
Optimizing RAM-latency Dominated Applications

Yandong Mao Cody Cutler Robert Morris
MIT CSAIL

Abstract

Many apparently CPU-limited programs are actually
bottlenecked by RAM fetch latency, often because
they follow pointer chains in working sets that are
bigger than the CPU’s on-chip cache. For example,
garbage collectors that identify live objects by trac-
ing inter-object pointers can spend much of their
time stalling due to RAM fetches.

We observe that for such workloads, program-
mers should view RAM much as they view disk.
The two situations share not just high access latency,
but also a common set of approaches to coping with
that latency. Relatively general-purpose techniques
such as batching, sorting, and “I/O” concurrency
work to hide RAM latency much as they do for disk.

This paper studies several RAM-latency domi-
nated programs and shows how we apply general-
purpose approaches to hiding RAM latency. The
evaluation shows that these optimizations improve
performance by a factor up to 1.4×. Counter-
intuitively, even though these programs are not lim-
ited by CPU cycles, we found that adding more
cores can yield better performance.

1 Introduction

Profilers observing applications with little I/O typ-
ically show CPU utilization at 100% under peak

workload. However, some of these applications are
actually limited by RAM stalls. We call this class of
applications “RAM-latency dominated.” The stall
occurs when the processor cannot continue execu-
tion until the RAM loads complete. As the processor
is wasting CPU cycles spinning on the stall, it ap-
pears to the profiler as if the processor is executing
instructions when it is actually waiting for RAM
loads.

One type of RAM-latency dominated applica-
tions are those following long random pointer chains
in working sets that are much bigger than on-chip
caches. Random pointer following makes it diffi-
cult to predict the access pattern. As a result, each
pointer dereference is likely to miss in the cache
and requires fetching data from RAM rather than
on-chip cache. RAM fetches on modern processor
require hundreds of cycles, limiting the performance
to tens of millions of pointer dereferences per sec-
ond. This paper focuses on this type of application;
dealing with applications with small working sets
may require a different set of techniques [4, 6] than
those presented here. The first contribution of this
paper is a study of several applications of this type
including a Java garbage collector and an in-memory
key-value store.

To deal with the RAM-latency bottleneck, we
compare it with disk and network latency. We found
that the RAM latency problem is similar, and so
are the corresponding optimization techniques. As
a second contribution, we implement and evaluate
three techniques, which improve the performance by
a factor of 1.3× to 1.4×. Just like the OS disk sched-
uler obtains higher disk throughput by converting
random access to sequential access, we can make
memory access sequential to get higher throughput

1

from RAM too. Similar to the networked applica-
tions, we can also overlap computation and RAM
latency by concurrent batching of unrelated opera-
tions. In analogy, we believe these techniques are
universally applicable to this class of programs.

The rest paper describes and evaluates three tech-
niques to address the RAM latency bottleneck. We
run the experiments on an Intel Xeon X5690 pro-
cessor, which has six physical cores with hyper-
threading enabled. The processor is connected to a
single RAM node of 48GB. The RAM node consists
of three DRAM channels, each equipped with two
DIMMs.

2 Linearizing memory accesses

Despite RAM being initially designed for random
access, sequential access yields better performance
on modern architectures. RAM provides optimal
performance for random reads when RAM latency
matches the speed of CPU. However, with today’s
technology, RAM latency is too high to drive the
CPU busy. Similar observations have been made
between disk and memory.

To fill the performance gap between the CPU and
RAM, modern processors are equipped with hard-
ware prefetchers to benefit sequential RAM access.
The prefetcher speculatively issues RAM fetches
during instruction execution, and reduces latency
if the prefetched data is immediately requested by
the CPU. Since hardware prefetchers only fetch if
the recent memory accesses are sequential [13], se-
quential access could yield better performance than
random access. For example, on a micro benchmark
which keeps loading from RAM, sequential access
provides 3.5× the throughput of random access on
a single core. Profiling shows that, with sequen-
tial access, hardware prefetcher pro-actively fetches
from RAM and reduces the cache misses by a factor
of 4× compared to random access. In the rest of
the section, we describe the random access pattern
in a garbage collector, and how we convert it to
sequential access to improve performance.

Garbage collectors are responsible for finding and
reclaiming unused memory. The live data is discov-

ered by “tracing”, which follows all pointers starting
at the roots (CPU registers, global variables, etc.)
and follows every unvisited pointer in every object
discovered. All objects not visited are unreachable
and are therefore free memory. Because the live
data (which can be thought of as a graph) is cre-
ated and arbitrarily manipulated by the application,
the addresses of the live objects have no correspon-
dence to their position in the live data graph. This
results in random memory accesses (a pattern that
is unprefetchable as it is unpredictable) during trac-
ing, incurring stalls on RAM accesses. Furthermore,
each live object is read only once making caching
useless.

Memory for long running programs will eventu-
ally become “fragmented”, meaning that free mem-
ory is interspersed among live objects, making it
impossible to satisfy some allocation requests. To
remove fragmentation, moving garbage collectors
will move the live data, compacting it together so
the free memory becomes a contiguous block. Mov-
ing garbage collecting also provides an opportunity
to improve the application’s locality [3, 5]. Never-
theless, tracing compacted live objects still requires
random memory access. To our knowledge, op-
portunistically moving live data to reduce garbage
collection tracing times has not been explored. If the
collector rearranges the live data such that the ob-
jects are in the same order that the tracing phase will
read them, the new live data would be traced sequen-
tially, providing an opportunity for the pefetcher to
help, eliminating RAM stalls and improving tracing
times.

We examine the impact of moving the live data
into tracing order on garbage collection times with
HotSpot, a Java virtual machine, in OpenJDK7u61

[2] and a small benchmark we wrote. The bench-
mark builds a Red-Black tree with 10 million nodes,
performs 10 million inserts or updates with ran-
dom keys, and then calls the garbage collector.
Time spent tracing in the final garbage collection is
recorded. The total live data used by this benchmark
in HotSpot is approximately 1.4 GB. Since we are

1revision 3484:7566374c3c89 from Aug 13, 2012

2

interested in measuring tracing time only, all collec-
tions are single-threaded. The garbage collector is
called several times during execution of the bench-
mark and the final tracing of live data takes 4.16
seconds on average. Next, we run our benchmark
in HotSpot using only a modified semi-space copy-
ing collector which copies objects into tracing order.
The final live data trace takes only 2.93 seconds on
average after ordering, yielding a 1.4× speedup.

3 Alternating RAM fetch and com-
putation

One memory layout benefits only certain memory
access patterns. Some applications have more di-
verse access patterns and it is impossible to layout
the memory to linearize all memory accesses. For
example, looking up different keys within an or-
dered tree may follow different paths. No layout of
the tree could linearize the memory accesses of all
tree lookups.

Similar constraints apply to I/O subsystems such
as the disk and network. Despite programmers’ at-
tempts to avoid disk seeks, sometimes seeks are
unavoidable. For example, lookups of different files
require reading dependent and non-contiguous disk
blocks of directory nodes, each read of which is
likely to cause a disk seek. While there is not much
to do to reduce the per-lookup latency, we can over-
lap the computation with access latency through
batching and asynchronous I/O, which results in
higher throughput. This section describes how we
adopt similar approach to address RAM latency us-
ing Masstree as an example.

Masstree [8] is a high performing key-value
store for multi-core. Each core has a dedicated
thread processing get/put/scan requests one by one.
Masstree stores all key-value pairs in a single in-
memory B+tree variant, which is shared by all
cores. Masstree scales well on multi-core processors
through optimistic concurrency control. We discuss
concurrency on multiple cores in next section, and
consider Masstree on a single core in this section.

Despite its careful design to reduce RAM refer-
ences, the performance of Masstree is still limited by
RAM latency. Masstree avoids RAM references by
storing key fragments and children pointers within
the tree nodes. This is possible by using a trie of
B+trees such that each B+tree is responsible for
eight bytes of the key. Such design avoids additional
RAM dereferences for key comparisons. However,
since Masstree has to lookup the targeted key for
each request, RAM latency still dominates the per-
formance. Each key lookup follows random pointers
to B+tree nodes from root to a leaf, which is likely
to miss in the cache and causes RAM fetches. This
limits the per-core throughput to tens of millions
requests per second.

To get higher throughput, we modify Masstree
to process requests in batches and interleavely on a
single core (we assume requests arrive in batches,
which is reasonable in practical systems [9]). We
call this version Interleaved Masstree, which de-
scends tree lookups level by level for each batch of
requests. At each level, Interleaved Masstree finds
the children node to follow for each request, and
then issue a prefetch of the children.

This approach allows Interleaved Masstree to de-
scend one level of many lookups in at most one
RAM latency, whereas non-interleaved Masstree
descends a level for only one lookup in a RAM la-
tency. By the time Interleaved Masstree inspects a
tree node to look for the child, the node may have al-
ready arrived at cache due the prefetch issued when
inspecting the parent. The technique is only effec-
tive for a degree of concurrency equal to the number
of RAM banks [12]. For our workloads, we find
a batch of eight requests achieves the best perfor-
mance. On a read only workload, this technique
improves the single-core throughput by a factor of
1.3×.

4 Parallelization

It turns out that, even for applications that are lim-
ited by random-access RAM latency and not by
CPU cycles, running applications in parallel on mul-
tiple cores can help performance. The reason is that

3

the multiple cores can keep multiple RAM opera-
tions in flight in parallel, and thus can keep RAM
busy. This is similar to the way how web servers
address latency of network communication to the
backend database server to get higher throughput,
i.e. they use multiple processes to keep the backend
busy.

At a low level, parallelization is identical to the
interleaving technique described in Section 3. Both
improve performance by exploiting the parallelism
of the memory subsystem. The maximum paral-
lelism is decided by the number of memory channels
and RAM banks per channel [12]. Modern imple-
mentation allows independent access to each mem-
ory channel and multiple RAM banks within each
channel [1]. The difference between parallelization
and the interleaving technique is that the latter gen-
erates concurrent RAM accesses from single-core,
while parallelization generates them from multiple
cores. Programmers may prefer parallelization be-
cause it may be easier to parallelize than interleaving
within a single core.

The degree of parallelism is application and im-
plementation dependent. Some applications [10]
have little global shared state and are inherently
parallel; some applications have more sharing and
require more effort to parallelize [7, 8, 11]. Since
multi-core synchronization techniques are out of the
scope of this paper, the rest of this section considers
applications that are easy to parallelize.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10 12

M
il

li
o

n
s/

se
co

n
d

Number of cores

RAM fetches rate
Throughput

Figure 1: Throughput and RAM fetches rate varying
the number of cores

To demonstrate that parallelization could improve
performance via issuing more concurrent RAM
fetches, we measure a memory intensive micro
benchmark. Each operation of the benchmark reads
eight bytes of a random cache line. Each core reads
a different memory chunk of 100MB. The bench-
mark scales well since nothing is shared among
cores. Figure 1 shows the result. The throughput
(operations per second) increases thanks to the RAM
fetches, which are in turn increased with the number
of cores. The throughput increases less after six
cores because each of the first six cores sits in a
different physical core; beyond six, each additional
core collocates with one of the physical cores due
to hyperthreading.

5 Discussion

Our experience suggests that programmers should
pay attention to both parallelization and cache-
conciousness on multi-core architectures in order
to achieve the best performance. While the first
two techniques improve single core performance,
parallelization is still required to achieve the best
performance on a multi-core processor. On the other
hand, parallelizing a cache-unconscious program
may not yield the best performance. For example,
loading memory randomly with all 12 cores can
only achieve half of the maximum bandwidth.

One difficulty that arises when optimizing these
applications is the lack of tools. Currently, we use
Linux perf to find the hot spot and manually inspect
the code to see if there is a RAM fetch bottleneck.
This can be misleading since it is hard to tell if
the hot spot is busy doing computation using data
from on-chip cache or stalling on RAM fetches. A
better tool that identifies RAM stalls spent in each
instruction could help find such bottlenecks faster
and more accurately.

6 Conclusion

This paper identifies one class of applications that
suffer from RAM latencies. We describe three tech-

4

niques to address the RAM-latency bottleneck. We
implement and evaluate these techniques on several
applications, and observed a significant performance
improvement. Since these techniques are similar to
those used to address I/O latency bottleneck, we
believe they are generally applicable to this type
of applications. We hope this work could inspire
people to optimize their applications in a similar
way.

References

[1] Multi-channel memory architecture.
http://en.wikipedia.org/wiki/

Multi-channel_memory_architecture.
[2] OpenJDK. http://openjdk.java.net/.
[3] S. M. Blackburn, P. Cheng, and K. S. McKin-

ley. Myths and realities: the performance im-
pact of garbage collection. In Proceedings of
the joint international conference on Measure-
ment and modeling of computer systems, SIG-
METRICS ’04/Performance ’04, New York,
NY, USA, June 2004.

[4] S. Boyd-Wickizer, R. Morris, and M. F.
Kaashoek. Reinventing scheduling for mul-
ticore systems. In Proceedings of the 12th
Workshop on Hot Topics in Operating Systems
(HotOS-XII), Monte Verit, Switzerland, 2009.

[5] T. M. Chilimbi and J. R. Larus. Using genera-
tional garbage collection to implement cache-
conscious data placement. In Proceedings of
the International Symposium on Memory Man-
agement, 1998.

[6] A. T. Clements, M. F. Kaashoek, and N. Zel-
dovich. RadixVM: Scalable address spaces for
multithreaded applications. In Proceedings of
the ACM EuroSys Conference (EuroSys 2013),
Prague, Czech Republic, April 2013.

[7] B. Fan, D. G. Andersen, and M. Kaminsky.
Memc3: Compact and concurrent memcache
with dumber caching and smarter hashing. In
Proceedings of the 10th Usenix NSDI, 2013.

[8] Y. Mao, E. Kohler, and R. T. Morris. Cache
Cratfiness for Fast Multicore Key-Value Stor-

age. In Proceedings of the ACM Eurosys Con-
ference (Eurosys 2012), Zurich, Switzerland,
April 2012.

[9] R. Nishtala, H. Fugal, S. Grimm,
M. Kwiatkowski, H. Lee, H. C. Li, R. McEl-
roy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling
memcache at facebook. In Proceedings of
the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI),
2013.

[10] C. Ranger, R. Raghuraman, A. Penmetsa,
G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor
systems. In Proceedings of the 13th Interna-
tional Symposium on High-Performance Com-
puter Architecture (HPCA), Feburary 2007.

[11] J. Ryan, I. Pandis, N. Hardavellas, A. Aila-
maki, and B. Falsafi. Shore-MT: a scalable
storage manager for the multicore era. In Pro-
ceedings of the 12th International Conference
on Extending Database Technology: Advances
in Database Technology, 2009.

[12] R. Scott, W. J. Dally, U. J. Kapasi, P. Mattson,
and J. D. Owens. Memory access scheduling.
ACM SIGARCH Computer Architecture News,
28(2), 2000.

[13] M. Wall. Multi-core is here! But How Do
You Resovle Data Bottlenecks in Native
Code, 2007. http://developer.amd.com/
wordpress/media/2012/10/TLA408_

Multi_Core_Mike_Wall.pdf.

5

http://en.wikipedia.org/wiki/Multi-channel_memory_architecture
http://en.wikipedia.org/wiki/Multi-channel_memory_architecture
http://openjdk.java.net/
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf

	Introduction
	Linearizing memory accesses
	Alternating RAM fetch and computation
	Parallelization
	Discussion
	Conclusion

