
NoSQL
COSC430—Advanced Databases

David Eyers

Learning Objectives

• Understand how to define ACID, BASE, and CAP

• Describe difficulties relational databases can face
• Explain the “database architecture revolution”
• Give advantages and disadvantages of, and uses for:
• Key-value databases
• Document databases

2COSC430 Lecture 4, 2020

Reminder!

• Read the “Spanner” paper; summarise its key points
• We will discuss the paper in next week’s lecture
• http://www.cs.otago.ac.nz/cosc430/assignments/spanner.pdf

3COSC430 Lecture 4, 2020

http://www.cs.otago.ac.nz/cosc430/assignments/spanner.pdf

Relational databases

The “ACID” properties for DB transactions	

• Atomicity—“all or nothing” if one part of a transaction
fails, then the whole transaction fails

• Consistency—the database is kept in a consistent state
before and after transaction execution
• Isolation—one transaction should not see the effects of

other, in progress, transactions
• Durability—ensures transactions, once committed, are

persistent

5COSC430 Lecture 4, 2020

Typical RDBMs implementations	

• Technologies commonly used for speed, yet ACID:
• disk-oriented storage and indexing structures (e.g., B-Trees)
• multithreading to hide latency
• locking-based concurrency control (e.g., two-phase locking)
• optimistic concurrency control can also be used

• log based recovery methods (e.g., write-ahead logs)

• More detail in following slides…

6COSC430 Lecture 4, 2020

B-Trees allow efficient data management

• Self-balancing tree data structure that keeps data
sorted and allows searches, sequential access,
insertions and deletions in timeO(log n)

7COSC430 Lecture 4, 2020

…

70

8 25

1 3 7 15 21 23 26 28

40 50 76 88

71 73 75 77 85 89 97

30

Multithreading

• The program can split itself into multiple concurrently
executing tasks. Threads share resources and are fairly
lightweight (compared to operating system processes)

• If a single thread has a lot of cache misses then other
threads can utilise the idle resources of the machine

• However threads can compete for resources and lead
to a decrease in performance…

8COSC430 Lecture 4, 2020

Concurrency

• Execution of two (or more) tasks such that they appear
to be executing at the same time
• Think of multitasking applications on a single-core CPU

• Concurrency is not necessarily parallelism—where the
tasks are actually executing at the same time
• Think of multi-core CPUs actually running multiple tasks at once

9COSC430 Lecture 4, 2020

Race conditions are a concurrency risk

• Trying to read or modify a variable at the same time

10COSC430 Lecture 4, 2020

T1 T2 Value
0

read 0
increment 0

write 1
read 1

increase 1
write 2

T1 T2 Value
0

read 0
read 0

increment 0
increase 0

write 1
write 1

Executes as expected Changing order of operations
leads to incorrect result

T1 T2 Value

0

write_lock 0

read 0

write_lock 0

increment 0

write_lock 0

write 1

…

write_lock 1

unlock 1

write_lock 1

read 1

increment 1

write_lock 2

unlock 2

This can result in deadlocks

If the variable is already locked, try to acquire the lock again.

Avoiding race conditions using locking

11COSC430 Lecture 4, 2020

Two-Phase Locking (TPL)

• Expand phase: acquire all required locks

• Shrink phase: release all acquired locks

• Usually three types of locks:
• shared (read); exclusive (read and write); and range

• Following TPL guarantees serialisability of transactions
• Outcome is the same as if transactions were not executed

overlapping in time

12COSC430 Lecture 4, 2020

Log-based Recovery

• Log is kept maintaining a sequence of operations

• In the event of failure, the log is replayed

• To recover, the logfile is read from the last
entry to the last checkpoint (the last
guaranteed consistent state of the system)

• The system makes two lists. The redo list is for all
transactions that start and commit. The undo
list is for all transactions that start but do not
commit or abort
• Xj—data item; V1—old value; V2—new value

13COSC430 Lecture 4, 2020

<Ti, start>
<Ti, Xj, V1, V2>
<Ti, commit>
...
<Tj, start>
<Tj, Xj, V2, V3>
<Tj, abort>

Architectural revolutions

“The End of an Architectural Era?”

• Traditional RDBMSs evolved from transaction
processing systems where ACID properties were the
only likely requirement for data handling

• However over the past 35 years to so:
• Moore’s Law—CPU architectures have changed how they

acquire speed
• New requirements for data processing have emerged
• Stonebraker et al. (2007), suggest that“one size fits all” DBs end

up excelling at nothing; complete DB rethink required
15COSC430 Lecture 4, 2020—Stonebraker, et al. 2007. VLDB 12. doi:10.1080/13264820701730900

Emerging application areas

• Text processing (specialised search engines—Google)

• Data warehouses (column stores)
• Stream processing systems
• Scientific and intelligence databases

• Big Data and the Internet of Things
• Smart mobile devices (phones, tablets, watches, etc.)

16COSC430 Lecture 4, 2020

‘Shared’ vs. ‘shared nothing’ approaches

• Main RAM sizes—1970: 1MiB … 2020: 4TiB

• Resource control (the RDBMS is its own OS)
• Grid computing (many low-spec versus big machine)
• High availability (single machine recovered from tape

backup versus hot standby)

• Tuning (computer time/memory versus user time costs)

• Many areas are moving towards a distributed model...

17COSC430 Lecture 4, 2020

CAP Theorem

• In distributed computing, choose two of:
• Consistency—every read receives the most recent data
• Availability—every read receives a response
• Partition tolerance—system continues if network goes down

• Situation is actually more subtle than implied above
• Can adaptively chose appropriate tradeoffs
• Can understand semantics of data to choose safe operations

18COSC430 Lecture 4, 2020

BASE

• Give up consistency and we can instead get:
• Basic Availability—through replication
• Soft state—the state of the system may change over time
• This is due to the eventual consistency…

• Eventual consistency—the data will be consistent eventually
• … if we wait long enough

• (and probably only if data is not being changed frequently)

19COSC430 Lecture 4, 2020

ACID versus BASE Example	 (1/2)

• Suppose we wanted to track people’s bank accounts:

• ACID transactions might look something like this:

20COSC430 Lecture 4, 2020

CREATE TABLE user (uid, name, amt_sold, amt_bought)
CREATE TABLE transaction (tid, seller_id, buyer_id, amount)

BEGIN
INSERT INTO transaction(tid, seller_id, buyer_id, amount);
UPDATE user SET amt_sold=amt_sold + amount WHERE id=seller_id;
UPDATE user SET amt_bought=amt_bought + amount WHERE id=buyer_id;

END

ACID versus BASE Example	 (2/2)

• If we consider amt_sold and amt_bought as estimates,
transaction can be split:

• Consistency between tables is no longer guaranteed

• Failure between transactions may leave DB inconsistent

• See: https://queue.acm.org/detail.cfm?id=1394128 (2008)
21COSC430 Lecture 4, 2020

BEGIN
INSERT INTO transaction(tid, seller_id, buyer_id, amount);

END
BEGIN

UPDATE user SET amt_sold=amt_sold + amount WHERE id=seller_id;
UPDATE user SET amt_bought=amt_bought + amount WHERE id=buyer_id;

END

https://queue.acm.org/detail.cfm?id=1394128

Key-value databases

Overview of key-value databases

• Unstructured data (i.e., schema-less)

• Primary key is the only storage lookup mechanism
• No aggregates, no filter operations
• Simple operations such as:
• Create—store a new key-value pair
• Read—find a value for a given key
• Update—change the value for a given key
• Delete—remove the key-value pair

23COSC430 Lecture 4, 2020

Advantages

• Simple

• Fast
• Flexible (able to store any serialisable data type)
• High scalability

• Can engineer high availability

24COSC430 Lecture 4, 2020

Disadvantages

• Stored data is not validated in any way
• NOT NULL checks
• colour versus color

• Complex to handle consistency
• Checking consistency becomes the application’s problem

• No relationships—each value independent of all others
• No aggregates (SUM, COUNT, etc.)
• No searching (e.g., SQL SELECT-style) other than via key

25COSC430 Lecture 4, 2020

Examples

• Amazon Dynamo (now DynamoDB)

• Oracle NoSQL Database, ... (eventually consistent)
• Berkeley DB, ... (ordered)
• Memcache, Redis, ... (RAM)

• LMDB (used by OpenLDAP, Postfix, InfluxDB)
• LevelDB (solid-state drive or rotating disk)

26COSC430 Lecture 4, 2020

“Dynamo: Amazon’s Highly Available Key-value Store”

• Just two operations:
• put(key, context, object)
• get(key) → context, object

• Context contains information not visible to caller
• but is used internally, e.g., for managing versions of the object

• Objects are typically around 1MiB in size

27COSC430 Lecture 4, 2020—G. DeCandia, et. al., Proc. Symp. Oper. Syst. Princ., pp. 205–220, 2007.

Dynamo design

• Reliability is one of the most important requirements
• Significant financial consequences in its production use
• Impacts user confidence

• Service Level Agreements (SLAs) are established

• Used within Amazon for:
• best seller lists; shopping carts; customer preferences; session

management; sales rank; product catalogue

28COSC430 Lecture 4, 2020

Dynamo uses partitioning	 (1/2)

• Consistent hash of the key determines which virtual
nodes to store the data within
• Example here for storing usernames, distributed by first letter

29COSC430 Lecture 4, 2020

a-f

g-l

m-r

s-x

y-3

4-9

Dynamo uses partitioning	 (2/2)

• Each physical node stores a number of virtual nodes
• Simplified depiction below—consult paper for details
• N—durability of object (4 here); R/W—#nodes for read/write

30COSC430 Lecture 4, 2020

a-f

g-l

m-r
s-x

y-3

4-9 a g

m s

y 4

a

m

y 4

g

m

a y 4

g

s

s a

m

y 4g

s

Dynamo manages object versioning

• Metadata stored with objects contains a vector clock
• Each time object is modified the node increments its counter
• (Shows best-case: updates reach nodes a,b,c before next update)

31COSC430 Lecture 4, 2020

A B C

object object object

A

object

a:1	 a:1	
b:1	

a:1	
b:1	
c:1

a:2	
b:1	
c:1

Document Databases

An example Document in XML format

• XML can be validated
against XML schemas
(and previously DTDs)

33COSC430 Lecture 4, 2020

<contacts>
<contact>

<firstname>David</firstname>
<lastname>Eyers</lastname>
<phone type="Cell">+64 21 1234 5678</phone>
<phone type="Work">+64 3 479 5749</phone>
<address>

<type>Work</type>
<office>1.25</office>
<street1>133 Union Street East</street1>
<city>Dunedin</city>
<state>Otago</state>
<postcode>9016</postcode>
<country>NZ</country>

</address>
</contact>
<contact> ... </contact>

</contacts>

An example document in JSON format

• JSON uses native
programming types to
store data
• string, number, boolean,

list, object, null, etc.

34COSC430 Lecture 4, 2020

[
{

"firstname":"David",
"lastname": "Eyers",
"phone":{

"cell": "+64 21 1234 5678",
"work": "+64 3 4795749"

},
"address": {

"work":{
"office": “1.25",
"street": "133 Union Street East",
"city": "Dunedin",
"state": "Otago",
"postcode": "9016",
"country": "NZ"

}
}

},
{
...
}

]

Overview of document databases

• Semi-structured data model

• Storage of documents:
• typically JSON or XML
• could be binary (PDF, DOC, XLS, etc.)

• Additional metadata (providence, security, etc.)

• Builds index from contexts and metadata

35COSC430 Lecture 4, 2020

Advantages

• Storage of raw program types (JSON/XML)

• Indexed by content and metadata
• Complex data can be stored easily
• No need for costly schema migrations
• (Always remember that your DB is likely to need to evolve!)

36COSC430 Lecture 4, 2020

Disadvantages

• Same data replicated in each document

• Risk inconsistent or obsolete document structures

37COSC430 Lecture 4, 2020

Example implementations

• LinkedIn's Espresso

• ElasticSearch
• CouchDB
• MongoDB

• Solr
• RethinkDB

• Microsoft DocumentDB
• PostgreSQL (when used atypically)

38COSC430 Lecture 4, 2020

“On brewing fresh espresso…”—design

• Scale and elasticity

• Consistency
• Integration
• Bulk operations

• Secondary indexing
• Schema evolution

• Cost to serve

39COSC430 Lecture 4, 2020—L. Qiao, et. al. SIGMOD, 2013

Espresso's data model

• Derived from observed usage patterns at LinkedIn
• Nested entities were present:
• group of entities that share a hierarchy
• e.g. songs in an album for an artist

• Independent entities:
• have many-to-many relationships

40COSC430 Lecture 4, 2020

Espresso's data hiearchy

• Database—analogous to RDBMS: contains partitioning
scheme and metadata
• Table—collection of like-schema-ed documents
• Document—logically map entities and are schema-ed

(like rows in RDBMS tables)

• Subresource—if Document is a collection, this choses
an item from the collection

41COSC430 Lecture 4, 2020

/Database/Table/Document[/Subresource ...]

Espresso's data hierarchy—examples

• /Music/Artist/The_Beatles
• Group: “The Beatles”
• Origin: “Liverpool, UK”
• Active: “1960–1970”
• Genres: “rock, pop,

psychedlia”

• /Music/Artist/Rolling_Stones
• Group: “The Rolling Stones”
• Origin: “London, UK”
• Active: “1962–”
• Genres: “rock, blues, rock and

roll”

42COSC430 Lecture 4, 2020

/Database/Table/Document[/Subresource ...]

Espresso—querying

• Fields are annotated in the schema to adjust indexing
properties

• Query:

• Results:

43COSC430 Lecture 4, 2020

/Music/Song/The_Beatles?query=lyrics:“Lucy in the sky”

/Music/Song/The_Beatles/Sgt._Pepper/Lucy_in_the_Sky_with_Diamonds

/Music/Song/The_Beatles/Magical_Mystery_Tour/I_am_the_Walrus

Espresso—editing data

• Adjust documents via full or partial paths

• Schema changes are versioned
• Compatibility checks ensure old documents can be updated
• Each document stores the version number

• Transactional update support

• Maintains a secondary index to support textual queries

44COSC430 Lecture 4, 2020

Summary

• Discussed ACID and its associated challenges

• Describe database architecture revolution
• BASE and CAP considerations contrasting ACID compliance

• Key-value databases
• explored Amazon's Dynamo

• Document DBs
• explored LinkedIn's Espresso

• Please read the Spanner paper during this week
45COSC430 Lecture 4, 2020

References

• A. Pavlo and M. Aslett, “What’s Really New with NewSQL?,” ACM
SIGMOD Rec., vol. 45, no. 2, pp. 45–55, 2016.
• M. Stonebraker, et. al., “The End of an Architectural Era (It’s Time

for a Complete Rewrite),” VLDB, vol. 12, no. 2, pp. 1150–1160, 2007.
• G. DeCandia, et. al., “Dynamo: Amazon’s Highly Available Key-

value Store,” Proc. Symp. Oper. Syst. Princ., pp. 205–220, 2007.

• A. Auradkar, et. al., “Data infrastructure at LinkedIn,” ICDE, pp.
1370–1381, 2012.
• L. Qiao, et. al., “On brewing fresh espresso: LinkedIn’s distributed

data serving platform,” SIGMOD, pp. 1135, 2013.

46COSC430 Lecture 4, 2020

