
COSC440 Lecture 3: Interrupts … 1

Overview
• This Lecture

– Interrupts and exceptions
– Source: ULK ch 4, ELDD ch1, ch2 & ch4



COSC440 Lecture 3: Interrupts … 2

Three reasons for interrupts

• System calls
• Program/hardware faults
• External device interrupts
• Note interrupts, exceptions and traps are 

similar and very often confusing due to their 
subtle differences
– We use interrupts to include them all here.



COSC440 Lecture 3: Interrupts … 3

Event-driven programming

• OS is largely based on event-driven programming 
for handling interrupts

• Event handlers are important parts of OS
– Interrupt handlers, exception handlers
– If no one kicks the ball, nothing will happen after 

kernel initialization

• Who kicks the ball?
– Init, keyboard, mouse, etc



COSC440 Lecture 3: Interrupts … 4

Why care about interrupts?

• Security and isolation
– Only kernel can access devices, MMU, FS, etc
– User program is a potential malicious adversary

• Resource sharing
– Centralized handling facilitates sharing

• Timely response to urgent events
• Continuation of interrupted program



COSC440 Lecture 3: Interrupts … 5

User & kernel spaces

• User space and kernel space
– Different privilege level
– Different memory mapping
– Different set of libraries

• User space to kernel space
– System call: for the current process
– Interrupt: may not be relevant to the current 

process



COSC440 Lecture 3: Interrupts … 6

How to handle interrupts?

• Save program state for future restoration
• Set up for execution in kernel (stack, 

segment)
• Choose the interrupt handler
• Get arguments for system calls
• Ensure security (more detail later)



COSC440 Lecture 3: Interrupts … 7

ARM interrupts
• IRQ: for devices
• FIQ: for one fast device
• Abort exception: a prefetch abort or data 

abort exception occurs.
• Undefined exception: an undefined 

instruction exception occurs.



COSC440 Lecture 3: Interrupts … 8

System call
• Use swi or svc to switch from user mode to 

kernel mode (i.e. SVC mode)
• Parameters in xv6

– Syscall number is passed with r0
– The number of parameters are unlimited for 

syscalls (verify for yourselves:-)
– Parameters are passed with the user stack

• Return value in xv6
– The return value of the syscall is in r0



COSC440 Lecture 3: Interrupts … 9

The Linux kernel



COSC440 Lecture 3: Interrupts … 10

Device interrupt handling
• Mapping between IRQ and interrupt vector

– INT = IRQ + 32 (Intel default, allow change)



COSC440 Lecture 3: Interrupts … 11

IRQ descriptor
• IRQ sharing



COSC440 Lecture 3: Interrupts … 12

Deferrable functions
• Non-critical work (functions) can be executed 

later
– More efficient kernel

• Softirq
– Defined at compile-time
– Run concurrently by multiple CPUs

• Tasklet
– Built on two softirqs
– The same type of tasklets is executed sequentially, not 

executed by two CPUs at the same times
– Good for device drivers



COSC440 Lecture 3: Interrupts … 13

Deferrable functions (cont.)

• Softirqs and tasklets are executed at 
interrupt context

• Work queues
– Functions in work queues run in process 

context
– Run by kernel threads called worker threads
– Can be blocked and can do work like a process 

except it is in kernel mode only



COSC440 Lecture 3: Interrupts … 14

Module and kernel
• A module normally consists of some functions for system 

calls and some functions for interrupt handling
• Why make modules in kernel space?

• Interrupts, direct memory access, direct access to I/O ports, 
response time, limitations



COSC440 Lecture 3: Interrupts … 15

A few issues

• Concurrency
• Current process

– current (note: it is for SMP as well), pointer to 
the process descriptor of the current running 
process

• Small kernel stack
• Be careful of “__” prefixed functions
• No floating point in kernel



COSC440 Lecture 3: Interrupts … 16

Basic kernel programming

• Export kernel symbols
– export_symbol(name)

• Header files (the include under kernel src)
• Internal state

– /proc and /sys FS entries
• Error handling

– Undo side-effects
• Module parameters

– module_param(name, type, permission)



COSC440 Lecture 3: Interrupts … 17

Debugging

• Careful and robust design
• printk()

– Check /var/log/syslog
• Run in a simulator like QEMU 

– Not suitable for hardware related code
• We shall talk about other more advanced 

debugging later



COSC440 Lecture 3: Interrupts … 18

RCU
• Lock-free data structures are efficient

– E.g. circular buffer
– But sometimes too tricky, e.g. linked list

• Lock-free algorithms achieve two purposes
– Atomically change data for readers
– Detect and prevent conflicts between writers

• Key idea of RCU
– Leave older data for readers, no update on it
– Instead, update on a new copy (memory reuse 

is an issue)
– Read today’s article for details



COSC440 Lecture 3: Interrupts … 19

Analysis of RCU
• Pros

– Reader code is efficient and simpler by avoiding 
locking issues

• Readers may see old but consistent data when there 
are concurrent writers, which is ok with many 
applications e.g. net routing table

– Writer code is simpler than lock-free data structures
– Good performance for read-heavy workloads 

• A factor of 2-4 due to no bus write for readers

• Cons
– Memory is not freed immediately
– Grace period detection at the background
– Memory copying for updaters



COSC440 Lecture 3: Interrupts … 20

RCU in Linux

• Network routing table
• Module unloading
• FD flags
• CPU array


