
COSC440 Lecture 8: File systems … 1

Overview
• This Lecture

– File systems, performance and durability
– Source: ULK ch 18 & ch 12, Rethink the sync

COSC440 Lecture 8: File systems … 2

File systems
• Implementation of UNIX file systems

– Basic units: blocks, default size 4096, can be
adjusted when a file system is created.

– Two structures are created for a file system
• Superblock (with backups) and inodes

Boot
block

Super-
block

Inode
bit map

Data
bit map … …

inodes data blocks

COSC440 Lecture 8: File systems … 3

Superblock
• Superblock

– contains the info on the boundaries of the partition, info
about where the inode table (and number of inodes) and
where data blocks start (and their size). If the
superblock is lost or damaged, the whole file system
would be unreadable. It is important to make
superblock backups when a file system is created, e.g
ext2. The Linux file system check program e2fsck can
do this.

– Linux ext3 uses block groups. Each group keeps a copy
of superblock.

COSC440 Lecture 8: File systems … 4

Inode

COSC440 Lecture 8: File systems … 5

Inode (cont.)
• Inode (index node) is the data structure which holds the

specific data about a particular file. Regardless of how
large a file is, there is exactly one inode per file.

• Three ways of addressing data are used in inodes
– Direct addressing: for files < 48KB
– Indirect addressing: for files <4 MB
– Double-indirect: for files < 4GB
– Triple-indirect: for files < 4TB

• When a file system is created it creates a fixed number
(which can be decided by SA) of inodes.

• How to decide the number of inodes?

COSC440 Lecture 8: File systems … 6

Structure of a directory

s.txt

data blocks

inode

A directory is a file!

COSC440 Lecture 8: File systems … 7

Journaling
• Why journaling?

– A system call like write() consists of many
operations on the FS

• Example: append a block of data to a file
– Locate a free block, update data block bitmap, make inode

point to the block, write the content into the block, update
fields of inode

• A system failure in the middle of the operation will
cause inconsistency of the FS

• FS consistency check is very time consuming
• The result will be even worse if an operation

involves two files.

COSC440 Lecture 8: File systems … 8

Journaling (cont.)
• Guarantee the atomicity of syscalls
• A log disk is used to record modified data blocks

– Data blocks are not written to FS until the syscalls are
committed to the log.

– When all involved data blocks of a transaction are
written into FS, the transaction and its data blocks are
removed from the log

– When a system failure occurs, all committed data
blocks in the log will be written to FS.

• Metadata journaling
– Only log the metadata such as inodes, bitmap,

superblocks, index blocks

COSC440 Lecture 8: File systems … 9

Performance
• Journaling is slow!
• Ext3 uses a few methods to improve

performance
– Batch many system calls per transaction

• Only one “open transaction” at a time
– Delay copying cache block to log until a

transaction commits to log
• Hoping many system calls modify the same block,

which only needs to write the block once.

COSC440 Lecture 8: File systems … 10

System call for ext3 journaling
• System call implementation

– h = start();
– get(h, block #)

• Warn journaling system the cache block will be
modified

• The block is added to list of blocks to be logged
• Prevent writing block to disk until the transaction

commits

– Modify the cache block
– stop(h)
– guarantee: all or nothing

COSC440 Lecture 8: File systems … 11

Ext3 transaction
• Only one transaction is open at a time
• While a transaction is open,

– Add new system call handles
– Remember their block numbers

• Commit time
– Commit the current transaction every few

seconds
– Or at fsync()

COSC440 Lecture 8: File systems … 12

Commit to log
• When an open transaction is to be

committed to log
– Mark the transaction as “done” so that new

system calls must start a new transaction
– Wait for in-progress systems calls to call stop()
– For all blocks listed to be logged

• Append descriptor (block #) to the log (on disk)
• Append block content from cache to log

– Wait for all log writes to finish
– Append the commit record. Now blocks in

committed log can be written to FS (disk)

COSC440 Lecture 8: File systems … 13

Other issues
• How to free log space?

– After logged blocks are committed to FS, the related
log space is re-used

• A new transaction may start while a previous
transaction is committing
– How about if a syscall in new transaction wants to

change a block in old committing transaction?
• Can’t allow change of the cache block
• Use a new copy of the block for the new transaction
• The new copy is used to write to FS
• The old transaction log should be kept until the new

transaction committed to log

COSC440 Lecture 8: File systems … 14

How to recover?
• System failure may interrupt writing to the

log
– Only recover fully committed transaction in the

log
• Recovery steps

– Find the start and end of the log
– Replay all blocks from fully committed

transactions in log order

• How to guarantee consistency of the log?

COSC440 Lecture 8: File systems … 15

Journaling modes
• Ext3 has three journaling modes

– Journal
• All data and metadata blocks are logged
• Slow since every block is written twice to disk

– Ordered
• Can avoid inconsistency of FS
• Only the metadata blocks are logged
• However, the data blocks are written to FS disk

before the metadata are logged
– e.g. write() makes data blocks go to disk before

committing adding block number to inode
– Stale data won’t be seen if there is a crash

– Writeback: only log metadata (the fastest)

COSC440 Lecture 8: File systems … 16

Challenges for ordered
• Case 1

– rmdir, re-use block for file, ordered write of file, crash
before rmdir committed

– Will get scribbled directory block
– Solution: defer free of block until the freeing operation

forced to log on disk
• Case 2

– rmdir, commit, re-use block in file, ordered file write,
log force, crash, replay rmdir

– File is left with directory content e.g. . and ..
– Solution: revoke records, prevent log replay of a given

block

COSC440 Lecture 8: File systems … 17

Rethink the sync
• Ext3 maintains good internal consistency

– E.g. no direct point to unallocated inode

• Applications and external users also need
consistency
– The delayed commit in ext3 may cause problem

here
– E.g. write(), printf(“OK”) may find out the file

is not stored in FS.

COSC440 Lecture 8: File systems … 18

Sync FS
• Sync FS

– A sync FS forces updates to disk before
returning from a system call, so it is slow.

– If a system call returns, its effects will be
visible after a crash

– It is easy to reason about the correctness of FS
– However, in real life, sync FS is not assumed

• Write(); fsync(); printf(“OK”);

COSC440 Lecture 8: File systems … 19

Async FS
• Async FS

– A system call may return before data is written
on disk

– A write-back cache is used for modification
– FS internal consistency is left to the system
– The paper is talking about async logging of FS

• Durability problem with async FS
– Send email to server and server sends back OK
– cp * backupdir (is it ok to modify the files now)

COSC440 Lecture 8: File systems … 20

Sync vs Async
• Sync FS

– Slow
– Durable

• Async FS
– Non-durable
– Fast

• Programmers have to choose between
durability and performance
– Or remember to call fsync() often

COSC440 Lecture 8: File systems … 21

Key idea of the paper
• Try to achieve both durability and

performance
– Perform as async FS
– Durability similar to sync FS

• Redefine durability
– Updates only need to be durable by the time of

external output, e.g., display output, network
packet

– If programmers see no output, no reason to
expect FS I/O has finished

