms

• Armstrong’s actual axioms are: 
• Reflexivity (F1) 
• Augmentation (F2) 
• Pseudotransitivity (F6) 

• … and the others can be derived from them 

• Elmasri (p529) uses the term inference rules and defines 
Armstrong’s rules as 
• reflexivity 
• augmentation 
• transitivity
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Armstrong’s axioms are

Complete 
• Given a set F of FDs, all the FDs implied by F can be 

derived using Armstrong’s axioms 

Sound 
• Given a set F of FDs, no FDs not implied by F will be 

derived using Armstrong’s axioms
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The closure of a set of dependencies

• The closure of F 

• The set of all FDs implied by a given set F is called the 
closure of F, denoted by F+ 

• F+ is the smallest set containing F such that Armstrong’s 
axioms cannot be applied to the set to yield an FD not 
in the set
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For example

Given R(A, B, C) 
and F = {A → B, B → C} 

F+ = { A → A, B → B, C → C, AB → AB, 

  AC → AC, BC → BC, ABC → ABC, 

  AB → A,.................. 

  A → B, AB → B, AC → B, ABC → B, 

  B → C, AB → C, BC → C, ABC → C, 

  B → BC, A → ABC,...............................}
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The closure of a set of attributes

• Given a set of FDs, F and a set of attributes X 

• The closure of X, denoted by X+   is the maximal set of 
attributes determined by X, within the closure of the 
set of FDs, F+
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For example

Given R(A, B, C) and F = {A → B, B → C} 

F+ = { A → A, B → B, C → C, AB → AB, AC → AC, 
BC → BC, ABC → ABC, AB → A,........ A → AB.......... 
A → B, AB → B, AC → B, ABC → B, A → C, B → C,  
AB → C, BC → C, ABC → C, B → BC,  
A → AC,.................. A → ABC,……….} 

A+ = ABC 
B+ = BC 
BC+ = BC

25COSC430 Lecture 2, 2020



Minimal sets of dependencies

• For every set of FDs E, there is a covering set F with the 
following properties 
• every RHS is a single attribute 
• every LHS is irreducible—no attribute is redundant 
• no FD is F is redundant 

• This minimal set F is referred to as a minimal cover (or 
an irreducible set) 

• It is a set of dependencies in a standard form and has 
no redundancies
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Minimal cover—example

R (A B C D J) 
F = { A → B, AB → D, C → AD, C → J } 

F = { A → B, AB → D, C → A, C → D, C → J } 

F = { A → B, AB → D, C → A, C → D, C → J } 

F = { A → B, A → D, C → A, C → D, C → J } 

F = { A → B, A → D, C → A, C → D, C → J } 

F = { A → B, A → D, C → A, C → J }
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Testing membership in F+

Given a relation R (A B C) 

and a set of FDs F = { AB → C, C → B } 

 does F imply AC → AB ? 

Compute AC+ , the closure of AC under F 

Then, if AB is a subset of AC+ YES else NO 

In general, to determine if a set of FDs, F logically implies X → Y 

Compute X+ , the closure of X, then, if Y is a subset of X+ YES else NO
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The Closure Algorithm
(i.e., the closure of a set of attributes) 

Given: a set of FDs F and a set of attributes X 

Begin 
 OLD := { }; NEW := {X}; 
 while OLD <> NEW do 
  OLD := NEW; 
  for every FD W → Z in F do 

   if W ⊆ NEW then 

    NEW := NEW ∪ Z 

  end 
 end 
end.
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Example 1
Given: R ( ABCDEJ ) 
F = { A → D, AB → E, BJ → E, CD → J, E → C } 

Does F imply AE → BJ ? 

Compute (AE)+ 
OLD := { }  NEW := {AE} 
OLD := {AE} NEW := {AE D C} 
OLD := {ACDE} NEW := {ACDE J} 
OLD := {ACDEJ} NEW := {ACDEJ} 

(AE)+ = {ACDEJ} So F does not imply AE → BJ
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Example 2

Given: R ( ABCD ) 
  F = { A → B, C → B, A → D, D → C, B → A } 

Is A → B redundant? 

Compute A+ ignoring A → B 

F = { A → B, C → B, A → D, D → C, B → A }
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FDs and keys

• A superkey X of relation R is a set of attributes that 
uniquely identifies a tuple: 
• 1: X → A1, A2…An is in F+ 

• so attribute set X can functionally determine every attribute in R 

• X is a candidate key if condition 1 holds, and also: 
• 2: For no proper subset Y⊂X is Y→A1, A2…An in F+ 

• so X is minimal: there is no subset of X that is a superkey 

• Note that the set of all attributes must be either a 
candidate key or a superkey
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Example

Given: R (A, B, C, D, E, G) 
 F = {A → B, BC → DE, AE → G} 

Is A a candidate key? Compute A+ 
Is AC a candidate key? Compute AC+ 
Is ABC a candidate key? Compute ABC+ 

Then, if necessary, check if A or AC or ABC is a superkey
33COSC430 Lecture 2, 2020



Dependency preservation and the 
projection of a set of dependencies
•Let F be a set of dependencies for R 

•Projection of F onto a set of attributes Z, denoted Π(Z)(F), is the set of 
dependencies, X→Y, in F+ such that XY is a subset of Z. For example: 

R ( A B C )   F = { A → B, B → C } 

R1 ( A B ) R2 ( A C ) 
H+ = {A → A, AB → A, B → B, K+ = {......} 

AB → B, AB → AB, A → B,  
A → AB}
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Example—post codes
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Post code Street
9023 High St
9016 High St
9016 George 

St

Street Town Post code
High St Dunedin 9016
High St Mosgiel 9023
George 
St

Dunedin 9016

F = {ST → P, P → T} 
F+ = { ......... }

F = {P→T and trivial dependencies}

F = {trivial dependencies only}

Post code Town
9016 Dunedin
9023 Mosgiel



Testing preservation of dependencies

Consider R = (A B C D) 
with F = { A → B, B → C, C → D, D → A} 

with a decomposition R1 (A B), R2 (B C), R3 (C D) and 
corresponding sets of dependencies F1, F2, F3 

Does this preserve the dependency D → A ? 

Compute F+ and project it onto R1 .. R3, giving F1 .. F3 
Then test if F+ is equivalent to F1 ∪ F2 ∪ F3
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Example—post codes
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Post code Street
9023 High St
9016 High St
9016 George 

St

Street Town Post code
High St Dunedin 9016
High St Mosgiel 9023
George 
St

Dunedin 9016

F = {ST → P, P → T} 
F+ = { ......... }

F = {P→T and trivial dependencies}

F = {trivial dependencies only}

Post code Town
9016 Dunedin
9023 Mosgiel

ST → P is lost!



Relational data model components

• The three core components in the relational model: 

• Objects or relations—the structure of data organisation 
• Integrity constraints—enforcing constraints and rules 

• Operators—manipulation of data 

• Finally, let’s look at operators
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Codd’s Relational Algebra

• The original relational algebra as described by Codd 
defines eight operators, in two groups:
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Set operators 
• union 
• intersection 
• difference ('minus') 
• Cartesian product (‘times') 

Special relational operators 
• restrict (or ‘select’) 
• project 
• join 
• divide



Overview—set operators
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Union 
R ∪ S

Intersection 
R ∩ S

Difference 
R − S



Overview—set operators

• Cartesian product
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R
A B
a1 b1
a2 b2
a3 b3

C D
c1 d1
c2 d2

S
A B C D
a1 b1 c1 d1
a1 b1 c2 d2
a2 b2 c1 d1
a2 b2 c2 d2
a3 b3 c1 d1
a3 b3 c2 d2

Q× →



Overview—join
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⋈B=BBR
A B
a1 b1
a2 b1
a3 b2
a4 b3

BB C
b1 c1
b2 c2

S
A B BB C
a1 b1 b1 c1
a2 b1 b1 c1
a3 b2 b2 c2

Q→

⋈R
A B
a1 b1
a2 b1
a3 b2
a4 b3

B C
b1 c1
b2 c2

S
A B C
a1 b1 c1
a2 b1 c1
a3 b2 c2

Q→

Join

Natural 
join



Overview—division

• Division can be expressed as a sequence of operations 
using just project, Cartesian product, and difference
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÷R
A B
a1 b1
a2 b1
a1 b2
a4 b2

B
b1
b2

S
A
a1

Q→



Special relational operators—restriction

• Notation:  
• Works on a single relation R, selecting the subset of the tuples 

of R that satisfy the given condition 

• Produces a horizontal partition of R

σcondition(R)
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R

→



Special relational operators—projection

• Notation:  
• Works on a single relation R, defining a new relation containing 

the specified attribute list from R (eliminating duplicate tuples) 

• Produces a vertical partition of R

Πattribute_list(R)
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R

→



Formal notation

• UNION ⋃ 

• DIFFERENCE − 

• TIMES (Cartesian product) × 

• RESTRICT (Select) σ 

• PROJECT π 

• INTERSECT ⋂ 

• JOIN ⨝ 

• DIVIDE ÷ 

• Note: The first five operators are primitive; others can be represented 
as sequence of primitive operators
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Normalisation

• (And now for something completely different!) 

• Normalisation = simplification 
• “A step by step reversible process of replacing a 

given collection of relations by successive 
collections in which the relations have a 
progressively simpler and more regular structure.” 
—E.F. Codd
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Simplified normalisation 
sequence
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N1NF 

1NF 

2NF 

3NF 

4NF 

BCNF 

5NF/PJNF 

remove repeating groups 

remove partial dep. 

remove transitive dep. 

remove MVD 

underlying domains hold only atomic values 

1NF + every non-key attr.. fully dependent on PK 

2NF + every non-key attr.. non-T dependent on PK 

every determinant  is a candidate 
key 

every join dependency is a 
consequence of  candidate  
keys 3NF/BCNF & no MVDs 



Normal forms—from 1NF to BCNF

• First Normal Form (1NF) 
• A relation is in 1NF if the domains of all attributes contain only atomic values 

and the value of any attribute in a tuple is a single value from the domain 

• Second Normal Form (2NF) 
• A relation is in 2NF if it is in 1NF and every non-prime attribute is fully 

functionally dependent on the whole candidate key (assumes only one CK) 

• Third Normal Form (3NF) 
• A relation is in 3NF if it is in 2NF and every non-prime attribute is non-

transitively dependent on every key 

• Boyce-Codd Normal Form (BCNF) 
• Every determinant (i.e., left hand side of a 

functional dependency) is a candidate key
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Definition of prime attribute: 
an attribute that occurs in 

some candidate key



General definitions of 3NF & BCNF

Consider a relation R and a set of FDs 
R is in 3NF if, for every non-trivial FD X→A in R, 

either (a) X is a superkey of R 
or (b) A is a prime attribute of R 

R is in BCNF if X is a superkey of R 

Note that most relations in 3NF are also in BCNF
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Example—post codes
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Street Town Post code
High St Dunedin 9016
High St Mosgiel 9023
George 
St

Dunedin 9016

F = {ST → P, P → T} 
candidate key = ST

X → A X → A

3NF if: 
X is a superkey of R 
or A is a prime attribute of R

R is 3NF but not BCNF



Normalisation by Decomposition  
or Synthesis

• For any relation there is always a dependency-
preserving, non-loss decomposition/synthesis into a set 
of relations in 3NF 

• There is always a non-loss decomposition/synthesis into 
BCNF, not always dependency-preserving.
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Decomposition into 3NF

• Consider a relational scheme CTHRSG 
where C = course (paper) 

 T = teacher 
 H = hour (time of day) 
 R = room 
 S = student number 
 G = grade 
and F = {C→T, HR→C, HT→R, CS→G, HS→R} 

• Suggest a candidate key and the normal form of the relation
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Candidate keys? Normal form?

• R(CTHRSG)   F = {C→T, HR→C, HT→R, CS→G, HS→R} 

• Some random keys to test (better to use an algorithm!) 
• CST? No—can’t generate attribute H (also not minimal) 

• HRS? No—not minimal so not candidate key, because HS→R 

• HS? Yes—attribute closure is CTHRSG, and can’t remove H or S 

• Which normal form: 1NF, 2NF, 3NF ? At least 1NF, but… 
• 2NF: 1NF, and all non-prime attributes (CTRG) depend on whole 

of all candidate keys (there is only one candidate key: HS) 
• Not 3NF: e.g., T is only transitively dependent on HS (via C)
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Decomposition into 3NF

• Given: a relation scheme R, with a (minimal) set of 
dependencies, F: 

• Any attributes of R not involved in F? Eliminate from R to form 
a separate relation scheme 

• If one of the dependencies in F involves all the attributes of R, 
then R itself is in 3NF 

• Otherwise the decomposition consists of a scheme XA for 
each dependency X→A in F 

• For set of dependencies X→A1, X→A2,…X→An, combine to 
form the scheme X→A1A2…An
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Decomposition into 3NF

R (CTHRSG) 
F = {C→T, HR→C, HT→R, CS→G, HS→R} 

F is a minimal cover and the algorithm leads to: 
R1 (CT) 
R2 (HRC) 
R3 (HTR) 
R4 (CSG) 
R5 (HSR)
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Some additional 3NF decomposition steps

For a set of dependencies X→A1, X→A2,…X→An, combine to 
form the scheme X→A1A2…An 

If our minimal cover was 
R (ABCD) F = {A→B, A→C, D→B} 

Then the algorithm leads directly to 
R1 (ABC) F = {A→BC} 

R2 (DB) F = {D→B}
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Decomposition into BCNF (simplified)

If F holds the FDs of the relation R 
and X→A holds in R 

and X is not a superkey of R 
and A is not in X 

then decompose R into: 
R1 (XA) R1 is in BCNF 
R2 (R - A) R2 becomes R; continue decomposition 

ref: Ullman: Principles of Database and Knowledge-base systems, vol 1, CSP, 1988
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Decomposition into BCNF
R (CTHRSG) 

F = { C→T, HR→C, HT→R, CS→G, HS→R } 

R1 (CT)  key=C, F1 = { C→T } 

RZ (CHRSG) key=HS, 

 FZ = { HR→C, CS→G, HS→R, HC→R } 

R2 (CHR) keys=HR,CH F2 = { HR→C, CH→R } 

RZ (CHSG) key=HS, FZ = { CS→G, HS→C } 

and… R3 (CSG) key=CS 

and… R4 (HSC) key=HS
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Projected 
dependencies



Compare 3NF & BCNF decomposition

•R (CTHRSG)   F = { C→T, HR→C, HT→R, CS→G, HS→R }
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BCNF R1 (CT) key=C, F1 = {C → T} 

 R2 (CHR) keys=HR,CH F2 = {HR → C, CH → R} 

 R3 (CSG) key=CS F3 = {CS → G} 

 R4 (HSC) key=HS F4 = (HS → C}

3NF R1 (CT) 
 R2 (HRC) 
 R3 (HTR) 
 R4 (CSG) 
 R5 (HSR)

HT → R is lost in BCNF!



Overall objectives of normalisation

• Eliminate certain kinds of redundancy 

• Avoid certain update anomalies 
• Produce a design that is: 

• a ‘good’ representation of the real world 
• intuitively easy to understand and is a good base for 

future growth 

• Simplify enforcement of certain integrity constraints
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Summary

• The relational model of data 

• Functional dependencies give semantic meaning to 
relations 

• Knowing some FDs allows us to infer other FDs  

• The rules for this are called Armstrong’s axioms  

• FDs can be treated in a rigorous formal manner, just 
like the underlying relational theory
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Summary—2

• Normalisation: 
• is a step by step reversible process 
• is used to simplify data 
• provides multiple levels of simplification 
• allows us to remove redundancy in data while maintaining 

information present in original table 

• Most relation schemes are in 3NF or BCNF 
• 3NF ignores dependencies between candidate keys 

• BCNF does not necessarily preserve dependencies
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