Overview

e This Lecture

— Advanced char driver
— Source: LDD ch6, ch9, WLDD ch21

COSC440 Lecture 6: Advanced char ... 1

10ctl

e User space library

—int ioctl(int fd, unsigned long cmd, void
"argp);
e Kernel interface to device driver

—int (*ioctl) (struct inode *inode, struct file
*filp, unsigned int cmd, unsigned long arg);

— arg 1s either an integer or a pointer

e The function 1s normally implemented using
a Switch statement

COSC440 Lecture 6: Advanced char ... 2

10ctl commands

* joctl commands should be unique!

 To avoid command clashes, the following rules
are recommended

— Four bit fields are used

e Type: magic number, we recommend ‘k’ (consult
Documentation/ioctl_number .txt)

e Number: command ordinal number (0-255)

e Direction: for data transfer. IOC_NONE, [10C_READ,
_|IOC_WRITE, and |10C_READI I10C_WRITE

e Size: size of user data involved. This field has 13 or 14 bits
— The macros used are

- _lO(type, nr), _IOR(type, nr, datatype), _IOW(type, nr,
datatype), _IOWR(type, nr, datatype)

e E.g #define my_cmd1 _IOW(MY_MAGIC, 1, int)
COSC440 Lecture 6: Advanced char ... 3

Predefined commands

 The predefined commands are not passed to
drivers!
 They are divided into three groups:

— Those that can be 1ssued on any file (regular, device,
FIFO, or socket)

— Those that are issued only on regular files

— Those specific to the file system type

* Device drivers are only interested in the first
group, whose magic number 1s “T°

— It 1s essential to never use ‘T’ as your magic number

COSC440 Lecture 6: Advanced char ... 4

Predefined commands (cont.)

e The following predefined commands are
interesting to device drivers
— FIOCLEX: Set the close-on-exec flag. Setting this flag

causes the file descriptor to be closed when the calling
process executes a new program.

— FIONCLEX: Clear the close-on-exec flag
— FIOASYNC: Set or reset asynchronous notification.

— FIOQSIZE: This command returns the size of a file or
directory; when applied to a device file, however, it
yields an ENOTTY error return.

— FIONBIO: This call modifies the O_NONBLOCK flag
in filp->1_flags. The third argument to the system call is
used to indicate if the flag is to be set or cleared.

COSC440 Lecture 6: Advanced char ... 5

Data transter

e (Care must be taken when transferring data
between user space and kernel space!

e copy_to_user and copy_from_user checks the
validation of user space address, but too expensive

e For 1octl, light-weight functions are used to copy
single values
— put_user(data, ptr);
— get_user(local, ptr);

e Direct validation check can be done with
— int access_ok(int type, const void *addr, unsigned
long size);

— __put_user and __get_user can be used with it.
COSC440 Lecture 6: Advanced char ... 6

Capabilities

e Linux uses more capabilities rather than root and
normal user

— man capget and capset

* The capabilities interested to device drivers are

— CAP_NET_ADMIN: The ability to perform network
administration tasks.

— CAP_SYS_MODULE: The ability to load or remove
kernel modules.

— CAP_SYS_RAWIO: The ability to perform “raw” I/O
operations.

— CAP_SYS_ADMIN: A catch-all capability that

provides access to many system administration

operations.
COSC440 Lecture 6: Advanced char ... 7

Capabilities (cont.)

e Capabilities are checked with the function
— int capable(int capabillity);

— Example

* if (! capable (CAP_SYS_ADMIN)) return -
EPERM,;

e Issues with capabilities

— How to decide what operations need which
capabilities?

— How to make sure there 1s no security hole with
more complicated capability scheme?

COSC440 Lecture 6: Advanced char ... §

Blocking 1/0O

 When the O_NONBLOCK flag in filp->f_flags is
set, operations are non-blocking; otherwise they
are blocking.

 What the driver should respond if it can’t
immediately satisty the request?
— Put the process to sleep
* A wait queue 1s needed to keep track of sleeping
Processes
— DECLARE_WAIT_QUEUE_HEAD(name);

— wait_queue_head_t my_queue;
init_waitqueue_head(&my_queue);

COSC440 Lecture 6: Advanced char ... 9

Sleep and wake-up

* The following functions put a process to sleep
— wait_event(queue, condition);
— wait_event_interruptible(queue, condition);
— wait_event_timeout(queue, condition, timeout);

— wait_event_interruptible_timeout(queue, condition,
timeout)

— Interruptible 1s recommended, otherwise the process
can’t be killed.

* The following functions wake up a process
— void wake_up(wait_queue_head_t *queue);

— void wake_up_interruptible(wait_queue_head_t
*queue);

COSC440 Lecture 6: Advanced char ... 10

Non-blocking operations

e For blocking mode, the process waits until
some data are read or written

* For non-blocking mode, the process simply
return —-EAGAIN or -EWOULDBLOCK if

there 1s no data read or written

COSC440 Lecture 6: Advanced char ... 11

Blocking example

 How to implement a pipe with blocking
mode?

COSC440 Lecture 6: Advanced char ... 12

Advanced sleep

e How to manual

y put a]

 How to manipul
queues’’

COSC440 Lecture 6: Advanced char ...

Drocess to s

eep’!

ate slee

b on multip!

13

e wait

Exclusive wait

* Thundering herds problem

— Multiple processes are waken up, but only one
process can get the resources.

 How to solve thundering herds problem?

COSC440 Lecture 6: Advanced char ... 14

Seek a device

e Use llseek to change current position of the
device
— loff_t llseek(struct file *filp, loff_t off, int
whence)

— whence should be one of the following values
« 0: SEEK_SET
- 1. SEEK_CUR
- 2. SEEK_END

— filp->f_pos is changed

COSC440 Lecture 6: Advanced char ... 15

Single open device

e Use a counter (set to 1) to record the
number of processes allowed to use the
device

* When a process opens the device, decreases
the counter by one.

e If there 1s a process already using the
device, return -EBUSY

* When a process releases the device,
increase the counter by one.

COSC440 Lecture 6: Advanced char ... 16

Single user access

* How to allow only processes from a single user?

— In open function

spin_lock(&scull_u_lock);
if (scull_u_count && (scull_u_owner != current->uid) && /* allow
user */

(scull_u_owner != current->euid) && /* allow whoever did su */
lcapable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);

return -EBUSY; /* -EPERM would confuse the user */ }

if (scull_u_count ==0) scull_u_owner = current->uid; /* grab it */
scull_u_count++;

spin_unlock(&scull_u_lock);

— In release function?

COSC440 Lecture 6: Advanced char ... 17

Blocking open

e How?
spin_lock(&scull_w_lock);
while (! scull_w_available()) {
spin_unlock(&scull_w_lock);
if (filp->f_flags & O_NONBLOCK) return -EAGAIN;

if (wait_event_interruptible (scull_w_wait, scull_w_available()))
return -ERESTARTSYS; /* tell the fs layer to handle it */

spin_lock(&scull_w_lock); }

if (scull_w_count == 0) scull_w_owner = current->uid; /* grab it
*/

scull_w_count++;

spin_unlock(&scull_w_lock);

e What to do at release?

COSC440 Lecture 6: Advanced char ... 18

Check read/write tlags

 To know 1f a device file 1s opened write
only?

—if ((filp->f_flags & O_ACCMODE) ==
O_WRONLY) {

COSC440 Lecture 6: Advanced char ... 19

Clone a device

* We can clone a device at open function

e Clone the device structure for each open

* How can other functions such as read know
which device 1t 1s operating?

— Use filp->private_data to store device data
structure when open

— Get the device structure through filp when read
or write.

COSC440 Lecture 6: Advanced char ... 20

Microkernel

e OS abstractions are implemented with user-
Space Servers

* The kernel provides minimum functions
— Address space
— Process creation

— IPC (inter-process communication)

COSC440 Lecture 6: Advanced char ... 21

Why microkernel?

e [solation (for bugs)
e Fault tolerance
— Easy to restart a faulty server
* Modular
— Understandable and replaceable
e Suitable for distributed systems
— IPC allows servers on other hosts
e Natural concurrency on multiprocessor/multicore
— Multiple independent servers
e Easy to provide scheduling, priority

* Easy to provide security
COSC440 Lecture 6: Advanced char ... 22

History of microkernel

* Individual ideas around at the beginning

e Lots of research projects starting early
1980s

e Big hit with CMU's Mach in 1986

* Was too slow 1n early 1990s

 Now slowly returning (L4, OKLA4, selL 4,
QNX 1in embedded systems/routers, etc)

e Ideas very influential on non-microkernel

COSC440 Lecture 6: Advanced char ... 23

Microkernels 1n practice

e Big issue: Unix compatibility

— It 1s critical to widespread adoption

— But Unix not designed 1in a modular fashion
e Mach, L4: one big Unix server

— not a big practical difference from a single
Linux kernel

— Mach 1n particular was quite slow, but L4
improved a lot

 KeyKOS: more interesting structure
— split up Unix into many entities

COSC440 Lecture 6: Advanced char ... 24

The problem

 KeyKOS proposed to solve the access
control problem

e Traditional access control model
— A process has some privileges based on U/GID

— For each syscall, kernel checks the process’
privileges allow it

 What problem the KeyKOS authors faced?

— Fortran compiler need one more privilege to
access /sysx/stat

— Allowed write access to /sysx

— user executed "/ sxsx/fort code.f -0 /sysx/bill"
COSC440 Lecture 6: Advanced

Whose problem?

* The problem was that the compiler was
given more privileges than necessary
— Only /sysx/stat needs to be written

— But to avoid mistakes, the compiler has to
check all places when opening files

COSC440 Lecture 6: Advanced char ... 26

Proposal

o Explicitly specity privileges to use for every
operation

* Pros: easier to write secure, privileged programs

— Program will not grant its privileges to things
done on user's behalf

e Cons
— Invasive design implications

— Have to pass around capabilities instead of
user-meaningful names

— Notion of a user identity 1s at odds with a pure-
capability design

COSC440 Lecture 6: Advanced char ... 27

Capability
e Capability (AKA key)

— Communicable, unforgeable token of authority

— A value that references an object along with an
associated set of access rights

e Capabilities used in many settings

— Hardware: Cambridge CAP system, x86
segments (1in a way)

— OS kernel: Hydra, KeyKOS (and its successors)

— Distributed systems: Amoeba

COSE4§3 egtll‘léé p gl(}élnlzelg (§h’apRI§§’ Java Ob] ect refs

KeyKOS
e Capability

— Used as the base access control mechanism,
more structural than Mach

* Very small kernel

— Provides a few kinds of objects to applications

e Devices - access to underlying hardware, used by
device driver processes

e Pages - 4KB of data, a page of memory

e Nodes - a block of 16 keys (key is the term for a
capability)

COSC440 Lecture 6: Advanced char ... 29

KeyKOS (cont.)

— More objects provided

e Segments - a virtual address space, like a page table
or page directory. It is implemented using nodes,
mapping to page keys at the leaves. Segments can be
constructed out of other segments

e Meters - CPU time allocation (CPU-time explicitly
allocated!)

e Domains - something like a Unix process

COSC440 Lecture 6: Advanced char ... 30

Domain

 Domains are the most interesting object

— 16 general-purpose key slots (similar to
capability registers). It 1s effectively an implicit
node object

— Address slot: key to entire virtual memory of
process

— Meter slot: key to CPU meter for process

— Keeper slot: key to another domain that will
handle exceptions

COSC440 Lecture 6: Advanced char ... 31

Objects

* Objects are named by keys

— Key 1s a 12-byte blob, but its bytes can’t be
handled directly

— Key bytes are manipulated through explicit
operations, like FDs (open, close, dup)

— The KeyBits service returns the actual 12 bytes
behind any key given to it

— Unknown: can you supply a virtualized
KeyBits to hide the fact that other keys are
being virtualized as well?

COSC440 Lecture 6: Advanced char ... 32

Kernel API

e At alow level, 3 system calls are provided

— void FORK (key k, msg m): send m to k's
domain, continue running afterwards

— msg *CALL(key k, msg m): send m to k's
domain (+ newly-formed resume key for
sender) and suspend

— msg *RETURN(key k, msg m): send m to k
(which will be returned from i1ts CALL) and

dequeue the domains waiting for the calling
domain.

COSC440 Lecture 6: Advanced char ... 33

Domain states

* Domain/process has three states
— Available, running, waiting
— State transition diagram?

— Why require receiver to be available?

e Other system calls are implemented through
messages to kernel objects (e.g. devices)

e Kernel design suggests an object-oriented
structure for applications

COSC440 Lecture 6: Advanced char ... 34

Key operations

 How to give keys to others?
— Clone keys (like dup on Linux FD)

* Keys include access restrictions like RO
o IPC primitive allowed passing 4 keys

— They can refer to nodes for more keys

* Can append a byte onto a key on creation
— Usetul for keeping track of the origin of the key

— Distinguish multiple callers of the same service
domain
COSC440 Lecture 6: Advanced char ... 35

Object keeper

 Handle exceptions

* Segment keeper
— A domain to handle page faults

 Meter keeper

— A domain to call when CPU time expires, controls CPU
time allocation

 Domain keeper

— A domain to call for other CPU exceptions

e Faults look like a CALL from the faulting domain
to keeper

— Invoked keeper gets a "service key" to the faulting

object, to fix it up as needed
COSC440 Lecture 6: Advanced char ... 36

Bank

e Bank 1s a domain

— Top-level bank has all nodes and pages 1n a
system

— Other objects (e.g. domain) are special forms of
a node

* Invoke a bank to allocate a new object

— Returns a “service key” to the object

— For domain object, with the service key, it can
populate the domain’s slots and make it running

COSC440 Lecture 6: Advanced char ... 37

Persistent single-level store

e Applications have no notion of a disk, just
memory

— Kernel periodically saves complete system state
to disk

e Applications store data in memory
— Kernel saves it to disk eventually

— To access data, just access memory and the
kernel will demand the page if necessary

COSC440 Lecture 6: Advanced char ... 38

Difference from Linux

e Differences of KeyKOS

No file system root, every user has their own home directory
(names mapped to keys)

Keys include both files and processes that can be invoked
One user’s home dir 1s not namable by other users (unless granted)

Every user has a persistent shell domain that keeps a key to the
user's home dir

A login process keeps a password and start key for each user's
shell domain

User types in password, login does an RPC call into user's shell,
passing in a key for user's terminal

When invoking a command in shell, must say if argument is a
string or a capability for file of that name

Must specify all capabilities at invocation time

COSC440 Lecture 6: Advanced char ... 39

KeyNIX

e Use Unix keeper for each Unix process to
emulate Unix

— Shared state stored in explicitly shared segment

e File system
— Separate domain for each inode

— Implement Unix access control model

e Capabilities have to be implemented at all
levels

e Performance 1s ok, but hard to know why
COSC440 Lecture 6: Advanced char ... 40

Discussion

e Comparison with other microkernels

e Comparison with exokernel

e Comparison with Unix/Linux

* Why didn’t pure-capability systems catch
on?

 How about microkernels?

COSC440 Lecture 6: Advanced char ... 41

