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Overview
• This Lecture

– Character devices
– Source: ULK ch12, ch13, ELDD ch5
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Device drivers
• Device drivers are divided into different classes in 

Linux
– Char
– Block
– Network
– tty

• Different interfaces are provided by Linux for 
each class of device drivers

• Drivers are uniquely identified by major and 
minor numbers
– Use ls -l /dev to find out information of each devices
– Consult Documentation/devices.txt under linux src
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File abstraction
• Each file has a name (path) in its directory

– dentry

• Each file has an inode pointed by dentry
• A file system has a superblock

– A superblock has maps for data blks and inodes
• When a file is opened, the kernel uses a file

data structure to hold info of the file
– f_op, f_dentry
– The file abstraction is just a wrapper. File 

operations like read/write are delegated to f_op
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struct file {
union {

struct list_head        fu_list;
struct rcu_head         fu_rcuhead;

} f_u;
struct path             f_path;

#define f_dentry        f_path.dentry
#define f_vfsmnt        f_path.mnt

const struct file_operations    *f_op;
atomic_long_t           f_count;
unsigned int            f_flags;
fmode_t                 f_mode;
loff_t                  f_pos;
struct fown_struct      f_owner;
const struct cred       *f_cred;
struct file_ra_state    f_ra;

u64                     f_version;
#ifdef CONFIG_SECURITY

void                    *f_security;
#endif

/* needed for tty driver, and maybe others */
void                    *private_data;

#ifdef CONFIG_EPOLL
/* Used by fs/eventpoll.c  */
struct list_head        f_ep_links;
spinlock_t              f_ep_lock;

#endif /* #ifdef CONFIG_EPOLL */
struct address_space    *f_mapping;

#ifdef CONFIG_DEBUG_WRITECOUNT
unsigned long f_mnt_write_state;

#endif
};
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Registration of drivers
• A driver needs to be registered with the following 

function
– int register_chrdev_region(dev_t first,unsigned int 

count, char *name);
• If the major number of the device is not known, 

Linux can dynamically allocate one with the 
function
– int alloc_chrdev_region(dev_t *dev, unsigned int 

firstminor, unsigned int count, char *name); 
• Auxiliary macros

– MKDEV(int major, int minor); MAJOR(dev_t dev); 
MINOR(dev_t dev);
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How to know the major number?
• When a major number is dynamically allocated, 

we need to find out the allocated number
– From /proc/devices the device name and major number 

will be found after the device driver get registered with 
alloc_chrdev_region

– Note that a driver module should always remember to 
free the major number using 
unregister_chrdev_region when it is unloaded. The 
nodes created under /dev should be removed as well.

• A script can be created to automatically find out 
the major number, and then make the device nodes 
under /dev using mknod

• Alternatively you can use /sys to register your 
device and allow udev daemon to generate an 
entry for you under /dev, as in our temp module.
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File operations
• A set of file operations is associated with a char 

device driver
– ssize_t (*read) (struct file *, char __user *, size_t, 

loff_t *); 
– Used to retrieve data from the device. A null pointer in 

this position causes the read system call to fail with -
EINVAL (“Invalid argument”).  A nonnegative return 
value represents the number of bytes successfully 
read(the return value is a “signed size” type, usually the 
native integer type for the target platform). 
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File operations (cont.)
– ssize_t (*write) (struct file *, const char __user *, 

size_t, loff_t *);
– Sends data to the device. If NULL, -EINVAL is 

returned to the program calling the write system call. 
The return value, if nonnegative, represents the number 
of bytes successfully written. 

– int (*open) (struct inode *, struct file *);
– Though this is always the first operation performed on 

the device file, the driver is not required to declare a 
corresponding method. If this entry is NULL, opening 
the device always succeeds, but your driver is not
notified. 
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File operations (cont.)
– int (*ioctl) (struct inode *, struct file *, unsigned int, 

unsigned long); 
– The ioctl system call offers a way to issue device-

specific commands(such as formatting a track of a 
floppy disk, which is neither reading nor writing). 
Additionally, a few ioctl commands are recognized by 
the kernel without referring to the fops table. If the 
device doesn’t provide an ioctl method, the system call 
returns an error for any request that isn’t predefined (-
ENOTTY, “No such ioctl for device”). 

– int (*release) (struct inode *, struct file *); 
– This operation is invoked when the file structure is 

being released. Like open, release can be NULL.
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File operations (cont.)
• There are more functions in the structure 

file_operations, but we are interested in the above 
five functions in our char device driver
– Refer to ULK ch12 pp.473-474 for more details

• A device driver may not need to provide all 
functions defined in the file operations
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The file structure
• When a function in file operations is called, 

a pointer to a file structure may be provided 
as an argument

• The file structure represents an opened file
– Created when open is called at user space
– Released when the last close is called

• The important fields (refer to ULK pp.471)
– f_mode, f_pos, f_flag, f_op, private_data, 

f_dentry (for inode structure)
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The inode structure
• The inode structure contains a great deal of 

information about a file
• For device drivers, only two fields are of interest

– dev_t i_rdev; 
• For inodes that represent device files, this field contains 

the actual device number.
– struct cdev *i_cdev; 

• struct cdev is the kernel’s internal structure that 
represents char devices; this field contains a pointer to 
that structure when the inode refers to a char device file.

• Two macros are provided to get device numbers.
– unsigned int iminor(struct inode *inode); 
– unsigned int imajor(struct inode *inode); 
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struct inode {
struct hlist_node       i_hash;
struct list_head        i_list;
struct list_head        i_sb_list;
struct list_head        i_dentry;
unsigned long           i_ino;
atomic_t                i_count;
unsigned int            i_nlink;
uid_t                   i_uid;
gid_t                   i_gid;
dev_t                   i_rdev;
u64                     i_version;
loff_t                  i_size;

#ifdef __NEED_I_SIZE_ORDERED
seqcount_t              i_size_seqcount;

#endif
struct timespec         i_atime;
struct timespec         i_mtime;
struct timespec         i_ctime;
unsigned int            i_blkbits; 
blkcnt_t                i_blocks;
unsigned short          i_bytes;

umode_t                 i_mode;
spinlock_t              i_lock; 
struct mutex            i_mutex;
struct rw_semaphore     i_alloc_sem;
const struct inode_operations   *i_op;
const struct file_operations    *i_fop; 
struct super_block      *i_sb;
struct file_lock        *i_flock;
struct address_space    *i_mapping;
struct address_space    i_data;
struct list_head        i_devices;
union {

struct pipe_inode_info  *i_pipe;
struct block_device     *i_bdev;
struct cdev             *i_cdev;

};
int                     i_cindex;
__u32                   i_generation;
unsigned long           i_state;
unsigned long           dirtied_when;   
unsigned int            i_flags;
atomic_t                i_writecount;
void                    *i_private; 
} 
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Char device internal structure
• An internal structure is used to represent a 

char device
– The structure can be allocated and initialized 

with
• struct cdev *my_cdev = cdev_alloc();
• my_cdev->ops = &my_fops;

– Or initialized with
• void cdev_init(struct cdev *cdev, struct 

file_operations *fops);
– And initialize the owner field

• my_cdev->cdev.owner = THIS_MODULE
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Char device registration
• Once the internal structure is set up, the 

device should be registered to the kernel 
with
– int cdev_add(struct cdev *dev, dev_t num, 

unsigned int count);
• When the module is unloaded, the device 

should be de-registered with
– void cdev_del(struct cdev *dev);
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open
• open should perform the following tasks

– Check which device (minor number) is being opened
– Check for device-specific errors (such as device-not-

ready or similar hardware problems)
– Initialize the device if it is being opened for the first 

time
– Update the f_op pointer, if necessary
– Allocate and fill any data structure to be put in filp-

>private_data
– How to know a file is open write-only or read-only?

• if((filp->f_flags & O_ACCMODE) == O_WRONLY)
• if((filp->f_flags & O_ACCMODE) == O_RDONLY)
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release
• release should perform the following tasks

– Deallocate anything that open allocated in filp-
>private_data 

– Shut down the device on last close
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read and write
• The read and write methods both perform a 

similar task, that is, copying data from and to 
application buffer.
– ssize_t read(struct file *filp, char __user *buff,     

size_t count, loff_t *offp); 
– ssize_t write(struct file *filp, const char __user 

*buff,     size_t count, loff_t *offp); 
– For both methods, filp is the file pointer and count is 

the size of the requested data transfer. The buff
argument points to the user buffer holding the data to 
be written or the empty buffer where the newly read 
data should be placed. Finally, offp is a pointer to a 
”long offset type” object that is the current file position. 
The return value is a “signed size type”
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Copying between user and kernel
• Two functions are frequently used by 

device drivers
– unsigned long copy_to_user(void __user 

*to,  const void *from, unsigned long 
count); 

– unsigned long copy_from_user(void *to,                              
const void __user *from, unsigned long 
count); 

• Why not directly copy data to/from user 
space?
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Return value of read
• The return value is interpreted as below by the 

application program
– If the value equals the count argument passed to the 

read system call, the requested number of bytes has 
been transferred. This is the optimal case. 

– If the value is positive, but smaller than count, only part 
of the data has been transferred. This may happen for a 
number of reasons, depending on the device. Most 
often, the application program retries the read. 

– If the value is 0, end-of-file was reached (and no data 
was read). 

– A negative value means there was an error. The value 
specifies what the error was (refer to <linux/errno.h>).
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Return value of write
• The return value is interpreted as below by the 

application program
– If the value equals count, the requested number of bytes 

has been transferred. 
– If the value is positive, but smaller than count, only part 

of the data has been transferred. The program will most 
likely retry writing the rest of the data. 

– If the value is 0, nothing was written. This result is not 
an error, and there is no reason to return an error code. 
Once again, the standard library retries the call to write. 

– A negative value means there was an error. The value 
specifies what the error was (refer to <linux/errno.h>).
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OS organization
• There are many ways to structure an OS

– Monolithic
– Microkernel
– Exokernel

• OS approach for protection and isolation
– Virtualize resources (CPU, memory)

• Simulate a dedicated CPU and memory space

– Abstract other resources (storage, network)
• A sharable abstraction layer over hardware
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Monolithic
• Traditional approach used in Linux/Unix

– More composable using loadable modules
– Successful approach

• Three layers
– H/W, kernel, user

• Kernel is a big program
– Process management, MM, FS, network, I/O
– With full access privilege over H/W

• Pros: fast, subsystems cooperate easily, 
convenient (for hiding or exposing functions)

• Cons: complex, buggy, no isolation
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Microkernel
• Keep the kernel small

– Many traditional kernel services such as VM 
and FS become user-space server processes

– Philosophy: use IPC and user-space servers to 
split OS subsystems 

• For any new function of OS, make a new server and 
talk to it with IPC

• Four layers
– H/W, kernel, server processes, applications
– Servers: VM, FS, TCP/IP, Print, Display
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Microkernel (cont.)
• How it works?

– Servers have privileged access to some H/W
– Applications request service using IPC
– Kernel’s main job is to provide fast/secure IPC

• Pros
– Simple/efficient kernel, sub-systems isolated, 

enforced modularity
• Cons

– Harder cross-sub-system optimization, lots of 
IPC overheads may slowdown overall OS
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Exokernel
• Philosophy

– Eliminate all abstractions, let applications do 
what it wants

• System consists of
– H/W, kernel, environments, libOS, app.

• How it works?
– Do not provide addr. space, virt. cpu, FS, TCP
– Instead, app has control over phys pages, addr 

mappings, clock interrupts, disk, net
– Let app build nice address space if it wants
– Give aggressive apps much more flexibility



COSC440 Lecture 4: Char devices 27

Exokernel (cont.)
• Challenges

– How to share cpu, mem, etc if they are exposed 
directly to apps?

– How to implement security/isolation despite 
apps having low-level control?

– How to multiplex w/o understanding e.g. disk 
(file system), TCP/IP packets?
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Exokernel (cont.)
• Example: memory

– Resources are phy. pages, va->pa mappings
– App. ask kernel with the following API

• pa = AllocPage()
• DeallocPage(pa)
• TLBwr(va, pa)

– And the kernel-app upcalls
• PageFault(va)
• PleaseReleaseAPage()
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Exokernel (cont.)
• How to use phy pages fairly and protect the 

app memory?
– Ensure app only creates mappings to phys 

pages it owns
– Track what environment owns what phys pages
– Decide which app to ask to give up a phys page 

when system runs out
– App has to decide which of its pages to give 

away
– Is fair sharing guaranteed?
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Exokernel (cont.)
• Example: shared memory

– Two processes want to share memory
• Process a: 

– pa = AllocPage()
– put 0x5000 -> pa in private page table
– PageFault(0x5000) upcall -> TLBwr(0x5000, pa)
– give pa to process b via exokernel

• process b:
– put 0x6000 -> pa in private page table

– Note that app is not allowed to directly do this 
in traditional “virtual address space”
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Exokernel (cont.)
• Cool example in database app

– The problem on traditional OS:
• Assume an OS with demand-paging to/from disk
• if DB caches some disk data, and OS needs a phys 

page, OS may page-out a DB page holding a cached 
disk block

• But that's a waste of time: if DB knew, it could 
release phys page without writing, and later read it 
back from DB file (not swapping area)
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Exokernel (cont.)
• Cool example in database app on exokernel

– If exokernel needs phys memory for some other 
application, exokernel sends the DB a 
PleaseReleaseAPage() upcall

– DB picks a clean page, calls DeallocPage(pa)
– Or DB picks a dirty page, writes to disk, then 

DeallocPage(pa)
– If it is a clean page, it saves the time to write to 

disk, which has to be done in traditional OS 
with swapping.
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Exokernel (cont.)
• Example: CPU

– How to expose CPU to app?
• Kernel tells app when it is taking away CPU
• Kernel tells app when it gives CPU to app
• If app is running and timer interrupt causes end of 

slice, CPU jumps from app into kernel
• Kernel then jumps back into app via PleaseYield() 

upcall
• App saves state (registers, EIP, etc)
• App calls Yield() to agree to yield
• When kernel decides to resume app, kernel jumps 

into app at Resume() upcall
• App restores those saved registers and EIP
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Exokernel (cont.)
• Cool example with exokernel CPU 

management
– Suppose time quantum ends in the middle of

• Lock();
• …
• Unlock();

– If the app holds the lock while suspended, 
maybe other apps can't make any progress

– Luckily the PleaseYield() upcall can be used to 
complete the critical section if needed
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Exokernel (cont.)
• Example: fast RPC (remote procedure call) 

with direct CPU management
– On traditional OS, pipes or sockets are used

• write(), read(), read(), write() are used to cost at 
least 8 kernel/user crossings

– On exokernel, only 4 kernel/user crossings
• Yield() can take a target process argument
• Almost a direct jump to an instruction in target 

process
• Kernel allows entries at approved locations in target
• Kernel leaves regs alone, so can contain arguments
• Target app uses Yield() to return results


