
COSC440 Lecture 4: Char devices 1

Overview
• This Lecture

– Character devices
– Source: ULK ch12, ch13, ELDD ch5

COSC440 Lecture 4: Char devices 2

Device drivers
• Device drivers are divided into different classes in

Linux
– Char
– Block
– Network
– tty

• Different interfaces are provided by Linux for
each class of device drivers

• Drivers are uniquely identified by major and
minor numbers
– Use ls -l /dev to find out information of each devices
– Consult Documentation/devices.txt under linux src

COSC440 Lecture 4: Char devices 3

File abstraction
• Each file has a name (path) in its directory

– dentry

• Each file has an inode pointed by dentry
• A file system has a superblock

– A superblock has maps for data blks and inodes
• When a file is opened, the kernel uses a file

data structure to hold info of the file
– f_op, f_dentry
– The file abstraction is just a wrapper. File

operations like read/write are delegated to f_op

COSC440 Lecture 4: Char devices 4

struct file {
union {

struct list_head fu_list;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;

#define f_dentry f_path.dentry
#define f_vfsmnt f_path.mnt

const struct file_operations *f_op;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

u64 f_version;
#ifdef CONFIG_SECURITY

void *f_security;
#endif

/* needed for tty driver, and maybe others */
void *private_data;

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c */
struct list_head f_ep_links;
spinlock_t f_ep_lock;

#endif /* #ifdef CONFIG_EPOLL */
struct address_space *f_mapping;

#ifdef CONFIG_DEBUG_WRITECOUNT
unsigned long f_mnt_write_state;

#endif
};

COSC440 Lecture 4: Char devices 5

Registration of drivers
• A driver needs to be registered with the following

function
– int register_chrdev_region(dev_t first,unsigned int

count, char *name);
• If the major number of the device is not known,

Linux can dynamically allocate one with the
function
– int alloc_chrdev_region(dev_t *dev, unsigned int

firstminor, unsigned int count, char *name);
• Auxiliary macros

– MKDEV(int major, int minor); MAJOR(dev_t dev);
MINOR(dev_t dev);

COSC440 Lecture 4: Char devices 6

How to know the major number?
• When a major number is dynamically allocated,

we need to find out the allocated number
– From /proc/devices the device name and major number

will be found after the device driver get registered with
alloc_chrdev_region

– Note that a driver module should always remember to
free the major number using
unregister_chrdev_region when it is unloaded. The
nodes created under /dev should be removed as well.

• A script can be created to automatically find out
the major number, and then make the device nodes
under /dev using mknod

• Alternatively you can use /sys to register your
device and allow udev daemon to generate an
entry for you under /dev, as in our temp module.

COSC440 Lecture 4: Char devices 7

File operations
• A set of file operations is associated with a char

device driver
– ssize_t (*read) (struct file *, char __user *, size_t,

loff_t *);
– Used to retrieve data from the device. A null pointer in

this position causes the read system call to fail with -
EINVAL (“Invalid argument”). A nonnegative return
value represents the number of bytes successfully
read(the return value is a “signed size” type, usually the
native integer type for the target platform).

COSC440 Lecture 4: Char devices 8

File operations (cont.)
– ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);
– Sends data to the device. If NULL, -EINVAL is

returned to the program calling the write system call.
The return value, if nonnegative, represents the number
of bytes successfully written.

– int (*open) (struct inode *, struct file *);
– Though this is always the first operation performed on

the device file, the driver is not required to declare a
corresponding method. If this entry is NULL, opening
the device always succeeds, but your driver is not
notified.

COSC440 Lecture 4: Char devices 9

File operations (cont.)
– int (*ioctl) (struct inode *, struct file *, unsigned int,

unsigned long);
– The ioctl system call offers a way to issue device-

specific commands(such as formatting a track of a
floppy disk, which is neither reading nor writing).
Additionally, a few ioctl commands are recognized by
the kernel without referring to the fops table. If the
device doesn’t provide an ioctl method, the system call
returns an error for any request that isn’t predefined (-
ENOTTY, “No such ioctl for device”).

– int (*release) (struct inode *, struct file *);
– This operation is invoked when the file structure is

being released. Like open, release can be NULL.

COSC440 Lecture 4: Char devices 10

File operations (cont.)
• There are more functions in the structure

file_operations, but we are interested in the above
five functions in our char device driver
– Refer to ULK ch12 pp.473-474 for more details

• A device driver may not need to provide all
functions defined in the file operations

COSC440 Lecture 4: Char devices 11

The file structure
• When a function in file operations is called,

a pointer to a file structure may be provided
as an argument

• The file structure represents an opened file
– Created when open is called at user space
– Released when the last close is called

• The important fields (refer to ULK pp.471)
– f_mode, f_pos, f_flag, f_op, private_data,

f_dentry (for inode structure)

COSC440 Lecture 4: Char devices 12

The inode structure
• The inode structure contains a great deal of

information about a file
• For device drivers, only two fields are of interest

– dev_t i_rdev;
• For inodes that represent device files, this field contains

the actual device number.
– struct cdev *i_cdev;

• struct cdev is the kernel’s internal structure that
represents char devices; this field contains a pointer to
that structure when the inode refers to a char device file.

• Two macros are provided to get device numbers.
– unsigned int iminor(struct inode *inode);
– unsigned int imajor(struct inode *inode);

COSC440 Lecture 4: Char devices 13

struct inode {
struct hlist_node i_hash;
struct list_head i_list;
struct list_head i_sb_list;
struct list_head i_dentry;
unsigned long i_ino;
atomic_t i_count;
unsigned int i_nlink;
uid_t i_uid;
gid_t i_gid;
dev_t i_rdev;
u64 i_version;
loff_t i_size;

#ifdef __NEED_I_SIZE_ORDERED
seqcount_t i_size_seqcount;

#endif
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
unsigned int i_blkbits;
blkcnt_t i_blocks;
unsigned short i_bytes;

umode_t i_mode;
spinlock_t i_lock;
struct mutex i_mutex;
struct rw_semaphore i_alloc_sem;
const struct inode_operations *i_op;
const struct file_operations *i_fop;
struct super_block *i_sb;
struct file_lock *i_flock;
struct address_space *i_mapping;
struct address_space i_data;
struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};
int i_cindex;
__u32 i_generation;
unsigned long i_state;
unsigned long dirtied_when;
unsigned int i_flags;
atomic_t i_writecount;
void *i_private;
}

COSC440 Lecture 4: Char devices 14

Char device internal structure
• An internal structure is used to represent a

char device
– The structure can be allocated and initialized

with
• struct cdev *my_cdev = cdev_alloc();
• my_cdev->ops = &my_fops;

– Or initialized with
• void cdev_init(struct cdev *cdev, struct

file_operations *fops);
– And initialize the owner field

• my_cdev->cdev.owner = THIS_MODULE

COSC440 Lecture 4: Char devices 15

Char device registration
• Once the internal structure is set up, the

device should be registered to the kernel
with
– int cdev_add(struct cdev *dev, dev_t num,

unsigned int count);
• When the module is unloaded, the device

should be de-registered with
– void cdev_del(struct cdev *dev);

COSC440 Lecture 4: Char devices 16

open
• open should perform the following tasks

– Check which device (minor number) is being opened
– Check for device-specific errors (such as device-not-

ready or similar hardware problems)
– Initialize the device if it is being opened for the first

time
– Update the f_op pointer, if necessary
– Allocate and fill any data structure to be put in filp-

>private_data
– How to know a file is open write-only or read-only?

• if((filp->f_flags & O_ACCMODE) == O_WRONLY)
• if((filp->f_flags & O_ACCMODE) == O_RDONLY)

COSC440 Lecture 4: Char devices 17

release
• release should perform the following tasks

– Deallocate anything that open allocated in filp-
>private_data

– Shut down the device on last close

COSC440 Lecture 4: Char devices 18

read and write
• The read and write methods both perform a

similar task, that is, copying data from and to
application buffer.
– ssize_t read(struct file *filp, char __user *buff,

size_t count, loff_t *offp);
– ssize_t write(struct file *filp, const char __user

*buff, size_t count, loff_t *offp);
– For both methods, filp is the file pointer and count is

the size of the requested data transfer. The buff
argument points to the user buffer holding the data to
be written or the empty buffer where the newly read
data should be placed. Finally, offp is a pointer to a
”long offset type” object that is the current file position.
The return value is a “signed size type”

COSC440 Lecture 4: Char devices 19

Copying between user and kernel
• Two functions are frequently used by

device drivers
– unsigned long copy_to_user(void __user

*to, const void *from, unsigned long
count);

– unsigned long copy_from_user(void *to,
const void __user *from, unsigned long
count);

• Why not directly copy data to/from user
space?

COSC440 Lecture 4: Char devices 20

Return value of read
• The return value is interpreted as below by the

application program
– If the value equals the count argument passed to the

read system call, the requested number of bytes has
been transferred. This is the optimal case.

– If the value is positive, but smaller than count, only part
of the data has been transferred. This may happen for a
number of reasons, depending on the device. Most
often, the application program retries the read.

– If the value is 0, end-of-file was reached (and no data
was read).

– A negative value means there was an error. The value
specifies what the error was (refer to <linux/errno.h>).

COSC440 Lecture 4: Char devices 21

Return value of write
• The return value is interpreted as below by the

application program
– If the value equals count, the requested number of bytes

has been transferred.
– If the value is positive, but smaller than count, only part

of the data has been transferred. The program will most
likely retry writing the rest of the data.

– If the value is 0, nothing was written. This result is not
an error, and there is no reason to return an error code.
Once again, the standard library retries the call to write.

– A negative value means there was an error. The value
specifies what the error was (refer to <linux/errno.h>).

COSC440 Lecture 4: Char devices 22

OS organization
• There are many ways to structure an OS

– Monolithic
– Microkernel
– Exokernel

• OS approach for protection and isolation
– Virtualize resources (CPU, memory)

• Simulate a dedicated CPU and memory space

– Abstract other resources (storage, network)
• A sharable abstraction layer over hardware

COSC440 Lecture 4: Char devices 23

Monolithic
• Traditional approach used in Linux/Unix

– More composable using loadable modules
– Successful approach

• Three layers
– H/W, kernel, user

• Kernel is a big program
– Process management, MM, FS, network, I/O
– With full access privilege over H/W

• Pros: fast, subsystems cooperate easily,
convenient (for hiding or exposing functions)

• Cons: complex, buggy, no isolation

COSC440 Lecture 4: Char devices 24

Microkernel
• Keep the kernel small

– Many traditional kernel services such as VM
and FS become user-space server processes

– Philosophy: use IPC and user-space servers to
split OS subsystems

• For any new function of OS, make a new server and
talk to it with IPC

• Four layers
– H/W, kernel, server processes, applications
– Servers: VM, FS, TCP/IP, Print, Display

COSC440 Lecture 4: Char devices 25

Microkernel (cont.)
• How it works?

– Servers have privileged access to some H/W
– Applications request service using IPC
– Kernel’s main job is to provide fast/secure IPC

• Pros
– Simple/efficient kernel, sub-systems isolated,

enforced modularity
• Cons

– Harder cross-sub-system optimization, lots of
IPC overheads may slowdown overall OS

COSC440 Lecture 4: Char devices 26

Exokernel
• Philosophy

– Eliminate all abstractions, let applications do
what it wants

• System consists of
– H/W, kernel, environments, libOS, app.

• How it works?
– Do not provide addr. space, virt. cpu, FS, TCP
– Instead, app has control over phys pages, addr

mappings, clock interrupts, disk, net
– Let app build nice address space if it wants
– Give aggressive apps much more flexibility

COSC440 Lecture 4: Char devices 27

Exokernel (cont.)
• Challenges

– How to share cpu, mem, etc if they are exposed
directly to apps?

– How to implement security/isolation despite
apps having low-level control?

– How to multiplex w/o understanding e.g. disk
(file system), TCP/IP packets?

COSC440 Lecture 4: Char devices 28

Exokernel (cont.)
• Example: memory

– Resources are phy. pages, va->pa mappings
– App. ask kernel with the following API

• pa = AllocPage()
• DeallocPage(pa)
• TLBwr(va, pa)

– And the kernel-app upcalls
• PageFault(va)
• PleaseReleaseAPage()

COSC440 Lecture 4: Char devices 29

Exokernel (cont.)
• How to use phy pages fairly and protect the

app memory?
– Ensure app only creates mappings to phys

pages it owns
– Track what environment owns what phys pages
– Decide which app to ask to give up a phys page

when system runs out
– App has to decide which of its pages to give

away
– Is fair sharing guaranteed?

COSC440 Lecture 4: Char devices 30

Exokernel (cont.)
• Example: shared memory

– Two processes want to share memory
• Process a:

– pa = AllocPage()
– put 0x5000 -> pa in private page table
– PageFault(0x5000) upcall -> TLBwr(0x5000, pa)
– give pa to process b via exokernel

• process b:
– put 0x6000 -> pa in private page table

– Note that app is not allowed to directly do this
in traditional “virtual address space”

COSC440 Lecture 4: Char devices 31

Exokernel (cont.)
• Cool example in database app

– The problem on traditional OS:
• Assume an OS with demand-paging to/from disk
• if DB caches some disk data, and OS needs a phys

page, OS may page-out a DB page holding a cached
disk block

• But that's a waste of time: if DB knew, it could
release phys page without writing, and later read it
back from DB file (not swapping area)

COSC440 Lecture 4: Char devices 32

Exokernel (cont.)
• Cool example in database app on exokernel

– If exokernel needs phys memory for some other
application, exokernel sends the DB a
PleaseReleaseAPage() upcall

– DB picks a clean page, calls DeallocPage(pa)
– Or DB picks a dirty page, writes to disk, then

DeallocPage(pa)
– If it is a clean page, it saves the time to write to

disk, which has to be done in traditional OS
with swapping.

COSC440 Lecture 4: Char devices 33

Exokernel (cont.)
• Example: CPU

– How to expose CPU to app?
• Kernel tells app when it is taking away CPU
• Kernel tells app when it gives CPU to app
• If app is running and timer interrupt causes end of

slice, CPU jumps from app into kernel
• Kernel then jumps back into app via PleaseYield()

upcall
• App saves state (registers, EIP, etc)
• App calls Yield() to agree to yield
• When kernel decides to resume app, kernel jumps

into app at Resume() upcall
• App restores those saved registers and EIP

COSC440 Lecture 4: Char devices 34

Exokernel (cont.)
• Cool example with exokernel CPU

management
– Suppose time quantum ends in the middle of

• Lock();
• …
• Unlock();

– If the app holds the lock while suspended,
maybe other apps can't make any progress

– Luckily the PleaseYield() upcall can be used to
complete the critical section if needed

COSC440 Lecture 4: Char devices 35

Exokernel (cont.)
• Example: fast RPC (remote procedure call)

with direct CPU management
– On traditional OS, pipes or sockets are used

• write(), read(), read(), write() are used to cost at
least 8 kernel/user crossings

– On exokernel, only 4 kernel/user crossings
• Yield() can take a target process argument
• Almost a direct jump to an instruction in target

process
• Kernel allows entries at approved locations in target
• Kernel leaves regs alone, so can contain arguments
• Target app uses Yield() to return results

