
COSC440 Lecture 2: Processes 1

Overview
• This Lecture

– Processes
– Source: ULK ch 3, ch 7 & ch 9



COSC440 Lecture 2: Processes 2

Why processes?

• Isolation
– Each process has a private memory area for 

code, stack, and data
• Protection

– Each process can’t read/write outside its 
address space

• Sharing is allowed
• Maintain multiple concurrent tasks



COSC440 Lecture 2: Processes 3

Process management

• Related system calls
– fork(), exec()
– exit(): release the resources and send its parent a 

SIGCHLD signal

• Zombie processes
– Terminated process, but its parent hasn’t called wait() 

yet to collect the process’ status
• Process groups and login sessions



COSC440 Lecture 2: Processes 4

User/kernel modes

• How modes changed?
– System call, interrupt, exception

• Registers saved at context switch
– PC and SP
– General purpose registers
– Floating point registers
– Processor status word
– Memory management registers

• Process address space
– Stack, code, data (can be shared using mmap)



COSC440 Lecture 2: Processes 5

Process implementation

• Implemented by both OS and hardware
• OS manages processes

– Allocate physical memory
– Keep track of the process status
– Schedule/switch between processes

• Hardware 
– Perform address translation, protection
– Assist user/kernel transfer (syscalls, interrupts)



COSC440 Lecture 2: Processes 6

Process virtual address space

• A list of memory area descriptors
– Program code
– Initialized data
– Uninitialized data
– The heap
– Code and data of shared libraries
– Program stack

• Demand paging and swapping
– No physical pages allocated to a process initially.

• Copy-On-Write(COW) for process forking



COSC440 Lecture 2: Processes 7

Layout of process address space
Kernel space

Stack

mmap region

Heap

BSS segment
Data segment
Text segment

0x08048000

start_data
end_code

end_data

start_brk

brk

0xc0000000 = TASK_SIZE

RLIMIT_STACK (e.g. 8MB)
random stack offset

random brk offset

random mmap offset



COSC440 Lecture 2: Processes 8

Process address space

• A memory descriptor is used to describe the 
address space

• Process address space consists of memory 
regions

• Memory regions are organized as red-black 
trees
– Access rights are applicable to individual 

regions



COSC440 Lecture 2: Processes 9

Memory regions (mma)



COSC440 Lecture 2: Processes 10

mmap

• What happens if a memory region is 
mapped to a device (or file)?
– mmap method of the device driver is called
– Operations to act on a memory region

• open, close, nopage
– Very useful for writing a RAM device driver



COSC440 Lecture 2: Processes 11

Memory management

• Virtual memory
– A logical layer between application memory requests 

and MMU
• Why using virtual memory?
• After kernel initialization, the available memory is 

used by virtual memory system
– Kernel buffers, process memory requests, caches, etc

• Memory fragmentation
• Kernel Memory Allocator (KMA)

– Based on allocating algorithms



COSC440 Lecture 2: Processes 12

Protection for address space
• x86 has two mechanisms for protection

– Segmentation
– Paging

• Linux uses simple segmentation, but 
supports paging extensively

• Linux has its own linear address space (top 
1G in 32-bit), but can access each process’ 
address space (lower 3G in 32-bit).
– Now 32K GB as kernel address space on 64-bit



COSC440 Lecture 2: Processes 13

Processes and threads

• Processes
• Threads

– An execution flow of a process
– Share everything with the process except the stack

• Light-weight processes
– A process sharing some data structures with its parent. 

The extent of sharing can be decided by options



COSC440 Lecture 2: Processes 14

Process Descriptor (PD)

• Also called process control block
• Fields in process descriptor

– Process state: TASK_RUNNING, 
TASK_INTERRUPTIBLE, …

– Process id, thread id
– Memory area descriptors
– File descriptors
– Signals
– Terminal
– Various links



COSC440 Lecture 2: Processes 15

Linux PD



COSC440 Lecture 2: Processes 16

Process descriptor handling

• 8KB (2 pages) memory block (aligned with 8KB)
• How to get a process descriptor’s pointer?
• Layout



COSC440 Lecture 2: Processes 17

Process list
• Doubly linked list

– list_head structure: next, prev
– Related functions and macros



COSC440 Lecture 2: Processes 18

Handling process list
• List of TASK_RUNNING processes

– The queue is called runqueue
– The list head is the init_task PD
– The run_list field in the PD is used

• How a process is scheduled to run?
– Related functions: wake_up_process

• How to quickly find a PD with a pid?
– pidhash table



COSC440 Lecture 2: Processes 19

Parenthood relationships

• Useful pointers
– Real parent, Parent, Child, Younger sibling, 

Older sibling



COSC440 Lecture 2: Processes 20

Wait queues

• Used to suspend processes for many 
purposes

• Related data structures
– Queue head
– Link element

• Exclusive and non-exclusive processes
• Related functions (very important)

– wait_event(), wake_up(), etc



COSC440 Lecture 2: Processes 21

How a process wait for a device?



COSC440 Lecture 2: Processes 22

Process resource limits

• Various resource limits
– Maximum address space
– Maximum core dump file size
– Maximum CPU time
– Maximum heap size
– Maximum file size
– Maximum stack size
– Maximum number of page frames
– …



COSC440 Lecture 2: Processes 23

Process switch

• Also called task switch or context switch
– Suspend the execution of the process running 

on the CPU and resume the execution of some 
other process previously suspended

• Hardware context
– A set of registers



COSC440 Lecture 2: Processes 24

Process handling

• Process creation
– clone(), fork(), vfork()
– Understanding do_fork() 

• Process termination
– exit()
– Understanding do_exit()

• Process removal
– How zombies are removed?



COSC440 Lecture 2: Processes 25

Scheduling
• Many theoretical work done, 

– Strict priority, round-robin, shortest job first, 
minimum guarantee with admission control

• Scheduling seems uninteresting 
– When resources are not in shortage
– Except the web servers and large-scale 

networks that cannot handle peak demand or 
some scheduling decisions have non-linear 
effects on overall system behavior (read the 
Eliminating Receive Livelock article for today)



COSC440 Lecture 2: Processes 26

Key problems in scheduling

• Gap between desired policy and 
implementing mechanism
– Scheduler can approximate policy

• Conflicting goals
– Low latency, high throughput, fairness, etc

• Interaction between difference schedulers
– Only optimizing CPU scheduler may have little 

impact on overall performance



COSC440 Lecture 2: Processes 27

Scheduling in Linux

• Scheduling policy
– Preemptable between processes
– Kernel threads have higher priority
– NAPI for network tasks as in the livelock paper

• Quantum
– How long must be a Quantum last?

• The schedule function



COSC440 Lecture 2: Processes 28

Kernel programming
• Application vs kernel programming

– Applications use libc and other libraries
– Kernel code can only use kernel functions

• Reentrant
– The same function called by different processes/threads
– Better no global variables

• Data race and mutual exclusion
– Interrupt disabling
– Semaphores: down() and up()
– Spin locks
– deadlock



COSC440 Lecture 2: Processes 29

The livelock paper

• Background
– Uniprocessor, no spinlocks
– Different contexts

• Process (user half, kernel half)
• Soft interrupts (bottom half)
• Device (hard) interrupts

– How network frames were handled?
– What solution was proposed in the paper?


