NoSQL

COSC430—Aavanced Databases
David Eyers

Learning Objectives

* Understand how 1o define ACID, BASE, and CAP
* Describe difficulties relational databases can face
* Explain the “"database architecture revolution”

* Glve advantages and disadvantages of, and uses for:

* Key-value databases
* Document databases

COSCA430 Lecture 4, 2020

Reminder!

* Read the “Spanner” paper; summarise its key points

* We will discuss the paper in hext week's lecture
* http://www.cs.ofago.ac.nz/cosc430/assignments/spanner.pdft

COSCA430 Lecture 4, 2020

http://www.cs.otago.ac.nz/cosc430/assignments/spanner.pdf

Relational databases

The “ACID” properties for DB transactions

* Atomicity—"all or nothing” Iif one part of a transaction
fails, then the whole fransaction fails

* Consistency—the database Is kept in a consistent state
before and after fransaction execution

 Isolation—one fransaction should not see the effects of
other, In progress, tfransactions

* Durability—ensures fransactions, once committed, are
persistent

COSCA430 Lecture 4, 2020 o

Typical RDBMs implementations

* Technologies commonly used for speed, yet ACID:
* disk-oriented storage and indexing structures (e.g., B-Trees)
* mulfithreading to hide latency

* locking-based concurrency conftrol (e.g., two-phase locking)
* optimistic concurrency control can also be used

* log based recovery methods (e.q., write-ahead [ogs)

* More detall In following slides...

COSCA430 Lecture 4, 2020

B-Trees allow efficient data management

* Selt-balancing tree data structure that keeps dato
sorfed and allows searches, sequential access,
iInserfions and deletions in O(log n) time

30 | 70

COSC430 Lecture 4, 2020

Multithreading

* The program can split itself into multiple concurrently
executing tasks. Threads share resources and are fairly
ightweight (compared 1o operating system processes)

* It asingle thread has a lot of cache misses then other
threads can utllise the idle resources of the machine

* However threads can compete for resources and lead
fo a decrease In performance...

Concurrency

* Execution of two (or more) tasks such that they appear
fo be executing at the same time
* Think of mulfitasking applications on a single-core CPU

* Concurrency Is not necessarily parallelism—where the
fasks are actually executing af the same time
* Think of mulfi-core CPUs actually running multiple tasks at once

Race conditions are a concurrency risk

* Trying to read or modity a variable at the same time

T1 T2 Value T1 T2 Value
0 0
read 0 read 0
iIncrement 0 read 0
write 1 iIncrement 0
read 1 Increase 0
Increase 1 write 1
write 2 write 1

Changing order of operations

Executes as expected .
leads to incorrect result

COSCA430 Lecture 4, 2020

Avoiding race conditions using locking

T1 T2 Value
0 write_lock 1
write_lock 0 unlock 1
read 0 write_lock 1
write_lock 0 read 1
iIncrement 0 iIncrement 1
write_lock 0 write_lock 2
write 1 unlock 2

If the variable is already locked, try to acquire the lock again.

This can result in deadlocks
COSC430 Lecture 4, 2020

Two-Phase Locking (TPL)

* Expand phase: acquire all required locks
* Shrink phase: release all acquired locks

* Usually three types of locks:
* shared (read); exclusive (read and write); and range

* Following TPL guarantees serialisability of fransactions

* Qutcome Is the same as If fransactions were not executed
overlapping In fime

COSCA430 Lecture 4, 2020

12

Log-based Recovery

* Log Is kept maintaining a sequence of operations
* In the event of failure, the log Is replayed

<T1, start> * To recover, the lodfile is read from the last
<Ti, Xj, V1, V2> entry to the last checkpoint (the last

<Ti, commit> guaranteed consistent state of the system)

Pt * The system makes two lists. The redo list is for all
<I], start> fransactions that start and commit. The undo
<T3, X3, V2, V3> ist 1s for all fransactions that start but do nof
<Tj, abort> commit or abort

* X—data item; V1—old value; V2—new value

Architectural revolutions

“The End of an Architectural Era?”

* Traditional RDBMSs evolved from transaction
orocessing systems where ACID properties were the
only likely requirement for data handling

* However over the past 35 years 1o so:

* Moore's Law—CPU architectures have changed how they
acquire speed

* New requirements for data processing have emerged

* Stonebraker et al. (2007), suggest that*one size fits all” DBs end

up excelling at nothing; complete DB rethink required
COSC430 Lecture 4, 2020—Stonebraker, et al. 2007. VLDB 12. doi:10.1080/13264820701730900 15

Emerging application areas

* Text processing (specialised search engines—Google)
* Data warehouses (column stores)

* Stream processing systems

* Scienftific and intelligence databases

* Big Data and the Internet of Things

* Smart mobile devices (phones, tablets, watches, etc.)

COSCA430 Lecture 4, 2020

16

‘Shared’ vs. ‘shared nothing” approaches

* Main RAM sizes—1970: TMIB ... 2020: 4TIB
* Resource control (the RDBMS is its own OS)
* Grid computing (many low-spec versus big machine)

* High availabllity (single machine recovered from tape
backup versus hot standby)

* Tuning (computer fime/memory versus user fime costs)

* Many areas are moving towards a distributed model...

COSCA430 Lecture 4, 2020 17

CAP Theorem

* In distributed computing, choose two of:
* Consistency—every read receives the most recent data
* Availability—every read recelves a response
* Partition tolerance—system confinues if network goes down

* Sifuation Is actually more subtle than implied above

* Can adaptively chose appropriate tradeoffs
* Can understand semantics of data to choose safe operations

BASE

* Glve up consistency and we can instead get:
* Basic Availability—through replication

* Soft state—the state of the system may change over time
* This Is due to the eventual consistency...

* Eventual consistency—the data will be consistent eventually
* ... If we walt long enough
* (and probably only if data is not being changed frequently)

ACID versus BASE Example (1/2)

* SUppPoOse we wanted to track people’'s bank accounts:

CREATE TABLE user (uid, name, amt_sold, amt_bought)
CREATE TABLE transaction (tid, seller_id, buyer_id, amount)

* ACID transactions might look something like this:

BEGIN
INSERT INTO transaction(tid, seller_id, buyer_id, amount);
UPDATE user SET amt_sold=amt_sold + amount WHERE 1id=seller_id;
UPDATE user SET amt_bought=amt_bought + amount WHERE 1d=buyer_id;
END

ACID versus BASE Example (2/2)

* [f we consider amt_sold and amt_bought as estimates,
fransaction can be split:

BEGIN

INSERT INTO transaction(tid, seller_id, buyer_id, amount);
END

BEGIN

UPDATE user SET amt_sold=amt_sold + amount WHERE 1id=seller_1id;

UPDATE user SET amt_bought=amt_bought + amount WHERE 1id=buyer_id;
END

* Consistency between tables Is no longer guaranteed
* Fallure between transactions may leave DB inconsistent
* See: https://queuve.acm.org/detail.ctmeid=1394128 (2008)

https://queue.acm.org/detail.cfm?id=1394128

Key-value databases

Overview of key-value databases

* Unstructured data (i.e., schema-less)

* Primary key is the only storage lookup mechanism
* No aggregates, no filter operations

* Simple operations such as:
* Create—store a new key-value pair
* Read—find a value for a given key
* Update—change the value for a given key
* Delete—remove the key-value pair

COSCA430 Lecture 4, 2020

23

Advantages

* Simple

* Fast

* Flexible (able to store any serialisable data type)
* High scalabllity

* Can engineer high availabllity

COSCA430 Lecture 4, 2020

24

Disadvantages

* Stored data is not validated in any way
* NOT NULL checks
* colour versus color

* Complex to handle consistency
* Checking consistency becomes the application’s problem

* No relationships—each value independent of all others
* No aggregates (SUM, COUNT, etc.)

* No searching (e.g., SQL SELECT-style) other than via key

Examples

* Amazon Dynamo (now DynamoDB)

* Oracle NoSQL Database, ... (eventually consistent)
* Berkeley DB, ... (ordered)

* Memcache, Redis, ... (RAM)

* LMDB (used by OpenlLDAP, Postfix, InfluxDB)

* LevelDB (solid-state drive or rotafing disk)

“Dynamo: Amazon’s Highly Available Key-value Store”

* Just two operations:
» put(key, context, object)
» get(key) - context, object

e Context contains information not visible to caller
* pbut is used internally, e.g., for managing versions of the object

* Objects are typically around 1TMIB In size

COSC430 Lecture 4, 2020—G. DeCandiaq, et. al., Proc. Symp. Oper. Syst. Princ., pp. 205-220, 2007. 27

Dynamo design

* Reliabillity I1s one of the most important requirements
* Significant financial consequences in Ifs production use
* Impacts user confldence

* Service Level Agreements (SLAs) are established

* Used within Amazon for:

* best seller lists; shopping carts; customer preferences; session
management; sales rank; product catalogue

Dynamo uses partitioning (1/2)

* Consistent hash of the key determines which virtual
nodes to store the data within
* Example here for storing usernames, distributed by first letter

COSC430 Lecture 4, 2020 29

Dynamo uses partitioning (2/2)

* Each physical node stores a number of virtfual nodes
* Simplified depiction below—consult paper for details
* N—durability of object (4 here); R/W—#nodes for read/write

COSC430 Lecture 4, 2020

y | 4 m S
a '\ g y 4
y 4 m s
a ' g y 4
30

Dynamo manages object versioning

* Metadata stored with objects contains a vector clock

* Each time object is modified the node increments ifs counter
(Shows best-case: updates reach nodes a,b,c before next update)

H B E D
©-0-0-9

COSC430 Lecture 4, 2020 3]

N oo
bR R
N oo
bR N

Document Databases

An example Document in XML format

" tact
e XML can be valigatead scontacts>
o <firstname>David</firstname>
against XML schemas LostnanesEyers</Lastnanes
. <phone type="Cell">+64 21 1234 5678</phone>
(C]ﬂd preVIOUS|y DTDS) <phone type="Work">+64 3 479 5749</phone>
<address>
<type>Work</type>

<office>1.25</off1ice>
<streetl>133 Union Street East</streetl>
<clty>Dunedin</city>
<state>0tago</state>
<postcode>9016</postcode>
<country>NZ</country>
</address>
</contact>
<contact> ... </contact>
</contacts>

COSCA430 Lecture 4, 2020

33

An example document in JSON format

[
¢ JSON US@S ﬂOTIVG { "firstname":"David",

"lastname": "Eyers",

porogramming types 1o "phone” :

"cell”: "+04 21 1234 5678",

STore dOTO "work": "+64 3 4795749"
¥

"address": {

* string, number, boolean, gy
list, object, null, etc. Jorrice 1 -8,

street”: "133 Union Street East",
"city": "Dunedin",

"state": "Otago",

"postcode”: "9016",

"country": "NZ"

COSCA430 Lecture 4, 2020

34

Overview of document databases

e Semi-structured data model

* Storage of documents:
* fypically JSON or XML
* could be binary (PDF, DOC, XLS, etfc.)

* Additfional metadata (providence, security, etc.)
* Builds index from contexts and metadata

COSCA430 Lecture 4, 2020

35

Advantages

* Storage of raw program types (JSON/XML)
* [Indexed by content and metadata
* Complex data can be stored easily

* No need for costly schema migrations
* (Always remember that your DB is likely to need to evolvel)

Disadvantages

* Same data replicated in each document
* RiIsk Inconsistent or obsolete document structures

COSCA430 Lecture 4, 2020

37

Example implementations

* LinkedIn's Espresso

* ElasticSearch

* CouchDB

* MongoDB

* Solr

* RethinkDB

* Microsoft DocumentDB

* PostgreSQL (when used atypically)

COSCA430 Lecture 4, 2020

33

“On brewing fresh espresso...” —design

* Scale and elasticity
* Consistency

* Integration

* Bulk operations

* Secondary iIndexing
* Schema evolution

* Cost fo serve

COSC430 Lecture 4, 2020—L. Qiao, et. al. SIGMOD, 2013

39

Espresso’'s data model

* Derived from observed usage patterns at LinkedIn

* Nested entities were present:
* group of entities that share a hierarchy
* e.g.songs in an album for an artist

* Independent entities:
* have many-to-many relationships

COSCA430 Lecture 4, 2020

40

Espresso's data hiearchy

/Database/Table/Document|/Subresource ...]

* Database—analogous to RDBMS: contains partitioning
scheme and metadata

* Table—collection of likke-schema-ed documents

* Document—I|ogically map entifies and are schema-ed
(like rows iIn RDBMS tables)

e Subresource—if Document is a collection, this choses
an item from the collection

Espresso's data hierarchy —examples

/Database/Table/Document|/Subresource ...]

* /[Music/Artist/The_Beatles ¢ /Music/Artist/Rolling_Stones

* Group: "The Beatles” * Group: "The Rolling Stones™

* Origin: “Liverpool, UK”" * Origin: “London, UK”

* Active: “1960-1970" * Active: "1962-"

* Genres: ‘rock, pop, * Genres: frock, blues, rock and
psychedlia” roll”

COSCA430 Lecture 4, 2020 42

Espresso—querying

* Fields are annotated in the schema to adjust iIndexing
properties

* Query:
/Music/Song/The_Beatles?query=lyrics:“Lucy in the sky”

* Results:
/Music/Song/The_Beatles/Sgt._Pepper/Lucy_in_the_Sky_with_Diamonds

/Music/Song/The_Beatles/Magical_Mystery_Tour/I_am_the_Walrus

COSCA430 Lecture 4, 2020 43

Espresso—editing data

* Adjust documents via full or partial paths

* Schema changes are versioned

 Compatiblility checks ensure old documents can be updated
* Each document stores the version numlber

* Transactional update support
* Maintains a secondary index to support textual queries

COSCA430 Lecture 4, 2020 44

Summary

* Discussed ACID and its associated challenges

* Describe database architecture revolution
* BASE and CAP considerations contfrasting ACID compliance

* Key-value databases
* explored Amazon's Dynamo

* Document DBs
* explored LinkedlIn's Espresso

* Please read the Spanner paper during this week

References

* A. Pavlo and M. Aslett, “What's Really New with NewSQL?," ACM
SIGMOD Rec., vol. 45, no. 2, pp. 45-55, 2016.

* M. Stonebraker, et. al., “The End of an Architectural Era (lt's Time
for a Complete Rewrite),” VLDB, vol. 12, no. 2, pp. 1150-1160, 2007.

» G. DeCandiq, et. al., "Dynamo: Amazon’s Highly Availlable Key-
value Store,” Proc. Symp. Oper. Syst. Princ., pp. 205-220, 2007/.

* A. Auradkar, et. al., "Data infrastructure at LinkedIn,” ICDE, pp.
1370-1381, 2012.

* L. Qlao, ef. al., "On brewing fresh espresso: Linkedln's distributed
data serving platform,” SIGMOD, pp. 1135, 2013.

