
COSC440 Lecture 1: Introduction 1

Overview
• This Lecture

– Introduction & memory addressing
– Source: ULK ch 1 & ch 2, ARM1176JZF-S

Technical Reference Manual, etc
– You can find them at

http://www.cs.otago.ac.nz/cosc440/resources.p
hp

http://www.cs.otago.ac.nz/cosc440/resources.php

COSC440 Lecture 1: Introduction 2

Course objectives
• Discuss the design and research issues
• Examine the design and the internals of a

real operating system (Linux & xv6);
• Enable the kernel programming skill
• Understand how an operating system

interacts with modern CPU (ARM);

COSC440 Lecture 1: Introduction 3

Course structure
• One two-hour lecture per week
• One two-hour guided lab per week
• Reading material (OSDI, SOSP), start now
• 100% internal assessment

– Two programming assignments (20% and 30%)
– One writing assignment (40%), including 10%

presentation (ChatGPT is not allowed).
– Q&A for 10 weeks starting from the second

week (10%)

COSC440 Lecture 1: Introduction 4

No Textbook
• Understanding the Linux kernel (3rd edition)
• Essential Linux Device Drivers
• Linux Device Drivers (3rd edition)

– Code examples are a bit obsolete
• Writing Linux Device Drivers (good for lab)
• Linux source cross reference

– http://lxr.linux.no
• Google or ChatGPT (may give you some answers

but you need to check their correctness).
• http://www.kernel.org/doc/htmldocs/

http://lxr.linux.no

COSC440 Lecture 1: Introduction 5

Why OS?
• OS is useful for application programming

– Programming on H/W is painful
– OS enables portability, multi-programming,

and standard utility.

• OS kernel (excl. the system tools in u/s)
– A H/W management library
– Abstract layer on H/W with better properties
– Layers: H/W—kernel—user

• Crown of programming
• Skills are applicable to embedded systems

COSC440 Lecture 1: Introduction 6

OS kernel design
• The design cares a lot about interfaces and

the kernel internal structure
• It demands real-time processing

– Programmers should have awareness of time
when programming.

• The kernel typically provides
– Processes, memory, file system, device drivers,

interprocess communication, user management,
security policy, access control, time, etc.

COSC440 Lecture 1: Introduction 7

Good kernel design
• Should abstract the H/W for convenience

– The API is via system calls like open(), read().

• Should multiplex the hardware among
multiple applications/users

• Should isolate applications to contain bugs
• Should allow sharing and communication

among applications

COSC440 Lecture 1: Introduction 8

Why OS design interesting?

• Fast vs abstract
• Performance vs portability
• Many features vs few mechanisms
• Convenience vs composibility

– Fork() & exec() vs create_process()

• Open problems: security, multi-core

COSC440 Lecture 1: Introduction 9

Multi-user OS

• Protection and isolation
• Users and groups
• Files are protected by access rights

according to user id and group id
• Processes differ according to user id and

group id
• Fair sharing of resources

COSC440 Lecture 1: Introduction 10

Processes
• Users share resources fairly using processes
• A process virtualizes CPU

– Uses process control block for each process in
kernel (task_struct in Linux, proc.h in xv6)

• Process scheduling
– Preemptive and non-preemptive
– Round robin and etc.
– Process states: running, ready, blocked, etc
– Refer to proc.c in xv6

• All processes form a tree

COSC440 Lecture 1: Introduction 11

System calls
• OS API for user processes
• Open(), read(), write(), ioctl(), close()

– Use them in Lab 1 to implement a cat program.
• Fork(), exit(), wait(), exec(), kill()
• Getpid(), sleep(), sbrk(), dup(), pipe()
• Chdir(), mkdir(), mknod(), fstat(), link(),

unlink()

COSC440 Lecture 1: Introduction 12

Raspberry Pi
• Broadcom BCM2837 SoC

– ARM Cortex-A53 1.2 GHz processor (ARMv8)
– VideoCore GPU, 1 GB RAM

• SD card for booting and storage
• 2.5W to 3.5W
• Audio/video outputs, video input for camera
• HDMI, USB 2.0 (Ethernet), 40 GPIO,

UART, I2C, etc
• Has Linux, FreeBSD, Plan9, xv6 etc

COSC440 Lecture 1: Introduction 13

The board

COSC440 Lecture 1: Introduction 14

Implemented ideas with Pi
• Home automation system
• Wall mounted voice controlled screen
• Security webcam with motion sensor
• Control sprinkler system
• Game server
• An alarm system
• MP3 player
• Medical input device shield
• Supercomputer
• Voice activated coffee machine
• Make old TV into a Smart TV
• …

COSC440 Lecture 1: Introduction 15

xv6
• A modern implementation of Sixth Edition Unix

in ANSI C for multiprocessor x86 systems
– The code was only available on PDP-11

• Used for pedagogical purposes at MIT
– Run in simulated environment like QEMU
– I made it PC-bootable and start use the code for

COSC440 from 2013.
• Well documented due to Lions' Commentary on

UNIX 6th Edition, with Source Code.
• It has process management, memory management,

RAM FS, device drivers such as console

COSC440 Lecture 1: Introduction 16

Why port xv6 to RPI?
• Existing OS like Linux is too complex for

students
• Run xv6 in simulator (QEMU) is boring.
• We don’t have PCs available in the

department
– Old PCs are very frail.

• ARM-based SoC is more popular
– Embedded programming on SoC is in demand

• RPI is cheap and popular
– $40, 30 millions sold out since 2012

COSC440 Lecture 1: Introduction 17

ARM CPU
• ARM is based on RISC architecture.

ARMv8 ISA is used in Raspberry Pi (RPI)
• CPU runs instructions continuously unless

redirected by instructions or interrupted by
events

• General-purpose registers
– R0-R15, R13(SP), R14(LR), R15(PC)

• Program status registers
– CPSR, SPSR

COSC440 Lecture 1: Introduction 18

ARM CPU (cont.)
• Instructions are stored in memory

– They are fetched into CPU for execution
through instruction pointer (a register called
PC, aka. R15)

– PC is incremented after each instruction is
completed unless

– It is modified by branch instructions like bx and
bl

– Load/store registers: ldr, str,
– Arithmetic instructions: add, sub, mul, shift
– Special instructions for special registers

COSC440 Lecture 1: Introduction 19

Memory-Mapped I/O
• Use physical memory addresses for I/O

– No size limit for I/O address space
– No need of special I/O instructions
– Routing to appropriate device through system

controller
• Behave differently from normal memory

– Reads/writes could have side effects
– Results of reads could change due to ext. events

• Direct Memory Access (DMA)

COSC440 Lecture 1: Introduction 20

Physical memory map

0x00000000 – 0xbffffff (192MB)

0xc000000 – 0xfffffff (256MB)VC SDRAM

ARM SDRAM

I/O devices 0x20000000 – 0x20ffffff(16MB)

0x40000000(512MB)

COSC440 Lecture 1: Introduction 21

Virtual memory map

0x00000000

VC SDRAM

ARM SDRAM 0xc0000000 – user/kernel separation

0xffffffff(4GB)
I/O devices 0xfe000000

User-mode page-mapped virtual addresses

COSC440 Lecture 1: Introduction 22

ARM stack manipulation

• push r0
– sub sp, #4
– str r0, [sp]

• pop r0
– ldr r0, [sp]
– add sp, #4

COSC440 Lecture 1: Introduction 23

ARM GCC calling convention
• Call a function

– bl 0x12345
• mov lr, pc; mov pc, #0x12345

• Return from a function
– movs pc, lr or pop pc if lr is stored in the stack.

• Parameters are passed with registers
– r0, r1, r2, r3, aka. caller saved registers
– More parameters then the stack will be used
– Results are put into r0 and r1

• Callee saved registers: r4-r11

COSC440 Lecture 1: Introduction 24

Memory protection
• ARMv8 has 16 domains for memory

security, though we only use one domain in
xv6

• Each page can be set no-access, read-only
or read/write for kernel or user mode.

• Each page can be set cacheable or not
– Region attributes: Strongly Ordered, Device,

cacheable Write-Through, and cacheable Write-
Back.

• Page sizes: 4KB, 64KB, 1MB, 16MB

COSC440 Lecture 1: Introduction 25

ARM paging structure
31 20 12PDX PTX Page offset 0

Each entry needs 4 bytes
Four pages are needed for PDX
A quarter page is used for PTX
Translation Lookaside Buffers (TLB):

Hardware cache to speed up linear address translation

Page directory Page table 4KB page
PDX

base register

COSC440 Lecture 1: Introduction 26

Linux linear address space

• Kernel/user space split
– 1G/3G split in 32-bit
– But at 0xffff880000000000 in 64-bit
– 0xc0000000 and above for the kernel
– Below 0xc0000000 for user processes

• Linear/physical mapping layout
– 896M for straight mapping between kernel linear space

and physical memory
– 128M (896M-1G) reserved for dynamic mapping of

high memory and virtual memory

COSC440 Lecture 1: Introduction 27

Questions on course material as
an assessment of study

• From week 2, you should send me questions
on the lecture and lab of the week before
every Tuesday morning, for 10 weeks.

• Depending on the quality of the questions
and the communications at the lecture, you
will be given a maximum mark of 1.

• If you don’t attend a lecture without a valid
reason, you will lose the mark.

COSC440 Lecture 1: Introduction 28

Readings

• Have a look at OSDI/SOSP websites and
choose the papers you are interested to read.

