Memory Barriers in the Linux Kernel

Semantics and Practices

Embedded Linux Conference — April 2016. San Diego, CA.

Davidlohr Bueso <dave@stgolabs.net>

USE Labs. gljse

We adapt. You succeed

mailto:dave@stgolabs.net

Agenda

1. Introduction
* Reordering Examples
* Underlying need for memory barriers

2. Barriers in the kernel
 Building blocks
 Implicit barriers

« Atomic operations

« Acquire/release semantics.

References

I. David Howells, Paul E. McKenney. Linux Kernel source:
Documentation/memory-barriers.txt

li. Paul E. McKenney. Is Parallel Programming Hard, And, If So, What
Can You Do About It?

lii. Paul E. McKenney.
Memory Barriers: a Hardware View for Software Hackers. June 2010.

Iv. Sorin, Hill, Wood. A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. 2011.

sSUSse

https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.06.07c.pdf

Flagship Example

A =0, B =0 (shared wvariables)

CPUO CPU1

1
A

=1 B
X = B Y

Flagship Example

A =0, B =0 (shared wvariables)
CPUO CPUL

1 (x, v)
A

=1 B
X = B Y

Flagship Example

A =0, B =0 (shared wvariables)

CPUO CPUL (0, 1)
A =1 B =1 (x, y) =
X = B y = A
A =1
X = B
B 1

y = A

Flagship Example

A =0, B =0 (shared wvariables)

CPUO CPU1 (0, 1)
A =1 B =1 (X, Y) = (ll O)
X =B y = A

B =1

Yy = A
A 1

Flagship Example

A =0, B =0 (shared wvariables)

CPUO CPU1 (0, 1)
A =1 B =1 (X, Y) = (ll O)
X = B y = A (1, 1)

B =1

Flagship Example

A =0, B =0 (shared wvariables)

CPUO CPU1 (0, 1)
A =1 B =1 (X, Y) = (ll O)
X = B y = A (1, 1)

(0, 0)

X = B y = A
CA=1 B =1

Memory Consistency Models

- Most modern multicore systems are coherent but not
consistent.

- Same address is subject to the cache coherency protocol.

- Describes what the CPU can do regarding instruction
ordering across addresses.

- Helps programmers make sense of the world.

- CPU is not aware if application is single or multi-threaded.
When optimizing, it only ensures single threaded correctness.

sSUSse

Sequential Consistency (SC)

“A multiprocessor is sequentially consistent if the result of any
execution is the same as some sequential order, and within any
processor, the operations are executed in program order”

— Lamport, 1979.

- Intuitively a programmer's ideal scenatrio.

- The instructions are executed by the same CPU in the order in
which it was written.

- All processes see the same interleaving of operations.

sSUSse

Total Store Order (TSO)

- SPARC, x86 (Intel, AMD)
- Similar to SC, but:

- Loads may be reordered with writes.

1
1

[()]

0

1

0

[
[
[
[
[
[
[
[

]
]
]
]
]
]
]
]

w » © Q ©W W @ »

S

Total Store Order (TSO)

- SPARC, x86 (Intel, AMD)
- Similar to SC, but:

- Loads may be reordered with writes.

1

1 L-L

[()]

0

1

0

[
[
[
[
[
[
[
[

w » W Q W wWw w

]
]
]
]
]
]
]
]

S

Total Store Order (TSO)

- SPARC, x86 (Intel, AMD)
- Similar to SC, but:

- Loads may be reordered with writes.

1

1 L-L

[()]

0

1

n

S-S

o » W Q W W w »

]
]
]
]
]
]
]
]

[
[
[
[
[
[
[
[

S

Total Store Order (TSO)

- SPARC, x86 (Intel, AMD)
- Similar to SC, but:

- Loads may be reordered with writes.

1

1 L-L

[()]

n

1

S

S-S

[
[
[
[
[
[
[
[

]
]
]
]
]
]
]
]

o » W Q W wWw w >

S

Total Store Order (TSO)

- SPARC, x86 (Intel, AMD)
- Similar to SC, but:

- Loads may be reordered with writes.

1

1 L-L

[()]

n

1

S

[
[
[
[
[
[
[
[

]
]
]
]
]
]
]
]

o » W Q W W w »

S

Relaxed Models

- Arbitrary reorder limited only by explicit memory-
barrier instructions.

- ARM, Power, tilera, Alpha.

Fixing the Example

A =0, B =0 (shared wvariables)
CPUO CPU1L

A =1 B =1

X =B y = A

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1
A =1 B =1
<MB> <MB>

X =B y = A

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1
A= 1 B = 1 « Compiler barrier
<MB> <MB>

X =B y = A

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1

A= 1 B = 1 « Compiler barrier

<MB> <MB> .

< = B v = A « Mandatory barriers (general+rw)

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1

A= 1 B = 1 « Compiler barrier

<MB> <MB> .

< = B v = A « Mandatory barriers (general+rw)

« SMP-conditional barriers

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1

A= 1 B = 1 « Compiler barrier

<MB> <MB> .

< = B v = A « Mandatory barriers (general+rw)

« SMP-conditional barriers

e acquire/release

Fixing the Example

A =0, B =0 (shared wvariables)

CPUO CPU1

A= 1 B = 1 « Compiler barrier

<MB> <MB> .

< = B v = A « Mandatory barriers (general+rw)

« SMP-conditional barriers
e acquire/release

« Data dependency barriers

» Device barriers

Barriers in the Linux Kernel

Abstracting Architectures

- Most kernel programmers need not worry about
ordering specifics of every architecture.

- Some notion of barrier usage is handy nonetheless — implicit
vs explicit, semantics, etc.

» Linux must handle the CPU's memory ordering
specifics in a portable way with LCD semantics of
memory barriers.

- CPU appears to execute in program order.
- Single variable consistency.
- Barriers operate in pairs.

- Sufficient to implement synchronization primitives.

sSUSse

o P
kE‘é

Abstracting Architectures

« Each architecture must implement its own calls or
otherwise default to the generic and highly
unoptimized behavior.

e <arch/xxx/include/asm/barriers.h> will
always define the low-level CPU specifics, then rely
on <include/asm-generic/barriers.h>

A Note on barrier ()

- Prevents the compiler from getting smart, acting as a
general barrier.

- Within a loop forces the compiler to reload conditional
variables — READ/WRITE_ONCE.

Implicit Barriers

- Calls that have implied barriers, the caller can safely
rely on:

- Locking functions

- Scheduler functions

- Interrupt disabling functions
- Others.

Sleeping/Waking

- Extremely common task in the kernel and flagship
example of flag-based CPU-CPU interaction.

CPUO CPU1
while (!done) { done = true;
schedule () ; wake up_process (t) ;

current—-state = ..;

Sleeping/Waking

- Extremely common task in the kernel and flagship
example of flag-based CPU-CPU interaction.

CPUO CPU1

while (!done) { done = true;
schedule () ; wake up_process (t) ;
errenttstatte———

set_current_state(..);

Sleeping/Waking

- Extremely common task in the kernel and flagship
example of flag-based CPU-CPU interaction.

CPUO CPU1
while (!done) { done = true;
schedule () ; ;}wake_up_process(t);

set_curxent state(..);
} Is;\\

smp_store _mb () :
[s] —state = ..
smp_mb ()

Atomic Operations

- Any atomic operation that modifies some state Iin
memory and returns information about the state can
potentially imply a SMP barrier:

- smp_mb() on each side of the actual operation

[atomic_*_]xchg ()
atomic_*_ return|()
atomic * and test ()
atomic_* add _negative ()

Atomic Operations

- Any atomic operation that modifies some state Iin
memory and returns information about the state can
potentially imply a SMP barrier:

- smp_mb() on each side of the actual operation

[atomic_*_]xchg ()
atomic_*_ return|()
atomic * and test ()
atomic_* add _negative ()

- Conditional calls imply barriers only when successful.

[atomic_*] cmpxchg ()
atomic * add unless ()

sSUSse

Atomic Operations

- Most basic of operations therefore do not imply
barriers.

- Many contexts can require barriers:

cpumask set cpu(cpu, vec->mask) ;
/*
* When adding a new vector, we update the mask first,
* do a write memory barrier, and then update the count, to
* make sure the vector is visible when count is set.
*/
smp mb_before atomic();
atomic_inc (& (vec) ->count) ;

Atomic Operations

- Most basic of operations therefore do not imply
barriers.

- Many contexts can require barriers:

/*
* When removing from the vector, we decrement the counter first
* do a memory barrier and then clear the mask.
*/

atomic_dec (& (vec) ->count) ;

smp mb after atomic();

cpumask_clear_ cpu(cpu, vec->mask);

Acquire/Release Semantics

- One way barriers.

- Passing information reliably between threads about a
variable.

- Ideal in producer/consumer type situations (pairing!!).

- After an ACQUIRE on a given variable, all memory accesses
preceding any prior RELEASE on that same variable are
guaranteed to be visible.

- All accesses of all previous critical sections for that variable
are guaranteed to have completed.

- C++11's memory_ order_ acquire,
memory order_ release and memory order relaxed.

sSUSse

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR

spin unlock (&1l) «=——» spin_lock (&1)

CR

spin_unlock (&1)

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR

spin unlock (&1l) «=——» spin_lock (&1)

CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR ﬂ
RELEASE

spin unlock (&l) «=——» spin_lock (&1)

ACQUIRE
CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR
RELEASE
(LS, SS)

spin unlock (&l) «=——» spin_lock (&1)

ACQUIRE
(LL, LS) CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR ﬂ
RELEASE

spin unlock (&l) «=——» spin_lock (&1)

ACQUIRE
CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

CPUO CPU1L

spin_lock (&1)

CR ﬂ
RELEASE

spin unlock (&l) «=——» spin_lock (&1)

ACQUIRE
CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

CPUO CPU1L

sp;H:IVCk(&l)
CR ﬂ
RELEASE

spin unlock (&l) «=——» spin_lock (&1)

ACQUIRE
CR

spin_unlock (&1)

smp_store release(lock-val, 0) <-> cmpxchg acquire(lock-val, 0, LOCKED)

sSUSse

Acquire/Release Semantics

- Reqgular atomic/RMW calls have been fine grained for
archs that support strict acquire/release semantics.

cmpxchg () smp_load _acqguire()
cmpxchg_acqguire () smp_cond_acquire ()
cmpxchg release () smp_store_release ()

cmpxchg relaxed ()

- Currently only used by arm64 and PPC.
- LDAR/STLR

sSUSse

Acquire/Release Semantics

- These are minimal guarantees.

- Ensuring barriers on both sides of a lock operation will require
therefore, full barrier semantics:

smp_mb___before spinlock ()

smp_mb___after spinlock()

- Certainly not limited to locking.

- perf, IPI paths, scheduler, tty, etc.

Acquire/Release Semantics

- Busy-waiting on a variable that requires ACQUIRE

semantics:
CPUO CPU1
while (!done)

cpu_relax () ;
smp_store_release (done, 1);

smp_rmb () ;

Acquire/Release Semantics

- Busy-waiting on a variable that requires ACQUIRE

semantics:
CPUO CPU1
while (!done)

cpu_relax() ;
[LS] smp_store_release (done, 1);
smp_rmb () ; [LL]

Acquire/Release Semantics

- Busy-waiting on a variable that requires ACQUIRE

semantics:
CPUO CPU1
while (!done)
cpu_relax() ;
[LS] smp_store_release (done, 1);
smp_rmb () ; [LL]

smp_load _acqguire(!done) ;

Acquire/Release Semantics

- Busy-waiting on a variable that requires ACQUIRE
semantics:

CPUO CPU1
while (!done)
cpu_relax() ;
[LS] smp_store_release (done, 1);
smp_rmb () ; [LL]

- Fine-graining SMP batrriers while a performance
optimization, makes it harder for kernel programmers.

sSUSse

Concluding Remarks

- Assume nothing.
- Read memory-barriers.txt

- Use barrier pairings.

- Comment barriers.

Thank you.

SUSE

We adapt. You succeed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

