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Abstract
Crash-recovery bugs (bugs in crash-recovery-related mech-
anisms ) are among the most severe bugs in cloud systems
and can easily cause system failures. It is notoriously diffi-
cult to detect crash-recovery bugs since these bugs can only
be exposed when nodes crash under special timing condi-
tions. This paper presents CrashTuner, a novel fault-injection
testing approach to combat crash-recovery bugs. The nov-
elty of CrashTuner lies in how we identify fault-injection
points (crash points) that are likely to expose errors. We
observe that if a node crashes while accessing meta-info
variables, i.e., variables referencing high-level system state
information (e.g., an instance of node or task), it often trig-
gers crash-recovery bugs. Hence, we identify crash points by
automatically inferring meta-info variables via a log-based
static program analysis. Our approach is automatic and no
manual specification is required.
We have applied CrashTuner to five representative dis-

tributed systems: Hadoop2/Yarn, HBase, HDFS, ZooKeeper,
and Cassandra. CrashTuner can finish testing each system in
17.39 hours, and reports 21 new bugs that have never been
found before. All new bugs are confirmed by the original
developers and 16 of them have already been fixed (14 with
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our patches). These new bugs can cause severe damages such
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1 Introduction
Distributed systems have become the backbone of comput-
ing in the cloud era. More and more applications are built
on top of large-scale distributed systems (such as scalable
computing frameworks [20, 57] and distributed storage sys-
tems [22, 36]), to provide online services to users. High avail-
ability of those systems is crucial: failures of the underlying
distributed systems can lead to cloud outage, easily costing
service providers millions of dollars [2, 9].
High availability of distributed systems largely hinges

on how well these systems tolerate node crashes (failures).
Large-scale distributed systems are often comprised of thou-
sands of nodes (machines) [55], and it is common that a node
may fail due to hardware or software faults [49]. Although
various sophisticated crash-recovery mechanisms [4, 13, 16]
have been adopted in distributed systems, it is still challeng-
ing to handle node crashes correctly. It is very difficult, if
not impossible, for developers to anticipate all possible crash
scenarios and correctly implement corresponding recovery
mechanisms. In this paper, we refer to bugs in crash-recovery-
related mechanisms as crash-recovery bugs.
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Crash-recovery bugs are among the most severe bugs in
distributed systems. Many node crashes can be recovered
from by the sophisticated fault-tolerance schemes imple-
mented in distribute systems [25]. However, crash-recovery
bugs break such fault-tolerance schemes and hence easily
lead to system failures. Moreover, it is notoriously difficult
to detect crash-recovery bugs during in-house testing. Node
crash events need to be injected under special timing con-
ditions to trigger a bug. As a result, crash-recovery bugs
widely exist in deployed distributed systems [21, 25, 26, 39].

The state-of-the-art techniques detect crash-recovery bugs
via fault-injection testing [23, 24, 32–34]. However, it is chal-
lenging to hit the small bug-triggering windows due to the
huge state-space of the system under testing. Random fault
injection is ineffective, as is evident in our own experiments
and previous work [23]. Systematic approaches (i.e., dis-
tributed system model checkers [28, 35, 37, 38, 48, 54, 59])
suffer from the state explosion problem. Researchers apply
sophisticated heuristics [59], or resort to manual specifi-
cations [38], to effectively restrict the large search space.
Although great progress has been made, these approaches
still struggle at exploring the huge state-space of distributed
systems. Most (>99.9%) injected faults are unnecessary and
very few new crash recovery bugs were reported [43].

This paper presents CrashTuner, a novel approach to pre-
cisely identify bug-triggering points where node crash events
can be injected. Hereafter, we refer to such program points
as crash points. CrashTuner precisely locates crash points by
automatically inferring meta-info variables (variables refer-
encing high-level system state information), whose access
points are fault-injection points likely to expose errors. This
is realized via a log-based static program analysis. It is fully
automatic and no manual specifications are needed. We have
applied CrashTuner to test the 5 representative distributed
systems: scale-out computing frameworkHadoop2/Yarn [57],
distributed key-value storage HBase [22], scalable file system
HDFS [19], cluster synchronization service ZooKeeper [31],
and decentralized storage system Cassandra [36]. Crash-
Tuner can reproduce 59 out of 66 existing crash recovery
bugs , and reports 21 new crash-recovery bugs that have
never been found before. These new bugs lead to severe dam-
ages such as cluster down or startup failures. To date, 16
new reported bugs have been fixed (14 with our patches).

Observation Distributed systems consist of clusters of nod-
es. Jobs and large chunks of resources are divided into small
pieces, and then assigned to each individual node. The set of
nodes, and their associated tasks and resources, together
form a high-level view of the system state. Figure 1 de-
picts a simplified high level view (automatically constructed
by our analysis) of the distributed computing framework
Hadoop2/Yarn. The system includes a cluster of individ-
ual nodes (Node_0,...,Node_n). Each node manages one or
more containers. There are m (m ≠ n) containers in total

Figure 1. A simplified high level view of
Hadoop2/Yarn. Ovals represent resources and squares
stand for tasks.

(MasterContainer,Container_1,...,Container_m) . A JVM
process (JVM_ID) is spawned on each container, and each
JVM process is a particular instance to execute an attempt
(TaskAttempt_ID) of a given task (Task_ID). A user job re-
quest (Job_ID) is handled by an application instance (App_ID).
Each job is delegated to a master container . The master node
decomposes a job into m small tasks then dispatches each
task to an available container.

In practice, the above high-level system state information
is stored in the heap memory of different nodes and accessed
via heap references. For instance, in Hadoop2/Yarn, the in-
stance field NMContext.nodeId refers to a particular node.
For convenience, we regard those variables referencing high-
level state information as meta-info variables. Node crash or
recovery events will change the system state. It is crucial to
update those meta-info variables accordingly. Otherwise, a
crash recovery bug may be triggered.

We have examined 66 crash recovery bugs from 4 of the 5
representative distributed systems (Cassandra not included).
Our study leads to the following observation:

The Crash Points are the program points accessing
meta-info variables (variables referencing high-level
system state information). Crash-recovery bugs are
triggered when a node crashes at crash points.

14 out of the 66 bugs are not timing sensitive, and they
can be trivially triggered with any fault-injection techniques .
For the remaining 52 crash recovery bugs, their crash points
are observed as above. There are two common scenarios:
● The pre-read scenario: Node N crashes before its meta-
info is read by another nodeM . NodeM is not aware
of the crash and keeps using the stale information of
N , leading to aborts and job failures.
● The post-write scenario: Node N crashes after N up-
dates the system state (i.e., stores to meta-info vari-
ables). In the recovery process, intermediate updates of
N need to be discarded and rolled back. The recovery
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process may mis-handle the corrupted state, leading
to failed (or incorrect) recovery attempts.

The CrashTuner Approach The key is to locate crash
points. How do we find crash points? In CrashTuner, we
apply log analysis, together with a type-based static program
analysis to automatically infer meta-info variables. The crash
points are those program points before reading a meta-info
variable (pre-read points), or after writing a meta-info vari-
able (post-write points).
An immediate question arises: which variables are meta-

info variables? First of all, node referencing variables are
meta-info variables. We could easily identify node referenc-
ing variables (and their runtime values) from runtime logs.
Distributed systems provide a rich set of runtime logs for
diagnosis and online monitoring. These logs record mes-
sages and events, which contain information such as nodeId
and taskId . For example, the log instance in Hadoop2/Yarn
"NodeManager node1 registered as node1:42349" in-
dicates that the node node1:42439 joins the cluster. The
meta-info variables are then defined as follows:

Node-referencing variables and their directly or indi-
rectly related variables are meta-info variables. Two
variables are related if they appear in a same runtime
log instance. Object fields holding same values of
meta-info variables are meta-info variables.

Themeta-info variables precisely reflect the high-level sys-
tem state information, i.e., a cluster of nodes and resources/-
tasks associated to each node. We apply log analysis to
discover the set of meta-info variables logged at runtime. A
type-based static analysis is then applied to infer all other
meta-info variables in the program. Our static-analysis exam-
ines the types of existing meta-info variables, to derive other
meta-info variables with equivalent types. Finally, after iden-
tifying crash points from meta-info variables, CrashTuner
will apply fault-injection testing at each crash point individ-
ually . The detailed approach is illustrated in Section 3.

Contributions We make the following contributions.
● We propose a novel approach to crash-recovery bug
detection. Our approach differs from existing fault-
injection testing techniques in that we locate fault-
injection points via meta-info analysis. Meta-info anal-
ysis automatically infers meta-info variables (variables
referencing high-level state information), whose ac-
cessing points are fault-injection points likely to ex-
pose bugs. The approach is fully automatic and no
manual specification is needed.
● We develop CrashTuner, a simple yet effective tool to
detect crash-recovery bugs. In CrashTuner, meta-info
analysis is realized via a log-based static program anal-
ysis. In a separate testing phase, CrashTuner performs
minimal instrumentation for fault-injection testing.

The analysis is non-intrusive and suitable for online
monitoring. It can be easily adopted and is very effec-
tive in detecting crash recovery bugs.
● We extensively evaluate CrashTuner using five repre-
sentative distributed systems: Hadoop2/Yarn, HBase,
HDFS, ZooKeeper, and Cassandra. CrashTuner can
finish testing each system in 17.39 hours, and reports
21 new crash recovery bugs that have never been
reported before, including 8 critical bugs (classified by
the original developers). We have provided patches to
20 of the 21 bugs and 14 patches have been accepted.

The rest of the paper is organized as follows. Section 2 mo-
tivates our approach with an empirical study of 66 crash
recovery bugs. We present the design and implementation
of CrashTuner in Section 3 and evaluate its efficiency and
effectiveness in Section 4. Section 5 reviews related work
and Section 6 concludes the paper.

2 Motivation
To better understand crash recovery bugs, we thoroughly
examine the crash-recovery bugs from existing bug study
databases [21, 25]. We focus our study on the following
four distributed systems: Hadoop2/Yarn, HDFS, HBase, and
ZooKeeper. The two databases in [21, 25] provide a total of
116 crash recovery bugs in the above 4 systems. In this work,
we focus on bugs triggered by one crash event only. Hence,
50 bugs are omitted since they involve multiple crash events
(34 bugs) or require IO operations (16 bugs). Previous detec-
tion techniques [23, 33] for crash-recovery bugs involving
multiple events could help extend our approach to tackle
these bugs. For the 66 remaining bugs, we have an in-depth
look at each of them .

14 out of the 66 crash-recovery bugs are not timing-sensiti-
ve. They are due to implementation or logic errors in the
recovery process, and can be triggered at anytime when a
node crashes. For example, in MR-3463, the master node
uses the format "host:port" to represent the host name of a
node. If the master node crashes, the recovery process tries
to get a node with the wrong format "host", which always
fails. In ZK-131, there is a data race in the recovery process.
When a node crashes, the recovery process sends out two
event messages: one to reset the corrupted state and the other
to read the reseted state. The bug is triggered if the read
event is handled before the reset event. These bugs can be
detected by existing techniques for distributed concurrency
bugs [42, 47, 65]. Therefore, we only discuss the remaining
52 timing-sensitive crash recovery bugs in our study.

Table 1 characterizes each bug according to its crash point.
All 52 bugs are triggered at program points accessing meta-
info variables. Column 2 summarizes the meta-info being
accessed for each bug. In practice, a particular type of meta-
info can be referenced by variables with various types. For in-
stance, in HBase, the meta-info HRegionServer represents a
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Table 1. The studied timing-sensitive bugs. Column 2
gives themeta-info being accessed at each crash point.

System Meta-info Bugs

Hadoop2

AppAttemptId YARN-8664

NodeId
YARN-2273 YARN-4227
YARN-5195 YARN-8233
YARN-5918

ApplicationId YARN-7007 YARN-7591
YARN-8222 YARN-4355

AppState YARN-4502

ContainerId MR-3596 YARN-4152
MR-4833 MR-3031

File MR-4099
TaskAttemptId MR-3858

HDFS

DatanodeInfo HDFS-6231 HDFS-3701
File HDFS-4596
BPOfferService HDFS-8240 HDFS-5014
NameNode HDFS-4404 HDFS-3031

HBase

RegionTransition HBASE-4539 HBASE-6070
HBASE-10090 HBASE-19335

HRegion HBASE-4540 HBASE-3365
HBASE-5927 HBASE-5155

HRegionServer

HBASE-3617 HBASE-3874
HBASE-3023 HBASE-3283
HBASE-3362 HBASE-3024
HBASE-18014 HBASE-14536
HBASE-14621 HBASE-13546
HBASE-10272 HBASE-2525
HBASE-5063 HBASE-8519
HBASE-2797

ZNode HBASE-7111 HBASE-5722
HBASE-5635

File HBASE-3722
ZooKeeper ZNode ZK-569

node in the system, which can also be referenced by variables
of types HServerInfo and HServerAddress. These variables
can be converted to variables of types byte[], string and
Integer, all referring to the same type of meta-info, i.e.,
HRegionServer. Section 3 illustrates howwe infer meta-info
variables in detail.

The crash points are further classified into two scenarios:
1) The pre-read scenario, i.e., before reading a meta-info
variable, and 2) The post-write scenario, i.e., after writing a
meta-info variable.

2.1 The Pre-read Scenario
37 bugs belong to this scenario: NodeM tries to read meta-
info of node N without knowing its availability, leading
to aborts and job failures. Figure 2 depicts a typical crash-
recovery bug [8] in Hadoop2/Yarn. The bug is triggeredwhen
the job thread tries to read resources of the crashed node
NM@node1 from the shared data structure nodes. Since

Figure 2. YARN-5918: a real-world crash-recovery bug
in Hadoop2/Yarn. Two nodes are involved in this bug,
the ResourceManager (RM for short) node0 and the
NodeManager (NM for short) node1. 1) NM@node1
sends heartbeatmessage toRM@node0when it is alive.
After node1 crashes, no heartbeat message will be sent.
2) The liveMonitor thread in node0 detects the crash
of node1 after a timeout period. A LOST event is dis-
patched to the recovery thread. 3) The recovery thread
removes node1 from nodes, a shared data structure to
record all available nodes. 4) Another running thread
job tries to get resources of NM@node1.

node1 is removed from nodes, a null value is returned and a
null pointer exception is raised at line 3.

How to detect these bugs? The crash point is the program
point before reading a meta-info variable (in Figure 2, before
reading node1 in line 2). The node corresponding to the
meta-info variable being read from needs to be crashed to
trigger such bugs, e.g., node1 in Figure 2. How can we find
which node to crash?We develop an online log analysis to re-
late the runtime values of meta-info variables to a particular
node. Hence, before reading a meta-info variable, we could
query its runtime value to find the corresponding node.
The node crash event can only be detected after a time-

out period. To trigger the bug in Figure 2, the job thread
needs to wait until the liveMonitor thread detects the node
crash event and sends out the LOSTmessage. To speedup the
testing process, we could set the default timeout period to
a small interval to quickly unveil this bug. Alternatively, in
our implementation, we leverage the shutdown script (most
distributed systems provide such script to gracefully shut-
down a node) provided by the system to let node1 leaves the
cluster pro-actively, without waiting.

2.2 The Post-write Scenario
15 bugs belong to this scenario: Node N crashes after up-
dating the system state and the recovery process fails to
recover (or incorrectly recovers) from the corrupted state.
Figure 3 gives a bug of such scenario [3]. If node1 crashes
after doneCommit, attempt_1 is committed to the global
state and no recovery is needed. If the crash happens be-
fore commitPending, the recovery process will fork another
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Figure 3. MR-3858: a real-world crash-recovery bug
in MapReduce. Three nodes are involved in this bug,
node0 (the Application Master, AM for short), node1
and node2. 1) node1 sends message to AM@node0 via
an RPC commitPending, to get commit permission
and get its attempt-ID attempt_1 recorded. 2) node1
starts to commit the result via an RPC startCommit.
3) node1 crashes. The task is not committed, hence,
the RPC doneCommit is missing. 4) AM detects the
crash and starts a new node (i.e., node2), to re-commit
the results of the same task in another attempt
(attempt_2). 5) node2 contacts AM@node2 via the same
RPC commitPending. 6) node2 fails the commit checking
and is then killed by AM@node0.

attempt instance, which will correctly redo the task. How-
ever, if node3 crashes in the small time window between the
two RPCs, the commit status commit is contaminated. The
recovery process always fails, and the job will never finish.

How to detect these bugs? The crash point is the program
point after writing a meta-info variable (in Figure 3, after
writing the commit status attempt_1 in line 2). To trigger
such bugs, we need to crash the corresponding node of the
stored meta-info variable, e.g., node1 in Figure 3. Similarly,
with online log analysis, we query values of stored meta-info
variables to locate their corresponding nodes. In Figure 3,
by querying the runtime value of stored meta-info variable
in line 2 (attempt_1), we get the target node node1.

3 The CrashTuner Approach
In a nutshell, CrashTuner first identifies all crash points
then performs fault-injection testing at each individual crash
point. Figure 4 overviews our approach. It consists of two
phases. The first phase (top half of Figure 4) locates crash
points via log-based program analysis and profiling. The sec-
ond phase (bottom half of Figure 4) exercises each individual
crash point one by one. A light-weight online log analysis is
employed to relate runtime meta-info values to a particular
node. Thus, at a crash point, we can crash the right target
node by querying the runtime value being accessed.

Figure 4. Overview of the CrashTuner approach.

3.1 Identify Crash Points
We apply a series of analyses to identify the dynamic crash
points of a system, which is defined below:

Definition 1. A dynamic crash point is represented as a tuple
of two elements < P ,Context >, where P is the program point
and Context is the call stack.

We use the runtime call stack to differentiate the contexts
in executing a same program point. Hence, when the same
point is being executed with different calling contexts, they
are considered as distinct crash points.
The process of identifying dynamic crash points is de-

picted in Figure 4 and summarized below:
● Log Analysis analyzes the runtime logs to discover
meta-info variables, i.e., node referencing variables
and their related variables. Those meta-info variables
printed in logs are identified.
● Static Crash Point Analysis finds out all other meta-
info variables in the system by examining the types of
existing meta-info variables. Object fields with equiva-
lent types of existing meta-info variables are regarded
as meta-info variables. This type-based approach en-
ables us to derive meta-info variables in the system,
without precisely tracking program dependences.
The programpoints before reading (after writing)meta-
info variables are then identified as static crash points.
● Profiler runs the given workload to record the dynamic
crash points (an executed static crash point with a
distinct call stack) at runtime. Those static crash points
not executed are discarded.

In the end, we obtain a set of dynamic crash points. Fault
injection testing will exercise each individual crash point
to trigger an error. Next, we illustrate the analyses in detail
using the example in Figure 3.

3.1.1 Log Analysis
Log analysis mines existing runtime logs (obtained from
online system or via profiling) to discovermeta-info variables
and record their runtime values.
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1 LOG.info("NodeManager from " + host + " registered as " + nodeId); 1 NodeManager from (.*) registered as (.*)
2 LOG.info("Assigned container " + containerId + " on host " + nodeId); 2 Assigned container (.*) on host (.*)
3 LOG.info("Assigned container " + containerId + " to " + tId); 3 Assigned container (.*) to (.*)
4 LOG.info("JVM with ID: " + jvmId + " given task: " + task.getTaskID()); 4 Jvm with ID: (.*) given task: (.*)

(a) Logging statements (b) Log patterns
1 NodeManager from node3 registered as node3:42349
2 NodeManager from node4 registered as node4:42349
3 Assigned container container_..._3 on host node3:42349
4 Assigned container container_..._3 to attempt_..._3
5 Assigned container container_..._4 on host node4:42349
6 Assigned container container_..._4 to attempt_..._4
7 JVM with ID: jvm_..._m_4 given task: attempt_..._4
8 JVM with ID: jvm_..._m_4 given task: attempt_..._4

(c) Log instances (d) Meta-info

Figure 5. Simplified logging statements (a), log patterns (b), and runtime log instances (c) of the example in Figure 3.
The runtime meta-info is given in (d).

We examine all logging statements in the system under
testing. All the 4 distributed systems we studied use common
logging libraries such as Log4j [10] and SLF4J [14]. Those
libraries provide common logging interfaces with the fol-
lowing names: fatal, error, warn, info, debug, and trace.
Hence, we find logging statements by simply matching the
invoked method name at a call site with the name of a log-
ging interface. Figure 5(a) gives a set of simplified logging
statements for our illustration example. Their correspond-
ing log patterns are extracted in Figure 5(b) (as in previous
work [47, 58, 64]), where runtime values of logged variables
are represented with regular expression (.*).
Figure 5(c) shows the simplified runtime log instances

of our illustration example (Figure 3). Each log instance is
processed separately, to match it with a particular log pattern.
We adopt the approach in [58] to efficiently match a run time
log instance with a log pattern. The runtime values of logged
variables can then be derived as highlighted in red.

To infer meta-info variables, we examine the runtime val-
ues of logged variables. Those variables whose runtime val-
ues contain host names or IP addresses (as specified in the
configuration file) are regarded as node-referencing vari-
ables, e.g., node3:42349 and node4:42349 in Figure 5. We
relate other runtime values to nodes by checking whether
they appear in a same runtime log instance or not, e.g.,
container_..._3 (log instance 3) and container_..._4
(log instance 5). The figure in Figure 5(d) depicts the runtime
meta-info derived from log analysis, where related runtime
values are connected together. The figure precisely reflects
the high-level system state in Figure 1. Those variables hold-
ing meta-info values at runtime are meta-info variables.

3.1.2 Static Crash Point Analysis
Meta-info values are stored in the heap memory of a node,
and referenced via object fields. To precisely identify ob-
ject fields holding meta-info values, we need to compute

and track the precise dependence information between vari-
ables using pointer analysis [40, 41, 56]. This is a daunting
task given the complexity of distributed systems and precise
pointer analysis for distributed systems remains to be an
open research topic. Hence, we develop a simple type-based
analysis to deduce meta-info fields instead.
Definition 2. T is a meta-info type if there exists a meta-info
variable of type T . The subtypes and collection types of T are
meta-info types. Class C is a meta-info type if it contains an
instance field C . f of meta-info type T , and C . f is only set in
the constructors of C .

Definition 2 defines our type-based analysis. Intuitively,
meta-info is typed and variables with equivalent meta-info
type T refer to the same type of meta-info. We also consider
T ’s containing class C if there exists a field C . f of type T
which is only set in the constructors of C . This is to handle
the common case where an instance ofC is uniquely indexed
by its field C . f , e.g., objects of class RMContainerImpl are
uniquely indexed with a field of type ContainerId. In prac-
tice, the two classes refer to the same type of meta-info
interchangeably. (Theoretically, class C may contain such
fields of different meta-info types. In that case, C could be
classified as either a field type or both. It does not affect our
analysis to deduce meta-info types and meta-info variables.
We did not observe such a case in the 4 systems we studied.)

To avoid introducing too many irrelevant variables, we do
not apply the above generalization rules to the following base
types: Integer, String, Enum, byte[], and File. Instead, we
identify meta-info fields of base types via log analysis and
regard their containing classes as meta-info types.

Table 2 presents the meta-info types for our example. Not
all meta-info types are given. The types annotated with ∗
are types obtained from log analysis (e.g., types of logged
meta-info variables), and all other types are deduced by static
analysis. Types referring to the same type of meta-info are
grouped together.
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Table 2. Meta-info types for the example in Figure 3.
Not all meta-info types are given. The types identified
in log analysis are annotated with ∗. Other types are
derived by static analysis.

— Meta-info Types

Node
yarn.api.records.NodeId∗

java.net.InetSocketAddress∗

yarn.api.records...NodeIdPBImpl

App
Attempt

yarn.api.records.ApplicationAttemptId∗

yarn.server...SchedulerApplicationAttempt
yarn.server...RMAppAttemptImpl
yarn.api...ApplicationAttemptIdPBImpl

Application

yarn.api.records.ApplicationId∗

yarn.server...RMAppImpl
yarn.server.resourcemanager.Application
yarn.server.nodemanager...ApplicationImpl
yarn.api.records...ApplicationIdPBImpl

Container

yarn.api.records.ContainerId∗

yarn.api.records.Container∗

yarn.server.nodemanager...ContainerImpl
yarn.server...RMContainerImpl
yarn.api.records...ContainerPBImpl
yarn.api.records...ContainerIdPBImpl

Task
Attempt

mapreduce.v2.api.records.TaskAttemptId∗

mapreduce.MapTaskAttemptImpl
mapreduce.ReduceTaskAttemptImpl
mapreduce.v2.app...TaskAttemptImpl
mapreduce.v2.api....TaskAttemptIdPBImpl

Static crash points are access points to fields of meta-info
types. The putField and getField instructions to fields of
non-collection types are identified in a straight-forward man-
ner. Fields of collection types are read/written via generic
APIs. Hence, for collection types, we check the invoked
method name with the APIs in Table 3, to find a matching
read/write operation.

Optimizations We discard references to field C.f if it is
only set in constructors of its containing class C. By def-
inition, type C is also a meta-info type (Definition 2) and
references to objects of type C are already regarded as crash
points. Thus, it becomes redundant to perform fault-injection
testing at later references to C.f. Read references with no us-
ages (or only used in logging statements and call statements
to the 3 Java APIs toString, hashCode, equals) are omitted.
In addition, we filter out read references whose values are
sanity-checked (i.e., used as conditions of if statements) be-
fore being used. The checks suggest fault-tolerance schemes
in the implementation (in fact, 14 of our studied bugs and 7
new bugs are fixed by introducing a sanity check).

All above optimizations do not guarantee soundness, which
meanswemaymiss true crash points. However, we randomly
selected 3,000 optimized-out crash points for fault-injection
testing , no new bugs can be detected.

Table 3. Keywords of read and write operations for
collection types.

get, peek,poll, clone, at, element, index,
read toArray, sub, contain, isEmpty, exist, values

add, clear, remove, retain, put,insert, set,
write replace, offer, push, pop, copyInto

Finally, those program points before reading (after writ-
ing) a meta-info field are static crash points. For convenience,
hereafter, we refer to them as pre-read/post-write points, re-
spectively. If a read reference is only used in the return state-
ments of a method, we promote the corresponding static
crash point to the call-sites of the method. Such promotion
helps to simplify the call stacks of corresponding dynamic
pre-read points.

3.1.3 Profiler
The profiler generates dynamic crash points, i.e., executed
static crash points with distinct calling stacks. Those static
crash points not exercised are discarded.

We profile the system under testing with workloads of dif-
ferent sizes until a fixed point. Starting from the default size,
we keep doubling the size until no new dynamic crash points
can be generated. The process quickly converges in 2 or 3 iter-
ations. We instrument the system at each static crash point.
During profiling, the instrumented code will record each
hit static crash point together with its corresponding call
stack. The Java API Thread.currentThread().getStack-
Trace() is invoked to get the runtime call stack. The call
stack is represented using call strings and bounded to a depth
of 5 (starting from themethod of the crash point to its callers).

3.2 Fault-injection Testing
We perform fault-injection testing at each dynamic crash
point. As discussed in Section 2, to inject the right faulty
event, we need to figure out which node to crash (or shut-
down) when hitting a dynamic crash point. How to find out
the right node to crash? We apply a light-weight online log
analysis (Figure 4) to record the values of meta-info variables
and relate them to a particular node. The recorded meta-info
is a simplified implementation of the graph in Figure 5(d).
Trigger can then efficiently query the recorded meta-info
with the read (written) value of meta-info variables to locate
the target node .

3.2.1 Online Log Analysis
We collect runtime logs on each node of the cluster with
a Logstash [11] agent. Logstash is a popular log collection
tool which can perceive log file changes, then sends the
change-sets to a custom stash (a nominated destination node)
in time. To avoid sending unnecessary data, only the runtime
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HashSet [node3:42439,node4:42439]

HashMap

Key Value
container_..._3 node3:42439
attempt_..._3 node3:42439
jvm_..._m_3 node3:42439
container_..._4 node4:42439
attempt_..._4 node4:42439
jvm_..._m_4 node4:42439

Figure 6. Recorded runtime meta-info.

values of meta-info variables are sent out (i.e., those values
highlighted in red in Figure 5(c)).
The custom stash processes received runtime values of

meta-info variables in FIFO order. For efficiency, instead
of constructing the graph as in Figure 5(d), we record the
runtime values of nodes in a HashSet, and associate other
meta-info values to a particular node via a HashMap. Fig-
ure 6 gives the recorded meta-info for our example. The
received values node3:42439 and node4:42439 are inserted
to the node set since they match host names. Log instance 3
sends out two related meta-info values: container_..._3
and node3:42439. Hence, the HashMap is updated with the
key value pair <container_..._3, node3:42439>. When
processing the two values in log instance 4: attempt_..._3
and container_..._3. We query each value in the HashMap
to get its associated node (i.e., node3:42439 for the value
container_..._3), then update the HashMap accordingly
(<attempt_..._3, node3:42439>). We discard values unas-
sociated to any node.

3.2.2 Trigger
Trigger instruments the system to inject crash events at a
dynamic crash point, as shown in Figure 7. The pre-read
point (node1) and post-write point (node2) are instrumented
differently. Note that for illustration, Figure 7 presents two
types of instrumentation together. In our implementation,
we only instrument one dynamic crash point at a time.

For pre-read points, we instrument a shutdown RPC fol-
lowed by a wait. The wait works as a timeout period (10
seconds by default) for the shutdown event to be handled.
For post-write points, we instrument a crash RPC. Both
RPCs are invoked with arguments <p, context> (the dy-
namic crash point) and id (the accessed runtime meta-info
value). The Control Center is a separate node to handle the
instrumented RPCs. If the dynamic crash point has not been
exercised (line 1), we query the input runtime meta-info
value to get its associated node (line 3). The procedure sim-
ply returns if no such node exists (line 4). Alternatively, we
could randomly select a node to crash. However, this alter-
native approach has no impact on our experimental results.
At line 5, we invoke the script library to crash/shutdown a
node accordingly.

Figure 7. Trigger.

Finally, we report a bug in any of the following 3 cases: 1)
job failures; 2) system hangs; and 3) there exists uncommon
exceptions in the logs. Currently, we do not report silent
errors which lead to unexpected behaviors, e.g., silent data
corruptions. How to develop test oracles for silent errors
(e.g., gray failures) is an important topic worth separate
investigation [27, 30, 44, 45, 52, 60].

3.3 Implementation Details
We implement our static analyses in WALA [5] and perform
instrumentationwith Javassist [1]. The popular log collection
framework Logstash [11] is used for runtime log collection.
The implementation consists of 9,933 lines of Java code and
550 lines of Shell code.

Log analysis We adopt the approach in [58] to efficiently
match a run time log instance with a log pattern. A reverse
index is built as a hash for each log pattern, which can be
used to quickly calculate a matching score for each runtime
log instance. The higher the matching score, the more likely
the log pattern matches the log instance. For a given log in-
stance, we select 10 logging patterns with the highest scores.
Then we parse the log instance according to the 10 logging
patterns, to find an exact match.

Code instrumentation We represent crash points as pro-
gram points before/afterWALA instructions. However, Javas-
sist performs instrumentation at the source code level. A
statement can spread across multiple source lines and a
WALA instruction may refer to a source line in the middle
of a statement. In that case, the instrumented class will not
compile. Hence, for pre-read points, we try to instrument the
source line and its preceding source lines (succeeding lines
for post-write points) until the instrumented class compiles.

Online log analysis We leverage the results from offline
log analysis and implement a filter to extract runtime values
of meta-info variables from log instances efficiently.

The filter consists of regular expressions which are derived
by offline analysis for the toString method of meta-info
variables. For our illustration example, the filter for variables
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of type nodeId is "(.*):(.*)". Hence, when processing log in-
stance 1 and log instance 2 in Figure 5(c), values matching
the filter are extracted and sent to the custom stash (i.e.,
node3:42439 and node4:42439).

Runtime meta-info values For fields of non-collection
types, the meta-info values are obtained by calling their cor-
responding toStringmethods. For fields of collection types,
the meta-info values are derived differently, according to
given read/write operations. For instance, given m.add(e),
the result of e.toString() is considered as the stored meta-
info value. For read operations such as v = m.get(key), we
get two related values: v.toString(), and key.toString().

3.4 Limitations
CrashTuner is not sound and does not guarantee the absence
of crash-recovery bugs. The effectiveness of CrashTuner
relies on the log qualities of the system under testing. For
instance, CrashTuner cannot reproduce the 3 bugs HBASE-
13546, HBASE-14621, and YARN-4502 because the accessed
variables are not printed in logs. Hence CrashTuner fails to
identify them as meta-info variables. Nevertheless, Crash-
Tuner can reproduce 59 out of 66 existing bugs and reports
21 new crash-recovery bugs.
The log-based implementation makes CrashTuner eas-

ily deployable to cloud systems. However, it also impacts
its effectiveness to systems with limited logging informa-
tion. For instance, CrashTuner did not detect any new bug
in ZooKeeper, where only 290 runtime log instances are
generated and node is simply represented with Integer
type. There are alternative approaches to analyze meta-info,
e.g., static analysis and instrumentation-based approaches.
These approaches do not depend on logging. However, static
analysis approaches suffer from high false positives and
instrumentation-based approaches are difficult for deploy-
ment. We may need to pick the right trade-off between pre-
cision, effectiveness, and generality.

This paper does not target crash recovery bugs involving
multiple crash events or IO operations. However, CrashTuner
can be extended with existing techniques to tackle these
bugs. For example, [50, 53] target crash-consistency bugs,
and [23, 33] target bugs involving multiple crash events.
These works will be covered in our future work.

4 Evaluation
We evaluate CrashTuner using the five widely-used open-
source distributed systems in Table 4: Hadoop2/Yarn (dis-
tributed computing framework), HDFS (distributed file sys-
tem), HBase (distributed key-value stores), ZooKeeper (dis-
tributed synchronization service), and Cassandra (distributed
storage system). Note that Cassandra is not included in our
empirical study. All systems are tested with their latest ver-
sions in the trunk when the experiments were conducted
(Column 2). We apply the default configurations (including

Table 4. Systems under test.

System Latest Version Workload
Hadoop2/Yarn 3.3.0-SNAPSHOT WordCount+curl

HDFS 3.3.0-SNAPSHOT TestDFSIO+curl
HBase 3.0.0-SNAPSHOT PE+curl

ZooKeeper 3.5.4-beta SmokeTest+curl
Cassandra 3.11.4 Stress

the default logging configurations) to all systems, except for
Hadoop2/Yarn. To reproduce existing bugs in Hadoop2/Yarn
(Table 1), the configuration needs to be set to "enable oppor-
tunistic" [7]. We evaluate the systems with common work-
loads (Column 3). WordCount, TestDFSIO, PE (performance
evaluation) and Stress are built-in workloads in their corre-
sponding systems and SmokeTest [17] is a popular workload
for testing ZooKeeper. In addition, we append each workload
with a "curl" command to test user queries via web interfaces.

All the experiments are conducted on a cluster with three
identical nodes. Each node has a CentOS 6.5 system on an
Intel(R) Xeon(R) E7-4809 processor with 32 GB of memory.
The evaluation will answer the following research questions:
● RQ1. How effective is CrashTuner in detecting bugs,
especially new bugs?
● RQ2. How does CrashTuner compare with other fault-
injection testing approaches?
● RQ3. How efficient is CrashTuner?

4.1 RQ1:Effectiveness
We evaluate how effective CrashTuner is in reproducing
existing bugs, as well as its ability in detecting new bugs.

4.1.1 Reproducing Existing Bugs
We try to reproduce all bugs in Table 1 (14 non timing-
sensitive bugs are trivially reproduced hence not further
discussed). For each bug, we first check whether CrashTuner
can correctly locate its corresponding crash point or not. If
this is successful, we then inject a crash event at the crash
point to trigger the bug.

CrashTuner can successfully trigger 45 bugs out of the 52
bugs in Table 1. There are 7 bugs not reproduced. For the
3 bugs HBASE-13546, HBASE-14621, and YARN-4502, the
accessed variables are sub-fields of node instances which are
not directly printed in logs (e.g., Master.infoPort_). Hence
CrashTuner fails to locate their crash points. To expose these
bugs, manual annotation may be needed to identify such
variables as meta-info variables. For the other 3 bugs , and
HBASE-7111,HBASE-5722 and HBASE-5635, CrashTuner
fails to associate the accessing meta-info to the right target
node, which is in the lower layer system ZooKeeper. In HDFS-
4596, the bug is triggered when accessing a MD5 file whose
name is not associated to any node instance. To trigger these
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Table 5. New bugs detected. All bugs are confirmed by the original developers, and 16 of them are already fixed. In
YARN-9164, YARN-8650, HDFS-14216, two bugs are grouped under one issue since they share the same root cause
and can be fixed with identical patches.

Bug ID Priority Scenario Status Symptom Meta-info
YARN-9238 Critical pre-read Fixed Allocating containers to removed ApplicationAttempt ApplicationAttemptId
YARN-9165 Critical pre-read Fixed Scheduling the removed container ContainerId
YARN-9193 Critical pre-read Fixed Allocating container to removed node NodeId

YARN-9164(2) Critical pre-read Fixed Cluster down due to using the removed node NodeId
YARN-9201 Major pre-read Fixed Invalid event for current state of ApplicationAttempt ContainerId

HDFS-14216(2) Major pre-read Fixed Request fails due to removed node DataNodeInfo
YARN-9194 Critical pre-read Fixed Invalid event for current state of ApplicationAttempt ApplicationId

HBASE-22041 Critical post-write Unresolved Master startup node hang ServerName
HBASE-22017 Critical pre-read Fixed Master fails to become active due to removed node ServerName
YARN-8650(2) Major pre-read Fixed Invalid event for current state of Container ContainerId
YARN-9248 Major pre-read Fixed Invalid event for current state of Container ApplicationAttemptId
YARN-8649 Major pre-read Fixed Resource Leak due to removed container ApplicationId

HBASE-21740 Major post-write Fixed Shutdown during initialization causing abort MetricsRegionServer
HBASE-22050 Major pre-read Unresolved Atomic violation causing shutdown aborts RegionInfo
HDFS-14372 Major pre-read fixed Shutdown before register causing abort BPOfferService
MR-7178 Major post-write Unresolved Shutdown during initialization causing abort TaskAttemptId

HBASE-22023 Trivial post-write Unresolved Shutdown during initialization causing abort MetricsRegionServer
CA-15131 Normal pre-read Unresolved Request fails due to using removed node InetAddressAndPort

OpportunisticContainerAllocatorAMService.OpportunisticAMSProcessor
1 public void allocate(ApplicationAttemptId appAttemptId) {
2 if (!appCache.exist(appAttemptId)) return;
3 . . .
4 SchedulerApplicationAttempt appAttempt=rmContext.getAppAttempt(appAttemptId);
5 + if (!appAttempt.getApplicationAttemptId().equals(appAttemptId)) {
6 + LOG.error("Calling allocate on removed application attempt " + appAttemptId);
7 + return;
6 + }
8 //allocate container for appAttempt
9 }

Figure 8. The simplified code snippet and patch for YARN-9238.

4 bugs, we need to introduce extra logs to associate the meta-
info variable to the right target node.

4.1.2 Detecting New Bugs
CrashTuner detects 211 new bugs that have never been re-
ported before (Table 5), including 8 critical bugs (classified
by the original developers). All reported bugs are confirmed
by the original developers and 16 of them have already been
fixed (14 patches provided by us).
When submitting a bug issue, we are often required to

provide a unit test exposing the bug (7 unit tests). It is tricky
since we are not allowed to modify the source code to inject
faults at the crash point. The default method in writing unit
tests only supports fault injection before the invocation to
a public method. Very often, a bug cannot be exposed if its
crash point lies in the middle of a method.
1The website https://github.com/lujiefsi/CrashTuner shows how to repro-
duce all new bugs in detail.

For instance, in YARN-9238 (Figure 8), variable appAttemp-
tId refers to an attempt instance to execute a given applica-
tion. If the current attempt fails, the recovery process will
try another attempt. The field currentAttempt (not shown
in the code) refers to the attempt instance for each applica-
tion. Hence, if the current attempt node (node associated
to appAttemptId) crashes, field currentAttempt is reset to
the new attempt node by the recovery process. In Figure 8,
line 4 get the field value of currentAttempt, which is the
new attempt node whose state is uninitialized. However, in
line 8, the buggy code is not aware of the crash and uses it
as the old attempt node (node associated to appAttemptId),
leading to aborts .

CrashTuner successfully exposes this bug by crashing the
node appAttempId associated to, before reading currentAtt-
empt in line 4. After the crash, field currentAttempt is reset
and the new attempt node is returned, exposing the error.
However, the bug cannot be exposed by unit tests created via
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Figure 9. HBASE-22041 . (1) RegionServer (RS) reports
to HMasterwhen it is alive. (2) The liveMonitor thread
handles the request and add RS to the list of on-
line servers. (3) RS crashes before it is registered in
ZooKeeper (ZK). (4) ZK cannot detect the crash. The
recovery process did not get a notification of the crash
event. (5) RS remains in the list of online servers, with-
out being removed. (6) The startup thread fails to read
from RS.

the default method. If the crash event is handled at the entry
of the method allocate, the sanity-check at line 2 will de-
tect the node crash and prevent the error. Hence, in our unit
tests, we manually reset the field currentAttempt before
invoking the method allocate, to emulate the system state
at the crash point.

Lines 5-6 present our patch, which validates currentAtte-
mpt before it is used (line 8). In general, it is easy to figure out
the root cause of a bug and provide a corresponding fix, by
examining its crash point and logs. We submitted 20 patches
in total, 15 patches were accepted, 5 patches were under
review and 1 patch was rejected. Among the 14 accepted
patches, 8 patches introduce sanity checks and another 7 add
handlers for unexpected exceptions or events. HBASE-22017
is a data race bug caused by crash-recovery procedure in
the server process HRegionServer. The original developers
rejected our patch, which fixes the race condition in the
server process. Instead, they created a new issue (HBASE-
22047) and fixed the problem on the client side. We did not
patch HBASE-22041, which is discussed below.

HBASE-22041 The bug is triggered after RegionServer
(RS) reports to HMaster (1), and before it is registered in
ZooKeeper (ZK) (3). If RS crashes after (3), ZK will detect
the crash and start the recovery process. The list of online
server can then be correctly updated (5). However, if the
crash happens between the two messages (1) and (3), the
startup thread fails to read from RS and will keep retrying
forever, causing system hang.
When trying to fix this bug, we find the following com-

ment: //TODO: How many times should we retry. The original
developers were already aware of the problem. But for some

1 AbstractYarnScheduler:HashMap<NodeId, N> nodes;
2 ScheNode getScheNode(NodeId id){return nodes.get(id);}
3 public void completeContainer(Container container) {
4 ScheNode node = getScheNode(container.getNodeId());
5 node.releaseContainer(container.getContainerId());
6 }

Figure 10. Simplified code snippet for YARN-9164 .

reason, they did not fix it. We could not figure out the right
retry threshold. Hence, we did not to patch this bug.

YARN-9164 In YARN-9164, when a job finishes or fails, the
method completeContainer releases containers of the job
on each node (Figure 10). At line 3, method getScheNode is
invoked to get the node that a container belongs to. However,
if the target node crashes just before line 4, a null value is
returned which will raises a NullPointerException at line
5. The master node cannot handle the exception and aborts
immediately, bringing down the entire cluster.

CrashTuner successful identifies NodeId asmeta-info types
and nodes as meta-info variables. By definition, the crash
point is the read access to nodes at line 2. Since at line 2, the
read reference is directly returned, CrashTuner promotes the
crash point to the callsites of method getSchedNode (e.g.,
line 4). There are 43 call-sites in total, corresponding to 43
potential static crash points, and 30 of them are optimized
out since their return values are either not used (5) or sanity-
checked (25). In the end, Profiler generates two dynamic
crash points from the 13 static crash points, including the
bug-triggering point before line 4. The other dynamic crash
point does not expose errors.

4.1.3 Timeouts
CrashTuner reports four timeout issues (default timeout
threshold is 4 times of 1 run). It is debatable whether these
issues are true bugs or false positives. Although the tasks
eventually finish (> 10 mins), they significantly slowdown
the system.

Three timeout issues exist in Hadoop2/Yarn. In the first is-
sue, when the map attempt task finishes, the task records the
attempt instance in its field successAttempt and changes
its state to success. CrashTuner injects a node crash event
after setting the field successAttempt. The reduce task fails
to read output from the map task due to the crash and it will
retry for a long time (≃10 mins), which exceeds our default
timeout threshold. In the other two issues, the application
attempt is initialized to set the field container to its corre-
sponding node. If the node crashes after setting the field, the
application attempt will stuck in the running state. Eventu-
ally, after 10 minutes, the stuck application attempt will be
killed by AbstractLivelinessMonitor.
There is one similar timeout issue in HBase, which will

make the Region stuck in the OPENING state, before it is
killed in 10 minutes.
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Table 6. The complexity of fixing newly detected
bugs/existing bugs in CREB [21]. This table is dis-
cussed in Section 4.1.4.

LOC # # #
of patch patches days to fix comments

CREB bugs 117 4 92 26
New bugs 114.8 3.8 16.8 8.6

4.1.4 Complexity of Fixes
Table 6 compares the patches of newly detected bugs with
existing bugs in CREB [21] (an existing bug study database).
The number of lines of code (Column 2) per patch and the
number of patches (Column 3) per bug are almost the same,
suggesting similar complexity between new bugs and ex-
isting bugs. However, for newly detected bugs, the average
time in fixing a bug (Column 4) and the number of comments
per bug issue (Column 5) are significantly less. This is be-
cause most comments are discussing on how to reproduce
the bug [62]. Once the bug is reproduced, it is generally easy
to figure out the root cause and fix the bug. In our submitted
bug issues, we illustrate in detail on how to reproduce each
bug (some with unit tests) and provide patches for them,
which significantly speeds up the fixing processes.

Discussion CrashTuner detected new bugs for all systems,
except for ZooKeeper. Unlike the other four systems where
global system states spread acrossmultiple nodes, ZooKeeper
keeps a copy of the entire global states on each node. As
a result, even CrashTuner found 40 dynamic crash points
(Table 10), they can only trigger 4 different types of IO ex-
ceptions, which are all handled by the system.

4.2 RQ2: Comparison with Alternative Approaches
We compare CrashTuner with two alternative fault-injection
testing approaches: the random fault-injection approach
and the OpenStack approach [34] to inject faults around
IO events.

4.2.1 Random Crash Injection
In this experiment, each system is profiled with the normal
workload to get its run time T . We perform random fault-
injection testing by running each system 3000 times, and
for each time injecting a node (randomly chosen) crash (or
shutdown) event at a random time between range [0, T ].
Table 7 gives the result.

Random fault-injection testing can successfully trigger 3
bugs:YARN-9194, HBASE-21470, and MR-7178, with each
bug being triggered 2, 12, and 2 times, respectively. All bugs
are also detected by CrashTuner. The three bugs are triggered
when a node crashes during the process of starting a new
node. Since it is time-consuming to start a new node, the ran-
dom approach has a good chance to hit the relatively-large
bug-triggering window. In summary, the random approach

Table 7. Results of random crash injection. This table
is discussed in Section 4.2.1.

System Times(h) Known bugs New bugs
Hadoop2/Yarn 71.03 2(4) 0

HBase 61.37 1(12) 0
HDFS 72.55 0(0) 0

ZooKeeper 19.62 0(0) 0
Cassandra 47.92 0(0) 0

Table 8. Number of IO classes, methods and IO points.
This table is discussed in Sectino 4.2.2.

Systems # IO
classes

# IO
methods

# Static
IO points

# Dynamic
IO points

YARN 539 823 1342 1312
HBase 341 667 456 196
HDFS 432 940 1658 1252
Zookeeper 145 580 619 492
Cassandra 203 687 1063 1248
Total 1660 3697 5138 4500

Table 9. Results of IO fault injection. This table is dis-
cussed in Section 4.2.2.

System Times(h) Known bugs New bugs
Hadoop2/Yarn 57.66 1(6) 0

HBase 20.91 0 0
HDFS 44.05 0 0

ZooKeeper 3.74 0 0
Cassandra 30.51 0 0

can trigger one bug in every 17.03 hours with averagely 937.5
runs (90.83 hours with averagely 5000 runs if repeated bugs
not considered). On the other hand, CrashTuner can find one
bug in every 1.70 hours with averagely 50.29 runs, which is
much more efficient and effective.

4.2.2 IO Fault Injection
Table 8 summarizes the number of IO points for each bench-
mark. IO classes are those classes implementing the inter-
face java.io.Closeable (Column 2), e.g., network and file
stream classes. IO methods are public methods of IO classes
starting with one of the following keyword: read, write,
flush, and close (Column 3). Static IO points are call-sites
to IO methods (Column 4). We use the same profiling strat-
egy to obtain dynamic IO points, i.e., static IO points with
calling contexts (Column 5). In this experiment, we inject
crash event before and after each dynamic IO point. Table 9
gives the results.
IO fault injection can trigger only 1 bug (for 6 times):

YARN-9201. This bug is also reported by CrashTuner. In
summary, IO fault injection can trigger one bug in every
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Table 10. Number of Types, fields, access points, and crash points. This table is discussed in Section 4.3.

System # Total # Meta-info # Crash Points
Types Fields Access Points Types Fields Access Points Static Dynamic

Hadoop2/Yarn 6,265 43,223 206,087 107 1,251 5,109 1,524 453
HBase 3,257 26,802 130,969 34 733 4,032 920 257
HDFS 3,924 30,645 138,269 43 315 1,924 495 237

ZooKeeper 532 4,787 28,072 3 13 90 41 40
Cassandra 3,175 17,295 95,259 1 122 666 197 69

Total 17,153 122,752 598,656 188(1.10%) 2,434(1.98%) 11,821(1.97%) 3,177(0.53%) 1,056(0.18%)

Table 11. Analysis and testing times. This table is dis-
cussed in Section 4.3.

System Analysis(s) Profile(s) Test(h) Total(h)
Hadoop2/Yarn 265.67 365.34 17.22 17.39

HBase 276.34 812.72 7.97 8.27
HDFS 218.61 417.06 8.46 8.65

ZooKeeper 37.83 26.44 0.25 0.27
Cassandra 213.36 71.23 1.02 1.10

24.15 hours with averagely 750 runs (156.88 hours with aver-
agely 4500 runs if repeated bugs not considered). Most bugs
detected by CrashTuner cannot be triggered with IO fault
injection because the real crash points are far away from any
IO points.

Surprised by the results, we thoroughly checked the logs
generated during IO fault injection testing. Many tests lead
to exceptions. For instance, in HDFS, after crashing the name
node when it is writing a log file, the recovery node throws
a LogHeaderCorruptException due to the corrupted file.
However, the exception is well handled by the system. Fre-
quently, developers introduce exception handlers for IO op-
erations. As a result, IO faults are often tolerated and IO fault
injection is not as effective in triggering new bugs.

4.3 RQ3: Efficiency
Table 10 compares the number of meta-info types, fields, and
access points (Columns 5-7) to the total number of types,
fields, and access points for each system (Columns 2-4). Ac-
cording to log analysis and type-based static analysis, 2.20%
access points are accessing meta-info variables (Column 7).
Static optimizations and profiling further reduce the number
of static and dynamic crash points to 0.58% (Column 8) and
0.19% (Column 9) of the total access points in the program,
respectively. In the end, there are 453 dynamic crash points
for Hadoop2/Yarn, 257 dynamic crash points for HBase, 237
dynamic crash points for HDFS, 40 dynamic crash points for
ZooKeeper and 69 for Cassandra.
Table 11 shows the times of CrashTuner in testing each

system. The analysis times (Column 2) include the time in
running the system (we run each system once with the given
workload in Table 4) to generate logs, the log analysis time,
as well as the static analysis time. The profiling time is given

Table 12. Crash points pruned by different optimiza-
tions. This table is discussed in Section 4.3.1.

System Constructor Unused Sanity check
Hadoop2/Yarn 1,140 1,778 608

HBase 849 876 1,387
HDFS 355 373 701

Zookeeper 27 14 7
Cassandra 248 116 105

in Column 3, where at most 3 runs are sufficient to find out
all dynamic crash points. Column 4 is the total time to test
all dynamic crash points (Column 9 in Table 10) one by one.
CrashTuner is very efficient. It finishes its analyses in

5 minutes for all benchmarks (Column 2). In the testing
phase (Column 4), CrashTuner tests the 453 dynamic crash
points (Column 9 in Table 10) for Hadoop2/Yarn in 17.22
hours. Our instrumentation and online log analysis do not
introduce any noticeable performance degradation in testing
each individual crash point.

4.3.1 Optimizations
As stated in Section 3.1.2, we discard field references in any of
the three cases: 1) fields only set in the constructors of their
containing classes (Constructor); 2) read references unused
or only used in logging statements (Unused); 3) read refer-
ences checked before being used (Sanity check). Table 12
shows the number of pruned crash points by each optimiza-
tion. The 3 optimizations together reduce the number of
crash points by 3.76X, significantly improving efficiency.
To evaluate the soundness of CrashTuner, we randomly

selected 3000 crash points pruned by optimizations and
3000 non meta-info access points for fault-injection testing.
However, no new bugs were triggered.

4.4 Discussions
We implement CrashTuner in Java and evaluate it using 5
Java-based distributed systems in the Hadoop eco-system.
However, the approach is applicable to a wide range of dif-
ferent distributed systems. We studied the 14 scheduling-
related critical crash-recovery bugs in Kubernetes [15], a
popular distributed resource management system written
in Golang [12]. Table 13 shows that the 14 bugs are also
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Table 13. The studied bugs in Kubernetes [15].

Kubernetes
Node #53647 #68984 #55262 #56622

#69758 #71063 #73097 #78782

Pod #72895 #68173 #68892 #70898
#71488 #72259

triggered when nodes crash at program points accessing
meta-info. Kubernetes dynamically allocates and deallocates
nodes (often from a cloud provider, e.g., google cloud), lead-
ing to frequent meta-info updates. When a node crashes, its
meta-info still scatters around in the system. It is very diffi-
cult for developers to find all meta-info of the crashed node
and update them accordingly, which often leads to bugs.
We believe that meta-info is a well-suited abstraction in

analyzing distributed systems. The root causes of crash-
recovery bugs are either 1) failing to handle corrupted meta-
info (the post-write scenario), or 2) using stale meta-info (the
pre-read scenario). This paper demonstrates the effective-
ness of meta-info analysis to fault-injection testing. It can
also help static detectors [61] and distributed system model
checkers [28, 35, 37, 38, 48, 54, 59] to more effectively detect
such bugs.

5 Related Work
Crash recovery bug study and detection There aremany
empirical studies on crash recovery bugs [21, 29, 39, 46].
Mesbahi et al. [49] pointed out that 2.4% nodes can crash in
Google cluster per day, which may lead to many bugs [25].
TaxDC [39] shows that 63% of distributed concurrency bugs
suffice in the presences of node crash and other faults. In [21],
researchers conducted extensive empirical studies on crash-
recovery related bugs. The two papers [29, 46] study node
change bugs and exception-related bugs, respectively. These
studies motivate our approach.

Recent research focuses on crash recovery bug detection
via fault-injection testing, where faults are injected either
randomly [6] or systematically [18, 23, 32, 34]. The system-
atic approaches rely on user specifications to guide fault-
injection. They provide domain specific languages that allow
users to specify fault-injection sequences, scenarios, and so
on. Distributed model checkers [28, 35, 37, 38, 48, 54, 59]
intercept messages and events (e.g., crash) in the system
at runtime, then permute their orderings exhaustively. Al-
though powerful, they still suffer from the state space ex-
plosion problem. FCatch [43] models time-of-fault bugs as
a special type of concurrency bugs. It traces system execu-
tion via instrumentation and can predicate crash recovery
bugs from the correct execution trace. Aspirator [61] is a
static detector for exception handler bugs, some of which
may also be triggered by node crash events. However, many
crash-recovery bugs manifest themselves without involving

any exception handlers. It will be difficult for static detec-
tors to report these bugs with good precision. This paper
introduces a novel fault-injection testing approach for crash
recovery bug detection by automatically inferring meta-info
variables, whose access points are likely to be crash points.

DCatch [42] extends the classic happen-before relations
to distributed systems and adopts dynamic analysis to detect
distributed concurrency bugs. CloudRaid [47] detects con-
currency bugs in distributed systems by flipping the order of
a pair of messages that always happen in a fixed order. The
two works can be combined with our approach to uncover
more concurrency bugs in the crash recovery process.

Log analysis for distribute systems Log analysis has been
widely adopted in analyzing, monitoring, and diagnosing
distributed systems. Xu et al. [58] detect anomaly executions
by applying machine learning techniques to console logs
from a system. DISTALYZER [51] studies performance of
system components by comparing logs from abnormal exe-
cution and normal execution. Iprof [64] extracts request IDs
and timing information from logs to profile request latency.
Stitch [63] organizes log instances into tasks and sub-tasks,
to profile different components in the entire distributed soft-
ware stack. CloudRaid [47] employs log analysis for detection
of distributed concurrency bugs. We mine logs to discover
meta-info in distributed systems, for effectively detecting
crash recovery bugs.

6 Conclusions
We present CrashTuner, a novel fault-injection testing ap-
proach to crash recovery bug detection. CrashTuner pre-
cisely identifies fault-injection points via meta-info analysis,
which automatically infers meta-info variables (variables ref-
erencing high-level system state) whose accessing points are
fault-injection points likely to expose errors. We evaluate
CrashTuner against five representative distributed systems.
CrashTuner can successfully reproduce 59 out of 66 exist-
ing bugs, and can detect 21 new bugs that have never been
reported before. These bugs can cause severe damages such
as cluster down or start-up failures.

In our future work, we plan to further extend CrashTuner
to tackle crash-consistency bugs and deep bugs involving
multiple crash events.
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