
Distributed Databases
COSC430—Advanced Databases

David Eyers

Learning objectives

• You should be able to
• define the key concepts in distributed database
• distinguish between different types of distributed database
• understand the architectures of distributed database
• explain how to perform data fragmentation, allocation, and

replication
• explain how to do semi-join in distributed database
• understand technologies for distributed transactions

• You will get a taste of carrying out scientific research
• optimisation on data allocation and replication
• the study of the research paper on Google Spanner

2COSC430 Lecture 5, 2020

Definitions

• Distributed database
• a collection of multiple, logically interrelated databases

distributed over a network of computers

• Distributed DBMS
• a software system that manages a distributed database and

provides an access mechanism while making the distribution
transparent to the users

Distributed database system=Database+Communication

3COSC430 Lecture 5, 2020

Key concepts for distributed databases

• Data stored at several locations
• Fragmentation
• Replication

• Transparency: hide
implementation for
users/developers
• Location
• Fragmentation
• Replication
• Design
• Execution

4COSC430 Lecture 5, 2020—reproduction of Figure 25.1 from E&N

Types of distributed databases

• Homogeneous
• All sites run the same DBMS

• Heterogeneous
• Different sites can run

different DBMSs

5COSC430 Lecture 5, 2020

Distributed database architecture

• Client-Server
• a two-level architecture

based on the client-server
concept (database centric)
• A client can directly or

indirectly connect to a server

6COSC430 Lecture 5, 2020

COSC430 Lecture 5: Distributed Databases 7

Distributed Database Architecture
• Peer-to-Peer

–All nodes have the same role and functionality
–High scalability and flexibility
–Hard to manage because all machines are

autonomous and loosely coupled

DISTRIBUTED DATABASE
ARCHITECTURE (CONT’D)

•  Peer-to-Peer Architecture
•  Scalability and flexibility in growing and shrinking
•  All nodes have the same role and functionality
•  Harder to manage because all machines are autonomous

and loosely coupled

10

Site 5

Site 1

Site 2

Site 3 Site 4

Communication
Network

Distributed Database Architecture

• Peer-to-Peer
• All nodes have the same role and functionality
• High scalability and flexibility
• Servers are autonomous

and loosely coupled
• Management layer

determine whether such
infrastructure is easier or
harder to manage

7COSC430 Lecture 5, 2020

Main database functionality to consider

• Data layout
• Data fragmentation
• Data allocation and replication

• Query processing and optimisation
• Data transfer cost
• Semi-join
• Query and update decomposition

• Distributed transactions
• Transaction atomicity using two-phase commit
• Transaction serialisability using distributed locking

8COSC430 Lecture 5, 2020

Data fragmentation

• Break up the database into logical units, called fragments,
which may be assigned for storage at various sites
•What is a reasonable unit of data distribution?
• Relation
• Can increase communications
• Less parallelism

• Sub-relations
• Extra processing for views that cannot be defined on a single fragment
• Better parallelism
• Difficult to enforce integrity constraints

9COSC430 Lecture 5, 2020

Data Fragmentation

• Horizontal fragmentation
• Grouping rows to create subsets of tuples
• Each subset has a certain

logical meaning

10COSC430 Lecture 5, 2020

Data Fragmentation

• Vertical fragmentation—divide relation by columns
• Each fragment has the primary key or some candidate key so

that the full relation can be reconstructed

11COSC430 Lecture 5, 2020

Data Fragmentation

• Mixed (Hybrid) fragmentation
• Intermix the two types of fragmentation

• Correctness of fragmentation
• Completeness: each data item can be found in one fragment
• Reconstruction (lossless): the full relation can be reconstructed

from all fragments
• Disjointness (non-overlapping): each data item except the

key should not be in more than one fragment

12COSC430 Lecture 5, 2020

Data Replication

• Non-replicated
• Each fragment resides at only one site

• Replicated
• Fully replicated: each fragment at each site
• Partially replicated: each fragments at some sites

• Pros & cons
• Improve availability, distribute load, cheaper reads
• Complexity on update and storage

• Rule of thumb
• If (read-only queries)/(update queries) ≥ 1, replication is advantageous,

otherwise replication may cause problems
13COSC430 Lecture 5, 2020

Comparison of replication alternatives

14COSC430 Lecture 5, 2020

Full replication Partial replication Partitioning

Query processing Easy Some difficulty

Directory
management

Easy or non-
existent

Some difficulty

Concurrency
control

Moderate Difficult Easy

Reliability Very high High Low

Optimisation

• Best fragmentation, replication and allocation?
• A generic algorithm for fragment allocation in a distributed

database system (Corcoran, SAC’94)
• Set of m sites S, each has capacity ci

• Set F of n fragments, each fragment j has size sj

• Site requirement matrix R:
• ri,j is requirement by site i for fragment j

15COSC430 Lecture 5, 2020

R =

r1,1 r1,2 ⋯ r1,n
r2,1 r2,2 ⋯ r2,n

⋮ ⋮ ⋱ ⋮
rm,1 rm,2 ⋯ rm,n

S = {c1, c2, c3, …, ci, …, cm}

F = {s1, s2, s3, …, sj, …, sn}

Formalising optimisation of allocation

• Transmission cost matrix T
• ti,j is cost for site i to access a

fragment of data on site j

• Fragment placement vector
• pj=i indicates fragment j is at site i

• Objective: minimise total transmission cost:

•… but subject to:

16COSC430 Lecture 5, 2020

T =

t1,1 t1,2 ⋯ t1,m
t2,1 t2,2 ⋯ t2,m

⋮ ⋮ ⋱ ⋮
tm,1 tm,2 ⋯ tm,m

P = {p1, p2, p3, …, pj, …, pn}

m

∑
i=1

n

∑
j=1

ri,jti,pj

∀i,1 ≤ i ≤ m,
n

∑
j=1

ri,jsj ≤ ci

Distributed query processing

• Optimisation goal: reduce the amount of data transfer
• Option 1: Send both R and S to Site 1 for join
• Option 2: Send R to Site 3 to join, send join results back to site 1
• Option 3: Send S to Site 2 to join, send join results back to site 1

•Which option is best? Is it optimal?

17COSC430 Lecture 5, 2020

ΠX1,Z1
(R ⋈ S)

R(X1, X2, …, Xn, Y)

S(Y, Z1, Z2, …, Zn)

Site 2

Site 3

Site 1

Semi-joins can improve efficiency of queries

• Reduce number of tuples before transfer to other site
• Site 3 sends only S.Y column to Site 2
• Site 2 does the join based on R’s Y column; sends the records

of R that will join (without duplicates) back to Site 3
• Site 3 performs the final join

18COSC430 Lecture 5, 2020

ΠX1,Z1
(R ⋈ S)

R(X1, X2, …, Xn, Y)

S(Y, Z1, Z2, …, Zn)

Site 2

Site 3

Site 1

Semi-join example

19COSC430 Lecture 5, 2020

Site 2
Employee

Site 3
Department

ΠFname,Lname,Dname(Employee ⋈Dno=Dnumber Department)
Query at site 1:

F = ΠDnumber(Employee)

Q = ΠDname,Dnumber(F ⋈Dno=Dnumber Department)

ΠFname,Lname,Dname(Q ⋈Dno=Dnumber Employee)

Query or Update Decomposition

• Idea: decompose query or update into sequence of
queries or updates executed at the individual sites

• Suppose a site stores all information about projects
controlled by department 5 (Projs5) and employees
working on these projects (Works_on5):

20COSC430 Lecture 5, 2020

ΠFname,Lname,hoursσdno=5(Employee ⋈Dno=Dnumber Project ⋈Pno=Pnumber Works_on)

T1 ← ΠEssn,pno,hoursσdno=5(Projs5 ⋈Pno=Pnumber Works_on5)

T2 ← ΠFname,Lname,hours(T1 ⋈Ssn=Essn Employee)

Transactions

• A transaction is an atomic
sequence of actions
(reads and writes)

• ACID properties covered earlier
• Atomicity
• Consistency
• Isolation
• Durability

21COSC430 Lecture 5, 2020

Begin()
 action
 action
 action
 action
Commit()

Success!

Begin()
 action
 action
 action
 action
Rollback()

Failure!

Transaction management

• Transaction T may touch many sites
• T={T1, T2, …, Tn)
• Tk runs at site k
• How can atomicity be guaranteed?

• Two-Phase Commit protocol
• Global transaction coordinator
• e.g., the site that initiated

the transaction can be the
coordinator

22COSC430 Lecture 5, 2020

Coordinator

Coordinator

Site

Site

Prepare

Ready/abort

Vote yes/no

commit/abort

Commit/rollback

commit/abort

Acknowledgement

Two-Phase Commit (2PC) protocol

• Request phase
• Coordinator sends prepare message to all sites
• Sites reply with “Ready” or “Abort” in their vote

• Commit phase
• Coordinate sends a commit message if all

sites vote “Ready”, otherwise sends an
abort message
• Each site either commits or aborts, and

replies with an acknowledge message

23COSC430 Lecture 5, 2020

Three-Phase Commit (3PC) protocol

• 2PC can’t recover from failure of both the coordinator
and a site during commit phase
• 3PC solves by introducing the

Prepared to commit state
(phase 2)
• A site receiving preCommit

knows that all other sites said
Yes to canCommit?

24COSC430 Lecture 5, 2020

Coordinator

Coordinator

Site

Site

canCommit?

Yes

preCommit

ACK

doCommit

haveCommitted

{
{
{

Phase 1

Phase 2

Phase 3

Concurrency control in distributed DBs

• More complicated than that in a centralised DB
environment
• Dealing with multiple copies of the data item
• Failure of individual site
• Failure of communication links
• Distributed commit
• Distributed deadlock

25COSC430 Lecture 5, 2020

Distributed locking

• Centralised approach
• One dedicated site manages all locks
• Bottleneck, unsalable, single point failure

• Primary-copy approach
• Each data item has a primary site.
• Each transaction asks the primary site for lock on the data item.

• Full distributed (voting) approach
• A lock request is sent to all sites with a copy of the data item
• Each copy maintains its own lock and can grant or deny the request

for it
• Use timeout to resolve deadlock

26COSC430 Lecture 5, 2020

Summary

• Data fragmentation, allocation, and replication are
key considerations that can significantly affect the
performance of a distributed database

• Queries in distributed databases can (sometimes) be
optimised through the use of semi-joins
• Transaction management and concurrency control in

distributed databases are more complex than the
equivalent techniques within centralised databases

27COSC430 Lecture 5, 2020

