
Graph Databases with Neo4j [COSC430 2020] 2020-05-09

1 Introduction to Neo4j

As with the Cassandra Lab, we are going to use Vagrant, Docker, and CoreOS to bootstrap our environ-
ment. The instructions are repeated below to ensure that the lab is self-contained. Those instructions
that are repeated are marked as such, and those that di�er are also marked.

The aim is that this process should work on your computers, as well as on the terminals in the CS labs
that we cannot currently access. The instructions have been tested on a computer running macOS. (If
lab access is restored in time, you can find a terminal in Lab E, and if it is running Linux, you can reboot
the machine and choose macOS from the startupmenu that will be presented to you).

We will use Vagrant to create a virtual machine (VM) that we will use for our experimentation. That VM
will be running CoreOS, which is a cut-down version of Linux suitable for hosting “containers”, using
Docker. (CoreOS is soon at end-of-life in terms of support, but we are only using it as a compatibility
layer, and it can be replaced bymany other such layers.) We will use Docker to download and create
instances of Neo4j, within the VM.

A�er you’ve cloned the correct git repo (see Get a CoreOS VM up and running), have run vagrant up
and are connected, you can skip ahead to the section Getting Started with Neo4j to proceed with the
lab work.

1.1 Setting up the Lab E Environment (same as for Cassandra lab)

Skip this section if you are using your own computer! Continue from “Ensure that Vagrant is work-
ing”.

These steps only apply to working through this exercise in Lab E. We need to ensure that Vagrant places
its (large) cache files somewhere other than your homedirectory. There are at least twoways to achieve
this:

1. You can set the VAGRANT_HOME variable before every command. So if the instructions say
to run vagrant --version you’d add VAGRANT_HOME=/scratch/vagrant before the
command to turn it into VAGRANT_HOME=/scratch/vagrant vagrant --version.

2. You can set theVAGRANT_HOME variable to the value/scratch/vagrant inside your.pro-
file (or other appropriate startup file) in the manner that you set up your Oracle variables in the
DBA labs. You can test whether you have set the variable correctly by starting a new terminal win-
dow and running echo $VAGRANT_HOME, which should print back /scratch/vagrant.

Personally, I (David) prefer option 2, as almost all of you will be using bash by default. You can edit the
startup file using nano:

Paul Crane and David Eyers 1

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

nano ~/.profile

Add a line at the bottom of the file that reads export VAGRANT_HOME=/scratch/vagrant.
Save the file (control-x, and follow the prompts), and then type source ~/.profile in the terminal
window.

NOTE: you may find that /scratch/vagrant already exists (and that you don’t have per-
mission to create files inside it). In this case use your CS login name as a su�ix. For example,
/scratch/vagrant-dme.

1.2 Ensure that Vagrant is working (same as for Cassandra lab)

Check that Vagrant is installed. You can do so by running the following command from a terminal:

vagrant --version

If the above does not work (it complains about the command not being found), and you are on a
computer that you administer, you can install Vagrant.

1.3 Get a CoreOS VM up and running (di�erent from Cassandra lab)

NOTE: This step is slightly di�erent to to the Cassandra lab’s instructions. The git repository URL is
di�erent!

Gather the files needed to setup the lab. To do this, change directory to where you want a neo4j-
intro subdirectory to be created and then run the command:

git clone https://altitude.otago.ac.nz/cosc430/neo4j-intro.git

(Note that this document is contained within the above git repository, and that you can browse the
repository within a web browser by visiting the above URL.)

Now the latest version of the configuration files have been copied, cd into your git working copy
directory, e.g. cd neo4j-intro and then copy the configuration file config.rb.cosc430 into
config.rb. The configuration here just changes VM to be created with 4 GiB of RAM, 2 virtual CPUs,
and requests the stable version of CoreOS.

Get Vagrant to create theCoreOSVMusingvagrant up. Note that the first timeyou run this command
Vagrant will acquire the base image for Ubuntu, but it will only need to do that once.

Paul Crane and David Eyers 2

https://www.vagrantup.com

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

1.4 Connect to your CoreOS VM (same as for Cassandra lab)

The terminal window that you are using will be connected to the terminal of your CoreOS VM if you run
the command vagrant ssh.

Quick points to note:

• The CoreOS shell prompt is likely to be something similar to core@core-01 ~ $
• You can run vagrant ssh to openmultiple SSH connections to your CoreOS VM in di�erent
terminal windows.

2 Getting Started with Neo4j

Once you have connected (via vagrant ssh) to the vagrant container, execute the following com-
mand to start Neo4j running.

docker run --publish=7474:7474 --publish=7687:7687 neo4j

In the terminal you should see something resembling the listing below (a�er any information displayed
by Docker, if you are using the neo4j image for the first time).

Active database: graph.db
Directories in use:

home: /var/lib/neo4j
config: /var/lib/neo4j/conf
logs: /var/lib/neo4j/logs
plugins: /var/lib/neo4j/plugins
import: /var/lib/neo4j/import
data: /var/lib/neo4j/data
certificates: /var/lib/neo4j/certificates
run: /var/lib/neo4j/run

Starting Neo4j.
2020-05-09 00:56:05.082+0000 INFO ======== Neo4j 4.0.4 ========
2020-05-09 00:56:05.096+0000 INFO Starting...
2020-05-09 00:56:13.668+0000 INFO Bolt enabled on 0.0.0.0:7687.
2020-05-09 00:56:13.669+0000 INFO Started.
2020-05-09 00:56:15.924+0000 INFO Remote interface available at
... http://localhost:7474/

It is probably safe to ignore lines in the above that may appear that contain WARN for this lab—Neo4j

Paul Crane and David Eyers 3

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

used to complainabout a lackof configurationoptions in the context of thisCOSC430 lab. The important
point is that the database has started and that the Remote interface is available.

Open that link in a browser and you should then be presented with a login page (the password is
neo4j), it will ask you to change the password so choose something appropriate.

Figure 1: Neo4j Login

Once you’ve clicked through the password change prompt, you’ll see a welcome screen.

Paul Crane and David Eyers 4

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

Figure 2: Neo4j Welcome Screen

In themain part of the page (the part with the light grey background), from top to bottom, we have
the interactive query window, then some startup tutorials, and the final block tells us that we’ve
successfully connected to the database backend (you can safely close this block by clicking on the
cross in the top right of that block).

In the vertical bar on the le� we have the following options (from top to bottom): Database Information
(at present it will show that there are no nodes, no relationships, nor properties), Favourites (to assist
with keeping track of queries), Documentation, the Cloud Services features (we won’t need this),
Browser Settings (controlling the appearance of the dashboard), and finally, About (describing the

Paul Crane and David Eyers 5

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

so�ware). For now, leave everything at the default values.

When working through thematerial below, you are advised to keep a record of commands that you
have run so that you can easily recreate any databases or queries in future. For example, I (David) had
my virtual machine automatically shutdown without warning at one point. I just needed to vagrant
up to start the CoreOS system again, and then through vagrant ssh run the necessary Docker
commands, however any data that I might have saved into the Neo4j would have been lost.

2.1 Creating the Database and Introduction to Cypher

Click on the Write Code button in the Jump into code box (the centre one). Create the Movie
Graph by following the prompts. This will create a sample database for you. I’ve copied a (small)
portion of the example commands that are creating the database for you.

CREATE (TheMatrix:Movie {title:'The Matrix', released:1999,
tagline:'Welcome to the Real World'})

CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})
...
CREATE (Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrix)
...
CREATE (TheMatrixReloaded:Movie {title:'The Matrix Reloaded',

released:2003, tagline:'Free your mind'})
CREATE (Keanu)-[:ACTED_IN {roles:['Neo']}]->(TheMatrixReloaded)
...

This is the Cypher query language andmay look somewhat similar to SQL. The above extract defines
some properties of the nodes. Note that you don’t have to define properties of nodes or links. In this
case the visual nature of cypher becomes more apparent (however, less useful):

CREATE (Keanu:Person)
CREATE (TheMatrix:Movie)
CREATE (Keanu)-->(TheMatrix)

Youmay notice that the Cypher query language is almost visual in that the nodes are represented inside
parentheses (thus making them look close to the nodes in the example graphs shown in COSC430
lectures) and the edges look like arrows (resembling the directed edges).

There are two styles of create statements in the first example above. The first, CREATE (name:type
{key:value, ... }), creates nodes of the graph. In this extract we are creating two di�erent
types of node, a Person and a Movie. The person node is called ‘Keanu’ with the given properties.
There are twoMovie nodes being createdTheMatrix andTheMatrixReloaded, again eachwith

Paul Crane and David Eyers 6

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

their own properties.

The second style, CREATE (from)-[:link_type {key:value ...}]->(to), creates a di-
rected edge between the ‘from’ node to the ‘to’ node with the given link type and the properties. In
this example, we’re saying that the node named ‘Keanu’ is linked to the node named ‘TheMatrix’ by
the relationship ‘ACTED_IN’ (and has the given property).

NOTE: The names of the nodes are not related to the properties of the node. For example, these
statements have the same e�ect on the data stored in the database. The last line has no name, and
therefore cannot be referenced in subsequent queries.

CREATE (Keanu:Person {name:'Keanu Reeves', born:1964})
CREATE (K:Person {name:'Keanu Reeves', born:1964})
CREATE (k:Person {name:'Keanu Reeves', born:1964})
CREATE (Person {name:'Keanu Reeves', born:1964})

Continue with the rest of the steps in the tutorial. By the end you should have completed all these
steps:

• Movie Graph
• Create
• Find
• Query
• Solve
• Recommend
• Clean up

You’ll notice that every query you run, a new box will appear with the results. You can close each such
box by clicking on the cross in the top right of the box. To aid in visualising the results of your queries,
you canmake the box occupy the entire web browser window as well as being able to drag and drop
the nodes, and zoom in and out—these controls are in the bottom right of the box. Other visualisations
are possible—a table, plain text, and code (using a JSON representation).

Paul Crane and David Eyers 7

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

Figure 3: Neo4j Movie Database

2.2 Finding and Querying

The next step is to query the data. Follow the examples given and write down the queries you used for
the examples below:

1. Find the actor named ‘Keanu Reeves’ (hint: look up the properties of the node).
2. Find the movie with the title ‘The Matrix’.
3. Find movies released in 1999.

Paul Crane and David Eyers 8

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

4. List all the Keanu Reeves movies.
5. Who directed ‘The Matrix’?
6. What other movies did they direct?
7. Who else has Keanu starred with?
8. The movies three ‘hops’ away from Keanu Reeves.
9. Extension Queries

1. Find all actors that directed amovie they also acted in (showing both themovie and the
actor)

2. Find all reviewer pairs, one following the other and both reviewing the samemovie, and
return entire sub-graphs

3. Find all actors that acted in a movie together a�er 2010 and return the actor names and
movie node

4. By extending the previous query, find all movies that the cast of the movies found before
also acted in

10. Counting
1. Count the number of paths of at most length 4 starting from Clint Eastwood ignoring edge
direction

2. Count the number of paths of at most length 10 starting from Clint Eastwood ignoring edge
direction

3. Count the number of paths of at most length 11 starting from Clint Eastwood ignoring edge
direction

4. Count the number of nodes reachable in at most 4 hops from Clint Eastwood ignoring edge
direction

5. Count the number of nodes reachable in at most 10 hops from Clint Eastwood ignoring
edge direction

6. Count the number of nodes reachable in atmost 11 hops from Clint Eastwood ignoring edge
direction

2.3 Modelling

Your task for this section is to implement the social network example presented during the lecture.
You should also attempt to develop the queries also presented in the lecture.

3 Cleaning up the so�ware downloaded during this lab

The simplest way to remove all of your containers is to destroy the CoreOS virtual machine that is
hosting them. From the directory that you ran vagrant ssh from, you can run the command that

Paul Crane and David Eyers 9

Graph Databases with Neo4j [COSC430 2020] 2020-05-09

follows. It will ask for your confirmation, as it irrevocably throws away your virtual machine, and in
this case all of the Neo4j containers and images, the caches from Docker, etc.

vagrant destroy

If you alsowant to remove all of the caches that Vagrant creates, you can examine theVAGRANT_HOME
environmental variable (echo $VAGRANT_HOME) to discover the folder that you should delete. This
folder will contain the cached image for CoreOS as well as the virtual machine hard-disk file onto which
you downloaded Neo4j, using Docker.

4 Useful websites and reference documentation

• Neo4j

– Neo4j Website https://neo4j.com/
– Cypher Reference Documentation https://neo4j.com/docs/developer-manual/3.2/cypher/
– Cypher Reference Card https://neo4j.com/docs/cypher-refcard/3.2/

• A Neo4j tutorial https://neo4j.com/developer/get-started/

• Documentation that you probably do not need, but which may be of interest:

– Docker documentation: https://docs.docker.com
– CoreOS http://coreos.com
– Vagrant https://www.vagrantup.com

If you are interested in exploring other database systems, have a look at the Docker Hub https://hub.
docker.com and you’ll find there are a lot of pre-made images covering a wide variety of database
systems (you don’t need an account to download these containers). In many cases the Docker Hub
pages include instructions on how to get started using each such database.

Paul Crane and David Eyers 10

https://neo4j.com/
https://neo4j.com/docs/developer-manual/3.2/cypher/
https://neo4j.com/docs/cypher-refcard/3.2/
https://neo4j.com/developer/get-started/
https://docs.docker.com
http://coreos.com
https://www.vagrantup.com
https://hub.docker.com
https://hub.docker.com

	Introduction to Neo4j
	Setting up the Lab E Environment (same as for Cassandra lab)
	Ensure that Vagrant is working (same as for Cassandra lab)
	Get a CoreOS VM up and running (different from Cassandra lab)
	Connect to your CoreOS VM (same as for Cassandra lab)

	Getting Started with Neo4j
	Creating the Database and Introduction to Cypher
	Finding and Querying
	Modelling

	Cleaning up the software downloaded during this lab
	Useful websites and reference documentation

