Data mining
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Learning objectives

* YOU should:
* understand what data mining is, and why we need it
* understand the process of knowledge discovery

* be able to explain what frequent itemsets are, and how to
mine them

* be able to distinguish and explain the difference between
classification and cluster analysis

* Exploring scientific research—
* the research paper that infroduces the Apriori algorithm



Recommended text books on data mining

* Infroduction to Data Mining (29 Ed.)

* Pang-Ning Tan, Michael Steinbach, Anuj Karpatne,
and Vipin Kumar

* https:.// www.amazon.com/Introduction-Mining-
Whats-Computer-Science/dp/0133128903

* Data Mining: Concepfs and Techniques (3 Ed. ) [REEE%

* Jlawel Han, Micheline Kamber, and Jian Pel oy

e ©hitps://www.elsevier.com/books/data-mining-
concepts-and-techniques/han/?7/8-0-12-3814/9-1
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What is data mining?

* Data mining Is knowledge discovery from data
* For example, detection of inferesting patterns

* The type of knowledge discovered should be:
* non-frivial
* implicit
* previously unknown
* potentially useful
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Why is data mining useful?

* Particularly foday, there is an explosive growth of data
* ... but much of the raw information is not useful knowledge

* Data mining overlaps with many ofther ferms:

* knowledge discovery (mining) in databases (KDD);
* knowledge extraction;

* data/pattern analysis;

* data archeology;

* Information harvesting;

* business intelligence; ...
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KDD process: a view from databases
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Data mining in business intelligence

Increasing potential
to support
business decisions

End User

Decision
Making

Data Presentation Business
Analyst

Visualization Techniques
Data Mining Data
Information Discovery Analyst

Data Exploration
Statlstlcal Summary, Querying, and Reportmg

/ Data Preprocessing/Integration, Data Warehousex

Data Sources DBA
Paper, Files, Web documents, Scientific experiments, Database Systems
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KDD Process: a view from ML and stats

Data pre- Post-

Input data Data mining Information

processing processing

Data integration Pattern discovery Pattern evaluation
Normalisation Classification Pattern selection
Feature selection Clustering Pattern interpretation
Dimension reduction Outlier analysis Pattern visualisation
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Data preprocessing

* Data cleaning

* Handle missing data; smooth noisy data; identify or remove outliers; and
resolve inconsistencies

* Data infegration
* Infegration of multiple databases, data cubes or files

* Data reduction

* Dimensionality reduction; humerousity reduction (a representation that’s
smaller, e.g., linear regression/sampling); data compression

* Data information and discretisation (i.e., putting data into bins)
* Normalisation (e.g. rescale min/max)
* Concept hierarchy generation (e.g., bin address info city, then country)



Pattern discovery

* What are patternse

* A set of items, sub-sequences, or sub-structures that occur frequently
together (or strongly correlated) in a data set

* Pattern discovery:
* Uncovering patterns from massive data sefts

* Motivating examples:
* What products are often purchased togethere
* What are the subsequent purchases after buying an IPad?
* What code segments are likely to contain copy-paste bugse
* Broad applications
* Cross-marketing, web log analysis, biological sequence analysis, etc.



Basic concepts: k-itemset; abs/rel. support

* ltemset: a set of one or more items Ll beer, nuts, nappics

. beer, cottee, nappies
o k- * X =
kK-itemset: X={xi,...Xx} B beer, nappies, eges

* e.g. {beer, nuts, nappies} is 3-itemset  Hillnuts, eggs, milk

o sup{X}: absolute SUppOrT of X nuts, cottee, nappies, eggs, milk
* Frequency or number of occurrences of itemset X
* e.g., sup{beer} = 3, sup{beereggs} = 1
* s{X}: relative support of X

* Fraction of items that contain X
* e.g., {beer} =3/5=60%,; s{beer,eggs}=1/5=20%
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Frequent itemsets (patterns)

* An Ifemset (Or A pOTTern) X IS beer, nuts, nappies
frequerﬂ' If the SUpporT of X is no beer, coffee, nappies

. ¢V beer, nappies, eggs
less than a minsup threshold o nuts eggf mﬂkgg

* For given dataset with 0=50% S0 nuts, coffee, nappies, eggs, milk
* All frequent T-itemsets:
* {beer}:3/5=60%,; {nuts}.3/5=60%,; {nappies}.4/5=80%; {eggs}.:3/5=60%
* All frequent 2-itemsets:
* {beer, naoppies}:3/5=60%
* All frequent 3-itemsetse There are none
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From frequent itemsets to association rules

» Rules more useful than itemsets alone  El beer, nuts, nappies

* €.g. mining the “rule’”, nappies—beer beel‘/ cotfee, nappies
* i.e., buying nappies implies will also buy beer beer, Nappies, €ggs
: : 40 ts, , milk
* How sfrong is this rule? s, €555, M

. nuts, cottee, nappies, eggs, milk
* Look at support (s) and confidence (c)

* Measuring association rules X—Y (s,c) for itemsets X and Y

* Support s: probabllity item will contain XuY (i.e., union of both itfemsets)
* s{nappies, beer}=3/5=60%

* Confidence c: conditional probabillity Tid containing X also contains Y
 C =sup(XuY) /sup(X)

* e.9., c{nappies,beer} = sup{nappies,beer}/sup{nappies} = 3/4 = 75%
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Mining frequent itemsets & assoc. rules

* Association rule mining; find all rules: Tl beer, nuts, nappies

. Given two thresholds: minsup, minconf s beer, coffee, nappies

, . El beer, ies,
 X=Y (s,C) s>=minsup, c>=minconf S TARPIE 557
. nuts, eggs, milk
* For example, let minsup=50% Bl nuts, coffee, nappies, eggs, milk

* freq. 1-itemsets: beer:3; nuts:3; Observations:

nappies:4; eggs:3 o o I
» freq. 2-itemsets: {beer,nappies):3 Mining assocliation rules ana
MiNning frequent patterns are

* Then let minconf=50% close problems

* beer—nappies (60%,100%) » Scalable methods needed

* nappies—beer (60%, 7/57%) to mine large datasets
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Challenge: too many frequent patterns!

* A long pattern has a combinatorial number of sub-patterns

* How many frequent itemsets does the following containe

° Tv:{an, ..., Aso}; T2:{an, ..., Q100}
* Let's have a fry it we assume (absolute) minsup = |
* l-itemsets: {a1}:2, {a2}:2, ..., {0s0}:2, {Qs1}:1, ..., {Q100}:]
o 2-ifemsets: {ai1,a2}:2, ..., {a1,0s50}:2, {a1,051}:1, ..., {Q99,0100}:1,

* 99-itemsets: {a1,02,...,Q9}:1, ..., {Q2,03,...,0100}: ]
* 100-itemsets: {a1,02,...,A100}: ]

* The tfotal number of frequent itemsets: (l.e. a really large numlberl)

100 100 100 100\ o
+ + + - + =210
1 2 3 100
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Challenge: too many frequent patterns!
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Efficient pattern mining methods

* The downward closure (also called "Aprior”) property
* If {beer,nappies,nuts}is frequent, so is {beer,nappies}
* |.e., any subset of a frequent itemset must be frequent

* Apriori pruning principle

* If any subset of an itemset S Is infrequent, then there Is no chance
for S to be frequent

* Major approaches:

* Level-wise, join-based approach: Apriort (Agrawal & Srikant, 1994)
* Frequent pattern projection & grown: FPgrowth (Han, et al., 2000)

* Vertical data format approach: Eclat (Zaki, et al., 1997)
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Freg. itemsets can’t have infrequent subsets
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Classification

* Supervised learning

* Training data (observations, measurements) accompanied by
labels Indicating the classes to which they belong

* New data is classified using models bulilt from fraining set

Training Data with class label:

E S

e | income |student|credit_rating buys_computer'

Training

Instancesj 7
/4

Test

Instancesy 7
/4
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Cluster Analysis

* Unsupervised learning (l.e., no predefined classes)

* Glven a set of data points, partition them into a set of groups

l.e., clusters)
* High infra-class s
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Partitioning concepts

* Partitioning
* Discovering groupings in data by optimising an objective
function and iteratively improving the quality of partitfions
* K-partitfioning
* Partfitioning a dataset D of n objects info a set of K clusters so
that an objective function is optimised

* A typical objective function is sum of squared errors (SSE)

K
SSEO) =2 Y, || v
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K-means clustering

* K-means (MacQueen 196/, Llioyd 1957, 1982)

* Each cluster is represented by the centre of the cluster

* K-means clustering algorithm—
* Select k points as inifial centroids

* Repeat untill convergence criterion is satisfied:

* Form k clusters by assigning each point to its closest centroid
* Re-compute the centroids of each cluster

e Different kinds of measures can be used
* Manhattan distance L' norm; Euclidean distance L2 norm; ...



Variations of k-means

* There are many variants of the k-means method:
* Choosing better inifial centroid estimates
* K-means++; Intelligent K-means; genetic K-means
* Choosing ditferent representative prototypes for the clusters
* K-medolids; K-medians; K-modes

* Applying feature fransformation techniques
* Weighted K-means, Kernel K-means
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summary

* Data mining and its applications

 KDD from different views

* Mining frequent itemsets and association rules
* Classification methods

* Cluster analysis methods
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* Also recall the textbooks included on slide 3
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