
– 71 –

Experiment 5:
Operating Modes, System Calls and Interrupts

This experiment further consolidates the programmer’s view of computer architecture. It
does this by giving you details of the ARM processor’s operating modes and exceptions.
This experiment also shows how you can interface to input/output devices using system
calls and interrupts, two types of exceptions found on the ARM processor.

Aims

This experiment aims to:

 teach you the ARM processor operating modes,

 show how system calls can be made and handled using the swi instruction,

 give details of external interrupts and how to service them, and

 illustrate how I/O interfacing can be done efficiently using interrupt service routines.

Preparation

It is important that you prepare for each laboratory experiment, so that you can use your
time (and your partner’s time) most effectively. For this particular experiment, you should
do the following before coming in to the Laboratory:

 read through this experiment in detail, trying to understand what you will be doing,

 quickly read through the relevant material from your lecture notes for this course,

 if you haven’t already done so, read through An Introduction to Komodo, which you can
find in an Appendix or on your CD-ROM,

 refresh your memory by quickly reading through Experiment 4 again, and

 skim through the DSLMU Microcontroller Board Hardware Reference Manual, paying par-
ticular attention to the description of the IRQ Status and IRQ Enable ports. You can find
this document in an Appendix or on your CD-ROM.

If you are keen (and you should be!), you could also:

 read through the Hardware Reference Manual in greater detail,

 look at the programming examples in the examples/intro directory on your CD-ROM, and

 type up or modify the necessary files in this experiment, to save time in class.

Getting Started

Once you arrive at the Laboratory, find a spare workbench and log into the Host PC. Next,
create a new directory for this experiment. Then, copy all of the files in the directory ~elec2041/
unsw/elec2041/labs-src/exp5 on the Laboratory computers into this new directory. You can
do all of this by opening a Unix command-line shell window and entering:

mkdir ~/exp5
cd ~/exp5
cp ~elec2041/cdrom/unsw/elec2041/labs-src/exp5/* .

Be careful to note the “.” at the end of the cp command!

If you are doing this experiment at home, you will not have a ~elec2041 directory, of course.
You should use the unsw/elec2041/labs-src/exp5 directory on your CD-ROM instead.

– 72 –

The ARM Processor Operating Modes

The ARM processor has seven processor operating modes, as shown in Table 1. Each oper-
ating mode is used for a particular purpose; only one mode is in use at any one time:

Mode Privileged Purpose

User No Normal operating mode for most programs (tasks)
Fast Interrupt (FIQ) Yes Used to handle a high-priority (fast) interrupt
Interrupt (IRQ) Yes Used to handle a low-priority (normal) interrupt
Supervisor Yes Used when the processor is reset, and to handle the software

interrupt instruction swi
Abort Yes Used to handle memory access violations
Undefined Yes Used to handle undefined or unimplemented instructions
System Yes Uses the same registers as User mode

Table 1: ARM Processor Operating Modes

Among other things, the operating modes shown in Table 1 define the registers that can be
used (also called the register map) and the operating privilege level.

The ARM processor has a simple privilege model: all modes are privileged apart from User
mode. Privilege is the ability to perform certain tasks that cannot be done from User mode.
For example, changing the operating mode is a privileged operation.

In a system with memory management, only privileged modes have access to certain areas
of the address space, such as memory used by the operating system, or to I/O devices. User
programs are then run from User mode, which does not have such privileges. This means
that such tasks cannot directly interfere with the hardware—a good thing when running
untrusted code. Furthermore, since User mode cannot change the operating mode, user
tasks cannot escape these restrictions.

Systems with memory management are not usually needed for an embedded environment;
this experiment will only deal with the User, FIQ, IRQ and Supervisor modes of operation.

The ARM processor has a total of 37 registers: 31 general-purpose registers (including the
Program Counter R15) and 6 status registers. These registers are shown in Figure 1:

General-purpose Registers and Program Counter
User System Fast Interrupt Interrupt Supervisor Abort Undefined

R0 R0 R0 R0 R0 R0 R0
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8 R8_fiq R8 R8 R8 R8
R9 R9 R9_fiq R9 R9 R9 R9
R10 R10 R10_fiq R10 R10 R10 R10
R11 R11 R11_fiq R11 R11 R11 R11
R12 R12 R12_fiq R12 R12 R12 R12

R13 (SP) R13 (SP) R13_fiq R13_irq R13_svc R13_abt R13_und
R14 (LR) R14 (LR) R14_fiq R14_irq R14_svc R14_abt R14_und
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

Program Status Registers

CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

Register indicates that the normal register used by User or System mode has been replaced by
an alternative register specific to the mode of operation.

Figure 1: ARM Processor Registers

– 73 –

As you can see from Figure 1, each processor mode has its own R13 and R14 registers. This
allows each mode to maintain its own stack pointer and return address. In addition, the
Fast Interrupt (FIQ) mode has additional registers: R8–R12. This means that when the ARM
processor switches into FIQ mode, the software does not need to save the normal R8–R12
registers, as FIQ mode has its own set that can be modified.

The Current Program Status Register (CPSR) is used to store condition code flags, interrupt
disable bits, the current processor mode and other status and control information. This
register is depicted in Figure 2:

31 30 29 28 27 24 23 8 7 6 5 4 0

N Z C V Undefined Undefined I F T Mode

Figure 2: The Current Program Status Register

The Current Program Status Register is defined in the following way:

 Bits 24–31 can be modified in any mode, and are used to store the condition code flags
(often just called flags). Only four condition code flags are available: N for Negative, Z
for Zero, C for Carry and V for Overflow; the other bits are undefined. The condition
code flags are set or cleared as a by-product of certain arithmetic instructions. For
example, “cmp r0,r1” sets the Z (Zero) flag if R0 and R1 are equal.

 Bits 6 and 7 (F and I respectively) are the interrupt disable bits: setting one of these bits
to 1 disables that interrupt; bit 6 disables the Fast Interrupt (FIQ), bit 7 disables the
normal Interrupt (IRQ). These bits can only be modified in a privileged mode.

 Bit 5 (the T bit) determines whether the processor runs in ARM state or in Thumb state.
Thumb state uses a different, more compact, instruction set when compared to ARM.
You must never set this bit; doing so will make the processor enter an unpredictable
state. This bit can only be modified in a privileged mode.

 Bits 0–4 set the processor mode; Table 2 shows the individual bit patterns needed to use
a particular mode. These bits can only be modified in a privileged mode.

 Bits 8–27 are undefined and reserved for future or more advanced ARM processors. You
should never alter the contents of these bits; instead, use a read-modify-write cycle (as
explained in Experiment 4) to preserve them. These bits can only be modified in a
privileged mode.

As mentioned above, bits 24–31, the condition code flags, can be modified in any mode.
Bits 0–23 can only be modified in a privileged mode (ie, any mode other than User mode).
Table 2 shows the individual bit patterns needed in bits 0–4 to use a particular mode:

Mode Bits Processor Mode

Bin Hex (Abbreviation)
Accessible Registers

10000 10 User (usr) PC, R14–R0, CPSR
10001 11 Fast Interrupt (fiq) PC, R14_fiq–R8_fiq, R7–R0, CPSR, SPSR_fiq

10010 12 Interrupt (irq) PC, R14_irq, R13_irq, R12–R0, CPSR, SPSR_irq

10011 13 Supervisor (svc) PC, R14_svc, R13_svc, R12–R0, CPSR, SPSR_svc

10111 17 Abort (abt) PC, R14_abt, R13_abt, R12–R0, CPSR, SPSR_abt

11011 1B Undefined (und) PC, R14_und, R13_und, R12–R0, CPSR, SPSR_und

11111 1F System (sys) PC, R14–R0, CPSR

Table 2: ARM Processor Modes

Please note that the five Saved Program Status Registers (SPSRs) have the same format as the
Current Program Status Register; these registers save the contents of CPSR when an excep-
tion occurs.

– 74 –

System Initialisation

When an ARM-based system is switched on, a large amount of its state is undefined. In
other words, the contents of volatile memory (ie, not including non-volatile storage such as
the Flash ROMs) and, more importantly, most of the registers in the processor itself, will
have random (undefined) values. However, two registers are well-defined at reset: the
Program Counter and the Current Program Status Register:

 The Program Counter PC (also called R15) is set to 0x00000000. This allows the proces-
sor to execute instructions at that address; most systems are designed in such a way
that the Flash ROM resides at address 0x00000000 at reset.

 The Current Program Status Register CPSR is set to 0x000000D3 (0b11010011 in binary).
This disables the Fast and normal Interrupts, selects the normal ARM state (instead of
Thumb state) and switches to Supervisor mode.

Once the ARM processor resets PC and CPSR, it usually begins executing code at the new
address in register PC (0x00000000). This code (usually called the boot code) preforms any
further initialisation as required. This includes setting up the various stack pointers (the
R13 registers in each mode), initialising the exception handlers (including those that handle
interrupts) and setting up any peripheral devices in the system. After doing all this, the
boot code usually enters User mode.

Understanding what the boot code must do in a real system is beyond the scope of this
course. However, in the Laboratory, the ARM processor under the Komodo ARM Environ-
ment gives you a “blank machine” in a system that does not require much initialisation. In
this environment, you can switch the processor from Supervisor mode to User mode (with
Fast and normal Interrupts disabled) by modifying the CPSR appropriately and branching to
the user code:

.set ARM_PSR_i, 0b10000000 ; I bit in CPSR/SPSR

.set ARM_PSR_f, 0b01000000 ; F bit in CPSR/SPSR

.set ARM_PSR_mode_usr, 0b10000 ; User mode

mov r14, #(ARM_PSR_i | ARM_PSR_f | ARM_PSR_mode_usr) ; 0b11010000 = 0xD0
msr cpsr, r14 ; CPSR = User mode, no interrupts
ldr pc, =User_code_start ; Load start address of user code into PC

By the way, note that the mov instruction uses the GNU Assembler to work out the bit pat-
tern needed to initialise the CPSR; the syntax to do so is very similar to C. In this case, the
expression uses the C “|” (“OR”) operator and evaluates to 0b10000000 OR 0b01000000 OR
0b10000, ie, 0b11010000.

Exceptions

During the ordinary flow of execution in a user program, the Program Counter usually
increases sequentially through the address space, with perhaps a branch here or there to
nearby labels, or with branch-and-links to subroutines and functions.

An exception causes this normal flow of execution to be diverted. Exceptions are generated
by sources internal or external to the processor. This allows the processor to handle events
generated by these sources; such events include:

 interrupts generated by some peripheral device,

 an attempt to execute an undefined or unimplemented instruction,

 a software-generated interrupt, via the swi instruction.

The ARM processor supports seven types of exceptions. These are listed in Table 3, along
with the processor mode that is used to handle it. When an exception occurs, the processor
branches to a fixed address that corresponds to that exception. This fixed address, called
the exception vector address, is located in the bottom 32 bytes of the memory map. These
32 bytes are called the exception vector table.

– 75 –

You will note, by looking at Table 3, that there is just enough room at each vector address
for one instruction (4 bytes). This is usually initialised to be a branch instruction or some-
thing like “ldr pc, [pc, #24]”.

Exception Type Processor Mode Vector Address
Reset Supervisor 0x00000000
Undefined instructions Undefined 0x00000004
Software Interrupt (swi) Supervisor 0x00000008
Prefetch Abort (instruction fetch memory abort) Abort 0x0000000C
Data Abort (data access memory abort) Abort 0x00000010
Interrupt (IRQ) Interrupt (IRQ) 0x00000018
Fast Interrupt (FIQ) Fast Interrupt (FIQ) 0x0000001C

Table 3: ARM Processor Exceptions

Handling an exception requires the processor state to be preserved: in general, the contents
of all registers (especially the registers PC and CPSR) must be the same after an exception as
they were before it. Imagine the chaos that would occur in your program if this was not
done correctly!

The ARM processor uses the additional (banked) registers associated with each processor
mode (as shown in Figure 1) to help save the processor state. To handle an exception, the
ARM processor:

1. copies the address of the next instruction (the return address), or the return address
plus some offset, into the appropriate LR register,

2. copies the CPSR into the appropriate SPSR,

3. sets the CPSR mode bits to the processor mode corresponding to the exception,

4. enforces ARM state by setting bit 5 (the T bit) of CPSR to zero,

5. possibly disables fast interrupts by setting bit 6 of CPSR to one (only for FIQ exceptions),

6. disables normal interrupts by setting bit 7 (the I bit) of CPSR to one, and

7. loads the address of the exception vector into the Program Counter PC.

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11

R15 (PC)
R14 (LR)

R13
R12

Usable
Registers

Hidden
Registers

R8_fiq
R9_fiq

R10_fiq
R11_fiq

R13_fiq
R12_fiq

CPSR

SPSR_fiq

User Mode

R0
R1
R2
R3
R4
R5
R6
R7

R8_fiq
R9_fiq

R10_fiq
R11_fiq

R15 (PC)
R14_fiq
R13_fiq
R12_fiq

Usable
Registers

Hidden
Registers

R8
R9
R10
R11

R13
R12

CPSR

FIQ Mode

SPSR_fiq

Exception

0x0000001C

R14_fiq R14 (LR)

FIQ mode

Copied to
Return address calculated and saved

Figure 3: Switching from User Mode to FIQ Mode on a Fast Interrupt Exception

At this point, the ARM processor executes the code at the exception vector address. Please
note that, for the duration of the exception (or, more correctly, while in that specific proces-
sor mode), the banked registers replace the ordinary ones. For example, while the processor

– 76 –

is in FIQ (Fast Interrupt) mode, the ordinary registers R8–R14 cannot be seen directly: only
the registers R8_fiq–R14_fiq can be seen. This is shown in Figure 3 on the previous page.

Once the exception handler does what is necessary to handle the exception, the handler:

1. moves the contents of register LR, or LR less some offset, into PC, and

2. copies SPSR back to CPSR.

Both of these steps can be done in one instruction. Doing so has the effect of returning to
the original task, running under the original processor mode and with the CPSR as it was
originally before the exception.

Software Interrupts

A software interrupt is a type of exception that is initiated entirely by software. On the ARM
processor, the relevant instruction that does this is swi. When this instruction is executed,
it causes the processor to switch into Supervisor mode and branch to the relevant exception
vector address, 0x00000008. In other words, swi causes an exception, but one that is fore-
seen by the program.

Software interrupts are useful because they allow a program running in User mode to switch
to a privileged mode; the code that handles the software interrupt can then do whatever is
needed on behalf of the user program. An operating system providing input/output rou-
tines is a classic example of this.

To the ARM processor, swi is just another type of exception. When the processor executes
this instruction, it:

1. copies the address of the next instruction following the swi into the LR_svc (R14_svc)
register. This return address is actually PC – 4; the swi instruction can be found at PC – 8,

2. copies the CPSR into SPSR_svc (the Supervisor mode SPSR),

3. sets the CPSR mode bits to Supervisor mode. This has the effect of “swapping in” R13_svc
and R14_svc and “swapping out” the previously-visible R13 and R14,

4. enforces ARM state by setting bit 5 (the T bit) of CPSR to zero,

5. disables normal interrupts by setting bit 7 (the I bit) of CPSR to one. This means that
normal interrupts cannot cause exceptions during the swi call, unless bit 7 is later set to
zero in the exception handler’s code. Fast interrupts are not disabled and can still occur;

6. loads the address of the exception vector, 0x00000008, into the Program Counter PC.

Once the software interrupt handler has finished its task, it returns control to the calling
program by:

1. moving the contents of register LR_svc (R14_svc) into PC, and

2. copying SPSR_svc back to CPSR.

The following single instruction performs both of these steps:

movs pc, lr ; Copy current LR to PC and copy current SPSR to CPSR

Note that the instruction is movs, not mov: the movs instruction automatically copies SPSR to
CPSR, but only when the destination register is PC (R15) and the instruction is executed in a
privileged mode. Question: What would happen if “mov pc, lr” was used instead of “movs
pc, lr”?

Question: Why must the two return steps be done using a single instruction? Why
can’t you do something like the following? What happens if you do?

str r0, [sp, #-4]! ; Save the value of R0 to the stack
mrs r0, spsr ; Copy current SPSR to R0
msr cpsr, r0 ; Copy R0 to CPSR
ldr r0, [sp], #4 ; Retrieve original value of R0 from the stack
mov pc, lr ; Copy current LR to PC

– 77 –

You can essentially treat swi as a fancy “bl 0x00000008” that not only branches-and-links
to 0x00000008, but also changes the processor mode and does some other things besides.

A Very Simple Software Interrupt Handler

The DSLMU Microcontroller Board in the Laboratory does not support memory management
and the associated protection of resources. In other words, all peripherals and memory can
be accessed equally freely in any processor mode, whether privileged or unprivileged.

For the purposes of this experiment, however, pretend that you cannot access the microcon-
troller’s I/O ports from User mode. In other words, pretend that you must switch to a
privileged mode to access the microcontroller’s Port A and so on.

Carefully examine the program contained in Figures 4–7. This program reimplements the
LED-flashing program that you have already met in Experiments 1 and 4 as a program that
uses the swi instruction. Please note that some of the comments have been removed to
conserve space; if possible, you should use kate to examine the files on your CD-ROM
instead:

 .set ARM_PSR_i, 0b10000000 ; I bit in CPSR/SPSR
 .set ARM_PSR_f, 0b01000000 ; F bit in CPSR/SPSR
 .set ARM_PSR_t, 0b00100000 ; T bit in CPSR/SPSR

 .set ARM_PSR_mode_mask, 0b11111 ; Processor modes mask
 .set ARM_PSR_mode_usr, 0b10000 ; User mode
 .set ARM_PSR_mode_fiq, 0b10001 ; Fast Interrupt mode
 .set ARM_PSR_mode_irq, 0b10010 ; Interrupt mode
 .set ARM_PSR_mode_svc, 0b10011 ; Supervisor mode
 .set ARM_PSR_mode_abt, 0b10111 ; Abort mode
 .set ARM_PSR_mode_und, 0b11011 ; Undefined mode
 .set ARM_PSR_mode_sys, 0b11111 ; System mode

 .set portA, 0x10000000 ; Microcontroller Port A address
 .set value1, 0b11111111 ; Value to turn the LEDs on
 .set value2, 0b00000000 ; Value to turn the LEDs off

Figure 4: Program header file header-v1.s

 .global _start ; "_start" is where the code starts running
 .extern main ; "main" is defined in another file
 .extern swi_handler ; "swi_handler" is also defined elsewhere
 .include "header-v1.s" ; Include various definitions

; --
; The following code will be placed into the ".zeropage" section, NOT into the
; ".text" section. The GNU Linker will place the ".zeropage" section at address 0x0.

 .section .zeropage, "awx" ; For code located at address 0x00000000

_start: ; Start of the entire program

; ARM processor exception vector table

ev00: b init ; Reset exception
ev04: nop ; Undefined Instruction exception
ev08: b swi_handler ; Software Interrupt exception
ev0C: nop ; Prefetch Abort exception
ev10: nop ; Data Abort exception
ev14: nop ; (Not used)
ev18: nop ; Interrupt exception
ev1C: nop ; Fast Interrupt exception

; --
; The following code will be placed into the ".ospage" section, NOT into the ".text"
; section. The GNU Linker will place the ".ospage" section at address 0x1000.

(Continued on the next page…)

– 78 –

(Continued from the previous page…)
 .section .ospage, "awx" ; For "operating system" code

init: ; Change to User mode using read-modify-write
 mrs ip, cpsr ; Get current value of CPSR into IP (R12)
 bic ip, ip, #ARM_PSR_mode_mask ; Mask out the bottom 5 bits
 orr ip, ip, #(ARM_PSR_i | ARM_PSR_f | ARM_PSR_mode_usr)
 ; Disable both interrupts, set User mode
 msr cpsr, ip ; Actually make the changes to CPSR

 b main ; Now in User mode; jump to the main program

 .end

Figure 5: Program source file boot-swi-v1.s

; --
; The following code will be placed into the ".ospage" section, NOT into the ".text"
; section. The GNU Linker will place the ".ospage" section at address 0x1000.

 .section .ospage, "awx" ; For "operating system" code

 .global swi_handler ; Make this label visible to other modules

swi_handler: ; Software Interrupt handler
 ; This handler runs in Supervisor mode
 strb r1, [r0] ; Write the byte in R1 to "protected port" R0
 movs pc, lr ; Return to caller (end of exception)

 .end

Figure 6: Program source file swi-v1.s

 .text ; Ordinary program code follows

 .include "header-v1.s" ; Include various definitions
 .global main ; Make this label visible to other modules

main: ; Main program, running in User mode
 ldr r0, =portA ; Load address of Port A into R0

main_loop:
 mov r1, #value1 ; R1 = value to turn the LEDs on
 swi ; Generate a software interrupt

 mov r1, #value2 ; R1 = value to turn the LEDs off
 swi ; Generate a software interrupt

 b main_loop ; Repeat forever (or until stopped)

 .end

Figure 7: Program source file flash-v1.s

You should note a few things about this program:

 The program has been written as a set of modules. Each file contains a section of code
that does just one thing. Doing this makes it easier to understand the complete pro-
gram. Thus, boot-swi-v1.s (Figure 5) provides the initialisation routines (“boot code”),
swi-v1.s (Figure 6) provides the software interrupt handler and flash-v1.s (Figure 7)
provides the main program.

 Important (“global”) constants have been placed in their own file, header-v1.s (Figure 4).
This file can be inserted into other source code files by using the .include assembler
directive. This directive is the assembly-language equivalent of #include in C.

 The instructions at labels ev00 to ev1C in Figure 5 form the ARM exception vector table,
stored at address 0x0. Notice ev08: this provides the branch to the swi handler; this
branch instruction is executed by the ARM processor as if it were the next instruction
after swi. The nop (“do nothing”) instruction simply means that some exceptions will
not be handled correctly at all. This is not recommended in real life, of course!

– 79 –

 Notice the four instructions at the label init in Figure 5: these instructions use a read-
modify-write cycle to change the CPSR to User mode. Although a read-modify-write
cycle is not strictly needed here, it is the recommended way of doing things; it makes it
easier to port your code to newer ARM processors at a later date. You should remember
from Experiment 4 that bic clears bits to zero and orr sets bits to one.

 A new assembler directive has been used: .section. This directive allows you to place
blocks of code into separate areas in the memory map. This program uses three such
areas (called sections): the standard .text section, the .zeropage section and the
.ospage section.

This last point is an important one to understand. Up until now, all of the assembly lan-
guage programs in these experiments have placed everything into just one section, .text.
This makes things quite simple: all of the code and data is placed together in memory; the
actual load address is determined by the GNU Linker (and is 0x8000 by default).

This program is different, however: some parts of the program simply must be placed at
address 0x0, as that is where the ARM processor expects them to be. Other parts are logi-
cally part of what might later become an “operating system”; ideally, these should be placed
into an area of memory that is separate from the ordinary User mode program.

All this can be done with sections. A section is simply an area of memory that has a name;
that section can be loaded at a particular address, as determined by the programmer or the
GNU Linker. In the case of this program, the GNU Linker will place the .zeropage section at
address 0x0, the .ospage section at address 0x1000 and the .text section at address
0x8000.

Program sections are a somewhat advanced topic; Figure 8 should help you understand
more clearly how the different blocks of code are placed into memory. Note in particular
how the two blocks of code, Code B and Code C, are merged into the single .ospage section:

Source Code Files

 .section .zeropage
_start:
 Code A

 .section .ospage
init:
 Code B

boot-swi-v1.s

 .section .ospage
swi_handler:
 Code C

swi-v1.s

 .text
main:
 Code D

flash-v1.s

.text
Code D

flash-v1.o

swi-v1.o

.ospage
Code C

boot-swi-v1.o

.ospage
Code B

.zeropage
Code A

.text
(0x8000)

Code D

.ospage
(0x1000)

Code B
Code C

.zeropage
(0x0)

Code A

flash-v1.elf

Relocatable Object Files

Executable File

Memory

Code A

Code C
Code B

Code D

0x0

0x1000

0x8000

Assembling
arm-elf-as

Linking
arm-elf-ld

Running
kmd

Figure 8: From Source Code to Memory for the program flash-v1.elf

Creating the executable flash-v1.elf requires a number of steps, as shown in Figure 8. The
first is to assemble the source code files. This is very similar to what you have already been
doing:

arm-elf-as -marm7tdmi --gdwarf2 boot-swi-v1.s -o boot-swi-v1.o
arm-elf-as -marm7tdmi --gdwarf2 swi-v1.s -o swi-v1.o
arm-elf-as -marm7tdmi --gdwarf2 flash-v1.s -o flash-v1.o

– 80 –

The second step is to link all of the .o object files into an executable. Doing this determines
where each section will eventually appear in memory:

arm-elf-ld misc.ls boot-swi-v1.o swi-v1.o flash-v1.o -o flash-v1.elf

Notice that an additional file was specified on the command line: misc.ls. This file contains
directives that tell the GNU Linker to place the .zeropage and .ospage sections in the right
places; although this file is essential, you don’t need to understand its contents to use it. By
the way, if you are wondering how the GNU Linker “knows” how to place the .text section
at 0x8000, look at the file /usr/local/arm-elf/lib/ldscripts/armelf.x and satisfy your curiosity!

Task 1: Single-stepping Through the Program

Assemble and link the program flash-v1.elf using the commands listed above. If you prefer,
you can use the make command instead; the make-file is called flash-v1.make, and can be
used by typing:

make -f flash-v1.make

Use the Komodo debugger to download the program to the DSLMU Microcontroller Board.
Single-step through the program, noting in particular when the processor mode changes. Be
ready to explain what is happening to the Laboratory assessor.

Checkpoint 1: ... Signature:

Allowing Multiple System Call Functions

You should have noticed by now that the software interrupt handler in Figure 6 can only
perform one task. This is adequate as an example from which to learn, but is unrealistic in
the “real world”. For example, an operating system needs to provide a large number of
services to its clients. The ARM processor only provides a single swi instruction, however.
This means that the software interrupt handler must be written in such a way that it can
determine which service the client (caller) requires and act accordingly. One common tech-
nique for doing this is to use a particular register, such as R0, as a function number speci-
fier. This technique is illustrated in Figure 9:

swi_handler: ; Software Interrupt handler
 ; R0 = SWI function number

 cmp r0, #num_swi_funcs ; Check if R0 >= num_swi_funcs
 bhs swi_outofrange ; If so, this indicates an error

 cmp r0, #0 ; Does the client want function 0?
 beq swi_f0 ; Yes, handle it in swi_f0
 cmp r0, #1 ; Does the client want function 1?
 beq swi_f1 ; Yes, handle it in swi_f1

 ... ; and so on... By the way, each "..."
 ; can represent multiple lines of code

swi_f0: ... ; Code to implement SWI function 0
 b swi_end ; Return to the caller

swi_f1: ... ; Code to implement SWI function 1
 b swi_end ; Return to the caller

swi_end: ; Return to the client program
 ... ; Whatever needs to be done...
 movs pc, lr ; Restore PC and CPSR

Figure 9: A Typical Multi-function Software Interrupt Handler

– 81 –

The program flash-v2.elf in Figures 10–14 implements two software interrupt functions: one
to turn the LEDs on and off, the other to pause the program in a delay loop. Please note
that the only difference between boot-swi-v2.s in Figure 12 and boot-swi-v1.s in Figure 5 is
that the line containing the .include assembler directive has changed:

 .set swi_num_funcs, 2 ; Number of SWI functions
 .set swi_set_LEDs, 0 ; Function 0: set the LEDs
 .set swi_delay, 1 ; Function 1: delay the program

 .set value1, 0b11111111 ; Value to turn the LEDs on
 .set value2, 0b00000000 ; Value to turn the LEDs off
 .set waitval, 10000 ; Number of loops to wait

Figure 10: Program header file header-v2-pub.s

 .set ARM_PSR_i, 0b10000000 ; I bit in CPSR/SPSR
 .set ARM_PSR_f, 0b01000000 ; F bit in CPSR/SPSR

 .set ARM_PSR_mode_mask, 0b11111 ; Processor modes mask
 .set ARM_PSR_mode_usr, 0b10000 ; User mode

 .set portA, 0x10000000 ; Microcontroller Port A address

Figure 11: Program header file header-v2-int.s

 .global _start ; "_start" is where the code starts running

 .extern main ; "main" is defined in another file
 .extern swi_handler ; "swi_handler" is also defined elsewhere

 .include "header-v2-int.s" ; Include various definitions

; --
; The following code will be placed into the ".zeropage" section, NOT into the
; ".text" section. The GNU Linker will place the ".zeropage" section at
; address 0x0.

 .section .zeropage, "awx" ; For code located at address 0x00000000

_start: ; Start of the entire program

; ARM processor exception vector table

ev00: b init ; Reset exception
ev04: nop ; Undefined Instruction exception
ev08: b swi_handler ; Software Interrupt exception
ev0C: nop ; Prefetch Abort exception
ev10: nop ; Data Abort exception
ev14: nop ; (Not used)
ev18: nop ; Interrupt exception
ev1C: nop ; Fast Interrupt exception

; --
; The following code will be placed into the ".ospage" section, NOT into the
; ".text" section. The GNU Linker will place the ".ospage" section at address
; 0x1000.

 .section .ospage, "awx" ; For "operating system" code

init: ; Change to User mode using read-modify-write
 mrs ip, cpsr ; Get current value of CPSR into IP (R12)
 bic ip, ip, #ARM_PSR_mode_mask ; Mask out the bottom 5 bits
 orr ip, ip, #(ARM_PSR_i | ARM_PSR_f | ARM_PSR_mode_usr)
 ; Disable both interrupts, set User mode
 msr cpsr, ip ; Actually make the changes to CPSR

 b main ; Now in User mode; jump to the main program

 .end

Figure 12: Program source file boot-swi-v2.s

– 82 –

 .section .ospage, "awx" ; For "operating system" code

 .include "header-v2-pub.s" ; Include various public definitions
 .include "header-v2-int.s" ; Include various internal definitions

 .global swi_handler ; Make this label visible to other modules

swi_handler: ; This code runs in Supervisor mode

; R0 contains the SWI function code. A slight optimisation: no check is done
; for out-of-range errors here, as the code simply "falls through" to the error
; handler if need be, which then "falls through" to the exit code.

 cmp r0, #swi_set_LEDs ; Client wants to set the LEDs?
 beq swi_set_LEDs_func ; Yes, handle it
 cmp r0, #swi_delay ; Client wants to delay the program?
 beq swi_delay_func ; Yes, handle it

swi_outofrange: ; Out of range error handler
 mov r0, #0xFFFFFFFF ; Signal an error by returning 0xFFFFFFFF

swi_end: ; Return to the client program
 movs pc, lr ; Restore PC and CPSR

swi_set_LEDs_func: ; Function 0: Set the LEDs
 ldr r0, =portA ; Load "protected port" address into R0
 strb r1, [r0] ; Set the LEDs to the value in R1
 b swi_end ; Return to the caller

swi_delay_func: ; Function 1: Delay the program
 cmp r1, #0 ; R1 = number of loops to delay (unsigned)
 beq swi_end ; If R1 = 0, no loops, just end
swi_delay_func_1:
 subs r1, r1, #1 ; Decrement the number of loops to go
 beq swi_end ; Return to caller if finished
 b swi_delay_func_1 ; Otherwise, repeat the loop

 .end

Figure 13: Program source file swi-v2.s

 .text ; Ordinary program code follows

 .include "header-v2-pub.s" ; Include various public definitions
 .global main ; Make this label visible to other modules

main: ; Main program; this code runs in User mode

main_loop:
 mov r0, #swi_set_LEDs ; Request the SWI handler to set the LEDs
 mov r1, #value1 ; R1 = value to turn the LEDs on
 swi ; Generate a software interrupt

 mov r0, #swi_delay ; Request the SWI handler to delay program
 ldr r1, =waitval ; R1 = number of delay loops
 swi ; Generate a software interrupt

 mov r0, #swi_set_LEDs ; Request the SWI handler to set the LEDs
 mov r1, #value2 ; R1 = value to turn the LEDs off
 swi ; Generate a software interrupt

 mov r0, #swi_delay ; Request the SWI handler to delay program
 ldr r1, =waitval ; R1 = number of delay loops
 swi ; Generate a software interrupt

 b main_loop ; Repeat forever (or until stopped)

 .end

Figure 14: Program source file flash-v2.s

Please note that the actual implementation of the software interrupt handler in Figure 13 is
slightly different from the “typical” example in Figure 9. The main change is that a range

– 83 –

check is not performed; an illegal value in R0 simply will not match any of the cmp compari-
son instructions and will thus “fall through” to the error handler. This is a reasonably
common way of writing this style of dispatch handling code.

Another difference that you should have noticed is that it is now the software interrupt
handler that loads the address of Port A, not the main program. This is a recommended
practice; that way, only the “operating system” (swi handler, in this case) needs to know
how “set the LEDs” works. The user program can be blissfully unaware of the implementa-
tion details: all it has to do is call the appropriate swi service. Abstraction (ie, separating
the interface from the implementation) is always a Good Thing!

In this program, abstraction is further enhanced by splitting the original single header file
into two. Thus, the file header-v2-pub.s (Figure 10) now provides the public interface (ie,
everything the user program needs to know), and header-v2-int.s (Figure 11) provides the
internal implementation-specific details that only the swi handler and boot code needs.

Task 2: Stepping Through Multiple System Calls

Assemble and link the program flash-v2.elf. You may use the following command lines:

arm-elf-as -marm7tdmi --gdwarf2 boot-swi-v2.s -o boot-swi-v2.o
arm-elf-as -marm7tdmi --gdwarf2 swi-v2.s -o swi-v2.o
arm-elf-as -marm7tdmi --gdwarf2 flash-v2.s -o flash-v2.o

arm-elf-ld misc.ls boot-swi-v2.o swi-v2.o flash-v2.o -o flash-v2.elf

Alternatively, simply type “make -f flash-v2.make”.

Use the Komodo debugger to download the program to the DSLMU Microcontroller Board.
Make sure you press the Reset button within Komodo before you start running the program!
Step through the program, noting in particular when the processor mode changes. Demon-
strate your flashing LEDs to the Laboratory assessor.

Checkpoint 2: ... Signature:

Note: the advantage of passing the swi function number in a general-purpose regis-
ter, such as in R0, is that it makes writing the software interrupt handler a little eas-
ier. However, it also “wastes” a register that could have been used for some other
purpose.

An alternative technique is to use a numbered swi call. This utilises the fact that the
swi instruction can encode an optional 24-bit number; this number is ignored by the
ARM processor. You can retrieve the number by decoding the swi instruction; this
instruction always has the hexadecimal format yFnnnnnn, where y is the condition
code and nnnnnn is the desired number. For example:

swi 0x123456

is encoded as 0xEF123456. You can use code similar to the following within your
software interrupt handler to retrieve the number 0x123456:

ldr ip, [lr, #-4] ; Retrieve the "swi" instruction
bic ip, ip, #0xFF000000 ; Mask off the top 8 bits

You can now use the value in register IP (R12) instead of the previous method of
using R0. Of course, you might want to save R12 to the stack before using it in this
fashion. Just remember to restore it afterwards…

– 84 –

Using Jump Tables

The method shown in Figure 9 is not particularly suitable for handling a large number of
software interrupt calls. It is simply not efficient to check for the function number for each
and every case: imagine if there are thousands of functions! A far more efficient way of
doing things is to use a jump table. This method is shown in Figure 15:

swi_handler: ; Software Interrupt handler
 ; R0 = SWI function number

 cmp r0, #num_swi_funcs ; Check if R0 >= num_swi_funcs
 bhs swi_outofrange ; If so, this indicates an error

 adr ip, swi_jump_table ; Register IP = address of jump table
 ldr pc, [ip, r0, lsl #2] ; Load PC with the value stored at address
 ; IP + R0 * 4; ie, jump to the code pointed
 ; to by the value stored at IP + R0 * 4

swi_jump_table: ; Table of addresses for the SWI functions
 .word swi_f0 ; for function 0
 .word swi_f1 ; for function 1
 ... ; and so on for all other functions. Note:
 ; each "..." can stand for multiple lines

swi_f0: ... ; Code to implement SWI function 0
 b swi_end ; Return to the caller

swi_f1: ... ; Code to implement SWI function 1
 b swi_end ; Return to the caller

swi_end: ; Return to the client program
 ... ; Whatever needs to be done...
 movs pc, lr ; Restore PC and CPSR

Figure 15: Using a Jump Table to Handle SWI Functions

The code that actually implements the jump table (also called the dispatch table) with error
checking is contained in the four instructions at swi_handler:

cmp r0, #num_swi_funcs ; Register R0 must be between 0 and
bhs swi_outofrange ; num_swi_funcs-1 inclusive

adr ip, swi_jump_table ; Load address of swi_jump_table into IP
ldr pc, [ip, r0, lsl #2] ; and jump to the code pointed to by the
 ; value stored at IP + R0 * 4

Note that most of the work is done by the ldr instruction: it takes the function number in
register R0 and shifts it to the left by 2 bits (ie, multiplies it by 4). This gives a value that
can be used as a word offset into the swi_jump_table table. Next, the instruction adds this
word offset to the address of the table (which has been previously loaded into register IP, ie,
R12): this gives IP + R0 × 4. Finally, the ldr instruction loads the word stored at IP + R0 × 4
into register PC; this has the effect of jumping to the code handling that function number.

The four instructions shown above are still slightly inefficient in that they use an additional
register, IP. The following three instructions can replace them; they rectify this inefficiency,
at the cost of requiring the jump table to be stored directly after them:

cmp r0, #num_swi_funcs ; Check that R0 is in the correct range
ldrlo pc, [pc, r0, lsl #2] ; If it is, jump to code pointed to by the
 ; value stored at PC + R0 * 4
b swi_outofrange ; Otherwise, jump to the error handler
 ; Jump table MUST appear at this point

These three instructions work by exploiting an idiosyncrasy of the ARM instruction architec-
ture: at the point where the ldrlo (“load if unsigned less-than”) instruction is executed, the
value in register PC is the address of the instruction plus eight. And in this code, PC + 8
happens to be the address of the jump table.

– 85 –

Note: By convention, the ARM Thumb Procedure Call Standard described in Experi-
ment 3 applies to software interrupt calls as well. In other words, the swi handler
should follow the ATPCS to know where to expect its parameters and return its
results, to preserve the contents of the appropriate registers, to maintain the stack
frame and so on.

Task 3: Using a Jump Table in Practice

Write a new version of the function swi_handler so that it uses a jump table; call your new
source code file swi-jt.s (you can use the file swi-v2.s as a basis for this new file). You do not
need to modify any other source code files. Compile your program using the following
command lines:

arm-elf-as -marm7tdmi --gdwarf2 boot-swi-v2.s -o boot-swi-v2.o
arm-elf-as -marm7tdmi --gdwarf2 swi-jt.s -o swi-jt.o
arm-elf-as -marm7tdmi --gdwarf2 flash-v2.s -o flash-v2.o

arm-elf-ld misc.ls boot-swi-v2.o swi-jt.o flash-v2.o -o flash-jt.elf

Alternatively, simply type “make -f flash-jt.make”. In either case, the resulting execu-
table is called flash-jt.elf.

Use the Komodo debugger to download the program to the DSLMU Microcontroller Board.
Make sure you press the Reset button within Komodo before you start running the program!
Step through the program, noting in particular when the processor mode changes. Be ready
to explain how your code works to the Laboratory assessor.

Checkpoint 3: ... Signature:

Hardware Interrupts

Hardware interrupts are a mechanism that allows an external signal (called an interrupt
request, or IRQ for short) to interrupt the normal execution of code in a processor. If a
processor honours the interrupt request, it suspends whatever it is currently running and
jumps to some other code located at a predetermined fixed address; this “other code” is
called the interrupt service routine. In effect, it is as if the processor had inserted a branch
instruction between two instructions of whatever it had been running up to that point.

The reason interrupts are useful is that it allows the processor to handle peripherals in the
most efficient manner. Without interrupts, the processor would have to check each input/
output device periodically to see if that device needed attention. This method, called poll-
ing, wastes much time that could have been used to do something more useful. With inter-
rupts, on the other hand, the input/output device can signal the processor to indicate that it
needs attention; at other times, the processor can simply ignore the device.

The following analogy may help you better understand interrupts: think of the humble tele-
phone. If the telephone did not have a bell (or any other indicator), you would have to pick
up the tube every few minutes to see if someone was calling you. In other words, you would
have to poll the telephone—an extremely inefficient use of your time! And there would
always be the possibility that you would miss an important call while doing something else.
On the other hand, a telephone with an audible bell would ring every time someone tried to
call you. In other words, the bell would interrupt whatever you were doing at the time; you
would then pick up the tube to “service the call” at that time. Using this method, you would
not need to poll the telephone every few minutes. The result: more work can be done!

– 86 –

The following are a few examples where interrupts can be used:

 For input. Real-world input devices are often irregular and unpredictable in their timing.
Interrupts allow the processor to read the input from such devices, such as the input
generated by a user pressing a key or moving the mouse.

 For waiting. Real-world input/output devices are much slower than the processor; an 8-
page-per-minute laser printer might be well over 25,000,000 times slower than the
Pentium IV processor driving it! Interrupts allow the device to indicate that it is now
ready to receive more data.

 For timing. An external timer/counter generates a fixed-frequency timing signal that can
be used to provide a regular source of interrupts. Modern operating systems use these
interrupts to make sure that all tasks are allocated a fair share of processor time.

Task 4: Polling the Push-button Switches

Examine the source code in Figure 16 and Figure 17; this program uses polling to determine
whether push-button switches S2 and/or S3 are being pressed and, if so, lights one or the
other side of the on-board LEDs:

 .set iobase, 0x10000000 ; Base of Microcontroller I/O space
 .set portA, 0x00 ; Microcontroller Port A offset
 .set portB, 0x04 ; Microcontroller Port B offset

 .set portB_pbs2, 0b10000000 ; Port B bit 7 = Push-button switch S2
 .set portB_pbs3, 0b01000000 ; Port B bit 6 = Push-button switch S3

 .set left_leds, 0b00000111 ; Value to turn on the left LEDs
 .set right_leds, 0b01110000 ; Value to turn on the right LEDs

Figure 16: Program header file header-v3.s

 .include "header-v3.s" ; Include definitions needed for this program

 .text ; Executable code follows

_start: .global _start ; "_start" is required by the linker
 .global main ; "main" is our main program

 b main ; Start running the main program

main: ; Entry to the function "main"
 ldr r0, =iobase ; R0 = base of the Microcontroller I/O space
 mov r2, #left_leds ; Use R2 when turning on the left set of LEDs
 mov r3, #right_leds ; Use R3 when turning on the right set of LEDs

poll_loop:
 ldrb r1, [r0, #portB] ; Read the microcontroller's Port B

 tst r1, #portB_pbs2 ; Check if push-button S2 is pressed
 strneb r2, [r0, #portA] ; If it is, turn on the left LEDs

 tst r1, #portB_pbs3 ; Check if push-button S3 is pressed
 strneb r3, [r0, #portA] ; If it is, turn on the right LEDs

 b poll_loop ; Do this forever (or until stopped)

 .end

Figure 17: Program source file pb-poll.s

Assemble and link this program as usual; the easiest way to do so is to use the make-file pb-
poll.make by typing “make -f pb-poll.make”. Use the Komodo debugger to download the
resulting program pb-poll.elf to the DSLMU Microcontroller Board and to run it. Verify that
pressing the push-buttons S2 and/or S3 on the Expansion Board turns on the on-board
LEDs. Be ready to show and explain your running program to the Laboratory assessor.

– 87 –

Hints: The tst (“bitwise test”) instruction is very similar to the ands instruction; the only
difference is that tst discards the logical result of the AND operation and only changes the
condition code flags. The strneb instruction is “store byte if not equal”.

Question: What happens when both S2 and S3 are pressed? Is there any moment when all
six LEDs are turned on at the same time? Why or why not?

Checkpoint 4: ... Signature:

Hardware Interrupts on the ARM Processor

The ARM processor core provides two signals that are used by peripherals to request inter-
rupts: the Interrupt signal nIRQ and the Fast Interrupt signal nFIQ; both of these signals are
active-low and level-sensitive. Pulling one of these signals low generates the corresponding
processor exception, as shown in Table 3—as long as that interrupt has not been disabled in
the Current Program Status Register, as explained on page 73.

The Fast Interrupt request is designed to handle high-priority and/or high-speed peripherals
in the least possible time. The following factors make this possible:

 The nFIQ signal has a higher priority than nIRQ. This means that if both signals are
pulled low, the fast interrupt is serviced first.

 Servicing a Fast Interrupt request causes ordinary interrupts to be disabled in the CPSR
(see page 73 for an explanation of the I bit). Thus, an ordinary interrupt will not pre-
empt (interrupt) the fast interrupt handler. (Naturally, this does not apply if the fast
interrupt handler re-enables ordinary interrupts by setting the I bit to zero in CPSR).

 The Fast Interrupt processor mode has five additional registers (when compared with
other processor modes). These registers, R8_fiq–R12_fiq, can be used to store the status
of the handler between FIQ exceptions; it also means that the handler does not need to
save the user’s R8–R12 registers.

 The FIQ exception vector occupies the last entry in the exception vector table, as shown
in Table 3 on page 75. This means that the code for the fast interrupt handler may be
placed directly at address 0x0000001C without the need for an intermediate branch
instruction with its associated delays.

The ARM processor handles requests for interrupts by generating an exception of the corre-
sponding type, assuming the relevant interrupt has not been disabled in the CPSR. Thus, a
Fast Interrupt request would generate a Fast Interrupt exception, and an ordinary Interrupt
request would generate an Interrupt exception. You should reread page 75 onwards to see a
list of steps taken by the processor to handle any exception.

In particular, assume that the nIRQ signal has just been asserted and that bit 7 (the I bit) in
CPSR is set to zero. This being the case, the ARM processor waits until the current instruc-
tion has finished executing, then:

1. copies the address of the next instruction to be executed, plus 4, into the LR_irq register.
This means that LR_irq now points to the second instruction beyond the point of the
interrupt request;

2. copies the CPSR into SPSR_irq (the Interrupt mode SPSR),

3. sets the CPSR mode bits to Interrupt mode. This has the effect of “swapping in” R13_irq
and R14_irq and “swapping out” the previously-visible R13 and R14,

4. enforces ARM state by setting bit 5 (the T bit) of CPSR to zero,

5. disables normal interrupts by setting bit 7 (the I bit) of CPSR to one. This means that
further normal interrupts will not cause Interrupt exceptions to be generated, unless

– 88 –

bit 7 is later set to zero in the exception handler’s code. Fast interrupts are not disabled
and can still occur; and

6. loads the address of the Interrupt exception vector, 0x00000018, into the PC register.
This will usually contain a branch instruction to the actual handler’s code.

Essentially, the net effect of handling the Interrupt exception is as if the ARM processor
inserted an “exception procedure call” into the instruction stream.

Once the interrupt handler (also called the interrupt service routine) has finished its task, it
returns to whatever the processor was doing before by:

1. moving the contents of register LR_irq (R14_irq) less 4 into PC, and

2. copying SPSR_irq back to CPSR.

The following single instruction performs both of these steps:

subs pc, lr, #4 ; Copy LR_irq-4 to PC and copy current SPSR to CPSR

Note that the instruction is subs, not sub: the subs instruction automatically copies SPSR to
CPSR, but only when the destination register is PC (R15) and the instruction is executed in a
privileged mode.

The ARM processor handles Fast Interrupt exceptions in much the same way as ordinary
Interrupt exceptions. The differences are that a different set of registers are swapped in
and out, that both normal and fast interrupts are disabled (ie, both bits 6 and 7 of CPSR are
set to one), and that the exception vector address is 0x0000001C. See Figure 3 on page 75
for a visual representation of how the processor handles this type of exception.

Interrupts on the DSLMU Microcontroller Board

Two interrupt request signals is almost never enough for all of the hardware present in an
ARM-based system. For this reason, most systems (including the DSLMU Microcontroller
Board) provide an interrupt controller. This device controls whether other peripherals can
interrupt the ARM processor or not. Essentially, the interrupt controller acts as a large
AND-OR gate, as shown in Figure 18:

7
6
5
4
3
2
1
0

IRQ
Status

Internal
Bus

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Switch S2

Switch S3

Virtex-E IRQ

Spartan-XL IRQ

IRQ
Enable

from other internal devices

to similar
AND gates

to similar
AND gates

from similar
AND gates

Interrupt Controller in Microcontroller

ARM Processor Core

CPSR
7

n
IR

Q

Figure 18: Interrupt Controller on the DSLMU Microcontroller Board

As shown in Figure 18, the interrupt controller on the DSLMU Microcontroller Board has two
8-bit ports: the IRQ Status port and the IRQ Enable port. The IRQ Status port, at address
0x10000018, indicates whether or not peripherals are trying to interrupt the ARM proces-
sor. The IRQ Enable port, at address 0x1000001C, controls whether or not those peripherals

– 89 –

are actually allowed to interrupt the processor. These ports are described in detail in the
DSLMU Microcontroller Board Hardware Reference Manual; you can find this document in an
Appendix or on your Companion CD-ROM.

The bit definitions for the IRQ Status and IRQ Enable ports are shown in Table 4:

Bit Mode Function

7 R/W Push-button switch S2 on the Expansion Board
6 R/W Push-button switch S3 on the Expansion Board
5 R/W Serial port transmitter ready
4 R/W Serial port receiver ready
3 — (Reserved)
2 R/W Xilinx Virtex-E interrupt request
1 R/W Xilinx Spartan-XL interrupt request
0 R/W Timer Compare interrupt request

Table 4: IRQ Status and IRQ Enable Ports Bit Definitions

Note that a peripheral will only be allowed to interrupt the ARM processor if its corre-
sponding bit is enabled in the IRQ Enable port and normal interrupts are enabled by clearing
the I bit in the Current Processor Status Register. For example, pressing push-button switch
S3 will set bit 6 of the IRQ Status port to 1; this happens whether or not interrupts are
enabled. However, an interrupt will only be generated for this switch if the bit 6 of the IRQ
Enable port is set to 1 and bit 7 (the I bit) of CPSR is set to 0.

You should note that both Fast and normal Interrupts are disabled when the processor is
reset. This is because the hardware is almost always in an undefined state when the system
is initialised, and so may generate spurious (unwanted) interrupts. Once the boot code has
set up the hardware, it may enable the interrupts by setting bits 6 and 7 of CPSR to zero.

Once the ARM processor has generated an Interrupt exception, the interrupt service routine
must acknowledge the interrupt. In other words, the interrupt handler code must clear the
appropriate bit in the IRQ Status port. If this is not done, the peripheral responsible for the
interrupt will continue to request attention, causing another exception to be generated as
soon as interrupts are re-enabled.

Interrupts in Practice: the Push-button Switches

Carefully examine the program pb-irq-v1.elf shown in Figures 19–22. This program does the
same thing as the program in Task 4, except that it uses an interrupt handler to do its work.
(Remember, you should use kate to examine the files on your CD-ROM if at all possible, as
many comments have been removed from these figures to conserve paper):

 .set ARM_PSR_i, 0b10000000 ; I bit in CPSR/SPSR
 .set ARM_PSR_f, 0b01000000 ; F bit in CPSR/SPSR

 .set ARM_PSR_mode_mask, 0b11111 ; Processor modes mask
 .set ARM_PSR_mode_usr, 0b10000 ; User mode

 .set iobase, 0x10000000 ; Base of Microcontroller I/O space
 .set portA, 0x00 ; Microcontroller Port A offset
 .set portB, 0x04 ; Microcontroller Port B offset
 .set irq_status, 0x18 ; IRQ Status port offset
 .set irq_enable, 0x1C ; IRQ Enable port offset

 .set irq_pbs2, 0b10000000 ; IRQ ports bit 7 = Push-button S2
 .set irq_pbs3, 0b01000000 ; IRQ ports bit 6 = Push-button S3

 .set left_leds, 0b00000111 ; Value to turn on the left LEDs
 .set right_leds, 0b01110000 ; Value to turn on the right LEDs

Figure 19: Program header file header-v3.s

– 90 –

 .global _start ; "_start" is where the code starts running

 .extern main ; "main" is defined in another file
 .extern swi_handler ; "swi_handler" is also defined elsewhere

 .include "header-v3.s" ; Include various definitions

; --

 .section .zeropage, "awx" ; For code located at address 0x00000000

_start: ; Start of the entire program

; ARM processor exception vector table

ev00: b init ; Reset exception
ev04: nop ; Undefined Instruction exception
ev08: nop ; Software Interrupt exception
ev0C: nop ; Prefetch Abort exception
ev10: nop ; Data Abort exception
ev14: nop ; (Not used)
ev18: b irq_handler ; Interrupt exception
ev1C: nop ; Fast Interrupt exception

; --

 .section .ospage, "awx" ; For "operating system" code

init: ; Initialise hardware and change to User mode

 ldr r0, =iobase ; R0 = base of I/O space
 mov r1, #(irq_pbs2 | irq_pbs3) ; R1 = enable IRQs mask for S2/S3
 strb r1, [r0, #irq_enable] ; Actually enable the IRQs

 mrs ip, cpsr ; Get current value of CPSR into IP (R12)
 bic ip, ip, #(ARM_PSR_i | ARM_PSR_f | ARM_PSR_mode_mask)
 ; Mask out bottom 5 bits. Also clear I and F
 ; bits; this enables the interrupts
 orr ip, ip, #ARM_PSR_mode_usr ; Set User mode
 msr cpsr, ip ; Actually make the changes to CPSR

 b main ; Now in User mode; jump to the main program

 .end

Figure 20: Program source file boot-pbirq-v1.s

 .section .ospage, "awx" ; For "operating system" code

 .include "header-v3.s" ; Include definitions needed for this program

 .global irq_handler ; Make this label visible to other modules

irq_handler: ; This code runs in Interrupt mode

 ldr r3, =iobase ; R3 = base of Microcontroller I/O space
 ldrb r0, [r3, #irq_status] ; Read the IRQ Status register into R0

 tst r0, #irq_pbs2 ; Check if push-button S2 generated the IRQ,
 ; ie, is currently being pressed
 movne r1, #left_leds ; If it is, prepare to turn on the left LEDs
 strneb r1, [r3, #portA] ; Now actually do so

 tst r0, #irq_pbs3 ; Check if push-button S3 generated the IRQ
 movne r1, #right_leds ; If it did, prepare to turn on the right LEDs
 strneb r1, [r3, #portA] ; Now actually do so

 bic r1, r0, #(irq_pbs2 | irq_pbs3) ; Clear the IRQs for S2 and S3
 strb r1, [r3, #irq_status] ; Acknowledge the interrupts

 subs pc, lr, #4 ; Return to whatever the processor was doing
 ; at the time of the interrupt

 .end

Figure 21: Program source file pb-irq-v1.s

– 91 –

 .text ; Ordinary program code follows

 .global main ; Make this label visible to other modules

main: ; Main program, running in User mode
 mov r0, #0 ; Initialise a trivial counter in R0

count_loop: ; Main program loop
 add r0, r0, #1 ; Increment the counter; this gives the main
 ; program something to do...
 nop ; Waste a machine cycle doing nothing
 b count_loop ; Do this forever (or until stopped)

 .end

Figure 22: Program source file null-main.s

You should note a few things about this program:

 The program is written as a set of modules to make it easier to understand. In particu-
lar, boot-pbirq-v1.s (Figure 20) contains the initialisation routines, pb-irq-v1.s (Figure 21)
contains the interrupt handler and null-main.s (Figure 22) contains the main program.

 The instructions at labels ev00 to ev1C in boot-pbirq.v1.s form the ARM exception vector
table that is located at address 0x0.

 The first three instructions at the label init initialise the interrupt controller to allow
the push-button switches S2 and S3 to potentially interrupt the ARM processor. This is
done by setting the relevant bits in the IRQ Enable port to 1.

 The next four instructions switch the processor into User mode and enable Fast and
ordinary interrupts.

 The interrupt service routine technically starts at the label ev18; this address contains a
branch to the real handler at irq_handler. It is run every time the ARM processor pro-
cesses an Interrupt exception; the code runs in the Interrupt processor mode.

 Accesses to the Microcontroller I/O space are all done using a “base + offset” method.
In this case (in the file pb-irq-v1.s in Figure 21), the base address is contained in the reg-
ister R3 and the offset is specified directly in the ldrb and strb instructions (using
equates defined in header-v3.s). Accessing the Microcontroller I/O space in this way is
more efficient than loading individual addresses into multiple registers or into the same
register multiple times.

 The following instructions, found towards the end of the interrupt handler, are worth
considering:

bic r1, r0, #(irq_pbs2 | irq_pbs3)
strb r1, [r3, #irq_status]

These instructions acknowledge the interrupt by clearing the appropriate bits in the IRQ
Status port. Ideally, a read-modify-write cycle should be used, but this program does
not do so for simplicity.

 The main program, starting at the label main, implements a trivial counter using the
register R0. This code represents the “real work” that a program might want to do
instead of spending its time polling the hardware devices. This code runs in User mode.

Task 5: Debugging Interrupt Handlers

Use the GNU Tools to assemble and link the program pb-irq-v1.elf shown in Figures 19–22.
The easiest way to do so is to type “make -f pb-irq-v1.make”. Use the Komodo debugger
to download the program to the DSLMU Microcontroller Board; make sure you press Reset
in Komodo after doing so! Use the debugger to trace through the program; take note, in
particular, the effect of every instruction in the interrupt handler. Be ready to show the
program running at full speed to the Laboratory assessor; pressing the push-buttons should
show the LEDs being turned on.

– 92 –

Hint: The easiest way to trace through the interrupt handler is to set a breakpoint at the
label ev18, then run the code at full speed by pressing Run. You might find the Walk but-
ton useful as well. Please consult An Introduction to Komodo for more information; this
document appears in an Appendix or on your CD-ROM.

Question: What happens to the trivial counter running in the main program (in the file null-
main.s)? Why does this happen?

Checkpoint 5: ... Signature:

Preserving the State of Execution

You should have discovered a major problem with the program pb-irq-v1.elf in Task 5: the
interrupt service routine uses the registers R0–R3 in its code without taking into considera-
tion the fact that these registers are almost certainly being used in the interrupted code! In
other words, the interrupted code finds that its registers are mysteriously being corrupted.
Such bugs are extremely difficult to find in real life, since they depend on timing issues that
are hardware dependent.

The solution is to make sure that the interrupt handler preserves the state of execution. In
particular, it must save the original values of all registers used in its code, and it must
restore those registers to their original values on exit.

The ARM processor helps the interrupt handler do this for some of the registers. As shown
in Figure 1 on page 72, each mode has its own R13 and R14 registers. This means that R13
and R14 in other processor modes are automatically preserved, since the interrupt handler
code does not even get to access them directly. In the same way, other modes’ CPSR is auto-
matically transferred to SPSR_irq.

This does not help save the state of other registers, however. The best way to preserve their
state is by saving them to the stack. Since the Interrupt processor mode has its own stack
pointer, R13_irq, this can be done using code similar to the following:

irq_handler:
 str r0, [sp, #-4]! ; Save R0 to the stack (pointed to by SP_irq)
 str r1, [sp, #-4]! ; Similarly for R1-R3. NB: This assumes the stack
 str r2, [sp, #-4]! ; pointer has already been set up!
 str r3, [sp, #-4]!

 ... ; Code to handle the interrupt

 ldr r3, [sp], #4 ; Retrieve original value of R3 from the stack
 ldr r2, [sp], #4 ; Similarly for R2-R0, in reverse order
 ldr r1, [sp], #4
 ldr r0, [sp], #4
 subs pc, lr, #4 ; Return from IRQ handler; restores CPSR

The individual str and ldr instructions can be replaced by single stm and ldm instructions,
respectively:

irq_handler:
 stmfd sp!, {r0-r3} ; Save R0-R3 to the stack (pointed to by SP_irq)

 ... ; Code to handle the interrupt

 ldmfd sp!, {r0-r3} ; Retrieve original values of R0-R3 from the stack
 subs pc, lr, #4 ; Return from IRQ handler; restores CPSR

This can be further optimised by saving a corrected value of LR_irq to the stack and restor-
ing it directly into PC later. Doing this allows you to call other (internal) functions using the
bl instruction; you must remember that such functions will be run in Interrupt mode. The
following code fragment shows how to save and restore LR_irq:

– 93 –

irq_handler:
 sub lr, lr, #4 ; Calculate the correct return address in LR_irq
 stmfd sp!, {r0-r3, lr} ; Save R0-R3 and return address to the stack

 ... ; Code to handle the interrupt; the "bl" instruc-
 ; tion is now permitted (since LR is saved)

 ldmfd sp!, {r0-r3, pc}^ ; Retrieve original values of R0-R3 from the
 ; stack, move return address into PC (ie, return
 ; from IRQ handler), restore CPSR

Note the circumflex “^” that is part of the ldm instruction: whenever PC appears in the list
of registers loaded by this instruction, specifying the circumflex makes the ARM processor
automatically restore the Current Program Status Register.

Some hardware systems require the interrupt handler to be reentrant: the handler must be
written in such a way that it itself can be interrupted by another IRQ of the same priority.
This is often needed in systems (such as the ARM) that have many sources of IRQs but only
one interrupt handler. Such a reentrant interrupt handler must save the corrected value of
LR_irq, as above. In addition, the handler must clear the I bit in the CPSR at some appropri-
ate point.

One important requirement for using the Interrupt mode stack pointer SP_irq is that that
register must be initialised. This is usually done at initialisation; the boot code should ini-
tialise SP_irq to point to some location in memory set aside for the stack.

Figure 23 and Figure 24 show the previous program rewritten to preserve the state of execu-
tion. Carefully examine this program; as before, you should read the files on your CD-ROM,
as those have more comments than are shown here. You will also need to refer to Figure 19
for the header file header-v3.s and to Figure 22 for the main program null-main.s. Modified
or added instructions have been highlighted in bold:

 .global _start ; "_start" is where the code starts running

 .extern main ; "main" is defined in another file
 .extern swi_handler ; "swi_handler" is also defined elsewhere

 .include "header-v3.s" ; Include various definitions

; --

 .section .zeropage, "awx" ; For code located at address 0x00000000

_start: ; Start of the entire program

; ARM processor exception vector table

ev00: b init ; Reset exception
ev04: nop ; Undefined Instruction exception
ev08: nop ; Software Interrupt exception
ev0C: nop ; Prefetch Abort exception
ev10: nop ; Data Abort exception
ev14: nop ; (Not used)
ev18: b irq_handler ; Interrupt exception
ev1C: nop ; Fast Interrupt exception

; --

 .section .ospage, "awx" ; For "operating system" code

init: ; Initialise hardware and change to User mode
 ; This code initially runs in Supervisor mode

 ldr sp, =svc_stack_top ; Initialise SP_svc

 mrs r0, cpsr ; Get current value of CPSR into R0
 bic r0, r0, #ARM_PSR_mode_mask ; Mask out the bottom 5 bits

 orr r1, r0, #ARM_PSR_mode_irq ; R1 = CPSR + IRQ mode
 msr cpsr_c, r1 ; Switch into IRQ mode
 ldr sp, =irq_stack_top ; and set SP_irq appropriately

(Continued on the next page…)

– 94 –

(Continued from the previous page…)
 orr r1, r0, #ARM_PSR_mode_fiq ; R1 = CPSR + FIQ mode
 msr cpsr_c, r1 ; Switch into FIQ mode
 ldr sp, =fiq_stack_top ; and set SP_fiq appropriately

 orr r1, r0, #ARM_PSR_mode_sys ; R1 = CPSR + System mode
 msr cpsr_c, r1 ; Switch into System mode
 ldr sp, =usr_stack_top ; and set SP appropriately
 ; Note that User and System modes share the same registers

 ldr r0, =iobase ; R0 = base of I/O space
 mov r1, #(irq_pbs2 | irq_pbs3) ; R1 = enable IRQs mask for S2/S3
 strb r1, [r0, #irq_enable] ; Actually enable the IRQs

 mrs ip, cpsr ; Get current value of CPSR into IP (R12)
 bic ip, ip, #(ARM_PSR_i | ARM_PSR_f | ARM_PSR_mode_mask)
 ; Mask out bottom 5 bits. Also clear I and F
 ; bits; this enables the interrupts
 orr ip, ip, #ARM_PSR_mode_usr ; Set User mode
 msr cpsr, ip ; Actually make the changes to CPSR

 b main ; Now in User mode; jump to the main program

; ---
; Stack space for the different processor modes

 .bss ; Use uninitialised memory for the stack
 .align ; Make sure the stack is word-aligned

 .skip 1024 ; Allow a 1KB stack for the User/System modes
usr_stack_top: ; "usr_stack_top" points to top of this stack

 .skip 512 ; Allow 512 bytes stack for IRQ mode
irq_stack_top: ; "irq_stack_top" points to top of this stack

 .skip 512 ; Allow 512 bytes stack for FIQ mode
fiq_stack_top: ; "fiq_stack_top" points to top of this stack

 .skip 512 ; Allow 512 bytes stack for Supervisor mode
svc_stack_top: ; "svc_stack_top" points to top of this stack

 .end

Figure 23: Program source file boot-pbirq-v2.s

 .section .ospage, "awx" ; For "operating system" code

 .include "header-v3.s" ; Include definitions needed for this program
 .global irq_handler ; Make this label visible to other modules

irq_handler: ; This code runs in Interrupt mode

 sub lr, lr, #4 ; Calculate the correct return address
 stmfd sp!, {r0-r3, lr} ; Save registers to Interrupt mode stack

 ldr r3, =iobase ; R3 = base of Microcontroller I/O space
 ldrb r0, [r3, #irq_status] ; Read the IRQ Status register into R0

 tst r0, #irq_pbs2 ; Check if push-button S2 generated the IRQ,
 ; ie, is currently being pressed
 movne r1, #left_leds ; If it is, prepare to turn on the left LEDs
 strneb r1, [r3, #portA] ; Now actually do so

 tst r0, #irq_pbs3 ; Check if push-button S3 generated the IRQ
 movne r1, #right_leds ; If it did, prepare to turn on the right LEDs
 strneb r1, [r3, #portA] ; Now actually do so

 bic r1, r0, #(irq_pbs2 | irq_pbs3) ; Clear the IRQs for S2 and S3
 strb r1, [r3, #irq_status] ; Acknowledge the interrupts

 ldmfd sp!, {r0-r3, pc}^ ; Return to whatever the processor was
 ; doing at the time of the interrupt;
 ; restore registers R0-R3 and CPSR

 .end

Figure 24: Program source file pb-irq-v2.s

– 95 –

Task 6: Interrupt Handlers and Stacks

Use the GNU Tools to assemble and link the program pb-irq-v2.elf shown in Figures 23–24.
The easiest way to do so is to type “make -f pb-irq-v2.make”. Use the Komodo debugger
to download the program to the DSLMU Microcontroller Board; make sure you press Reset
in Komodo after doing so! Use the debugger to trace through the program; take note, in
particular, how the initialisation code sets up the various stack pointers in the different
processor modes, and how the interrupt service routine saves and restores the registers. Be
ready to show the program running at full speed to the Laboratory assessor; pressing the
push-buttons S2 and S3 should show the LEDs being turned on.

Question: What happens this time to the trivial counter running in the main program (in the
file null-main.s)?

Checkpoint 6: ... Signature:

Task 7: Timer Interrupts

In Experiment 4 Task 4, you wrote a program slower-flash.s to flash the LEDs on the DSLMU
Microcontroller Board at a frequency of 0.5 Hz (ie, the LEDs were to be on for one second,
then off for one second). In that program, you used the Timer port to determine how long a
delay should be.

Your final task for this experiment is to rewrite that program so that it uses hardware inter-
rupts. You will need to consult the description of the Timer, Timer Compare and IRQ Status
ports in the DSLMU Microcontroller Board Hardware Reference Manual; you can find that
document in an Appendix or on your CD-ROM.

In particular, you will need to write the interrupt service routine; you should give this code
the label irq_handler and place it in the source file timer-irq.s. The rest of the program
has already been written for you; you should examine the source files header-v3.s, boot-
timer.s and null-main.s in your ~/exp5 directory. Use the supplied make-file timer-irq.make
to create the executable file timer-irq.elf. You can do this by typing:

make -f timer-irq.make

Make sure your interrupt service routine preserves the state of execution! Measure the fre-
quency of the flashing LEDs using the oscilloscope. Show your running program to the
Laboratory assessor; make sure you are ready to explain how your code works.

Hint: The Timer Compare port at address 0x1000000C allows interrupts to be generated at
a frequency of between 1000 times a second to just under 4 times a second: still too fast for
this task! The best way to solve this problem is to keep a separate count of the number of
interrupts seen, in software. You should use the variable irq_count for this particular task,
as the code in boot-timer.s automatically resets that variable to zero at initialisation. You
can do this by including the following line in your file timer-irq.s:

.extern irq_count

Checkpoint 7: ... Signature:

	Experiment 5:�Operating Modes, System Calls and Interrupts
	Aims
	Preparation
	Getting Started
	The ARM Processor Operating Modes
	System Initialisation
	Exceptions
	Software Interrupts
	A Very Simple Software Interrupt Handler
	Task 1: Single-stepping Through the Program
	Allowing Multiple System Call Functions
	Task 2: Stepping Through Multiple System Calls
	Using Jump Tables
	Task 3: Using a Jump Table in Practice
	Hardware Interrupts
	Task 4: Polling the Push-button Switches
	Hardware Interrupts on the ARM Processor
	Interrupts on the DSLMU Microcontroller Board
	Interrupts in Practice: the Push-button Switches
	Task 5: Debugging Interrupt Handlers
	Preserving the State of Execution
	Task 6: Interrupt Handlers and Stacks
	Task 7: Timer Interrupts

