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Abstract—Scheduling pipeline-parallel programs, defined as a
graph of stages that communicate explicitly through queues, is
challenging. When the application is regular and the underlying
architecture can guarantee predictable execution times, several
techniques exist to compute highly optimized static schedules.
However, these schedules do not admit run-time load balancing,
so variability introduced by the application or the underlying
hardware causes load imbalance, hindering performance. On the
other hand, existing schemes for dynamic fine-grain load balancing
(such as task-stealing) do not work well on pipeline-parallel
programs: they cannot guarantee memory footprint bounds, and
do not adequately schedule complex graphs or graphs with
ordered queues.

We present a scheduler implementation for pipeline-parallel
programs that performs fine-grain dynamic load balancing ef-
ficiently. Specifically, we implement the first real runtime for
GRAMPS, a recently proposed programming model that focuses
on supporting irregular pipeline and data-parallel applications (in
contrast to classical stream programming models and schedulers,
which require programs to be regular). Task-stealing with per-
stage queues and queuing policies, coupled with a backpressure
mechanism, allow us to maintain strict footprint bounds, and a
buffer management scheme based on packet-stealing allows low-
overhead and locality-aware dynamic allocation of queue data.

We evaluate our runtime on a multi-core SMP and find that
it provides low-overhead scheduling of irregular workloads while
maintaining locality. We also show that the GRAMPS scheduler
outperforms several other commonly used scheduling approaches.
Specifically, while a typical task-stealing scheduler performs on
par with GRAMPS on simple graphs, it does significantly worse
on complex ones; a canonical GPGPU scheduler cannot exploit
pipeline parallelism and suffers from large memory footprints;
and a typical static, streaming scheduler achieves somewhat better
locality, but suffers significant load imbalance on a general-
purpose multi-core due to fine-grain architecture variability (e.g.,
cache misses and SMT).

I. INTRODUCTION

Multi-core chips are now prevalent and core counts are

increasing in accordance with Moore’s Law. This trend has

created a renewed interest in high-level parallel programming

models such as Cilk [13], TBB [21], CUDA [32], OpenCL [25],

and StreamIt [38]. These models provide constructs to express

parallelism and synchronization in a manageable way, and their

runtimes take care of resource management and scheduling.

While there are many important dimensions in evaluating a

programming model —syntax, toolchain, ease of use, etc.— in

this paper we focus on the scheduling approaches of different

programming models. A scheduler should satisfy three desir-

able properties. First, it should keep the execution units well

utilized, performing load balancing if needed. Second, it should

guarantee bounds on the resources consumed. In particular,

bounding memory footprint is especially important, as this

enables allocating off-chip and on-chip memory resources,

avoids thrashing and out-of-memory conditions, and reduces

cache misses (in cache-based systems) or spills to main memory

(in systems with explicitly managed scratchpads). Third, it

should impose small scheduling overheads. The ability of the

scheduler to realize these properties is constrained by the infor-

mation available from the programming model. Consequently,

schedulers are often tailored to a specific programming model.

We observe that most common scheduling approaches can

be broadly grouped into three categories. First, Task-Stealing

is popular in general-purpose multi-cores, and is used in Cilk,

TBB, X10 [5], OpenMP [11], among others. It imposes small

overheads, and some programming models, such as Cilk and

X10, can bound memory footprint by tailoring its scheduling

policies [1, 3]. However, it does not leverage program structure

and does not work well when tasks have complex dependen-

cies, so it has difficulties scheduling complex pipeline-parallel

applications. Second, Breadth-First is used in GPGPU models

such as CUDA and OpenCL, and focuses on extracting data

parallelism, but cannot exploit task and pipeline parallelism

and does not bound memory footprint. Third, Static is common

in streaming architectures and stream programming models

like StreamIt and StreamC/KernelC [10]. It relies on a priori

knowledge of the application graph to statically generate an

optimized schedule that uses bounded memory footprint [28].

Unfortunately, Static schedulers forgo run-time load balancing,

and work poorly when the application is irregular or the

architecture has dynamic variability, thus limiting their utility.

In contrast to these models, GRAMPS [36] is a programming

model designed to support dynamic scheduling of pipeline

and data parallelism. Similar to streaming models, GRAMPS

applications are expressed as a graph of stages that communi-

cate either explicitly through data queues or implicitly through

memory buffers. However, GRAMPS introduces several en-

hancements that allow dynamic scheduling and applications

with irregular parallelism. Compared to Task-Stealing models,

knowing the application graph gives two main benefits. First,

the graph contains all the producer-consumer relationships,

enabling improved locality. Second, memory footprint is easily

bounded by limiting the size of queues and memory buffers.

However, prior work [36] was based on an idealized simulator
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Approach
Supports Producer- Hierarchical Adaptive

Examples
Shader Consumer Work Schedule

Task-Stealing No No No Yes Cilk, TBB, OpenMP

Breadth-First Yes No Yes No CUDA, OpenCL

Static Yes Yes Yes No StreamIt, Imagine

GRAMPS Yes Yes Yes Yes GRAMPS

TABLE I: Comparison of different scheduling approaches.

with no scheduling overheads, making it an open question

whether a practical GRAMPS runtime could be designed.

In this paper, we present the first real implementation of

a GRAMPS runtime on multi-core machines. The scheduler

introduces two novel techniques. First, task-stealing with per-

stage queues and a queue backpressure mechanism enable

dynamic load balancing while maintaining bounded footprint.

Second, a buffer management technique based on packet-

stealing enables dynamic allocation of data packets at low

overhead, while maintaining good locality even in the face

of frequent producer-consumer communication. To our knowl-

edge, this is the first runtime that supports dynamic fine-

grain scheduling of irregular streaming applications. While

our runtime is specific to GRAMPS, the techniques used can

be applied to other streaming programming models, such as

StreamIt. We evaluate this runtime on a variety of benchmarks

using a modern multi-core machine, and find that it efficiently

schedules both simple and complex application graphs while

preserving locality and bounded footprint.

Additionally, since the GRAMPS programming model pro-

vides a superset of the constructs of other models, the run-

time can work with the other families of schedulers. We

implement these schedulers and compare them using the same

infrastructure, allowing us to focus on the differences between

schedulers, not runtime implementations. We find that Task-

Stealing is generally a good approach to schedule simple

graphs, but becomes inefficient with complex graphs or ordered

queues, and does not guarantee bounded footprint in general.

Breadth-First scheduling is simple, but does not take advantage

of pipeline parallelism and requires significantly more footprint

than other approaches, putting more pressure on the memory

subsystem. Finally, Static scheduling provides somewhat better

locality than schedulers using dynamic load balancing due

to carefully optimized, profile-based schedules. However, this

benefit is negated by significant load imbalance, both from

application irregularities and the dynamic nature of the underly-

ing hardware. We show that our proposed GRAMPS scheduler

achieves significant benefits over each of the other approaches.

II. OVERVIEW OF SCHEDULING APPROACHES

In this section, we give the necessary background and

definitions for different scheduling approaches: Task-Stealing,

Breadth-First, Static, and GRAMPS. Rather than comparing

specific scheduler implementations, our objective is to distill

the key scheduling policies of each and to compare them.

A. Scheduler Features

We use four main criteria to compare scheduling approaches:

• Support for shaders: The scheduler supports a built-in

construct for data-parallel work, which is automatically

parallelized by the scheduler across independent lightweight

instances.

• Support for producer-consumer: The scheduler is aware

of data produced as intermediate results (i.e., created and

consumed during execution) and attempts to exploit this

during scheduling.

• Hierarchical work: The scheduler supports work being

expressed and grouped at different granularities rather than

all being expressed at the finest granularity.

• Adaptive schedule: The scheduler has freedom to choose

what work to execute at run-time, and can choose from all

available work to execute.

Using the above criteria, we discuss the four scheduling

approaches considered. Table I summarizes the differences

between scheduling approaches.

B. Previous Scheduling Approaches

Task-Stealing: A Task-Stealing scheduler sees an application

as a set of explicitly divided, concurrent and independent tasks.

These tasks are scheduled on worker threads, where each

worker thread has a queue of ready tasks to which it enqueues

and dequeues tasks. When a worker runs out of tasks, it tries

to steal tasks from other workers.

Task-Stealing has been shown to impose low overheads

and scale better than alternative task pool organizations [18].

Therefore, it is used by a variety of parallel programming

models, such as Cilk [13], X10 [5], TBB [21], OpenMP [11],

and Galois [27].

Task-Stealing is rooted in programming models that exploit

fine-grain parallelism, and often focus on low-overhead task

creation and execution [2]. As a result, they tend to lack features

that add overhead, such as task priorities. All tasks appear to

be equivalent to the scheduler, preventing it from exploiting

producer-consumer relationships. Task-Stealing has several al-

gorithmic options that provide some control over scheduling,

such as the order in which tasks are enqueued, dequeued and

stolen (e.g. FIFO or LIFO) or the choice of queues to steal

from (e.g. randomized or nearest neighbor victims). Several

programming models, such as Cilk and X10, focus on fork-join

task parallelism. In these cases, LIFO enqueues and dequeues

with FIFO steals from random victims is the most used policy,

as it achieves near-optimal performance and guarantees that

footprint grows at most linearly with the number of threads [3].

However, several studies have shown that there is no single

best scheduling policy in the general case [11, 16, 18]. In fact,

Galois, which targets irregular data-parallel applications that

2



are often sensitive to the scheduling policy, exposes a varied

set of policies for task grouping and ordering, and enables the

programmer to control the scheduling policy [27, 30].

In this work we leverage Task-Stealing as an efficient load

balancing mechanism, combining it with additional techniques

to schedule pipeline-parallel applications efficiently.

Breadth-First: In Breadth-First scheduling, the application

is specified as a sequence of data-parallel stages or kernels. A

stage is written in an implicitly parallel style that defines the

work to be performed per input element. Stages are executed

one at a time, and the scheduler automatically instances and

manages a collection of shaders that execute the stage, with an

implicit barrier between stages.

This model is conceptually very simple, but has weaknesses

in extracting parallelism and constraining data footprint. If an

application has limited parallelism per stage but many inde-

pendent stages, the system will be under-utilized. Furthermore,

even if a stage produces results at the same rate as the next

stage that will consume them, the explicit barrier leaves no

alternative but to spend memory space and bandwidth to spill

the entire intermediate output of the first stage and to read it

back during the second stage.

GPGPU programming models (e.g., CUDA [32] and

OpenCL [25]) rely on a GPU’s high bandwidth and large

execution context count to implement Breadth-First schedulers.

However, such assumptions could be problematic for a general-

purpose multi-core machine.

Static: In this scheduling approach, an application is ex-

pressed as a graph of stages, which communicate explicitly

via data streams. The scheduler uses static analysis, profiling,

and/or user annotations to derive the execution time of each

stage and the communication requirements across stages. Using

this knowledge, it schedules stages across execution contexts in

a pattern optimized for low inter-core communication and small

memory footprints [15, 22, 26, 33]. Scheduling is done offline,

typically by the compiler, eliminating run-time scheduling

overheads.

Static schedulers take advantage of producer-consumer lo-

cality by scheduling producers and consumers in the same or

adjacent cores. They work well when all stages are regular, but

cannot adapt to irregular or data-dependent applications.

This scheduling approach is representative of StreamIt [38]

and streaming architectures [9, 24], where it is assumed that a

program has full control of the machine. However, it can suffer

load imbalance in general-purpose multi-cores where resources

(e.g., cores or memory bandwidth available to the application)

can vary at run-time, as we will see in Section V.

C. GRAMPS

We now discuss the core concepts of the GRAMPS program-

ming model that are relevant to scheduling. However, GRAMPS

is expressive enough to describe a wide variety of computations.

A full description of all constructs supported by the GRAMPS

programming model and its detailed API can be found in [35].

GRAMPS applications are structured as graphs of applica-

tion-defined stages with producer-consumer communication

Fig. 1: A GRAMPS application: the raytracing graph from [36].

between stages through data queues. Application graphs may

be pipelines, but cycles are also allowed. Figure 1 shows an

example application graph.

The GRAMPS programming model defines two types of

stages: Shaders and Threads (there are also Fixed-function

stages, but they are effectively Thread stages implemented in

hardware and not relevant to this paper). Shader stages are

stateless and automatically instanced by the scheduler. They

are an efficient mechanism to express data-parallel regions of

an application. Thread stages are stateful, and must be manually

instanced by the application. Thread stages are typically used

to implement task-parallel, serial, and other regions of an

application characterized by (1) large per-element working sets

or (2) operations dependent on multiple elements at once (e.g.,

reductions or re-sorting of data).

Stages operate upon data queues in units of packets, which

expose bundles of grouped work over which queue operations

and runtime decisions can be amortized. The application speci-

fies the capacity of each queue in terms of packets and whether

GRAMPS must maintain its contents in strict FIFO order. Ap-

plications can also use buffers to communicate between stages.

Buffers are statically sized random-access memory regions that

are well suited to store input datasets and final results.

There are three basic operations on queues: reserve,

commit, and push. reserve and commit claim space in a

queue and notify the runtime when the stage is done with it

(either input was consumed or output was produced). Thread

stages explicitly use reserve and commit. For Shader stages,

GRAMPS implicitly reserves packets before running a shader

and commits them when it finishes. push provides support for

shaders with variable output. Shaders can push elements to a

queue instead of whole packets. These elements are buffered

and coalesced into full packets by the runtime, which then

enqueues them. For example, in Figure 1 the Shadow Intersect

stage operates on 32-ray input packets using SIMD operations,

but the Shade stage produces a variable number of output

rays. Push queues allow full 32-ray packets to be formed,

maintaining the efficiency of SIMD operations.

Queue sets provide a mechanism to enable parallel consump-

tion with synchronization: packets are consumed in sequence

within each subqueue, but different subqueues may be pro-

cessed in parallel. Consider a renderer updating its final output

image: with unconstrained parallelism, instances cannot safely

modify pixel values without synchronization. If the image is

divided into disjoint tiles and updates are grouped by tile, then

3



tiles can be updated in parallel. In Figure 1, by replacing the

input queue to the frame buffer stage with a queue set, the

stage can be replaced with an instanced Thread stage (with

one instance per subqueue) to exploit parallelism.

A GRAMPS scheduler should dynamically multiplex Thread

and Shader stage instances onto available hardware contexts.

The application graph can be leveraged to (1) reduce footprint

by giving higher priority to downstream stages, so that the

execution is geared towards pulling the data out of the pipeline,

(2) bound footprint strictly by enforcing queue sizes, and (3)

exploit producer-consumer locality by co-scheduling producers

and consumers as much as possible.

At a high level, GRAMPS and streaming programming

models have similar goals: both attempt to minimize footprint,

exploit producer-consumer locality, and load-balance effec-

tively across stages. However, GRAMPS achieves these goals

via dynamic scheduling at run-time, while Static scheduling

performs it offline at compile-time. GRAMPS also dynamically

emulates filter fusion and fission [15] by co-locating producers

and consumers on the same execution context and by time-

multiplexing stages. Most importantly, Static schedulers rely

on regular stage execution times and input/output rates to

derive the long-running steady state of an application, which

they can then schedule [28]. In contrast, GRAMPS does not

require applications to have a steady state, allowing dynamic or

irregular communication and execution patterns. For instance, a

thread stage can issue an impossibly large reserve, which will

be satisfied only when all the upstream stages have finished,

thus effectively forming a barrier.

III. GRAMPS RUNTIME IMPLEMENTATION

Task-based schedulers, such as Task-Stealing, can perform

load balancing efficiently because they represent work in com-

pact tasks, so the cost of moving a task between cores is sig-

nificantly smaller than the time it takes to execute it. However,

these schedulers do not include support for data queues. On

the other hand, in Static streaming schedulers worker threads

simply run through a pre-built schedule, and have no explicit

notion of a task. Work is implicitly encoded in the availability of

data in each worker’s fixed-size input buffers. Since scheduling

and buffer management are so fundamentally bound, fine-grain

load balancing on streaming runtimes is unachievable.

To achieve fine-grain load balancing and bounded footprint,

the GRAMPS runtime decouples scheduling and buffer man-

agement. The runtime is organized around two entities:

• A scheduler that tracks runnable tasks and decides what to

run on each thread context.

• A buffer manager that allocates and releases packets. It is

essentially a specialized memory allocator for packets.

A. Scheduler Design

The GRAMPS scheduler is task-based: at initialization, the

scheduler creates a number of worker threads using PThread

facilities. Each of these threads has task queues with priorities,

to which it enqueues newly produced tasks and from which

it dequeues tasks to be executed. As in regular task-stealing,

Fig. 2: Scheduler organization and task/packet flows.

when a worker runs out of tasks, it tries to obtain more by

stealing tasks from other threads. Worker threads leverage the

application graph to determine the order in which to execute

and steal tasks. All these operations are performed in a scalable

but globally coordinated fashion.

Figure 2 shows an overview of the scheduler organization.

We begin by describing how different kinds of stages are

represented and executed in the runtime. We then describe the

scheduling algorithms in detail.

Shader Stages: Shader stages are stateless and data-parallel,

and a Shader can always be run given a packet from its input

queue. Therefore, every time an input packet for a Shader stage

is produced, a new Shader task with a pointer to that packet

is generated and enqueued in the task queue. Shaders cannot

block, so they are executed non-preemptively, avoiding context

storage and switching overheads.

Shaders have two types of output queues: packet queues, to

which they produce full packets, and push queues, to which

they enqueue element by element. Executing a Shader with

no push queues is straightforward: first, the output packets

(or packet) are allocated by the buffer manager. The Shader

task is then executed, its input packet is released to the buffer

manager, and the generated packets are made available, possibly

generating additional tasks. Shaders with push queues are

treated slightly differently: each worker thread has a coalescer,

which aggregates the elements enqueued by several instances

of the Shader into full packets, and makes the resulting packets

available to the scheduler.

The GRAMPS runtime and API are designed to avoid data

copying: application code has direct access to input packets,

and writes to output packets directly, even with push queues.

Thread Stages: Thread stages are stateful, long-lived, and

may have queue ordering requirements. In particular, Thread

stages operate on input and output queues explicitly, reserving

and committing packets from them. Thus, they need to be

executed preemptively: they can either block when they try to

reserve more packets than are available in one of their input

queues, or the scheduler can decide to preempt them at any

reserve or commit operation.

To facilitate low-cost preemption, each Thread stage instance

is essentially implemented as an user-level thread. We encapsu-

late all its state (stack and context) and all its input queues into
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an instance object. Input queues store packets in FIFO order.

Each task for a Thread stage represents a runnable instance,

and is simply a pointer to the instance object. At initialization,

an instance is always runnable. A Thread stage instance that

is preempted by the runtime before it blocks is still runnable,

so after preemption we re-enqueue the task. To amortize pre-

emption overheads, the runtime allows an instance to produce a

fixed number of output packets (currently 32) before it preempts

it. However, when an instance blocks, it is not runnable, so no

task is generated. Instead, when enough packets are enqueued

to the input queue that the instance blocked on, the runtime

unblocks the instance and produces a task for it.

Note that by organizing scheduler state around tasks, coa-

lescers, and instance objects, only data queues that feed Thread

stages actually exist as queues. Queues that feed Shader stages

are a useful abstraction for the programming model, but they

do not exist in the implementation: each packet in these logical

queues is physically stored as a task in the task queues. This

is important, because many applications perform most of the

work in Shaders, so this organization bypasses practically all

the overheads of having data queues.

Per-Stage Task Queues: As mentioned in Section II,

GRAMPS gives higher priority to stages further down the

pipeline. Executing higher priority stages drains the pipeline,

reducing memory footprint.

To implement per-stage priorities, each worker thread main-

tains a set of task queues, one per stage. For regular dequeues, a

task is dequeued from higher priority stages first. When stealing

tasks, however, the GRAMPS scheduler steals from lower

priority stages first, which produce more work per invocation:

these stages are at a lower depth in the application graph, so

they will generate additional tasks enqueued to their consumer

stages, which is desirable when threads are running out of

tasks. For example, in Figure 1, a Camera task will generate

more work than a Shadow Intersect task. To keep task queue

operation costs low on graphs with many stages, worker threads

store pointers to the highest and lowest queues that have tasks.

The range of queues with tasks is small (typically 1 to 3), so

task dequeues are fast.

We implement each task queue as a Chase-Lev deque [6],

with LIFO local enqueues/dequeues and FIFO steals. Local

operations do not require atomic instructions, and steals require

a single atomic operation. Stealing uses the non-blocking ABP

protocol [2] and is locality-aware, as threads try to steal tasks

from neighboring cores first.

Footprint and Backpressure: In task-based parallel pro-

gramming models, it is generally desirable to guarantee that

footprint is bounded regardless of the number of worker

threads. Programming models that exploit fork-join parallelism,

like Cilk and X10, can guarantee that footprint grows at most

linearly with the number of threads by controlling the queuing

and stealing policies [1, 3]. However, most pipeline-parallel and

streaming programming models cannot limit footprint as easily.

In particular, GRAMPS applications can experience unbounded

memory footprint in three cases:

1) Bottlenecks on Thread consumers: If producers produce

packets faster than a downstream Thread stage can consume

them, an unbounded number of packets can be generated.

2) Thread preemption policy: In order to amortize preemption

overheads, GRAMPS does not immediately preempt Thread

stages. However, without immediate preemption, footprints

can grow superlinearly with the number of worker threads

due to stealing [3].

3) Cycles: A graph cycle that generates more output than

input will consume unbounded memory regardless of the

scheduling strategy.

To solve issues (1) and (2), the runtime enforces bounded

queue sizes by applying backpressure. The runtime tracks the

utilization of each data queue in a scalable fashion, and when

a queue becomes full, the stages that output to that queue are

marked as non-executable. This guarantees that both data queue

and task queue footprints are bounded.

In general, guaranteeing bounded footprint and deadlock-

freedom with cycles is not a trivial task, and Static scheduling

algorithms have significant problems handling cycles [26, 33].

To address this issue, we do not enforce backpressure on

backward queues (i.e., queues that feed a lower-priority stage

from a higher-priority stage). If the programmer introduces

cycles with uncontrolled loops, we argue that this is an incorrect

GRAMPS application, similar to reasoning that a programmer

will not introduce infinite recursion in a Cilk program. If a cycle

is well behaved, it is trivial to see that footprint is bounded due

to stage priorities, even with stealing.

Overall, we find that backpressure strictly limits the worst-

case footprint of applications while adding minimal overheads.

We will evaluate the effectiveness of this approach in Section V.

Ordered Data Queues: Except for push queues, GRAMPS

queues can be FIFO-ordered, which guarantees that the con-

suming stage of a queue will receive packets in the same order

as if the producing stage was run serially. FIFO ordering on

queues between Thread stages is maintained by default, but

queues with Shader inputs or outputs are not automatically

ordered since Shader tasks can execute out of order. Guaran-

teeing queue ordering allows GRAMPS to implement ordering-

dependent streaming applications, but a naı̈ve implementation

could cause significant overheads.

We leverage the fact that guaranteeing ordering across two

Thread stages is sufficient to guarantee overall ordering. Specif-

ically, to maintain ordering on a chain of stages with Thread

stage endpoints and Shaders in the middle, the runtime allocates

and enqueues the output packet of the leading Thread stage

and the corresponding input packet of the last stage atomically.

The pointer to that last packet is then propagated through the

intermediate Shader packets. While Shaders can execute out of

order, at the end of the chain the packet is filled in and made

available to the Thread consumer in order. Essentially, the last

stage’s input queue acts as a reorder buffer.

This approach minimizes queue manipulation overheads, but

it may increase footprint since packets are pre-reserved and,

more importantly, the last queue is subject to head-of-line
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blocking. To address this issue, task queues of intermediate

Shader stages follow FIFO ordering instead of the usual LIFO.

B. Buffer Manager Design

To decouple scheduling and buffer management, we must

engineer an efficient way for the scheduler to dynamically

allocate new packets and release used ones, while preserving

locality. This is the function of the buffer manager.

The simplest possible buffer manager, if the system supports

dynamic memory allocation, is to allocate packets using malloc

and release them using free. We call this a dynamic memory

buffer manager. However, this approach has high overheads: as

more threads stress the memory allocator, synchronization and

bookkeeping overheads can quickly dominate execution time.

A better buffer management strategy without dynamic mem-

ory overheads is to use per-queue, statically sized memory

pools, and allocate packets from the corresponding queue.

Since queue space is bounded in GRAMPS, we can preallocate

enough buffer space per queue, and avoid malloc/free calls and

overhead completely. We refer to this approach as per-queue

buffer manager. However, this approach may hurt locality, as

different threads share the same buffer space. To maximize

locality, we would like a packet to be reused by the same core

as much as possible. Nevertheless, it would be inefficient to just

partition each per-queue pool among worker threads, since the

buffer space demands of a worker are not known in advance,

and often change throughout execution. Additionally, accessing

the shared queue pools can incur synchronization overheads.

Instead, we propose a specialized packet-stealing buffer man-

ager that maximizes locality while maintaining low overheads.

In this scheme, queues get their packets from a set of pools,

where each pool contains all the packets of the same size.

Initially, within each pool, packets are evenly divided across

worker threads; each allocation tries to dequeue a packet from

the corresponding partition. However, if a worker thread finds

its partition empty, it resorts to stealing to acquire additional

packets. When done using a packet, a worker thread enqueues

the packet back to its partition. To amortize stealing overheads,

threads steal multiple packets at once.

Since backpressure limits queue size, stealing is guaranteed

to succeed, except when cycles are involved. For cycles, the

worker thread tries one round of stealing, and if it fails, it

allocates and adds new packets to the pool using malloc. In

practice, this does not happen in applications with correctly

sized loop queues, and is just a deadlock avoidance safeguard.

Packet-stealing keeps overheads low, and more importantly,

enables high reuse. For example, in applications with linear

pipelines, the LIFO policy will cause each worker thread to

use only two packets to traverse the pipeline. As a result,

packet stealing only happens as frequently as stealing in the

task queues takes place, which is rare for balanced applications.

IV. OTHER SCHEDULING APPROACHES

As mentioned in Section I, we augment our GRAMPS

implementation to serve as a testbed for comparing other

scheduling approaches. Specifically, we have defined a modular

scheduler interface that enables using different schedulers.

We preserve the core GRAMPS abstractions and APIs —data

queues, application graphs, etc.— for all schedulers, even for

those used in programming models that customarily lack built-

in support for them. This isolates the changes derived from

scheduling policies from any distortion caused by changing the

programming model. Additionally, it eliminates application im-

plementation variation, as the same version of each application

is used in all four modes.

The rest of this section describes the specific designs we

chose to represent their respective scheduling approaches.

While several variations are possible for a given scheduler type,

we strive to capture the key philosophy behind each scheduler,

while leaving out implementation-specific design choices.

A. Task-Stealing Scheduler

Our Task-Stealing scheduler mimics the widely used Cilk 5

scheduler [13]. It differs from the GRAMPS scheduler in three

key aspects. First, each worker thread has a single LIFO Chase-

Lev task queue [6]; i.e., there are no per-stage queues. Steals

are done from the tail of the queue. Second, data queues are

unbounded (without per-stage task queues, we cannot enforce

backpressure). Third, each thread stage is preempted as soon

as it commits a single output packet. This emulates Cilk’s

work-first policy, which switches to a child task as soon as

it is created. This policy enables Cilk to guarantee footprint

bounds [13]. Although this does not imply bounded buffer

space for GRAMPS, the work-first approach works well in

limiting footprint except when there is contention on thread

consumers, as we will see in Section V.

B. Breadth-First Scheduler

The Breadth-First scheduler executes one stage at a time

in breadth-first order, so a stage is run only when all its

producers have finished. It is the simplest of our schedulers,

and represents a typical scheduler for GPGPU programming

model (e.g., CUDA). All worker threads run the current stage

until they are out of work, then advance in lock-step to the

next stage. As usual, load balancing is implemented on each

stage with Chase-Lev dequeues. Some of our applications have

cycles in their graphs so the scheduler will reset to the top

of the graph a finite number of times if necessary. As with

Task-Stealing, Breadth-First has no backpressure.

C. Static Scheduler

The Static scheduler represents schedulers for stream pro-

gramming models [10, 38]. To generate a static schedule,

the application is first profiled running under the GRAMPS

scheduler with the desired number of worker threads. We then

run METIS [23] to compute a graph partitioning that minimizes

the communication to computation ratio, while balancing the

computational load in each partition. We then feed the parti-

tioning to the Static scheduler, which executes the application

again following a minimum-latency schedule [22], assigning

each partition to a hardware context.
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Workload Origin
Graph Shader Pipeline

Regularity
Complexity Work Parallel

raytracer GRAMPS Medium 99% Yes Irregular

hist-r/c MapReduce Small 97% No Irregular

lr-r/c MapReduce Small 99% No Regular

pca MapReduce Small 99% No Regular

mergesort Cilk Medium 99% Yes Irregular

fm StreamIt Large 43% Yes Regular

tde StreamIt Huge 8% Yes Regular

fft2 StreamIt Medium 70% Yes Regular

serpent StreamIt Medium 86% Yes Regular

srad CUDA Small 99% No Regular

rg CUDA Small 99% No Regular

TABLE II: Application characteristics. Pipeline parallelism denotes

the existence of producer-consumer parallelism at the graph level.

(a) MapReduce

(b) mergesort

(c) srad

Fig. 3: Example application graphs.

The Static scheduler does no load balancing; instead, worker

threads have producer-consumer queues that they use to send

and receive work [15, 26, 33]. Once a thread runs out of work, it

simply waits until it receives more work or the phase terminates.

To handle barriers in programs with multiple phases, the Static

scheduler produces one schedule per phase.

Overall, the Static scheduler trades off dynamic load balanc-

ing for better locality and lower communication.

V. EVALUATION

A. Methodology

We perform all experiments on a 2-socket system with

hexa-core 2.93 GHz Intel Xeon X5670 (Westmere) processors.

With 2-way Simultaneous Multi-Threading (SMT), the system

features a total of 12 cores and 24 hardware threads. The

system has 256KB per-core L2 caches, 12MB per-processor

L3 caches, and 48GB of DDR3 1333MHz memory (about

21GB/s peak memory bandwidth). The processors commu-

nicate through a 6.4GT/s QPI interconnect. This machine

runs 64-bit GNU/Linux 2.6.35, with GCC 4.4.5. We ran all

of our experiments several times and report average results;

experiments were run until the 95% confidence intervals on

each average became negligible (< 1%).

Applications: In order to broadly exercise the schedulers, we

have expanded the original set of GRAMPS applications [36]

with a variety of examples from other programming models.

Table II summarizes their qualitative characteristics, and Fig-

ure 3 shows a few representative graphs. The applications are:

• raytracer is the packetized ray tracer from [36]. We run

it with no reflection bounces (ray-0), in which case it is a

pipeline, and with one bounce (ray-1), in which case its graph

has a cycle (as in Figure 1).

• histogram, lr, pca are MapReduce applications from the

Phoenix suite [41]. We run histogram and lr in two forms:

reduce-only (r) and with a combine stage (c).

• mergesort is a parallel mergesort implementation using Cilk-

like spawn-sync parallelism. Its graph, shown in Figure 3,

contains two nested loops.

• fm, tde, fft2, serpent are streaming benchmarks from the

StreamIt suite [38]. All have significant pipeline parallelism

and use ordered queues. fm and tde have very large graphs,

with a small amount of data parallelism, while fft2 and

serpent have smaller graphs and more data parallelism.

• srad, rg are data-parallel CUDA applications. srad (Speckle

Reducing Anisotropic Diffusion, an image-processing bench-

mark) was ported from the Rodinia suite [7], and rg (Recur-

sive Gaussian) comes from the CUDA SDK [31].

B. GRAMPS Scheduler Performance

Figure 4 shows the speedups achieved by the GRAMPS

scheduler from 1 to 24 threads. The knee that consistently

occurs at 12 threads is where all the physical cores are used and

the runtime starts using the second hardware thread per core

(SMT). Overall, all applications scale well. With more cores,

srad and rg scale sublinearly because they become increasingly

bound by cache and memory bandwidth. They are designed for

GPUs, which have significantly more bandwidth.

Figure 5 gives further insight into these results. It shows the

execution time breakdown of each application when using all

24 hardware threads. In this section, we focus on the results

with the GRAMPS scheduler (the leftmost bar for each app).

Each bar is split into four categories, showing the fraction of

time spent in application code, scheduler code, buffer manager,

and stalled (which in the GRAMPS scheduler means stealing,

with no work to execute). This breakdown is obtained with low-

overhead profiling code that uses the CPU timestamp counter,

which adds ≤ 2% to the execution time.

Overall, results show that GRAMPS is effective at finding

and dynamically distributing parallelism: applications spend

minimal time without work to do. Furthermore, runtime over-

heads are small: the majority of workloads spend less than 2%

of the time in the scheduler and buffer manager. Even tracking

the tens of stages in fm takes only 13% of elapsed time in

scheduling overheads. The worst-case buffer manager overhead

happens in queue-intensive fft2, at 15%.

Finally, Table III shows the average and maximum footprints

of the GRAMPS scheduler. Footprints are reasonable, and

always below the maximum queue sizes, due to backpressure

providing strict footprint bounds.

C. Comparison of Scheduler Alternatives

We now evaluate the differences among the scheduling

alternatives discussed in Section II. Figure 4, Figure 5, and
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Fig. 4: Scalability of GRAMPS, Task-Stealing, Breadth-First, and Static schedulers from 1 to 24 threads (12 cores).
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Table III show the scalability, execution time breakdowns, and

footprints for the different schedulers, respectively.

Task-Stealing: For applications with simple graphs, the

Task-Stealing scheduler achieves performance and footprint

results similar to the GRAMPS scheduler. However, it strug-

gles on applications with complex graphs: fm and tde, and

applications with ordering, fft2.

fm and tde have the most complex graphs, with 121 and

412 stages respectively (Table II), and have abundant pipeline

parallelism but little data parallelism, and ordered queues. In

both fm and tde, Task-Stealing is unable to keep the system

fully utilized, as evidenced by the larger Stalled application

times, due to the simple LIFO policy and lack of backpressure,

which also cause larger footprints and overheads. In fft2,

scalability is limited by the last stage in the pipeline, a Thread

consumer. Since this workload has ordering requirements, the

LIFO task ordering causes significant head-of-line blocking;

packets are released in bursts, which causes this stage to

bottleneck sooner. This bottleneck shows as the large Stalled

part of the execution breakdown in fft2 under Task-Stealing.

In contrast, with graph knowledge, GRAMPS uses FIFO task

queuing on ordered stages (Section III). Hence packets arrive

almost ordered, and the receiving stage does not bottleneck.

Breadth-First: The Breadth-First scheduler cannot take ad-

vantage of pipeline parallelism. Consequently, it matches the

GRAMPS scheduler only on those applications without pipeline

parallelism, srad and rg. In other applications, the one-stage-at-

a-time approach significantly affects performance and footprint.

Performance is most affected in fm and tde, which are highly

pipeline-parallel but not data-parallel (Table II). Looking at the

execution breakdown for those two applications, we see that

Breadth-First scheduling leaves the system starved for work for

up to 95% of the time. Compared to GRAMPS, the slowdowns

are as high as 15.8x and 17.4x, respectively.

In terms of footprint, the large amount of intermediate

results generated by each stage put high pressure on the

memory system and the buffer manager. Footprint differences

are most pronounced in raytracer and the StreamIt applications
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App
GRAMPS Task-Stealing Breadth-First Static
Avg Max Avg Max Avg Max Avg Max

ray-0 215.9 KB 287.8 KB 191.7 KB 276.5 KB 23096.0 KB 51648.5 KB 322.7 KB 722.7 KB

ray-1 361.1 KB 447.4 KB 327.5 KB 424.6 KB 31257.1 KB 78706.5 KB 1133.5 KB 2271.0 KB

lr-r 22.9 KB 40.7 KB 22.9 KB 40.9 KB 24.0 KB 44.0 KB 23.7 KB 43.8 KB

lr-c 8.1 KB 8.8 KB 7.9 KB 8.2 KB 15.2 KB 30.2 KB 9.8 KB 12.8 KB

hist-r 4921.6 KB 9658.1 KB 4925.0 KB 9654.1 KB 4695.3 KB 9736.6 KB 4903.2 KB 9653.3 KB

hist-c 1860.3 KB 3096.8 KB 1864.5 KB 3096.3 KB 1503.9 KB 3092.7 KB 1854.7 KB 3098.9 KB

pca 0.7 KB 1.3 KB 0.4 KB 0.4 KB 89.2 KB 178.8 KB 4.6 KB 8.0 KB

msort 2.0 KB 7.0 KB 1.4 KB 4.6 KB 6.1 KB 10.4 KB 5.3 KB 18.0 KB

fm 1672.3 KB 4276.8 KB 2245.2 KB 3691.1 KB 165145.5 KB 563173.0 KB 29646.3 KB 57391.3 KB

tde 3989.0 KB 6662.2 KB 18398.7 KB 36231.2 KB 89843.5 KB 179282.0 KB 18378.9 KB 31071.5 KB

fft2 261.3 KB 376.0 KB 149.8 KB 211.0 KB 75624.4 KB 80096.0 KB 1183.7 KB 1395.0 KB

serpent 79.1 KB 88.0 KB 68.7 KB 73.2 KB 1031.4 KB 1048.0 KB 735.8 KB 1003.2 KB

srad 0.9 KB 1.6 KB 0.4 KB 0.5 KB 40.0 KB 80.0 KB 2.6 KB 8.2 KB

rg 0.7 KB 1.4 KB 0.4 KB 0.5 KB 1.9 KB 5.0 KB 0.6 KB 1.6 KB

TABLE III: Average and maximum footprints of different schedulers.

(Table III). For example, the raytracer’s worst-case footprint

is 447KB with GRAMPS, but 78.7MB with Breadth-First.

This turns into a larger buffer manager overhead, which takes

12% of the execution time (Figure 5). Larger footprint reduces

the effectiveness of caches, hurting locality, as seen from the

slightly higher application time.

Static: The Static scheduler trades off load balancing for

near-optimal static work division and minimized producer-

consumer communication. Although this is likely a good trade-

off in embedded/streaming systems with fully static applica-

tions, we see that it is a poor choice when either the system or

the application is dynamic.

Focusing on the scalability graph (Figure 4), we see that

from 1 to 12 threads the static scheduler achieves reasonable

speedups for highly regular applications: pca, lr, and tde get

close to linear scaling. However, more irregular applications

experience milder speedups, e.g., up to 7x for the raytracer.

The worst-performing application is mergesort, which has

highly irregular packet rates, and static partitioning fails to

generate an efficient schedule.

As we move from 12 to 13 threads, performance drops

in all applications. At this point, SMT starts being used in

some cores, so threads run at different speeds. While the other

schedulers easily handle this by performing load balancing, this

fine-grain variability significantly hinders the Static scheduler.

Interestingly, the execution time breakdown (Figure 5) shows

that the static scheduler actually achieves lower application

times, due to optimized locality. However, these improvements

are more than negated by load imbalance, which increases the

time spent waiting for work.

In summary, we see that GRAMPS and Task-Stealing achieve

the best performance overall. However, Task-Stealing’s simple

LIFO queuing does not work well for complex application

graphs or graphs with ordering, and cannot bound footprint due

to lack of backpressure. While Breadth-First scheduling takes

advantage of data parallelism, it cannot extract pipeline paral-

lelism. Breadth-First scheduling also cannot take advantage of

producer-consumer communication typical of pipeline-parallel
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Fig. 6: Runtime breakdown with GRAMPS scheduler on queue-

heavy applications, using the three alternative buffer managers:

packet-stealing (S), per-queue (Q), and dynamic memory (D).

programs, causing memory footprint to be extremely large.

Static scheduling is able to effectively schedule for locality,

but cannot handle irregular applications or run-time variability

in the underlying hardware. More importantly, we observe that

GRAMPS’ dynamic scheduling overheads are mostly negligible

and locality is not significantly worse than what is achieved by

locality-optimized Static schedules. This shows that, contrary

to conventional wisdom, dynamic schedulers can efficiently

schedule complex pipeline-parallel applications.

D. Comparison of Buffer Management Strategies

All the results previously shown have used the proposed

packet-stealing buffer manager. We now evaluate the impor-

tance of this choice. Figure 6 compares the performance of

the different buffer management approaches discussed in Sec-

tion III, focusing on applications where the choice of buffer

manager had an impact.

We observe that the packet-stealing approach achieves small

overheads and good locality. In contrast, the dynamic buffer

manager often has significant slowdowns, as frequent calls

to malloc/free bottleneck at the memory allocator. We used

tcmalloc as the memory allocator [14], which was the highest-

performing allocator of those we tried (ptmalloc2, hoard, dlmal-
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loc, and nedmalloc). Compared to the stealing buffer manager,

the worst-case slowdown, 5.9x, happens in histogram, which

is especially footprint-intensive.

The per-queue buffer manager shows lower overheads than

the dynamic scheme. However, overheads can still be large

(up to 80% in histogram), and more importantly, having per-

queue slabs can significantly affect locality, as seen by the

higher application times in several benchmarks. This is most

obvious in tde, where the large number of global per-queue

pools (due to the large number of stages) causes application

time to increase by 50%. In contrast, the stealing allocator uses

a reduced number of thread-local LIFO pools, achieving much

better locality.

Overall, we conclude that buffer management is an important

issue in GRAMPS applications, and the stealing buffer manager

is a good match to GRAMPS in systems with cache hierarchies,

achieving low overheads while maintaining locality.

VI. RELATED WORK

We now discuss additional related work not covered in

Section II.

Although many variants of Task-Stealing schedulers have

been proposed, one of the most relevant aspects is whether

the scheduler follows a work-first policy (moving depth-first as

quickly as possible) or a help-first policy (producing several

child tasks at once). Prior work has shown there are large

differences between these approaches [16], and has proposed

an adaptive work-first/help-first scheduler [17]. In GRAMPS,

limiting the number of output packets produced by a Thread

before it is preempted controls this policy. Our Task-Stealing

scheduler follows the work-first policy, but we also tried the

help-first policy, which did not generally improve performance,

as the benefits of somewhat reduced preemption overheads

were countered by higher memory footprints. The GRAMPS

scheduler follows the help-first policy, preempting threads after

several output packets, and leverages backpressure to keep

footprint limited.

Some Task-Stealing models implement limited support for

pipeline parallelism; TBB [21] supports simple 1:1 pipelines,

and Navarro et al. [29] use this feature to study pipeline

applications on CMPs, and provide an analytical model for

pipeline parallelism. As we have shown, Task-Stealing alone

does not work well for complex graphs.

Others have also observed that Breadth-First schedulers are

poorly suited to pipeline-parallel applications. Horn et al. [20]

find that a raytracing pipeline can benefit by bypassing the pro-

gramming model and writing a single uber-kernel with dynamic

branches. Tzeng et al. [39] also go against the programming

model by using uber-kernels, and implement several load

balancing strategies on GPUs to parallelize irregular pipelines.

They find that task-stealing provides the least contention and

highest performance. The techniques presented in this paper

could be used to extend GRAMPS to GPUs.

Although most work in streaming scheduling is static, prior

work has introduced some degree of coarse-grain dynamism. To

handle irregular workloads, Chen et al. propose to pre-generate

multiple schedules for possible input datasets and steady states,

and switch schedules periodically [8]. Flextream [19] proposes

online adaptation of offline-generated schedules for coarse-

grain load balancing. These techniques could fix some of the

maladies shown by Static scheduling on GRAMPS (e.g., SMT

effects). However, applications with fine-grain irregularities,

like raytracer or mergesort, would not benefit from this.

Feedback-directed pipelining [37] proposes a coarse-grain hill-

climbing partitioning strategy to maximize parallelism and

power efficiency on pipelined loop-parallel code. While the

power-saving techniques proposed could be used by GRAMPS,

its coarse-grained nature faces similar limitations.

Finally, this work has focused on parallel programming

models commonly used in either general-purpose multi-cores,

GPUs and streaming architectures. We have not covered pro-

gramming models that target clusters, MPPs or datacenter-

scale deployments. These usually expose a multi-level memory

organization to the programmer, who often has to manage

memory and locality explicitly. Examples include MPI [34],

PGAS-based models such as UPC [4] or Titanium [40], and

more recent efforts like Sequoia [12].

VII. CONCLUSIONS

We have presented a scheduler for pipeline-parallel programs

that performs fine-grain dynamic load balancing efficiently.

Specifically, we implement the first real runtime for GRAMPS,

a recently proposed programming model that focuses on sup-

porting irregular pipeline-parallel applications. Our evaluation

shows that the GRAMPS runtime achieves good scalability and

low overheads on a 12-core, 24-thread machine, and that our

scheduling and buffer management policies efficiently sched-

ule simple and complex application graphs while preserving

locality and bounded footprint.

Our scheduler comparison indicates that both Breadth-First

and Static scheduling approaches are not broadly suitable on

general purpose processors, and that GRAMPS and Task-

Stealing behave similarly for simple application graphs. How-

ever, as graphs become more complex, GRAMPS shows an

advantage in memory footprint and execution time because it

is able to exploit knowledge of the application graph, which is

unavailable to Task-Stealing.
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