
Stellar Consensus by Instantiation
Giuliano Losa
Galois, Inc., Portland, OR, USA
http://www.losa.fr
giuliano@galois.com

Eli Gafni
UCLA, Los Angeles, CA, USA
eli@ucla.edu

David Mazières
Stanford University, CA, USA
http://www.scs.stanford.edu/~dm/addr/

Abstract
Stellar introduced a new type of quorum system called a Federated Byzantine Agreement System.
A major difference between this novel type of quorum system and a threshold quorum system is
that each participant has its own, personal notion of a quorum. Thus, unlike in a traditional BFT
system, designed for a uniform notion of quorum, even in a time of synchrony one well-behaved
participant may observe a quorum of well-behaved participants, while others may not.

To tackle this new problem in a more general setting, we abstract the Stellar Network as an
instance of what we call Personal Byzantine Quorum Systems. Using this notion, we streamline
the theory behind the Stellar Network, removing the clutter of unnecessary details, and refute the
conjecture that Stellar’s notion of intact set is optimally fault-tolerant. Most importantly, we develop
a new consensus algorithm for the new setting.

2012 ACM Subject Classification Theory of computation→ Distributed computing models; Theory
of computation → Distributed algorithms

Keywords and phrases Consensus, Stellar, Partial Synchrony, Byzantine Fault Tolerance

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.27

Related Version https://www.losa.fr/research/StellarConsensus/

Funding Giuliano Losa: BSF Grant 2014226, NSF Grant 1655166, a gift from the StellarDevelopment
Foundation, and Galois, Inc.
Eli Gafni: BSF Grant 2014226, NSF Grant 1655166, and a gift from the Stellar Development
Foundation
David Mazières: Stanford Center for Blockchain Research

Acknowledgements The authors are in debt to an anonymous reviewer who suspected that our
algorithm had a flaw. Indeed, that suspicion was correct.

1 Introduction

We study the consensus problem in a new type of quorum system that we call a Personal
Byzantine Quorum System (abbreviated PBQS). In a PBQS, each participant has its own,
private notion of what a quorum is, subject to the requirement that if Qp is a quorum of
p and p′ ∈ Qp then there is a quorum Qp′ of p′ inside Qp. Justifying this rather strong
requirement on the intuitive level, Q being a quorum of p has the connotation that p trusts
the members of Q collectively. Hence, Q should contain at least one quorum of each p′ ∈ Q.

In contrast to PBQSs, traditional Byzantine quorum systems are uniform, in the sense
that a quorum is a public notion common to all participants. Under the assumptions of
quorum intersection (i.e., that every two quorums intersect at a well-behaved participant)

© Giuliano Losa, Eli Gafni, and David Mazières;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.losa.fr
mailto:giuliano@galois.com
mailto:eli@ucla.edu
http://www.scs.stanford.edu/~dm/addr/
https://doi.org/10.4230/LIPIcs.DISC.2019.27
https://www.losa.fr/research/StellarConsensus/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Stellar Consensus by Instantiation

and quorum availability (i.e., that at least one quorum is exclusively well-behaved), one can
implement consensus under eventual synchrony [6]. However, traditionally, the ability to
implement consensus using quorums is all or nothing; as soon as two quorums fail to intersect
at a well-behaved participant, or if no quorum is available, no subset of the participants can
solve consensus.

In a PBQS, it is possible that a subset S of the participants has intersecting quorums, in
which case we say S is intertwined, while the system as a whole does not. Relying on quorum
intersection to ensure safety to S is straightforward. However, suppose S1 and S2 are each
intertwined but S1 ∪ S2 is not. In this case there is no way to keep S1 ∪ S2 in agreement,
but we can still keep each set internally in agreement. It is also possible that S1 ∪ S2 is not
intertwined even though S1 ∩ S2 6= ∅. In this case, can a consensus algorithm also ensure
liveness to S1 and S2? This seems impossible since, if S1 and S2 diverge, a participant
belonging to both S1 and S2 has to pick a side and violate safety on the other side in order
to make progress. Those observations raise the problem of determining, given an instance of
PBQS and a set B of malicious participants, for which family of sets both safety and liveness
are achievable, and whether there is an optimal such family. Of course, participants have no
knowledge of what B is. In Section 2, we give necessary conditions for a family of sets to
enjoy consensus and we define the notion of a consensus cluster, for which we show how to
solve consensus in Section 3.

Another crucial technical difference between PBQSs and traditional Byzantine quorum
systems is that since participants do not know what constitutes a quorum for another
participant, even in a synchronous period, we face the asynchronous phenomenon that one
well-behaved member observes a quorum of well-behaved participants, while others do not.
This phenomenon was previously encountered only during periods of asynchrony.

Why is it important to study PBQSs? Beyond theoretical curiosity, PBQSs successfully
abstract a deployed, real-world system: the Stellar Network. We found designing a BFT
consensus algorithm which is both safe and live under these condition to be challenging.
Indeed, the Stellar Consensus Protocol [14] (SCP) has only been proved non-blocking when
there are Byzantine failures. Here, we propose an algorithm which is safe and live, albeit
impractical. Nevertheless, it serves our purpose of showing that while the Stellar network is
optimally fault-tolerant for safety, Stellar’s family of intact sets, which enjoy both safety and
liveness, is not optimal as previously conjectured. Furthermore, our algorithm guarantees
termination in the eventually synchronous model. Whether a practical protocol can achieve
these properties is still an open question.

In addition to introducing the PBQS model, we make the following contributions:

We design an unauthenticated BFT consensus algorithm using idea from Dwork et al.[6]
to solve consensus for the Stellar Network’s consensus clusters.

We refute the conjecture made in the Sellar Whitepaper [14] that intact sets are optimal
for consensus. Indeed we suspect that our generalization of intact sets called consensus
clusters are optimal.

We show that the Stellar Network may harbor several disjoint consensus clusters which can
nevertheless remain internally in agreement and live. Past work on federated Byzantine
agreement systems [14, 7] (FBAS) assumes global quorum intersection and leaves the
reader pondering whether all guarantees collapse should this assumption be violated.

Finally, we formalize the static properties of PBQSs and Stellar’s federated Byzantine
agreement systems in Isabelle/HOL; the formal theory is available in the Archive of Formal
Proofs [12].



G. Losa, E. Gafni, and D. Mazières 27:3

2 Personal Byzantine Quorum Systems

In this section we formalize the Personal Byzantine Quorum System Model (the PBQS Model),
we define what it means to solve consensus in this model, we observe that global consensus
is impossible even without faults, we give lower bounds on what subsets of participants can
possibly enjoy consensus, and we define the notion of a consensus cluster. In a consensus
algorithm, different consensus clusters may diverge, but, as we show in the next section,
consensus is solvable under eventual synchrony within a consensus cluster. The main technical
result of this section is that maximal consensus clusters are disjoint, as it is an obvious
requirement for consensus.

I Definition 1. A PBQS consists of a set of participants P , a set B ⊆ P of Byzantine
participants, a set W = P \ B of well-behaved participants, and a function mapping a
participant p to its non-empty set of quorums, which are subsets of P . The participants’
quorums must be such that:

I Property 1 (Quorum sharing). If Qp is a quorum of p and p′ ∈ Qp then there exists a
quorum Qp′ of p′ such that Qp′ ⊆ Qp.

In other words, Property 1 states that a quorum Q of some participant p must contain a
quorum of every one of its members. As we show in Lemma 12, this remarkably simple
property is sufficient to give a mathematically pleasing structure, obviously required if each
consensus cluster is to be internally consistent, to PBQSs: Maximal consensus clusters
are disjoint.

2.1 Consensus Algorithms in PBQSs
We assume that the participants communicate via a fully-connected point-to-point message-
passing network. (In the Stellar network this is accomplished using an overlay network
and signatures.) This means that a participant always knows the identity of the well-
behaved sender of a message that it receives. However, message content is not authenticated
(in keeping with the current Stellar Modus Operandi of not forwarding signatures) and
therefore a participant cannot trust what a sender p says it heard from sender q. Well-
behaved participants take steps according to the algorithm they are given, while Byzantine
participants may take arbitrary steps. Each well-behaved participant is scheduled infinitely
often and a message sent from a well-behaved participant to a well-behaved participant is
eventually delivered.

A consensus algorithm consists of a non-terminating sequential program run by each
participant in the system. The program can send and receive messages as well as take
local computation steps. Initially, a participant starts with a unique identifier, a set of
quorums, the set of all participants (used for round-robin leader election, which is replaced
by a probabilistic election algorithm in the Stellar Network), and an input value, all of which
are accessible to its program. Crucially, a participant does not know a priori the quorums
of other participants (it only knows its own set of quorums). In the Stellar Network, a
participant learns one of its own quorums only when it receives messages from all members
of that quorum, but this difference is not of consequence. A participant also does not know
which participants are Byzantine. At any point, a participant’s program may produce a
unique, irrevocable decision value.

I Definition 2 (Intertwined). We say that a set S of well-behaved participants is intertwined
when for every two sets Q and Q′ which are both quorums of some (possibly different)
members of S, we have Q ∩Q′ ∩W 6= ∅.

DISC 2019



27:4 Stellar Consensus by Instantiation

Note that, by definition, two intertwined participants cannot have empty quorums.

I Definition 3 (Quorum-based algorithm). We say that a consensus algorithm is quorum-based
when:
1. If a well-behaved participant p decides, then there must be a quorum Q of p such that p

received at least one message from each member of Q.
2. If Q is a quorum of a participant p, p ∈W , and v is a possible input value, then there

exists an execution in which only p and members of Q take steps, and p eventually outputs
v.

As we have already noted, a PBQS may, for example, harbor two intertwined sets S1 and
S2 such that S1 ∪ S2 is not intertwined. As implied by the following lemma, in this case no
quorum-based algorithm can solve consensus for S1 ∪ S2.

I Lemma 4. Consider two participants p and p′, p 6= p′, and two quorums Q,Q′ such that
Q is a quorum of p and Q′ is a quorum of p′ and (Q ∩Q′) \B = ∅. Then no quorum-based
algorithm can guarantee agreement between p and p′.

Proof. By definition of quorum-based algorithm, there are two executions e and e′ such that
(a) only p and members of Q take steps in e and p decides value v in e, and (b) only p′ and
members of Q′ take steps in e′ and p′ decides value v′ 6= v in e′. Because Q and Q′ are
disjoint, the execution e · e′ consisting of the concatenation of e and e′ is also an execution.
Moreover, agreement is violated in e · e′. J

Lemma 4 shows that, in general, consensus in a PBQS is not solvable globally. Instead,
we reformulate the consensus problem such that, given a PBQS U and a family of sets of
participants depending on U (and thus on the quorum slices and on W ), the traditional
properties of consensus have to be guaranteed only to each set in the family.

I Definition 5 (The PBQS Consensus Problem). In the PBQS consensus problem for a PBQS
U and a family of sets of participants {Si} (depending on U), we require that for every set
Si in the family:

Agreement: no two members of Si decide different values.
Liveness: every member of Si eventually decides some value.
Non-triviality: if only well-behaved participants take steps and a member of Si decides,
then it decides the input value of some well-behaved participant.

Note that the definition above does not preclude any participant from taking steps in the
algorithm; instead, the definition gives guarantees only to sets in the family.

In Section 2.3, we define the family of consensus clusters, and we show in Section 3
that PBQS consensus is solvable for consensus clusters. Another, more restrictive, family
for which PBQS consensus is solvable is the family of intact sets, as defined in the Stellar
Whitepaper. In Section 5, we show that every intact set is a consensus cluster but that
the reverse is not true. In this sense, it shows that intact sets cannot be optimal for PBQS
consensus. Definition 5 also raises the question of whether there exists an optimal family (in
the sense of inclusion) for which PBQS consensus is solvable. We leave this question open,
although we conjecture that the consensus clusters family is optimal.

2.2 A Necessary Condition for Liveness
Next we observe that if every quorum Q of a participant p contains a Byzantine node, then
it is impossible to guarantee liveness for p because malicious participants can always remain
silent. This is formalized using the notion of blocking set:



G. Losa, E. Gafni, and D. Mazières 27:5

I Definition 6 (Blocking). If R is a set of participants, we say that p is blocked by R, or
equivalently that R blocks p, when every quorum of p intersects R. We denote the set of
participants blocked by R by BlockedBy(R), and the set of sets that each blocks p, called p’s
blocking sets, by Blocking(p).

I Lemma 7. If p is blocked by B then no quorum-based algorithm can ensure liveness to p.

Proof. If all malicious participants remain silent, then there is no quorum Q such that p
eventually receives a message from every member of Q. Therefore, by requirement 1, p
never decides. J

An interesting question is whether q who is blocked by BlockedBy(B) shares the same
fate as p who is blocked by B. The answer is positive and a consequence of the quorum
sharing property, as implied by the following lemma.

I Lemma 8. In a personal quorum system, for every set of participants R, we have

BlockedBy(BlockedBy(R)) = BlockedBy(R).

Proof. Suppose that p ∈ BlockedBy(BlockedBy(R)) but p /∈ BlockedBy(R). Hence, there is
a quorum Q of p that does not intersect R. However, since p ∈ BlockedBy(BlockedBy(R)),
Q must contain p′ which is BlockedBy(R). By the quorum sharing property, Q contains a
quorum Q′ of p′, and by the virtue of p′ being blocked by R, Q′ contains a member of R.
Since Q′ ⊆ Q, we conclude that Q contains a member of R, and this is a contradiction. J

I Corollary 9. If p is well-behaved and is not blocked by B, then p has a quorum consisting
exclusively of well-behaved participants that are not blocked by B.

2.3 Consensus Clusters
In this section we define consensus clusters and we show that maximal consensus clusters are
disjoint. Consensus clusters can be thought of as disjoint islands which can be kept internally
consistent and live by a consensus algorithm, but which may diverge from each other.

I Definition 10 (Consensus cluster). A subset S ⊆W of the well-behaved participants is a
consensus cluster when:

Quorum Intersection: S is intertwined.
Quorum Availability: If p ∈ S then there is a quorum Qp of p such that Qp ⊆ S.

Note that, by quorum availability, a member of a consensus cluster must have a quorum,
and, by quorum intersection, all its quorums must be non-empty.

We now show that maximal consensus clusters are disjoint.

I Definition 11. A consensus cluster C is maximal when no strict superset of C is a
consensus cluster.

I Lemma 12. Consider a personal quorum system. If C1 and C2 are two consensus clusters
and C1 ∩ C2 6= ∅, then C1 ∪ C2 is a consensus cluster.

Proof. Consider p ∈ C1 and q ∈ C2. It suffices to show that p and q are intertwined (quorum
availability is immediate). Consider two quorums Qp and Qq of p and q, and a quorum Qm

of a participant m ∈ C1 ∩C2 such that Qm ⊆ C1. Since m and q are intertwined by virtue of
belonging to C2, it follows that Qq and Qm have non-empty intersection in C1. Let n ∈ C1
be a member of this intersection. By the quorum sharing property, Qq contains a quorum

DISC 2019



27:6 Stellar Consensus by Instantiation

Qn of n. Since both n and p belong to C1 they are intertwined. Consequently Qp and Qn

intersect at a well-behaved participant. Since Qn ⊆ Qq, we get that Qp and Qq intersect at
a well-behaved participant as required. J

I Corollary 13. Maximal consensus clusters are disjoint.

Finally, we present the two properties, Properties 2 and 3, that, as shown in the next
section, are sufficient to solve PBQS consensus for any consensus cluster C.

I Property 2 (quorum of member of C, blocks all members of C). If C is a consensus cluster
and Q is a quorum of a member of C, then Q ∩W blocks every member of C.

Proof of Property 2. Consider p ∈ C. By the virtue of C being intertwined, all quorums of
p intersect Q at a well-behaved participant. Thus Q ∩W intersects all quorums of p, and we
conclude that Q ∩W blocks p. J

I Property 3 (blocking set of member of C contains a member of C). If C is a consensus
cluster, p ∈ C, and R blocks p, then R ∩ C 6= ∅.

Proof of Property 3. By definition of blocking sets, R intersects all quorums of p. Moreover,
by the quorum-availability property of consensus clusters, p has a quorum Qp ⊆ C. Thus, R
intersects C. J

3 Solving Consensus under Eventual Synchrony in a PBQS

3.1 The Key Insight
Most eventually-synchronous BFT consensus algorithms [6, 3, 11, 5, 1, 8], whether they use
authenticated messages or not, rely for liveness on the fact that if two participants p, p′
receive the same messages then p observes a quorum (or blocking set) if and only if p′ does.
For example, this is used by PBFT’s leader to convince other participants to prepare its value
by attaching signed messages that prove that the value cannot contradict a past decision. In
the unauthenticated BFT algorithm of Dwork et al. [6] (Algorithm 3), liveness is ensured
by the fact that, during synchrony, a participant that locks a value at the highest round
causes all other locks to be released because, thanks to reliable broadcast, the corresponding
quorum is observed by all in a timely manner.

Unfortunately, those techniques fail in a PBQS because the notion of quorum is not
shared by the participants: even if all participants receive the same messages, one may
observe a quorum while the other does not.

The key observation that we make to solve this problem is the following. Consider a
consensus cluster C. If, instead of just observing a quorum, a member p of C observes a
quorum Q that unanimously states having observed a quorum making statement s, then all
members of C that receive the same messages as p can derive that there is a unanimous
quorum of some member of C making statement s. This is because, by Property 2, Q ∩W
blocks all members of C and, by Property 3, a blocking set contains a member of C, which
can be trusted when it reports that a quorum of C unanimously makes statement s.

3.2 The Consensus Algorithm
We assume eventual synchrony, i.e., that there is a time GST after which (a) the messages
between well-behaved participants are reliably delivered within a time bound ∆ and (b) the
relative rate of the clocks of any two well-behaved participants is bounded by a constant ρ.
GST, ∆, and ρ are fixed but unknown to the participants.



G. Losa, E. Gafni, and D. Mazières 27:7

The consensus algorithm is described in pseudocode in Algorithm 1. It consists of an
unbounded sequence of rounds, where each participant progresses from round to round
as instructed by a clock-synchronization protocol described in Section 3.3. The clock-
synchronization protocol guarantees that there is a round GSR happening after GST such
that for the round GSR and every round after GSR, members of a consensus cluster proceed
from round to round synchronously, always receiving each other’s messages.

Each four consecutive rounds form an epoch. Each epoch has a unique leader chosen
round-robin. We refer to the individual rounds within an epoch as phases. Nodes broadcast
their state at each phase. The algorithm uses a few key concepts:

A participant locks a value v with an associated epoch e when it suspects that v might
become decided at epoch e; if it later observes that the value was in fact not decided,
then it unlocks it. Locks ensure that, within a consensus cluster, a value locked by a
quorum can never be unlocked.
A participant p considers a value final when it observes that no member of its consensus
cluster, should p belong to a consensus cluster, can decide something different.
A participant p decides a value when it observes that no participant that is intertwined
with p may make a conflicting decision.
Participants maintain a candidate value and keep track of the progress-round of their
candidate; a participant assigns progress-round r to its candidate when it adopts it from
the leader in round r or when it observes a unanimous quorum with the same candidate
and progress round r − 1 (we sometimes refer to progress phase when the epoch is clear
from the context).

With those concepts in mind, the phases proceed as follows:
In phase 1, a leader proposes a candidate value on which to try to agree. A node adopts
the leader’s value unless it suspects that a different value was decided. A node that
adopts the leader’s value updates its progress round to the current round.
In phases 2 to 4, a participant p sends a candidate value to all and expects a quorum that
agrees with that candidate. At each of those phases, if the expected quorum materializes,
the participant updates the progress round of the candidate to the current round. The
crucial property of the scheme is that, after GST, if the candidate of a member of
consensus cluster C successfully progresses to phase i > 1, then all members of C will
infer that v has progressed to phase i− 1; this is because if Q is a quorum of a member
of C, then Q ∩W is a blocking set for all members of C, and a blocking sets contains a
member of C and thus can be trusted.
A participant unlocks its candidate if it gets a “proof” that, after its locking epoch, there
was a quorum for another candidate. This is accomplished by observing a unanimous
blocking set for a value that progressed to at least phase 2 in a higher epoch.
A participant whose candidate progresses to phase 3 considers its candidate value locked
(because it suspects that it may become final in phase 4), and a participant whose candidate
progresses to phase 4 considers its candidate final. A final value is not revocable; in
contrast “locking” is. At any time, if a participant observes a quorum unanimously
declaring the same value v as final, then it decides v. While intertwined participants that
are not part of a consensus cluster may disagree on final values (because those participants
may be convinced to unlock arbitrarily by Byzantine participants), they cannot disagree
on decisions because final is irrevocable; this is the purpose of the concept of final value.
A participant that unlocks a value keeps a record that this value was previously locked
and at what epoch, and it includes all those records in its messages. Other participants
can then check that the unlock steps are valid, by making sure they can derive first-
hand that a quorum justifies each unlock step; this prevents a well-behaved participants

DISC 2019



27:8 Stellar Consensus by Instantiation

outside a consensus cluster from “contaminating” the consensus cluster because of a bogus
unlock step. This is essential because members of a consensus cluster might depend on a
well-behaved outsider for quorum intersection.

The fact that final values are irrevocable guarantees that two intertwined participants
never disagree. The crux of the algorithm’s liveness is that a quorum with progress phase 2
suffices to unlock a value, while it takes a quorum with progress phase 3 to lock a value; this
ensures that, after GST, the highest lock causes all other locks among a consensus cluster
to become unlocked and the leader to adopt the corresponding value. A decision is then
necessarily reached in the next epoch.

3.3 Clock Synchronization
We now describe a clock-synchronization algorithm adapted from the Stellar Consensus
Protocol [14], which is simpler than the algorithm of Dwork et al. A participant p running
the clock-synchronization protocol continuously advertises its current round r[p] to all other
participants, and it updates its round according to the following rules:
1. If p hears from a quorum whose members all advertise a round greater or equal to r[p],

then p arms a timer of duration r[p] · T0, where T0 is some base timeout (e.g., 1 second).
2. If p’s timer fires, p increments its current round.
3. If there is a round r′ > r[p] such that p hears from a blocking set whose members all

advertise a round greater or equal to r′, then p cancels any pending timeout and advances
r[p] to r′.

Now consider a consensus cluster C. By Property 2, rule 3 ensures that, after GST, any
members of C that straggle in lower rounds catch up in constant time d1 to the highest round
that is advertised unanimously by the well-behaved portion of a quorum Q of C (because
Q ∩W is a blocking set for members of C). Since a blocking set must contain a member
of C, rule 3 cannot be used by Byzantine participants to bring well-behaved participants
to a round that was not already started by a member of C. Finally, rules 1 and 2 ensure
that, despite Byzantine behavior, the first member of C to enter round r stays in round r for
a duration proportional to r. Thus, round progression slows down linearly with time, and
there eventually comes a round GSR after which rounds are long enough for all members of
C to receive each other’s messages. Note the timer duration in Rule 1 can be change, e.g., to
obtain an exponential increase in round duration.

4 Consensus in Federated Byzantine Agreement Systems

In this section we show that, despite their seemingly unrealistic features, PBQSs are a useful
model of Stellar’s federated Byzantine agreement systems (FBASs). More precisely:

We instantiate the consensus algorithm of Section 3 to FBASs, providing effective ways
to implement its steps.
Given a FBAS, we define a corresponding PBQS and we show that, under eventual
synchrony, the instantiated consensus algorithm behaves similarly to its counterpart in
the PBQS model.

The results of this section show that consensus clusters can be kept safe and live in a
federated Byzantine agreement system that does not enjoy system-wide quorum intersection,
whereas previous work on the subject made the assumption of system-wide quorum inter-
section. This is important because, in practice, misconfigured participants, rival factions,
or compromised participants could, in violating quorum intersection, yield several disjoint
consensus clusters.



G. Losa, E. Gafni, and D. Mazières 27:9

Algorithm 1 Algorithm pseudocode.

struct NodeState {
round round, progress . initially 1, 0
value val . initial input
bool locked, final . initially false, false
epoch lockEpoch
set<messages> received . all received messages with valid unlockHistory
set<pair<epoch, value>> unlockHistory . all values ever unlocked

}
define epoch(r) = dr/4e
define leader(e) = participant (e mod N) . N is the number of participants
define phase(r) = r − 4 · phase(r) + 1
define valid(h) = ∀(e, v) ∈ h, a quorum sent messages w. epoch(progress) > e and val 6= v.

method NodeState::BeginRound()
broadcast(this) . send (round, progress, val, final, lockHistory) to all nodes

method NodeState::EndRound()
let F ← {m | m ∈ received and m.val = val and m.final}
if final and {m.sender | m ∈ F} is a quorum then

decide(val)
end if
if phase(round) = 1 then

let leaderState← m | m ∈ received and m.round = round
and m.sender = leader(epoch(round)))

if !locked or leaderState.val = val then
val ← leaderState.val
progress ← round

end if
else . phases 2–4

let R← {m | m ∈ received and m.val = val and m.progress = round− 1}
if {m.sender | m ∈ R} contains a quorum then

progress ← round
if phase(round) = 3 then

locked ← true
lockEpoch ← epoch(round)

else if phase(round) = 4 then
locked ← true
final ← true . can no longer unlock

end if
end if
if phase(round)= 4 then

let B ← highest-round unanimous-val blocking set with phase(progress) = 2
w ← unanimous value in B

e ← epoch(round) in B

if !locked or (locked and !final and e > lockEpoch and w 6= val) then
locked ← false
unlockHistory.insert((epoch(round),val))
val ← w . only matters if we are next leader

end if
progress ← round . sets phase(progress)= 4, not checked in phase 1

end if
end if

DISC 2019



27:10 Stellar Consensus by Instantiation

4.1 Federated Byzantine Agreement Systems
In a FBAS, each participant chooses a set of slices, which are sets of participants. A
participant p considers a set Q to be a quorum when (a) p has at least one slice inside Q and
(b) every member of Q has a slice that is a subset of Q. Practical aspects of FBASs are beyond
the scope of this paper, and we refer the reader to Mazières [14] for such matters. What
we will say is that it is intended that a participant will trust any information unanimously
agreed upon by any of its slices, and thus a quorum is, intuitively, a set that trusts itself.

Slice-based quorums have the advantage that any new participant can join or leave the
system without coordination (to join, all it needs to do is join the communication substrate;
in practice, this is an overlay network emulating a point-to-point network using public-key
cryptography). Moreover, any participant can also reconfigure its slices unilaterally, without
coordination, e.g., to remove participants it deems unreliable or to add newcomers. On the
flip side, without further assumptions, there is no guarantee that quorums will intersect, and
the set of participants at a given time is generally unknown. For the analysis that follows,
we assume that the set of participants is unknown but fixed and that the participants’ slices
do not change throughout an execution.

Three key aspects of federated Byzantine agreement systems prevent a straightforward
analogy with PBQSs for the purpose of solving consensus:
1. Since each participants self-declares its set of slices (e.g., by broadcasting it), partici-

pants discover their quorums as they receive the slices of other participants. Byzantine
participants have the opportunity to declare arbitrary slices and shape the quorums of
well-behaved participants.

2. The algorithms of Section 3 require checking whether a set of participants is a blocking
set. Doing this check by enumerating quorums is not practical even if all slices are known
because the number of quorums of a participant may be exponential in the size of the
system.

3. The set of participants is unknown, and thus round-robin leader-election is impossible.

4.2 Abstracting Federated Byzantine Agreement Systems
In a FBAS, participants discover quorums as they learn about the slices of other participants.
Therefore, for a participant, the notion of quorum is not fixed; instead, it is augmented with
new quorums as the participant learns about the slices of other participants. We call the
quorums of a participant p at time t the observed quorums of p at time t. We now define a
fixed notion of abstract quorums, which form a PBQS, and relate them to observed quorums.

I Definition 14 (Abstract Quorums). A set Q is an abstract quorum of participant p when
p ∈ B or p has a slice contained in Q, and every well-behaved member of Q has a slice
contained in Q.

Note that the definition of abstract quorum places requirements only on well-behaved nodes.
Hence it is not computable by the participants, who do not know which participants are
well-behaved. The following three lemmas are direct consequences of the definition of abstract
quorum.

I Lemma 15. Abstract quorums form a PBQS.

Proof. From the definition of abstract quorum we immediately get that if Q is an abstract
quorum of p and p′ ∈ Q, then Q is an abstract quorum of p′. J



G. Losa, E. Gafni, and D. Mazières 27:11

I Lemma 16. If Q is an observed quorum of a well-behaved participant p at some time t,
then Q is an abstract quorum.

I Lemma 17. Assume that Q is an abstract quorum of p ∈ W consisting exclusively of
well-behaved participants. Then, under eventual synchrony and assuming that participants do
advertise their slices: shortly after GST, Q is an observed quorum of p.

Proof. Since Q is exclusively well-behaved, shortly after GST, all well-behaved participants
receive the slices of the members of Q and can check whether Q is a quorum of theirs. J

Lemma 16 shows that the set of abstract quorums is an over-approximation of the
observed quorums. Because all the algorithms presented so far use the notion of quorum
only positively (i.e. adding quorums can only enable more behaviors), Lemma 16 implies
that abstract quorums are a safe abstraction of the Stellar Network when considering those
algorithms, and substituting the notion of observed quorum for quorum in those algorithms
does not compromise their safety properties. Lemma 17 shows that, after GST, a well-
behaved participant has observed all its abstract quorums. Since the liveness of the consensus
algorithm depends only on the behavior of its maximal consensus cluster, we conclude that
the instantiation of the algorithm to the FBAS model preserves liveness.

4.3 Checking Whether a Set is Blocking
The algorithms of Section 3 depend on the ability for a participant p to compute whether a
given set R is one of its blocking sets. Even if all slices were known, doing so by enumerating
p’s quorums is not practical because, by virtue of how quorums are defined in a FBAS, p
may have a number of quorums that is exponential is the size of the system. Instead, we now
show that there is a recursive algorithm to check whether a set is a blocking set (a) without
enumerating quorums and (b) relying only on the knowledge of the slices of well-behaved
participants. This algorithm can be run locally or as a distributed algorithm, e.g., as in
Stellar’s Federated Voting algorithm [14]. It relies on the notion of slice-blocking.

I Definition 18 (Slice-Blocking). We say that the set of participants R slice-blocks p when R
intersects each slice of p.

I Definition 19 (Inductively Blocked). If R is a set of participants, the set of participants
inductively blocked by R, denoted R∗, is defined computationally as follows. Start with R∗ = ∅.
While a fixpoint is not reached, repeat the following step: add to R∗ all the participants that
are slice-blocked by R∗ ∪R.

A participant can compute locally whether some set R is blocking based on its knowledge
of other’s slices. However, if its knowledge of slices is incomplete, it might wrongly believe
that R is not blocking. This can only remove behaviors in the algorithms of Section 3,
because blocking set is used only positively, and thus, with Lemma 20, the substitution of
inductively blocking for blocking does not impact safety.

Finally, Lemma 21 shows that, after GST, well-behaved blocking sets are reliably identified
by well-behaved participants using the notion of inductively blocking. Thus, liveness is also
preserved when substituting inductively blocking for blocking.

I Lemma 20. At any time, if R inductively blocks p ∈ W then R blocks p in the abstract
quorum system.

DISC 2019



27:12 Stellar Consensus by Instantiation

Proof. Assume by induction that if p′ is in a slice of p and p′ is inductively blocked by R,
then all quorums of p′ intersect R.

Now suppose by contradiction that R does not block p in the abstract system, i.e. that
Q is an abstract quorum of p and R ∩ Q = ∅. Since Q is an abstract quorum of p, there
must be a slice sp of p such that sp ⊆ Q. Moreover, since R inductively blocks p, then sp

must have a member p′ that is inductively blocked by R. By the quorum-sharing property,
Q contains an abstract quorum of p′. Thus Q ∩R 6= ∅, which is a contradiction. J

I Lemma 21. If p ∈W and R ⊆W blocks p in the abstract quorum system, then, shortly
after GST, R inductively blocks p.

Proof. First, observe that, shortly after GST, p knows all the slices of the well-behaved
participants. Thus, suppose that p knows all the slices of the well-behaved participants.

Suppose that R does not inductively block p according to p. Then, by definition, there is
a slice sp of p whose members are not inductively blocked by R and such that sp ∩R = ∅.
Since the members of sp are not inductively blocked by R, then, for every p′ ∈ sp \ B, we
also have that there is a slice s′p of p′ whose members are not inductively blocked by R and
such that s′p ∩ R = ∅ (we have to exclude B from sp since p might not know the slices of
Byzantine participants; in the worst case, none of those are observed inductively blocked).
Continuing inductively in this fashion, we obtain an abstract quorum Q of p which does not
intersect R, and we have only used the slices of well-behaved participants. This contradicts
the fact that R blocks p in the abstract quorum system. J

4.4 Leader Election
As noted before, round-robin leader-election is impossible in a FBAS because the set of
participants is in general unknown. In this section we show how to probabilistically elect
a leader. However, we give no bound on the probability of success, except that it is non-
zero. Devising an efficient leader-election mechanism, or, more generally, a conciliator[2]
mechanism, is left open.

To agree on a common leader among C with non-zero probability, every participant p
selects at random a participant p′ from one of its slices or itself. If p = p′, then p elects itself
as leader and broadcasts (leader, p). Otherwise, it waits to receive a broadcast of the form
(leader, p′′) from p′, and then elects the participant p′′ as leader and broadcasts (leader, p′′).

We now show that, through this process, members of C agree on a common leader taken
among C with non-zero probability.

I Definition 22. Graph D(S) If S is a set of participants, the directed graph D(S) is
defined as the graph whose set of vertices is S, and where there is an edge from n1 to n2
when n2 6= n1 and n2 is in a slice of n1.

I Lemma 23. If C is a consensus cluster, p ∈ C, and Q is a quorum of a member of C,
then Q is reachable from p in D(C).

Proof. Since p ∈ C and C is a consensus cluster, there is a quorum Q′ of p such that Q′ ⊆ C.
Now suppose that Q is not reachable from p in D(C). Then, with Q′ ⊆ C, we get that
Q′ ∩Q = ∅ . This contradicts the assumption that C is a consensus cluster. J

I Definition 24. Elementary quorum An elementary quorum is a quorum Q such that
no strict subset of Q is a quorum.

Note that, by definition, every quorum contains an elementary quorum.



G. Losa, E. Gafni, and D. Mazières 27:13

I Lemma 25. If n1 and n2 are members of an elementary quorum q consisting exclusively
of well-behaved participants, then there is a path in D(q) from n1 to n2.

Proof. Suppose q is an elementary quorum and that n1, n2 ∈ q and n2 is not reachable
from n1 in D(q). Then consider the set S of participants that are reachable from n1 in
D(q). By our assumption above, n2 does not belong to S. Thus S is a strict subset of q.
Moreover, every member n of S has a slice sn ⊆ q. Additionally, consider that we must have
that sn ⊆ S, as otherwise a participant outside S would be reachable from n1. Thus every
member of S has a slice in S, and therefore S is a quorum. Since S is a strict subset of q,
this contradicts the fact that q is an elementary quorum. J

I Lemma 26. If C is a consensus cluster, then there exists a member of C that is reachable
in D(C) from every other participant in C.

Proof. Since C is a quorum, C contains an elementary quorum Q. By Lemma 23, Q is
reachable from every member n of C in D(C). Moreover, by Lemma 25, every member of Q
is reachable in D(Q) from every other member of Q. Thus, because D(Q) ⊆ D(C), every
member of Q is reachable in D(C) from every member of C. J

I Lemma 27. If C is a consensus cluster, then, with non-zero probability, every member of
C elects the same leader l ∈ C.

Proof. Note that the leader-election algorithm can be seen as randomly selection edges in
D(P ) (where P is the set of participants). Because there is a member n of C reachable
in D from all other members of C in D(C) (and because well-behaved participant have a
finite number of outgoing edges), then with non-zero probability the edges selected by the
leader-election algorithm will form a sink tree rooted at n, who will be elected unique leader
by all members of C. J

5 Related Work

Federated Byzantine quorum systems were first introduced in the Stellar Whitepaper by
Mazières [14], who also proposes the notion of intact set and a consensus algorithm for intact
sets, the Stellar Consensus Protocol (SCP). The epidemic propagation mechanism and the
clock-synchronization protocol presented in the present paper are taken from the Stellar
Whitepaper. Mazières also discusses more practical aspects of the Stellar Network.

One important contribution of the present paper is that Stellar’s intact sets, conjectured
in the Stellar Whitepaper to be optimal for consensus, are in fact not the biggest sets for
which an algorithm can solve consensus. An intact set is a subset S of W such that every
member of S is well-behaved and: (a) if Q and Q′ are quorums of S, then Q ∩Q′ ∩ S 6= ∅;
(b) S is a quorum. Comparing the definitions of consensus cluster and intact set, it is easy
to see that any intact set is also a consensus cluster. However, as shown by the following
lemma, there are some consensus clusters that are strictly bigger than any intact set.

I Lemma 28. There are some configurations in which a set S is a consensus cluster but S
is not intact and S has no intact superset.

Proof. Consider a system of three well-behaved participants p1, p2, and p3 (note that there
are no malicious participants) where p1 has a single slice {p1}, p2 has two slices {p1, p2}
and {p2, p3}, and p3 has two slices {p1, p3} and {p2, p3}. According to those slices, the
quorums are {p1}, {p1, p2, p3}, {p2, p3}, {p1, p2}, and {p1, p3}. In this system, C = {p2, p3}

DISC 2019



27:14 Stellar Consensus by Instantiation

is a consensus cluster but is not intact, because Q1 = {p1, p2} and Q2 = {p1, p3} intersect
outside C. Moreover, the only strict superset of C, {p1, p2, p3}, is not intact because the
quorums {p1} and {p2, p3} do not intersect. J

Another novel aspect of the present paper compared to the Stellar Whitepaper is that
we do not assume global quorum intersection; nevertheless, we show that consensus clusters
enjoy safe and live consensus. This is important because it shows that safety and liveness
guarantees do not collapse system-wide in the face of misconfigurations or attacks.

We have studied federated quorum system under the assumption that well-behaved
participants do not change their slices. However, in practice, well-behaved participants
might change their slices to eliminate unreliable participants or add newcomers. The Stellar
Whitepaper also analyzes this situation.

García-Pérez and Gotsman [7] study in details Stellar’s federated Byzantine quorum
systems and the implementation of broadcast abstractions therein. They also propose the
notion of subjective dissemination quorum system (DQS) in which, like in a PBQS, each
participant has its own set of quorums. However, subjective DQSs have two crucial differences
compared to PBQSs: subjective DQSs have system-wide quorum intersection and they do not
have Property 1 (which says that a quorum is a quorum for all its members). In the absence
of system-wide quorum intersection, Property 1 of PBQSs ensures that maximal consensus
clusters are disjoint (Lemma 12). Without it, maximal consensus clusters may intersect,
which implies that consensus is not solvable even for consensus clusters (a participant in the
intersection may have to violate safety on one side in order to make progress).

Ripple [15] introduced the first permissionless quorum-based consensus protocol. In the
XRP Ledger Consensus Protocol, each participant p is responsible for configuring its own
UNL, which is a list of participants that p accepts messages from. Moreover, p considers as a
quorum any set of participants consisting of more than a fixed fraction (defined system-wide
by the protocol, e.g. 80%) of its UNL. Maintaining agreement in Ripple’s protocol rests on
the assumption that participants will provide sufficiently overlapping UNLs (roughly 90% for
every pair of participants, in the most adversarial model of Chase and MacBrough [4]).

Traditional Byzantine quorum systems are uniform, in the sense that every participant
has the same notion of quorum. Uniform Byzantine quorum systems are studied in details
by Malkhi and Reiter [13]. More complex types of uniform quorum systems are studied by
Guerraoui and Vukolić [9]. General Byzantine adversaries [10] do not give rise to a PBQS
because participants have global knowledge of the adversary in this model.

References
1 Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting fast practical

byzantine fault tolerance: Thelma, Velma, and Zelma. arXiv preprint, 2018. arXiv:1801.
10022.

2 James Aspnes. A modular approach to shared-memory consensus, with applications to the
probabilistic-write model. Distributed Computing, 25(2):179–188, 2012.

3 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

4 Brad Chase and Ethan MacBrough. Analysis of the XRP Ledger consensus protocol. arXiv
preprint, 2018. arXiv:1802.07242.

5 Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti.
Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults. In NSDI, volume 9,
pages 153–168, 2009.

http://arxiv.org/abs/1801.10022
http://arxiv.org/abs/1801.10022
http://arxiv.org/abs/1802.07242


G. Losa, E. Gafni, and D. Mazières 27:15

6 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

7 Álvaro García-Pérez and Alexey Gotsman. Federated Byzantine Quorum Systems. In 22nd In-
ternational Conference on Principles of Distributed Systems (OPODIS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

8 Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 BFT
protocols. In Proceedings of the 5th European conference on Computer systems, pages 363–376.
ACM, 2010.

9 Rachid Guerraoui and Marko Vukolić. Refined quorum systems. Distributed Computing,
23(1):1–42, 2010.

10 Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation. In PODC, volume 97, pages 25–34, 1997.

11 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. In Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007.
ACM.

12 Giuliano Losa. Stellar Quorum Systems. Archive of Formal Proofs, August 2019. , Formal
proof development. URL: http://isa-afp.org/entries/Stellar_Quorums.html.

13 Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing,
11(4):203–213, 1998.

14 David Mazieres. The Stellar Consensus Protocol: A federated model for internet-level consensus.
Stellar Development Foundation, page 32, 2015.

15 David Schwartz, Noah Youngs, and Arthur Britto. The Ripple Protocol Consensus Algorithm,
2014. URL: https://ripple.com/files/ripple_consensus_whitepaper.pdf.

DISC 2019

http://isa-afp.org/entries/Stellar_Quorums.html
https://ripple.com/files/ripple_consensus_whitepaper.pdf

	Introduction
	Personal Byzantine Quorum Systems
	Consensus Algorithms in PBQSs
	A Necessary Condition for Liveness
	Consensus Clusters

	Solving Consensus under Eventual Synchrony in a PBQS
	The Key Insight
	The Consensus Algorithm
	Clock Synchronization

	Consensus in Federated Byzantine Agreement Systems
	Federated Byzantine Agreement Systems
	Abstracting Federated Byzantine Agreement Systems
	Checking Whether a Set is Blocking
	Leader Election

	Related Work

