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Learning objectives

• You should be able to  
• define the key concepts in distributed database  
• distinguish between different types of distributed database  
• understand the architectures of distributed database  
• explain how to perform data fragmentation, allocation, and 

replication  
• explain how to do semi-join in distributed database  
• understand technologies for distributed transactions  

• You will get a taste of carrying out scientific research 
• optimisation on data allocation and replication 
• the study of the research paper on Google Spanner
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Definitions

• Distributed database 
• a collection of multiple, logically interrelated databases 

distributed over a network of computers 

• Distributed DBMS 
• a software system that manages a distributed database and 

provides an access mechanism while making the distribution 
transparent to the users  

Distributed database system=Database+Communication

3COSC430 Lecture 5, 2020



Key concepts for distributed databases

• Data stored at several locations 
• Fragmentation 
• Replication 

• Transparency: hide 
implementation for 
users/developers 
• Location 
• Fragmentation 
• Replication 
• Design 
• Execution
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Types of distributed databases

• Homogeneous 
• All sites run the same DBMS 

• Heterogeneous 
• Different sites can run 

different DBMSs
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Distributed database architecture

• Client-Server 
• a two-level architecture 

based on the client-server 
concept (database centric) 
• A client can directly or 

indirectly connect to a server
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Distributed Database Architecture
• Peer-to-Peer

–All nodes have the same role and functionality 
–High scalability and flexibility
–Hard to manage because all machines are 

autonomous and loosely coupled 

DISTRIBUTED DATABASE 
ARCHITECTURE (CONT’D) 

•  Peer-to-Peer Architecture 
•  Scalability and flexibility in growing and shrinking 
•  All nodes have the same role and functionality 
•  Harder to manage because all machines are autonomous 

and loosely coupled  
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Distributed Database Architecture

• Peer-to-Peer 
• All nodes have the same role and functionality 
• High scalability and flexibility 
• Servers are autonomous 

and loosely coupled 
• Management layer 

determine whether such 
infrastructure is easier or 
harder to manage
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Main database functionality to consider

• Data layout 
• Data fragmentation 
• Data allocation and replication 

• Query processing and optimisation 
• Data transfer cost 
• Semi-join 
• Query and update decomposition 

• Distributed transactions 
• Transaction atomicity using two-phase commit 
• Transaction serialisability using distributed locking
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Data fragmentation

• Break up the database into logical units, called fragments, 
which may be assigned for storage at various sites 
•What is a reasonable unit of data distribution? 
• Relation 
• Can increase communications 
• Less parallelism 

• Sub-relations 
• Extra processing for views that cannot be defined on a single fragment 
• Better parallelism 
• Difficult to enforce integrity constraints
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Data Fragmentation

• Horizontal fragmentation 
• Grouping rows to create subsets of tuples 
• Each subset has a certain 

logical meaning
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Data Fragmentation

• Vertical fragmentation—divide relation by columns 
• Each fragment has the primary key or some candidate key so 

that the full relation can be reconstructed
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Data Fragmentation

• Mixed (Hybrid) fragmentation 
• Intermix the two types of fragmentation 

• Correctness of fragmentation 
• Completeness: each data item can be found in one fragment 
• Reconstruction (lossless): the full relation can be reconstructed 

from all fragments 
• Disjointness (non-overlapping): each data item except the 

key should not be in more than one fragment
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Data Replication

• Non-replicated 
• Each fragment resides at only one site 

• Replicated 
• Fully replicated: each fragment at each site 
• Partially replicated: each fragments at some sites 

• Pros & cons 
• Improve availability, distribute load, cheaper reads  
• Complexity on update and storage 

• Rule of thumb 
• If (read-only queries)/(update queries) ≥ 1, replication is advantageous, 

otherwise replication may cause problems
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Comparison of replication alternatives
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Full replication Partial replication Partitioning

Query processing Easy Some difficulty

Directory 
management

Easy or non-
existent

Some difficulty

Concurrency 
control

Moderate Difficult Easy

Reliability Very high High Low



Optimisation

• Best fragmentation, replication and allocation? 
• A generic algorithm for fragment allocation in a distributed 

database system (Corcoran, SAC’94) 
• Set of m sites S, each has capacity ci 

• Set F of n fragments, each fragment j has size sj 

• Site requirement matrix R:  
• ri,j is requirement by site i for fragment j
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R =

r1,1 r1,2 ⋯ r1,n
r2,1 r2,2 ⋯ r2,n

⋮ ⋮ ⋱ ⋮
rm,1 rm,2 ⋯ rm,n

S = {c1, c2, c3, …, ci, …, cm}

F = {s1, s2, s3, …, sj, …, sn}



Formalising optimisation of allocation

• Transmission cost matrix T 
• ti,j is cost for site i to access a 

fragment of data on site j 

• Fragment placement vector 
• pj=i indicates fragment j is at site i 

• Objective: minimise total transmission cost:  

•… but subject to:
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T =

t1,1 t1,2 ⋯ t1,m
t2,1 t2,2 ⋯ t2,m

⋮ ⋮ ⋱ ⋮
tm,1 tm,2 ⋯ tm,m

P = {p1, p2, p3, …, pj, …, pn}

m

∑
i=1

n

∑
j=1

ri,jti,pj

∀i,1 ≤ i ≤ m,
n

∑
j=1

ri,jsj ≤ ci



Distributed query processing

• Optimisation goal: reduce the amount of data transfer 
• Option 1: Send both R and S to Site 1 for join 
• Option 2: Send R to Site 3 to join, send join results back to site 1  
• Option 3: Send S to Site 2 to join, send join results back to site 1 

•Which option is best? Is it optimal?
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ΠX1,Z1
(R ⋈ S)

R(X1, X2, …, Xn, Y)

S(Y, Z1, Z2, …, Zn)
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Site 3

Site 1



Semi-joins can improve efficiency of queries

• Reduce number of tuples before transfer to other site 
• Site 3 sends only S.Y column to Site 2 
• Site 2 does the join based on R’s Y column; sends the records 

of R that will join (without duplicates) back to Site 3 
• Site 3 performs the final join
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Semi-join example
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Site 2 
Employee

Site 3 
Department

ΠFname,Lname,Dname(Employee ⋈Dno=Dnumber Department)
Query at site 1:

F = ΠDnumber(Employee)

Q = ΠDname,Dnumber(F ⋈Dno=Dnumber Department)

ΠFname,Lname,Dname(Q ⋈Dno=Dnumber Employee)



Query or Update Decomposition

• Idea: decompose query or update into sequence of 
queries or updates executed at the individual sites 

• Suppose a site stores all information about projects 
controlled by department 5 (Projs5) and employees 
working on these projects (Works_on5):
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ΠFname,Lname,hoursσdno=5(Employee ⋈Dno=Dnumber Project ⋈Pno=Pnumber Works_on)

T1 ← ΠEssn,pno,hoursσdno=5(Projs5 ⋈Pno=Pnumber Works_on5)

T2 ← ΠFname,Lname,hours(T1 ⋈Ssn=Essn Employee)



Transactions

• A transaction is an atomic 
sequence of actions 
(reads and writes) 

• ACID properties covered earlier 
• Atomicity 
• Consistency 
• Isolation 
• Durability
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Begin()
  action
  action
  action
  action
Commit()

Success!

Begin()
  action
  action
  action
  action
Rollback()

Failure!



Transaction management

• Transaction T may touch many sites 
• T={T1, T2, …, Tn) 
• Tk runs at site k 
• How can atomicity be guaranteed? 

• Two-Phase Commit protocol 
• Global transaction coordinator 
• e.g., the site that initiated 

the transaction can be the 
coordinator
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Coordinator

Coordinator

Site

Site

Prepare

Ready/abort

Vote yes/no

commit/abort

Commit/rollback

commit/abort

Acknowledgement

Two-Phase Commit (2PC) protocol

• Request phase 
• Coordinator sends prepare message to all sites 
• Sites reply with “Ready” or “Abort” in their vote 

• Commit phase 
• Coordinate sends a commit message if all 

sites vote “Ready”, otherwise sends an 
abort message 
• Each site either commits or aborts, and 

replies with an acknowledge message
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Three-Phase Commit (3PC) protocol

• 2PC can’t recover from failure of both the coordinator 
and a site during commit phase 
• 3PC solves by introducing the 

Prepared to commit state 
(phase 2) 
• A site receiving preCommit 

knows that all other sites said 
Yes to canCommit? 
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Concurrency control in distributed DBs

• More complicated than that in a centralised DB 
environment 
• Dealing with multiple copies of the data item 
• Failure of individual site 
• Failure of communication links 
• Distributed commit 
• Distributed deadlock
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Distributed locking

• Centralised approach 
• One dedicated site manages all locks 
• Bottleneck, unsalable, single point failure 

• Primary-copy approach 
• Each data item has a primary site. 
• Each transaction asks the primary site for lock on the data item. 

• Full distributed (voting) approach 
• A lock request is sent to all sites with a copy of the data item 
• Each copy maintains its own lock and can grant or deny the request 

for it 
• Use timeout to resolve deadlock
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Summary

• Data fragmentation, allocation, and replication are 
key considerations that can significantly affect the 
performance of a distributed database 

• Queries in distributed databases can (sometimes) be 
optimised through the use of semi-joins 
• Transaction management and concurrency control in 

distributed databases are more complex than the 
equivalent techniques within centralised databases
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