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Learning objectives

• You should: 
• understand what data mining is, and why we need it 
• understand the process of knowledge discovery 
• be able to explain what frequent itemsets are, and how to 

mine them 
• be able to distinguish and explain the difference between 

classification and cluster analysis 

• Exploring scientific research— 
• the research paper that introduces the Apriori algorithm
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Recommended text books on data mining

• Introduction to Data Mining (2nd Ed.) 
• Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, 

and Vipin Kumar 
• https://www.amazon.com/Introduction-Mining-

Whats-Computer-Science/dp/0133128903 

• Data Mining: Concepts and Techniques (3rd Ed.) 
• Jiawei Han, Micheline Kamber, and Jian Pei 
• https://www.elsevier.com/books/data-mining-

concepts-and-techniques/han/978-0-12-381479-1
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What is data mining?

• Data mining is knowledge discovery from data 
• For example, detection of interesting patterns 

• The type of knowledge discovered should be:  
• non-trivial 
• implicit 
• previously unknown 
• potentially useful
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Why is data mining useful?

• Particularly today, there is an explosive growth of data 
• … but much of the raw information is not useful knowledge 

• Data mining overlaps with many other terms: 
• knowledge discovery (mining) in databases (KDD); 
• knowledge extraction; 
• data/pattern analysis; 
• data archeology; 
• information harvesting; 
• business intelligence; …
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KDD process: a view from databases
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Data mining in business intelligence
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KDD Process: a view from ML and stats
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Data preprocessing

• Data cleaning 
• Handle missing data; smooth noisy data; identify or remove outliers; and 

resolve inconsistencies 

• Data integration 
• Integration of multiple databases, data cubes or files 

• Data reduction 
• Dimensionality reduction; numerousity reduction (a representation that’s 

smaller, e.g., linear regression/sampling); data compression 

• Data information and discretisation (i.e., putting data into bins) 
• Normalisation (e.g. rescale min/max) 
• Concept hierarchy generation (e.g., bin address into city, then country)
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Pattern discovery

•What are patterns? 
• A set of items, sub-sequences, or sub-structures that occur frequently 

together (or strongly correlated) in a data set 

• Pattern discovery: 
• Uncovering patterns from massive data sets 

• Motivating examples: 
• What products are often purchased together? 
• What are the subsequent purchases after buying an iPad? 
• What code segments are likely to contain copy-paste bugs? 

• Broad applications 
• Cross-marketing, web log analysis, biological sequence analysis, etc.
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Basic concepts: k-itemset; abs/rel. support

• Itemset: a set of one or more items 

• k-itemset: X={x1,...xk} 
• e.g. {beer, nuts, nappies} is 3-itemset 

• sup{X}: absolute support of X 
•  Frequency or number of occurrences of itemset X 
• e.g., sup{beer} = 3, sup{beer,eggs} = 1 

• s{X}: relative support of X 
• Fraction of items that contain X 
• e.g., s{beer} = 3/5=60%; s{beer,eggs}=1/5=20%
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Tid Items bought
10 beer, nuts, nappies
20 beer, coffee, nappies
30 beer, nappies, eggs
40 nuts, eggs, milk
50 nuts, coffee, nappies, eggs, milk



Frequent itemsets (patterns)

• An itemset (or a pattern) X is 
frequent if the support of X is no 
less than a minsup threshold σ 

• For given dataset with σ=50% 
• All frequent 1-itemsets: 
• {beer}:3/5=60%; {nuts}:3/5=60%; {nappies}:4/5=80%; {eggs}:3/5=60% 

• All frequent 2-itemsets: 
• {beer, nappies}:3/5=60% 

• All frequent 3-itemsets? There are none
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Tid Items bought
10 beer, nuts, nappies
20 beer, coffee, nappies
30 beer, nappies, eggs
40 nuts, eggs, milk
50 nuts, coffee, nappies, eggs, milk



From frequent itemsets to association rules

• Rules more useful than itemsets alone 
• e.g. mining the “rule”, nappies→beer 
• i.e., buying nappies implies will also buy beer 

• How strong is this rule? 
• Look at support (s) and confidence (c) 

• Measuring association rules X→Y (s,c) for itemsets X and Y 

• Support s: probability item will contain X⋃Y (i.e., union of both itemsets) 
• s{nappies, beer} = 3/5 = 60% 

• Confidence c: conditional probability Tid containing X also contains Y 
• c = sup(X⋃Y) / sup(X) 

• e.g., c{nappies,beer} = sup{nappies,beer}/sup{nappies} = 3/4 = 75%
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Tid Items bought
10 beer, nuts, nappies
20 beer, coffee, nappies
30 beer, nappies, eggs
40 nuts, eggs, milk
50 nuts, coffee, nappies, eggs, milk



Mining frequent itemsets & assoc. rules

• Association rule mining; find all rules: 
• Given two thresholds: minsup, minconf 

• X→Y (s,c) s>=minsup, c>=minconf 

• For example, let minsup=50% 
• freq. 1-itemsets: beer:3; nuts:3;  

nappies:4; eggs:3 
• freq. 2-itemsets: {beer,nappies}:3 

• Then let minconf=50% 
• beer→nappies (60%,100%) 

• nappies→beer (60%, 75%)
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Tid Items bought
10 beer, nuts, nappies
20 beer, coffee, nappies
30 beer, nappies, eggs
40 nuts, eggs, milk
50 nuts, coffee, nappies, eggs, milk

• Observations: 
• Mining association rules and 

mining frequent patterns are 
close problems 
• Scalable methods needed 

to mine large datasets



Challenge: too many frequent patterns!

• A long pattern has a combinatorial number of sub-patterns 
• How many frequent itemsets does the following contain? 
• T1: {a1, …, a50}; T2:{a1, …, a100} 
• Let’s have a try if we assume (absolute) minsup = 1 

• 1-itemsets: {a1}:2, {a2}:2, …, {a50}:2, {a51}:1, …, {a100}:1 

• 2-itemsets: {a1,a2}:2, …, {a1,a50}:2, {a1,a51}:1, …, {a99,a100}:1, 

• … 

• 99-itemsets: {a1,a2,…,a99}:1, …, {a2,a3,…,a100}:1 

• 100-itemsets: {a1,a2,…,a100}:1 

• The total number of frequent itemsets: (i.e. a really large number!) 

(100
1 ) + (100

2 ) + (100
3 ) + ⋯ + (100

100) = 2100 − 1
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Challenge: too many frequent patterns!
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Efficient pattern mining methods

• The downward closure (also called “Apriori”) property 
• if {beer,nappies,nuts} is frequent, so is {beer,nappies} 
• i.e., any subset of a frequent itemset must be frequent 

• Apriori pruning principle 
• if any subset of an itemset S is infrequent, then there is no chance 

for S to be frequent 

• Major approaches: 
• Level-wise, join-based approach: Apriori (Agrawal & Srikant, 1994) 
• Frequent pattern projection & grown: FPgrowth (Han, et al., 2000) 
• Vertical data format approach: Eclat (Zaki, et al., 1997)
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Subsets of frequent items are frequent
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Freq. itemsets can’t have infrequent subsets
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Classification

• Supervised learning 
• Training data (observations, measurements) accompanied by 

labels indicating the classes to which they belong 
• New data is classified using models built from training set
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Training Data with class label:



Popular classification methods

• Decision tree induction 

• Bayes classification 

• Linear regression 

• Support vector machines 

• Neural networks 

•…
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Cluster Analysis

• Unsupervised learning (i.e., no predefined classes) 
• Given a set of data points, partition them into a set of groups 

(i.e., clusters) 
• High intra-class similarity and low inter-class similarity
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Partitioning concepts

• Partitioning 
• Discovering groupings in data by optimising an objective 

function and iteratively improving the quality of partitions 

• K-partitioning 
• Partitioning a dataset  of  objects into a set of  clusters so 

that an objective function is optimised 
• A typical objective function is sum of squared errors (SSE)

D n K
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SSE(C) =
K

∑
k=1

∑
xi∈Ck

xi − ck
2



K-means clustering

• K-means (MacQueen 1967, Lloyd 1957, 1982) 
• Each cluster is represented by the centre of the cluster 

• K-means clustering algorithm— 
• Select  points as initial centroids 
• Repeat until convergence criterion is satisfied: 
• Form  clusters by assigning each point to its closest centroid 
• Re-compute the centroids of each cluster 

• Different kinds of measures can be used 
• Manhattan distance L1 norm; Euclidean distance L2 norm; … 

k

k
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Variations of k-means

• There are many variants of the k-means method: 
• Choosing better initial centroid estimates 
• K-means++; Intelligent K-means; genetic K-means 

• Choosing different representative prototypes for the clusters 
• K-medoids; K-medians; K-modes 

• Applying feature transformation techniques 
• Weighted K-means, Kernel K-means
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Summary

• Data mining and its applications 

• KDD from different views 

• Mining frequent itemsets and association rules 

• Classification methods 

• Cluster analysis methods
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• Also recall the textbooks included on slide 3
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