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Overview
• This Lecture

– Processes
– Source: ULK ch 3, ch 7 & ch 9
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Why processes?

• Isolation
– Each process has a private memory area for 

code, stack, and data
• Protection

– Each process can’t read/write outside its 
address space

• Sharing is allowed
• Maintain multiple concurrent tasks
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Process management

• Related system calls
– fork(), exec()
– exit(): release the resources and send its parent a 

SIGCHLD signal

• Zombie processes
– Terminated process, but its parent hasn’t called wait() 

yet to collect the process’ status
• Process groups and login sessions
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User/kernel modes

• How modes changed?
– System call, interrupt, exception

• Registers saved at context switch
– PC and SP
– General purpose registers
– Floating point registers
– Processor status word
– Memory management registers

• Process address space
– Stack, code, data (can be shared using mmap)
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Process implementation

• Implemented by both OS and hardware
• OS manages processes

– Allocate physical memory
– Keep track of the process status
– Schedule/switch between processes

• Hardware 
– Perform address translation, protection
– Assist user/kernel transfer (syscalls, interrupts)
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Process virtual address space

• A list of memory area descriptors
– Program code
– Initialized data
– Uninitialized data
– The heap
– Code and data of shared libraries
– Program stack

• Demand paging and swapping
– No physical pages allocated to a process initially.

• Copy-On-Write(COW) for process forking
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Layout of process address space
Kernel space

Stack

mmap region

Heap

BSS segment
Data segment
Text segment

0x08048000

start_data
end_code

end_data

start_brk

brk

0xc0000000 = TASK_SIZE

RLIMIT_STACK (e.g. 8MB)
random stack offset

random brk offset

random mmap offset
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Process address space

• A memory descriptor is used to describe the 
address space

• Process address space consists of memory 
regions

• Memory regions are organized as red-black 
trees
– Access rights are applicable to individual 

regions
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Memory regions (mma)
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mmap

• What happens if a memory region is 
mapped to a device (or file)?
– mmap method of the device driver is called
– Operations to act on a memory region

• open, close, nopage
– Very useful for writing a RAM device driver
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Memory management

• Virtual memory
– A logical layer between application memory requests 

and MMU
• Why using virtual memory?
• After kernel initialization, the available memory is 

used by virtual memory system
– Kernel buffers, process memory requests, caches, etc

• Memory fragmentation
• Kernel Memory Allocator (KMA)

– Based on allocating algorithms
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Protection for address space
• x86 has two mechanisms for protection

– Segmentation
– Paging

• Linux uses simple segmentation, but 
supports paging extensively

• Linux has its own linear address space (top 
1G in 32-bit), but can access each process’ 
address space (lower 3G in 32-bit).
– Now 32K GB as kernel address space on 64-bit
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Processes and threads

• Processes
• Threads

– An execution flow of a process
– Share everything with the process except the stack

• Light-weight processes
– A process sharing some data structures with its parent. 

The extent of sharing can be decided by options
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Process Descriptor (PD)

• Also called process control block
• Fields in process descriptor

– Process state: TASK_RUNNING, 
TASK_INTERRUPTIBLE, …

– Process id, thread id
– Memory area descriptors
– File descriptors
– Signals
– Terminal
– Various links
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Linux PD
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Process descriptor handling

• 8KB (2 pages) memory block (aligned with 8KB)
• How to get a process descriptor’s pointer?
• Layout
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Process list
• Doubly linked list

– list_head structure: next, prev
– Related functions and macros
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Handling process list
• List of TASK_RUNNING processes

– The queue is called runqueue
– The list head is the init_task PD
– The run_list field in the PD is used

• How a process is scheduled to run?
– Related functions: wake_up_process

• How to quickly find a PD with a pid?
– pidhash table



COSC440 Lecture 2: Processes 19

Parenthood relationships

• Useful pointers
– Real parent, Parent, Child, Younger sibling, 

Older sibling



COSC440 Lecture 2: Processes 20

Wait queues

• Used to suspend processes for many 
purposes

• Related data structures
– Queue head
– Link element

• Exclusive and non-exclusive processes
• Related functions (very important)

– wait_event(), wake_up(), etc
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How a process wait for a device?
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Process resource limits

• Various resource limits
– Maximum address space
– Maximum core dump file size
– Maximum CPU time
– Maximum heap size
– Maximum file size
– Maximum stack size
– Maximum number of page frames
– …
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Process switch

• Also called task switch or context switch
– Suspend the execution of the process running 

on the CPU and resume the execution of some 
other process previously suspended

• Hardware context
– A set of registers
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Process handling

• Process creation
– clone(), fork(), vfork()
– Understanding do_fork() 

• Process termination
– exit()
– Understanding do_exit()

• Process removal
– How zombies are removed?
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Scheduling
• Many theoretical work done, 

– Strict priority, round-robin, shortest job first, 
minimum guarantee with admission control

• Scheduling seems uninteresting 
– When resources are not in shortage
– Except the web servers and large-scale 

networks that cannot handle peak demand or 
some scheduling decisions have non-linear 
effects on overall system behavior (read the 
Eliminating Receive Livelock article for today)
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Key problems in scheduling

• Gap between desired policy and 
implementing mechanism
– Scheduler can approximate policy

• Conflicting goals
– Low latency, high throughput, fairness, etc

• Interaction between difference schedulers
– Only optimizing CPU scheduler may have little 

impact on overall performance
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Scheduling in Linux

• Scheduling policy
– Preemptable between processes
– Kernel threads have higher priority
– NAPI for network tasks as in the livelock paper

• Quantum
– How long must be a Quantum last?

• The schedule function
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Kernel programming
• Application vs kernel programming

– Applications use libc and other libraries
– Kernel code can only use kernel functions

• Reentrant
– The same function called by different processes/threads
– Better no global variables

• Data race and mutual exclusion
– Interrupt disabling
– Semaphores: down() and up()
– Spin locks
– deadlock
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The livelock paper

• Background
– Uniprocessor, no spinlocks
– Different contexts

• Process (user half, kernel half)
• Soft interrupts (bottom half)
• Device (hard) interrupts

– How network frames were handled?
– What solution was proposed in the paper?


