Overview

e This Lecture

— Introduction & memory addressing

— Source: ULK ch 1 & ch 2, ARM1176JZF-S
Technical Reference Manual, etc

— You can find them at
http://www.cs.otago.ac.nz/cosc440/resources.p

hp

COSC440 Lecture 1: Introduction 1

http://www.cs.otago.ac.nz/cosc440/resources.php

Course objectives

* Discuss the design and research 1ssues

e Examine the design and the internals of a
real operating system (Linux & xv6);

e Enable the kernel programming skill

* Understand how an operating system
interacts with modern CPU (ARM);

COSC440 Lecture 1: Introduction 2

Course structure

* One two-hour lecture per week

* One two-hour guided lab per week
e Reading material (OSDI, SOSP), start now
 100% 1nternal assessment

— Two programming assignments (20% and 30%)

— One writing assignment (40%), including 10%
presentation (ChatGPT i1s not allowed).

— Q&A for 10 weeks starting from the second
week (10%)

COSC440 Lecture 1: Introduction 3

No Textbook

Understanding the Linux kernel (3 edition)
Essential Linux Device Drivers
Linux Device Drivers (3™ edition)

— Code examples are a bit obsolete
Writing Linux Device Drivers (good for lab)
Linux source cross reference

— http://Ixr.linux.no

Google or ChatGPT (may give you some answers
but you need to check their correctness).

http://www kernel.org/doc/htmldocs/

COSC440 Lecture 1: Introduction 4

http://lxr.linux.no

Why OS?
e OS 1s useful for application programming

— Programming on H/W 1s painful

— OS enables portability, multi-programming,
and standard utility.

* OS kernel (excl. the system tools 1n u/s)
— A H/W management library
— Abstract layer on H/W with better properties
— Layers: H/'W —kernel —user

 Crown of programming

e Skills are applicable to embedded systems

COSC440 Lecture 1: Introduction 5

OS kernel design

e The design cares a lot about interfaces and
the kernel internal structure

e It demands real-time processing

— Programmers should have awareness of time
when programming.

e The kernel typically provides

— Processes, memory, file system, device drivers,
Interprocess communication, user management,
security policy, access control, time, etc.

COSC440 Lecture 1: Introduction 6

Good kernel design

e Should abstract the H/W for convenience

— The API is via system calls like open(), read().

e Should

multip

e Should

e Should

' multiplex the hardware among
e applications/users

| 1solate applications to contain bugs

| allow sharing and communication

among applications

COSC440 Lecture 1: Introduction 7

Why OS design interesting?

e Fast vs abstract

e Performance vs portability
 Many features vs few mechanisms
e Convenience vs composibility

— Fork() & exec() vs create_process()

* Open problems: security, multi-core

COSC440 Lecture 1: Introduction 8

Multi-user OS

e Protection and 1solation
e Users and groups

* Files are protected by access rights
according to user 1d and group 1d

* Processes ditfer according to user 1d and
group 1d

e Fair sharing of resources

COSC440 Lecture 1: Introduction 9

Processes

e Users share resources fairly using processes

e A process virtualizes CPU

— Uses process control block for each process in
kernel (task_struct in Linux, proc.h in xv6)

* Process scheduling
— Preemptive and non-preemptive
— Round robin and etc.
— Process states: running, ready, blocked, etc
— Refer to proc.c in xv6

e All processes form a tree
COSC440 Lecture 1: Introduction 10

System calls

 OS API for user processes
* Open(), read(), write(), 1octl(), close()

— Use them 1n Lab 1 to implement a cat program.

e Fork(), exit(), wait(), exec(), kill()

o Getpid(), sleep(), sbrk(), dup(), pipe()

e Chdir(), mkdir(), mknod(), fstat(), link(),
unlink()

COSC440 Lecture 1: Introduction 11

Raspberry Pi1

e Broadcom BCM2837 SoC
— ARM Cortex-AS53 1.2 GHz processor (ARMVS)
— VideoCore GPU, 1 GB RAM

* SD card for booting and storage
e 25W to 3.5W
* Audio/video outputs, video input for camera

e HDMI, USB 2.0 (Ethernet), 40 GPIO,
UART, I2C, etc

e Has Linux, FreeBSD, Plan9, xv6 etc

COSC440 Lecture 1: Introduction 12

The board

GrIo] v& *’
Raspberry Pi 3 Model B+
(©) Respberry Pi 2017

Made in the UK

&l

1330

= 43 33 43 83

] ::a ve e 5 oo 38
P 11111 i
SPR IN . = - =

S I

S T
PWR ACT

COSC440 Lecture 1: Introduction 13

Implemented 1deas with Pi

e Home automation system

e Wall mounted voice controlled screen
e Security webcam with motion sensor
e Control sprinkler system

 (Game server

 An alarm system

e MP3 player

e Medical input device shield

e Supercomputer

* Voice activated coffee machine

e Make old TV into a Smart TV

COSC440 Lecture 1: Introduction 14

XVv6

A modern implementation of Sixth Edition Unix
in ANSI C for multiprocessor x86 systems

— The code was only available on PDP-11
Used for pedagogical purposes at MIT
— Run 1n simulated environment like QEMU

— I made 1t PC-bootable and start use the code for
COSC440 from 2013.

Well documented due to Lions' Commentary on
UNIX 6th Edition, with Source Code.

It has process management, memory management,
RAM FS, device drivers such as console

COSC440 Lecture 1: Introduction 15

Why port xv6 to RPI?

e Existing OS like Linux 1s too complex for
students

e Run xv6 1n simulator (QEMU) 1s boring.
e We don’t have PCs available in the
department
— Old PCs are very frail.
e ARM-based SoC 1s more popular
— Embedded programming on SoC 1s in demand
e RPI 1s cheap and popular

— $40, 30 millions sold out since 2012
COSC440 Lecture 1: Introduction 16

ARM CPU

e ARM is based on RISC architecture.
ARMVS ISA 1s used in Raspberry P1 (RPI)

e CPU runs instructions continuously unless
redirected by instructions or interrupted by
events

e General-purpose registers

_ RO-R15, R13(SP), R14(LR), R15(PC)
* Program status registers

— CPSR, SPSR

COSC440 Lecture 1: Introduction 17

ARM CPU (cont.)

* Instructions are stored in memory

— They are fetched into CPU for execution

through instruction pointer (a register called
PC, aka. R15)

— PC 1s incremented after each instruction 1s
completed unless

— It 1s modified by branch instructions like bx and
bl

— Load/store registers: 1dr, str,
— Arithmetic instructions: add, sub, mul, shift

— Special instructions for special registers
COSC440 Lecture 1: Introduction 18

Memory-Mapped 1/0

e Use physical memory addresses for 1/0
— No size limit for I/O address space

— No need of special I/0 instructions

— Routing to appropriate device through system
controller

* Behave differently from normal memory
— Reads/writes could have side effects

— Results of reads could change due to ext. events

e Direct Memory Access (DMA)

COSC440 Lecture 1: Introduction 19

Physical memory map

I/O devices

VC SDRAM

ARM SDRAM

0x40000000(512MB)

0x20000000 — 0x201ftttf(16MB)

0xc000000 — Ox{tttttt (256MB)
0x00000000 — Oxbfftftt (192MB)

COSC440 Lecture 1: Introduction 20

Virtual memory map

Ox ittt (4GB)
I/O devices 0xte000000
VC SDRAM
ARM SDRAM

0xc0000000 — user/kernel separation

User-mode page-mapped virtual addresses

0x00000000

COSC440 Lecture 1: Introduction 21

ARM stack manipulation

e pushr0
— sub sp, #4
— str 10, [sp]
* pop 10
— 1dr 10, [sp]
— add sp, #4

COSC440 Lecture 1: Introduction 22

ARM GCC calling convention

e (Call a function

— bl 0x12345
 mov Ir, pc; mov pc, #0x12345

e Return from a function
— movs pc, Ir or pop pc 1 Ir 1s stored 1n the stack.
e Parameters are passed with registers
— 10,11, 2,13, aka. caller saved registers

— More parameters then the stack will be used

— Results are put into rO and rl

o Callee saved registers: r4-rl1
COSC440 Lecture 1: Introduction 23

Memory protection

ARMYvS has 16 domains for memory
security, though we only use one domain in
Xv6

Each page can be set no-access, read-only
or read/write for kernel or user mode.
Each page can be set cacheable or not

— Region attributes: Strongly Ordered, Device,
cacheable Write-Through, and cacheable Write-
Back.

Page sizes: 4KB, 64KB, IMB, 16 MB

COSC440 Lecture 1: Introduction 24

ARM paging structure

31 PDX 20 PTX 12 Page offset 0

PDX
base register

Page directory Page table 4KB page

Each entry needs 4 bytes
Four pages are needed for PDX

A quarter page is used for PTX
Translation Lookaside Buffers (TLB):
Hardware cache to speed up linear address translation

COSC440 Lecture 1: Introduction 25

Linux linear address space

e Kernel/user space split
— 1G/3G split in 32-bit
— But at Oxffff880000000000 in 64-bit
— 0xc0000000 and above for the kernel
— Below 0xc0000000 for user processes
* Linear/physical mapping layout

— 896M for straight mapping between kernel linear space
and physical memory

— 128M (896M-1G) reserved for dynamic mapping of

high memory and virtual memory
COSC440 Lecture 1: Introduction 26

Questions on course material as

an assessment of study
 From week 2, you should send me questions

on the lecture and lab of the week before
every Tuesday morning, for 10 weeks.

* Depending on the quality of the questions
and the communications at the lecture, you
will be given a maximum mark of 1.

e If you don’t attend a lecture without a valid
reason, you will lose the mark.

COSC440 Lecture 1: Introduction 27

Readings

 Have a look at OSDI/SOSP websites and
choose the papers you are interested to read.

COSC440 Lecture 1: Introduction 28

