CrashTuner: Detecting Crash-Recovery Bugs
in Cloud Systems via Meta-Info Analysis

Jie Lu

lujie@ict.ac.cn

Chen Liu

liuchen17z@ict.ac.cn

Lian Li**
lianli@ict.ac.cn

SKL Computer Architecture, ICT, CAS SKL Computer Architecture, ICT, CAS SKL Computer Architecture, ICT, CAS

University of Chinese Academy of
Sciences, China

Xiaobing Feng
fxb@ict.ac.cn

SKL Computer Architecture, ICT, CAS

University of Chinese Academy of
Sciences, China

Abstract

Crash-recovery bugs (bugs in crash-recovery-related mech-
anisms) are among the most severe bugs in cloud systems
and can easily cause system failures. It is notoriously diffi-
cult to detect crash-recovery bugs since these bugs can only
be exposed when nodes crash under special timing condi-
tions. This paper presents CrashTuner, a novel fault-injection
testing approach to combat crash-recovery bugs. The nov-
elty of CrashTuner lies in how we identify fault-injection
points (crash points) that are likely to expose errors. We
observe that if a node crashes while accessing meta-info
variables, i.e., variables referencing high-level system state
information (e.g., an instance of node or task), it often trig-
gers crash-recovery bugs. Hence, we identify crash points by
automatically inferring meta-info variables via a log-based
static program analysis. Our approach is automatic and no
manual specification is required.

We have applied CrashTuner to five representative dis-
tributed systems: Hadoop2/Yarn, HBase, HDFS, ZooKeeper,
and Cassandra. CrashTuner can finish testing each system in
17.39 hours, and reports 21 new bugs that have never been
found before. All new bugs are confirmed by the original
developers and 16 of them have already been fixed (14 with

“corresponding author: lianli@ict.ac.cn
T Also with TianQi Soft Inc., China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSP 19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6873-5/19/10...$15.00
https://doi.org/10.1145/3341301.3359645

University of Chinese Academy of
Sciences, China

University of Chinese Academy of
Sciences, China

Feng Tan
Jun Yang
Liang You

{tanfeng.tf,muzhuo.yj,youliang.yl}@alibaba.com

114

Alibaba Group

our patches). These new bugs can cause severe damages such
as cluster down or start-up failures.

CCS Concepts - Software and its engineering — Soft-
ware testing and debugging; Cloud computing,.

Keywords CrashRecovery Bugs;Fault Tolerance;Distributed
Systems;Bug Detection;Fault Injection;Cloud Computing

ACM Reference Format:

Jie Lu, Chen Liju, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang,
and Liang You. 2019. CrashTuner: Detecting Crash-Recovery Bugs
in Cloud Systems via Meta-Info Analysis. In ACM SIGOPS 27th Sym-
posium on Operating Systems Principles (SOSP ’19), October 27-30,
2019, Huntsville, ON, Canada. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3341301.3359645

1 Introduction

Distributed systems have become the backbone of comput-
ing in the cloud era. More and more applications are built
on top of large-scale distributed systems (such as scalable
computing frameworks [20, 57] and distributed storage sys-
tems [22, 36]), to provide online services to users. High avail-
ability of those systems is crucial: failures of the underlying
distributed systems can lead to cloud outage, easily costing
service providers millions of dollars [2, 9].

High availability of distributed systems largely hinges
on how well these systems tolerate node crashes (failures).
Large-scale distributed systems are often comprised of thou-
sands of nodes (machines) [55], and it is common that a node
may fail due to hardware or software faults [49]. Although
various sophisticated crash-recovery mechanisms [4, 13, 16]
have been adopted in distributed systems, it is still challeng-
ing to handle node crashes correctly. It is very difficult, if
not impossible, for developers to anticipate all possible crash
scenarios and correctly implement corresponding recovery
mechanisms. In this paper, we refer to bugs in crash-recovery-
related mechanisms as crash-recovery bugs.

https://doi.org/10.1145/3341301.3359645
https://doi.org/10.1145/3341301.3359645

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Crash-recovery bugs are among the most severe bugs in
distributed systems. Many node crashes can be recovered
from by the sophisticated fault-tolerance schemes imple-
mented in distribute systems [25]. However, crash-recovery
bugs break such fault-tolerance schemes and hence easily
lead to system failures. Moreover, it is notoriously difficult
to detect crash-recovery bugs during in-house testing. Node
crash events need to be injected under special timing con-
ditions to trigger a bug. As a result, crash-recovery bugs
widely exist in deployed distributed systems [21, 25, 26, 39].

The state-of-the-art techniques detect crash-recovery bugs
via fault-injection testing [23, 24, 32-34]. However, it is chal-
lenging to hit the small bug-triggering windows due to the
huge state-space of the system under testing. Random fault
injection is ineffective, as is evident in our own experiments
and previous work [23]. Systematic approaches (i.e., dis-
tributed system model checkers [28, 35, 37, 38, 48, 54, 59])
suffer from the state explosion problem. Researchers apply
sophisticated heuristics [59], or resort to manual specifi-
cations [38], to effectively restrict the large search space.
Although great progress has been made, these approaches
still struggle at exploring the huge state-space of distributed
systems. Most (>99.9%) injected faults are unnecessary and
very few new crash recovery bugs were reported [43].

This paper presents CrashTuner, a novel approach to pre-
cisely identify bug-triggering points where node crash events
can be injected. Hereafter, we refer to such program points
as crash points. CrashTuner precisely locates crash points by
automatically inferring meta-info variables (variables refer-
encing high-level system state information), whose access
points are fault-injection points likely to expose errors. This
is realized via a log-based static program analysis. It is fully
automatic and no manual specifications are needed. We have
applied CrashTuner to test the 5 representative distributed
systems: scale-out computing framework Hadoop2/Yarn [57],
distributed key-value storage HBase [22], scalable file system
HDFS [19], cluster synchronization service ZooKeeper [31],
and decentralized storage system Cassandra [36]. Crash-
Tuner can reproduce 59 out of 66 existing crash recovery
bugs , and reports 21 new crash-recovery bugs that have
never been found before. These new bugs lead to severe dam-
ages such as cluster down or startup failures. To date, 16
new reported bugs have been fixed (14 with our patches).

Observation Distributed systems consist of clusters of nod-
es. Jobs and large chunks of resources are divided into small
pieces, and then assigned to each individual node. The set of
nodes, and their associated tasks and resources, together
form a high-level view of the system state. Figure 1 de-
picts a simplified high level view (automatically constructed
by our analysis) of the distributed computing framework
Hadoop2/Yarn. The system includes a cluster of individ-
ual nodes (Node_0,...,Node_n). Each node manages one or
more containers. There are m (m # n) containers in total

J. Luet al.

Master
Container

(AppAttemle) [JVMJ HTaskAttemptﬁl] [JVMimHTaskAnemplim)

Job_1

Container_m

1

Figure 1. A simplified high level view of
Hadoop2/Yarn. Ovals represent resources and squares
stand for tasks.

(MasterContainer,Container_1,...,.Container_m) . A JVM

process (JVM_ID) is spawned on each container, and each

JVM process is a particular instance to execute an attempt

(TaskAttempt_ID) of a given task (Task_ID). A user job re-
quest (Job_ID) is handled by an application instance (App_ID).
Each job is delegated to a master container . The master node

decomposes a job into m small tasks then dispatches each

task to an available container.

In practice, the above high-level system state information
is stored in the heap memory of different nodes and accessed
via heap references. For instance, in Hadoop2/Yarn, the in-
stance field NMContext.nodeId refers to a particular node.
For convenience, we regard those variables referencing high-
level state information as meta-info variables. Node crash or
recovery events will change the system state. It is crucial to
update those meta-info variables accordingly. Otherwise, a
crash recovery bug may be triggered.

We have examined 66 crash recovery bugs from 4 of the 5
representative distributed systems (Cassandra not included).
Our study leads to the following observation:

The Crash Points are the program points accessing
meta-info variables (variables referencing high-level
system state information). Crash-recovery bugs are
triggered when a node crashes at crash points.

14 out of the 66 bugs are not timing sensitive, and they
can be trivially triggered with any fault-injection techniques .
For the remaining 52 crash recovery bugs, their crash points
are observed as above. There are two common scenarios:

e The pre-read scenario: Node N crashes before its meta-
info is read by another node M. Node M is not aware
of the crash and keeps using the stale information of
N, leading to aborts and job failures.

e The post-write scenario: Node N crashes after N up-
dates the system state (i.e., stores to meta-info vari-
ables). In the recovery process, intermediate updates of
N need to be discarded and rolled back. The recovery

CrashTuner

process may mis-handle the corrupted state, leading
to failed (or incorrect) recovery attempts.

The CrashTuner Approach The key is to locate crash
points. How do we find crash points? In CrashTuner, we
apply log analysis, together with a type-based static program
analysis to automatically infer meta-info variables. The crash
points are those program points before reading a meta-info
variable (pre-read points), or after writing a meta-info vari-
able (post-write points).

An immediate question arises: which variables are meta-
info variables? First of all, node referencing variables are
meta-info variables. We could easily identify node referenc-
ing variables (and their runtime values) from runtime logs.
Distributed systems provide a rich set of runtime logs for
diagnosis and online monitoring. These logs record mes-
sages and events, which contain information such as nodeId
and taskId . For example, the log instance in Hadoop2/Yarn
"NodeManager nodel registered as nodel:42349" in-
dicates that the node nodel:42439 joins the cluster. The
meta-info variables are then defined as follows:

Node-referencing variables and their directly or indi-
rectly related variables are meta-info variables. Two
variables are related if they appear in a same runtime
log instance. Object fields holding same values of
meta-info variables are meta-info variables.

The meta-info variables precisely reflect the high-level sys-
tem state information, i.e., a cluster of nodes and resources/-
tasks associated to each node. We apply log analysis to
discover the set of meta-info variables logged at runtime. A
type-based static analysis is then applied to infer all other
meta-info variables in the program. Our static-analysis exam-
ines the types of existing meta-info variables, to derive other
meta-info variables with equivalent types. Finally, after iden-
tifying crash points from meta-info variables, CrashTuner
will apply fault-injection testing at each crash point individ-
ually . The detailed approach is illustrated in Section 3.

Contributions We make the following contributions.

e We propose a novel approach to crash-recovery bug
detection. Our approach differs from existing fault-
injection testing techniques in that we locate fault-
injection points via meta-info analysis. Meta-info anal-
ysis automatically infers meta-info variables (variables
referencing high-level state information), whose ac-
cessing points are fault-injection points likely to ex-
pose bugs. The approach is fully automatic and no
manual specification is needed.

e We develop CrashTuner, a simple yet effective tool to
detect crash-recovery bugs. In CrashTuner, meta-info
analysis is realized via a log-based static program anal-
ysis. In a separate testing phase, CrashTuner performs
minimal instrumentation for fault-injection testing.

116

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

The analysis is non-intrusive and suitable for online
monitoring. It can be easily adopted and is very effec-
tive in detecting crash recovery bugs.

e We extensively evaluate CrashTuner using five repre-
sentative distributed systems: Hadoop2/Yarn, HBase,
HDFS, ZooKeeper, and Cassandra. CrashTuner can
finish testing each system in 17.39 hours, and reports
21 new crash recovery bugs that have never been
reported before, including 8 critical bugs (classified by
the original developers). We have provided patches to
20 of the 21 bugs and 14 patches have been accepted.

The rest of the paper is organized as follows. Section 2 mo-
tivates our approach with an empirical study of 66 crash
recovery bugs. We present the design and implementation
of CrashTuner in Section 3 and evaluate its efficiency and
effectiveness in Section 4. Section 5 reviews related work
and Section 6 concludes the paper.

2 Motivation

To better understand crash recovery bugs, we thoroughly
examine the crash-recovery bugs from existing bug study
databases [21, 25]. We focus our study on the following
four distributed systems: Hadoop2/Yarn, HDFS, HBase, and
ZooKeeper. The two databases in [21, 25] provide a total of
116 crash recovery bugs in the above 4 systems. In this work,
we focus on bugs triggered by one crash event only. Hence,
50 bugs are omitted since they involve multiple crash events
(34 bugs) or require IO operations (16 bugs). Previous detec-
tion techniques [23, 33] for crash-recovery bugs involving
multiple events could help extend our approach to tackle
these bugs. For the 66 remaining bugs, we have an in-depth
look at each of them .

14 out of the 66 crash-recovery bugs are not timing-sensiti-
ve. They are due to implementation or logic errors in the
recovery process, and can be triggered at anytime when a
node crashes. For example, in MR-3463, the master node
uses the format "host:port” to represent the host name of a
node. If the master node crashes, the recovery process tries
to get a node with the wrong format "host", which always
fails. In ZK-131, there is a data race in the recovery process.
When a node crashes, the recovery process sends out two
event messages: one to reset the corrupted state and the other
to read the reseted state. The bug is triggered if the read
event is handled before the reset event. These bugs can be
detected by existing techniques for distributed concurrency
bugs [42, 47, 65]. Therefore, we only discuss the remaining
52 timing-sensitive crash recovery bugs in our study.

Table 1 characterizes each bug according to its crash point.
All 52 bugs are triggered at program points accessing meta-
info variables. Column 2 summarizes the meta-info being
accessed for each bug. In practice, a particular type of meta-
info can be referenced by variables with various types. For in-
stance, in HBase, the meta-info HRegionServer represents a

https://issues.apache.org/jira/browse/MAPREDUCE-3463
https://issues.apache.org/jira/browse/ZOOKEEPER-131

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 1. The studied timing-sensitive bugs. Column 2
gives the meta-info being accessed at each crash point.

System Meta-info Bugs
AppAttemptld YARN-8664
YARN-2273 YARN-4227
Nodeld YARN-5195 YARN-8233
YARN-5918
- YARN-7007 YARN-7591
Hadoop2 Applicationld YARN-8222 YARN-4355
AppState YARN-4502
Containerld MR-3596 YARN-4152
MR-4833 MR-3031
File MR-4099
TaskAttemptld MR-3858
Datanodelnfo HDFS-6231 HDFS-3701
HDFS File . HDFS-4596
BPOfferService HDFS-8240 HDFS-5014
NameNode HDFS-4404 HDFS-3031
RegionTransition HBASE-4539 HBASE-6070
HBASE-10090 HBASE-19335
HRegion HBASE-4540 HBASE-3365
HBASE-5927 HBASE-5155
HBASE-3617 HBASE-3874
HBASE-3023 HBASE-3283
HBASE-3362 HBASE-3024
HBase HRegionServer HBASE-18014 HBASE-14536
HBASE-14621 HBASE-13546
HBASE-10272 HBASE-2525
HBASE-5063 HBASE-8519
HBASE-2797
HBASE-7111 HBASE-5722
ZNode HBASE-5635
File HBASE-3722
ZooKeeper | ZNode ZK-569

node in the system, which can also be referenced by variables
of types HServerInfoand HServerAddress. These variables
can be converted to variables of types byte[], string and
Integer, all referring to the same type of meta-info, i.e.,
HRegionServer. Section 3 illustrates how we infer meta-info
variables in detail.

The crash points are further classified into two scenarios:
1) The pre-read scenario, i.e., before reading a meta-info
variable, and 2) The post-write scenario, i.e., after writing a
meta-info variable.

2.1 The Pre-read Scenario

37 bugs belong to this scenario: Node M tries to read meta-
info of node N without knowing its availability, leading
to aborts and job failures. Figure 2 depicts a typical crash-
recovery bug [8] in Hadoop2/Yarn. The bug is triggered when
the job thread tries to read resources of the crashed node
NM@node1 from the shared data structure nodes. Since

117

J. Luet al.

NM

: - nodel
recovery llveMcmtori @

| (heartbeal —
@ !

:

timeout !
1

O 1
o i
1

1

1

1

1

|

|

|

4N

RM@node0

Runtime
Meta-info

2 node = nodes.get(id)
3 node.getHttpAddress();
43

Figure 2. YARN-5918: a real-world crash-recovery bug
in Hadoop2/Yarn. Two nodes are involved in this bug,
the ResourceManager (RM for short) noded and the
NodeManager (NM for short) nodel. 1) NM@node1
sends heartbeat message to RM@node@ when itis alive.
After node1 crashes, no heartbeat message will be sent.
2) The liveMonitor thread in node@ detects the crash
of nodel after a timeout period. A LOST event is dis-
patched to the recovery thread. 3) The recovery thread
removes nodel from nodes, a shared data structure to
record all available nodes. 4) Another running thread
job tries to get resources of NM@node1.

node1 is removed from nodes, a null value is returned and a
null pointer exception is raised at line 3.

How to detect these bugs? The crash point is the program
point before reading a meta-info variable (in Figure 2, before
reading nodel in line 2). The node corresponding to the
meta-info variable being read from needs to be crashed to
trigger such bugs, e.g., node1 in Figure 2. How can we find
which node to crash? We develop an online log analysis to re-
late the runtime values of meta-info variables to a particular
node. Hence, before reading a meta-info variable, we could
query its runtime value to find the corresponding node.

The node crash event can only be detected after a time-
out period. To trigger the bug in Figure 2, the job thread
needs to wait until the 1iveMonitor thread detects the node
crash event and sends out the LOST message. To speedup the
testing process, we could set the default timeout period to
a small interval to quickly unveil this bug. Alternatively, in
our implementation, we leverage the shutdown script (most
distributed systems provide such script to gracefully shut-
down a node) provided by the system to let node1 leaves the
cluster pro-actively, without waiting.

2.2 The Post-write Scenario

15 bugs belong to this scenario: Node N crashes after up-
dating the system state and the recovery process fails to
recover (or incorrectly recovers) from the corrupted state.
Figure 3 gives a bug of such scenario [3]. If node1 crashes
after doneCommit, attempt_1 is committed to the global
state and no recovery is needed. If the crash happens be-
fore commitPending, the recovery process will fork another

https://issues.apache.org/jira/browse/YARN-8664
https://issues.apache.org/jira/browse/YARN-2273
https://issues.apache.org/jira/browse/YARN-4227
https://issues.apache.org/jira/browse/YARN-5195
https://issues.apache.org/jira/browse/YARN-8233
https://issues.apache.org/jira/browse/YARN-5918
https://issues.apache.org/jira/browse/YARN-7007
https://issues.apache.org/jira/browse/YARN-7591
https://issues.apache.org/jira/browse/YARN-8222
https://issues.apache.org/jira/browse/YARN-4355
https://issues.apache.org/jira/browse/YARN-4502
https://issues.apache.org/jira/browse/MAPREDUCE-3596
https://issues.apache.org/jira/browse/YARN-4152
https://issues.apache.org/jira/browse/MAPREDUCE-4833
https://issues.apache.org/jira/browse/MAPREDUCE-3031
https://issues.apache.org/jira/browse/MAPREDUCE-4099
https://issues.apache.org/jira/browse/MAPREDUCE-3858
https://issues.apache.org/jira/browse/HDFS-6231
https://issues.apache.org/jira/browse/HDFS-3701
https://issues.apache.org/jira/browse/HDFS-4596
https://issues.apache.org/jira/browse/HDFS-8240
https://issues.apache.org/jira/browse/HDFS-5014
https://issues.apache.org/jira/browse/HDFS-4404
https://issues.apache.org/jira/browse/HDFS-3031
https://issues.apache.org/jira/browse/HBASE-4539
https://issues.apache.org/jira/browse/HBASE-6070
https://issues.apache.org/jira/browse/HBASE-10090
https://issues.apache.org/jira/browse/HBASE-19335
https://issues.apache.org/jira/browse/HBASE-4540
https://issues.apache.org/jira/browse/HBASE-3365
https://issues.apache.org/jira/browse/HBASE-5927
https://issues.apache.org/jira/browse/HBASE-5155
https://issues.apache.org/jira/browse/HBASE-3617
https://issues.apache.org/jira/browse/HBASE-3874
https://issues.apache.org/jira/browse/HBASE-3023
https://issues.apache.org/jira/browse/HBASE-3283
https://issues.apache.org/jira/browse/HBASE-3362
https://issues.apache.org/jira/browse/HBASE-3024
https://issues.apache.org/jira/browse/HBASE-18014
https://issues.apache.org/jira/browse/HBASE-14536
https://issues.apache.org/jira/browse/HBASE-14621
https://issues.apache.org/jira/browse/HBASE-13546
https://issues.apache.org/jira/browse/HBASE-10272
https://issues.apache.org/jira/browse/HBASE-2525
https://issues.apache.org/jira/browse/HBASE-5063
https://issues.apache.org/jira/browse/HBASE-8519
https://issues.apache.org/jira/browse/HBASE-2797
https://issues.apache.org/jira/browse/HBASE-7111
https://issues.apache.org/jira/browse/HBASE-5722
https://issues.apache.org/jira/browse/HBASE-5635
https://issues.apache.org/jira/browse/HBASE-3722
https://issues.apache.org/jira/browse/ZOOKEEPER-569
https://issues.apache.org/jira/browse/YARN-5918

CrashTuner

AM attempt 2
@node0 @nodel
attempt_1 1 if (commit==null){ - pending
@node2 2 it=attempt; 1ycommit?e it
1 ki i
3} else {kill} (ﬂstaﬁ(lo ¥
X

Figure 3. MR-3858: a real-world crash-recovery bug
in MapReduce. Three nodes are involved in this bug,
node® (the Application Master, AM for short), node1l
and node2. 1) node1 sends message to AM@node® via
an RPC commitPending, to get commit permission
and get its attempt-ID attempt_1 recorded. 2) nodel
starts to commit the result via an RPC startCommit.
3) nodel crashes. The task is not committed, hence,
the RPC doneCommit is missing. 4) AM detects the
crash and starts a new node (i.e., node2), to re-commit
the results of the same task in another attempt
(attempt_2). 5) node2 contacts AM@node2 via the same
RPC commitPending. 6) node2 fails the commit checking
and is then killed by AM@node®.

attempt instance, which will correctly redo the task. How-
ever, if node3 crashes in the small time window between the
two RPCs, the commit status commit is contaminated. The
recovery process always fails, and the job will never finish.

How to detect these bugs? The crash point is the program
point after writing a meta-info variable (in Figure 3, after
writing the commit status attempt_1 in line 2). To trigger
such bugs, we need to crash the corresponding node of the
stored meta-info variable, e.g., node1 in Figure 3. Similarly,
with online log analysis, we query values of stored meta-info
variables to locate their corresponding nodes. In Figure 3,
by querying the runtime value of stored meta-info variable
in line 2 (attempt_1), we get the target node nodel.

3 The CrashTuner Approach

In a nutshell, CrashTuner first identifies all crash points
then performs fault-injection testing at each individual crash
point. Figure 4 overviews our approach. It consists of two
phases. The first phase (top half of Figure 4) locates crash
points via log-based program analysis and profiling. The sec-
ond phase (bottom half of Figure 4) exercises each individual
crash point one by one. A light-weight online log analysis is
employed to relate runtime meta-info values to a particular
node. Thus, at a crash point, we can crash the right target
node by querying the runtime value being accessed.

118

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Crash Point Identification

! i
! 1
l
‘\ l - Static :
| g Meta-info Static Crash Crash Points ~ :
l Log Analysis Point Analysis Profiler !
Y IO i
Dynamic *
Crash Points bugs
R
! - Fault Injection Testing !
“ - l Runtime Value :
1 Online Log _ Meta-info Meta-info Trigger !
E s Manager Node to Crash]

Figure 4. Overview of the CrashTuner approach.

3.1 Identify Crash Points

We apply a series of analyses to identify the dynamic crash
points of a system, which is defined below:

Definition 1. A dynamic crash point is represented as a tuple
of two elements < P, Context >, where P is the program point
and Context is the call stack.

We use the runtime call stack to differentiate the contexts
in executing a same program point. Hence, when the same
point is being executed with different calling contexts, they
are considered as distinct crash points.

The process of identifying dynamic crash points is de-
picted in Figure 4 and summarized below:

e Log Analysis analyzes the runtime logs to discover
meta-info variables, i.e., node referencing variables
and their related variables. Those meta-info variables
printed in logs are identified.

Static Crash Point Analysis finds out all other meta-
info variables in the system by examining the types of
existing meta-info variables. Object fields with equiva-
lent types of existing meta-info variables are regarded
as meta-info variables. This type-based approach en-
ables us to derive meta-info variables in the system,
without precisely tracking program dependences.
The program points before reading (after writing) meta-
info variables are then identified as static crash points.
Profiler runs the given workload to record the dynamic
crash points (an executed static crash point with a
distinct call stack) at runtime. Those static crash points
not executed are discarded.

In the end, we obtain a set of dynamic crash points. Fault
injection testing will exercise each individual crash point
to trigger an error. Next, we illustrate the analyses in detail
using the example in Figure 3.

3.1.1 Log Analysis

Log analysis mines existing runtime logs (obtained from
online system or via profiling) to discover meta-info variables
and record their runtime values.

https://issues.apache.org/jira/browse/MAPREDUCE-3858

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

J. Luet al.

1L0G.
2 LOG.
3 LOG.
4 LOG.

info("Assigned container

info("Assigned container " + containerId +

info("JWVM with ID: " + jvmId + " given task:
(a) Logging statements

info("NodeManager from " + host + " registered as " + nodeld);

+ containerId + " on host " + nodeld);

" to " + tId);

" + task.getTaskID());

1 NodeManager from () registered as ()
2 Assigned container () on host ()
3 Assigned container () to ()
4 Jvm with ID: (*) given task: (")
(b) Log patterns

1 NodeManager from node3 registered as node3:42349
2 NodeManager from node4 registered as node4:42349

(c) Log instances

3 Assigned container container_..._3 on host node3:42349
4 Assigned container container_..._3 to attempt_..._3

5 Assigned container container_..._4 on host node4:42349
6 Assigned container container_..._4 to attempt_..._4

7 JVM with ID: jvm_..._m_4 given task: attempt_..._4

8 JWVM with ID: jvm_..._m_4 given task: attempt_..._4

node4:42349

node3:42349

(attempt_... 3) (attempt_... 4)

(jvm_... m 3) (jvm_... m 4)

(d) Meta-info

Figure 5. Simplified logging statements (a), log patterns (b), and runtime log instances (c) of the example in Figure 3.

The runtime meta-info is given in (d).

We examine all logging statements in the system under
testing. All the 4 distributed systems we studied use common
logging libraries such as Log4j [10] and SLF4]J [14]. Those
libraries provide common logging interfaces with the fol-
lowing names: fatal, error, warn, info, debug, and trace.
Hence, we find logging statements by simply matching the
invoked method name at a call site with the name of a log-
ging interface. Figure 5(a) gives a set of simplified logging
statements for our illustration example. Their correspond-
ing log patterns are extracted in Figure 5(b) (as in previous
work [47, 58, 64]), where runtime values of logged variables
are represented with regular expression ().

Figure 5(c) shows the simplified runtime log instances
of our illustration example (Figure 3). Each log instance is
processed separately, to match it with a particular log pattern.
We adopt the approach in [58] to efficiently match a run time
log instance with a log pattern. The runtime values of logged
variables can then be derived as highlighted in red.

To infer meta-info variables, we examine the runtime val-
ues of logged variables. Those variables whose runtime val-
ues contain host names or IP addresses (as specified in the
configuration file) are regarded as node-referencing vari-
ables, e.g., node3:42349 and node4:42349 in Figure 5. We
relate other runtime values to nodes by checking whether
they appear in a same runtime log instance or not, e.g.,
container_..._3 (log instance 3) and container_..._4
(log instance 5). The figure in Figure 5(d) depicts the runtime
meta-info derived from log analysis, where related runtime
values are connected together. The figure precisely reflects
the high-level system state in Figure 1. Those variables hold-
ing meta-info values at runtime are meta-info variables.

3.1.2 Static Crash Point Analysis

Meta-info values are stored in the heap memory of a node,
and referenced via object fields. To precisely identify ob-
ject fields holding meta-info values, we need to compute

119

and track the precise dependence information between vari-
ables using pointer analysis [40, 41, 56]. This is a daunting
task given the complexity of distributed systems and precise
pointer analysis for distributed systems remains to be an
open research topic. Hence, we develop a simple type-based
analysis to deduce meta-info fields instead.

Definition 2. T is a meta-info type if there exists a meta-info
variable of type T. The subtypes and collection types of T are
meta-info types. Class C is a meta-info type if it contains an
instance field C.f of meta-info type T, and C.f is only set in
the constructors of C.

Definition 2 defines our type-based analysis. Intuitively,
meta-info is typed and variables with equivalent meta-info
type T refer to the same type of meta-info. We also consider
T’s containing class C if there exists a field C.f of type T
which is only set in the constructors of C. This is to handle
the common case where an instance of C is uniquely indexed
by its field C.f, e.g., objects of class RMContainerImpl are
uniquely indexed with a field of type ContainerlId. In prac-
tice, the two classes refer to the same type of meta-info
interchangeably. (Theoretically, class C may contain such
fields of different meta-info types. In that case, C could be
classified as either a field type or both. It does not affect our
analysis to deduce meta-info types and meta-info variables.
We did not observe such a case in the 4 systems we studied.)

To avoid introducing too many irrelevant variables, we do
not apply the above generalization rules to the following base
types: Integer, String, Enum, byte[], and File. Instead, we
identify meta-info fields of base types via log analysis and
regard their containing classes as meta-info types.

Table 2 presents the meta-info types for our example. Not
all meta-info types are given. The types annotated with *
are types obtained from log analysis (e.g., types of logged
meta-info variables), and all other types are deduced by static
analysis. Types referring to the same type of meta-info are
grouped together.

CrashTuner

Table 2. Meta-info types for the example in Figure 3.
Not all meta-info types are given. The types identified
in log analysis are annotated with *. Other types are
derived by static analysis.

Meta-info Types
.api.records.NodeId*
net.InetSocketAddress™
api.records...NodeIdPBImpl
api.records.ApplicationAttemptId®
yarn.server...SchedulerApplicationAttempt|
yarn.server. . .RMAppAttemptImpl
yarn.api...ApplicationAttemptIdPBImpl
yarn.api.records.ApplicationId®
yarn.server...RMAppImpl
yarn.server.resourcemanager.Application
yarn.server.nodemanager. . .ApplicationImpl
yarn.api.records...ApplicationIdPBImpl
yarn.api.records.ContainerId®
yarn.api.records.Container®
yarn.server.nodemanager...ContainerImpl
yarn.server...RMContainerImpl
yarn.api.records...ContainerPBImpl
yarn.api.records...ContainerIdPBImpl
mapreduce.v2.api.records.TaskAttemptId*
mapreduce.MapTaskAttemptImpl
mapreduce.ReduceTaskAttemptImpl
mapreduce.v2.app...TaskAttemptImpl
mapreduce.v2.api....TaskAttemptIdPBImpl

yarn
java.
yarn.
yarn.

Node

App
Attempt

Application

Container

Task
Attempt

Static crash points are access points to fields of meta-info
types. The putField and getField instructions to fields of
non-collection types are identified in a straight-forward man-
ner. Fields of collection types are read/written via generic
APIs. Hence, for collection types, we check the invoked
method name with the APIs in Table 3, to find a matching
read/write operation.

Optimizations We discard references to field C. f if it is
only set in constructors of its containing class C. By def-
inition, type C is also a meta-info type (Definition 2) and
references to objects of type C are already regarded as crash
points. Thus, it becomes redundant to perform fault-injection
testing at later references to C. f. Read references with no us-
ages (or only used in logging statements and call statements
to the 3 Java APIs toString, hashCode, equals) are omitted.
In addition, we filter out read references whose values are
sanity-checked (i.e., used as conditions of if statements) be-
fore being used. The checks suggest fault-tolerance schemes
in the implementation (in fact, 14 of our studied bugs and 7
new bugs are fixed by introducing a sanity check).

All above optimizations do not guarantee soundness, which
means we may miss true crash points. However, we randomly
selected 3,000 optimized-out crash points for fault-injection
testing , no new bugs can be detected.

120

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 3. Keywords of read and write operations for
collection types.

get, peek,poll, clone, at, element, index,

read toArray, sub, contain, isEmpty, exist, values

add, clear, remove, retain, put,insert, set,

write

replace, of fer, push, pop, copyInto

Finally, those program points before reading (after writ-
ing) a meta-info field are static crash points. For convenience,
hereafter, we refer to them as pre-read/post-write points, re-
spectively. If a read reference is only used in the return state-
ments of a method, we promote the corresponding static
crash point to the call-sites of the method. Such promotion
helps to simplify the call stacks of corresponding dynamic
pre-read points.

3.1.3 Profiler

The profiler generates dynamic crash points, i.e., executed
static crash points with distinct calling stacks. Those static
crash points not exercised are discarded.

We profile the system under testing with workloads of dif-
ferent sizes until a fixed point. Starting from the default size,
we keep doubling the size until no new dynamic crash points
can be generated. The process quickly converges in 2 or 3 iter-
ations. We instrument the system at each static crash point.
During profiling, the instrumented code will record each
hit static crash point together with its corresponding call
stack. The Java API Thread. currentThread() .getStack-
Trace() is invoked to get the runtime call stack. The call
stack is represented using call strings and bounded to a depth
of 5 (starting from the method of the crash point to its callers).

3.2 Fault-injection Testing

We perform fault-injection testing at each dynamic crash
point. As discussed in Section 2, to inject the right faulty
event, we need to figure out which node to crash (or shut-
down) when hitting a dynamic crash point. How to find out
the right node to crash? We apply a light-weight online log
analysis (Figure 4) to record the values of meta-info variables
and relate them to a particular node. The recorded meta-info
is a simplified implementation of the graph in Figure 5(d).
Trigger can then efficiently query the recorded meta-info
with the read (written) value of meta-info variables to locate
the target node .

3.2.1 Online Log Analysis

We collect runtime logs on each node of the cluster with
a Logstash [11] agent. Logstash is a popular log collection
tool which can perceive log file changes, then sends the
change-sets to a custom stash (a nominated destination node)
in time. To avoid sending unnecessary data, only the runtime

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

HashSet [node3:42439,node4:42439]
Key Value

container_..._3 | node3:42439
attempt_..._3 node3:42439

HashMap | jvm_..._m_3 node3:42439
container_..._4 | node4:42439
attempt_..._4 node4:42439
jvm_..._m_4 node4:42439

Figure 6. Recorded runtime meta-info.

values of meta-info variables are sent out (i.e., those values
highlighted in red in Figure 5(c)).

The custom stash processes received runtime values of
meta-info variables in FIFO order. For efficiency, instead
of constructing the graph as in Figure 5(d), we record the
runtime values of nodes in a HashSet, and associate other
meta-info values to a particular node via a HashMap. Fig-
ure 6 gives the recorded meta-info for our example. The
received values node3:42439 and node4: 42439 are inserted
to the node set since they match host names. Log instance 3
sends out two related meta-info values: container_..._3
and node3:42439. Hence, the HashMap is updated with the
key value pair <container_..._3, node3:42439>. When
processing the two values in log instance 4: attempt_..._3
and container_. .._3. We query each value in the HashMap
to get its associated node (i.e., node3:42439 for the value
container_..._3), then update the HashMap accordingly
(<attempt_..._3, node3:42439>). We discard values unas-
sociated to any node.

3.2.2 Trigger

Trigger instruments the system to inject crash events at a
dynamic crash point, as shown in Figure 7. The pre-read
point (node1) and post-write point (node?2) are instrumented
differently. Note that for illustration, Figure 7 presents two
types of instrumentation together. In our implementation,
we only instrument one dynamic crash point at a time.

For pre-read points, we instrument a shutdown RPC fol-
lowed by a wait. The wait works as a timeout period (10
seconds by default) for the shutdown event to be handled.
For post-write points, we instrument a crash RPC. Both
RPCs are invoked with arguments <p, context> (the dy-
namic crash point) and id (the accessed runtime meta-info
value). The Control Center is a separate node to handle the
instrumented RPCs. If the dynamic crash point has not been
exercised (line 1), we query the input runtime meta-info
value to get its associated node (line 3). The procedure sim-
ply returns if no such node exists (line 4). Alternatively, we
could randomly select a node to crash. However, this alter-
native approach has no impact on our experimental results.
At line 5, we invoke the script library to crash/shutdown a
node accordingly.

121

J. Luet al.

Crash
message

Shutdown
message

node2
1 id=attempt
2 crash(<p,context>,id)

nodel
1 shutdown(<p,context>,id)
2 wait()
3 vlaue=nodes.get(id)

Y'Y
Control Center

RPC Server
If (isExecuted(p,context))
return
node=metalnfo.query(id)
if (node == null) return
crash/shutdown node

Script library

shutdown crash

AN WN R

Figure 7. Trigger.

Finally, we report a bug in any of the following 3 cases: 1)
job failures; 2) system hangs; and 3) there exists uncommon
exceptions in the logs. Currently, we do not report silent
errors which lead to unexpected behaviors, e.g., silent data
corruptions. How to develop test oracles for silent errors
(e.g., gray failures) is an important topic worth separate
investigation [27, 30, 44, 45, 52, 60].

3.3 Implementation Details

We implement our static analyses in WALA [5] and perform
instrumentation with Javassist [1]. The popular log collection
framework Logstash [11] is used for runtime log collection.
The implementation consists of 9,933 lines of Java code and
550 lines of Shell code.

Log analysis We adopt the approach in [58] to efficiently
match a run time log instance with a log pattern. A reverse
index is built as a hash for each log pattern, which can be
used to quickly calculate a matching score for each runtime
log instance. The higher the matching score, the more likely
the log pattern matches the log instance. For a given log in-
stance, we select 10 logging patterns with the highest scores.
Then we parse the log instance according to the 10 logging
patterns, to find an exact match.

Code instrumentation We represent crash points as pro-
gram points before/after WALA instructions. However, Javas-
sist performs instrumentation at the source code level. A
statement can spread across multiple source lines and a
WALA instruction may refer to a source line in the middle
of a statement. In that case, the instrumented class will not
compile. Hence, for pre-read points, we try to instrument the
source line and its preceding source lines (succeeding lines
for post-write points) until the instrumented class compiles.

Online log analysis We leverage the results from offline
log analysis and implement a filter to extract runtime values
of meta-info variables from log instances efficiently.

The filter consists of regular expressions which are derived
by offline analysis for the toString method of meta-info
variables. For our illustration example, the filter for variables

CrashTuner

of type nodeld is "(*):(*)". Hence, when processing log in-
stance 1 and log instance 2 in Figure 5(c), values matching
the filter are extracted and sent to the custom stash (i.e.,
node3:42439 and node4:42439).

Runtime meta-info values For fields of non-collection
types, the meta-info values are obtained by calling their cor-
responding toString methods. For fields of collection types,
the meta-info values are derived differently, according to
given read/write operations. For instance, given m.add(e),
the result of e. toString() is considered as the stored meta-
info value. For read operations such as v = m.get(key), we
get two related values: v. toString(), and key. toString().

3.4 Limitations

CrashTuner is not sound and does not guarantee the absence
of crash-recovery bugs. The effectiveness of CrashTuner
relies on the log qualities of the system under testing. For
instance, CrashTuner cannot reproduce the 3 bugs HBASE-
13546, HBASE-14621, and YARN-4502 because the accessed
variables are not printed in logs. Hence CrashTuner fails to
identify them as meta-info variables. Nevertheless, Crash-
Tuner can reproduce 59 out of 66 existing bugs and reports
21 new crash-recovery bugs.

The log-based implementation makes CrashTuner eas-
ily deployable to cloud systems. However, it also impacts
its effectiveness to systems with limited logging informa-
tion. For instance, CrashTuner did not detect any new bug
in ZooKeeper, where only 290 runtime log instances are
generated and node is simply represented with Integer
type. There are alternative approaches to analyze meta-info,
e.g., static analysis and instrumentation-based approaches.
These approaches do not depend on logging. However, static
analysis approaches suffer from high false positives and
instrumentation-based approaches are difficult for deploy-
ment. We may need to pick the right trade-off between pre-
cision, effectiveness, and generality.

This paper does not target crash recovery bugs involving
multiple crash events or IO operations. However, CrashTuner
can be extended with existing techniques to tackle these
bugs. For example, [50, 53] target crash-consistency bugs,
and [23, 33] target bugs involving multiple crash events.
These works will be covered in our future work.

4 FEvaluation

We evaluate CrashTuner using the five widely-used open-
source distributed systems in Table 4: Hadoop2/Yarn (dis-
tributed computing framework), HDFS (distributed file sys-
tem), HBase (distributed key-value stores), ZooKeeper (dis-
tributed synchronization service), and Cassandra (distributed
storage system). Note that Cassandra is not included in our
empirical study. All systems are tested with their latest ver-
sions in the trunk when the experiments were conducted
(Column 2). We apply the default configurations (including

122

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 4. Systems under test.

System [Latest Version [Workload ‘
Hadoop2/Yarn | 3.3.0-SNAPSHOT | WordCount+curl
HDFS 3.3.0-SNAPSHOT | TestDFSIO+curl
HBase 3.0.0-SNAPSHOT | PE+curl
ZooKeeper 3.5.4-beta SmokeTest+curl
Cassandra 3.11.4 Stress

the default logging configurations) to all systems, except for
Hadoop2/Yarn. To reproduce existing bugs in Hadoop2/Yarn
(Table 1), the configuration needs to be set to "enable oppor-
tunistic” [7]. We evaluate the systems with common work-
loads (Column 3). WordCount, TestDFSIO, PE (performance
evaluation) and Stress are built-in workloads in their corre-
sponding systems and SmokeTest [17] is a popular workload
for testing ZooKeeper. In addition, we append each workload
with a "curl" command to test user queries via web interfaces.

All the experiments are conducted on a cluster with three
identical nodes. Each node has a CentOS 6.5 system on an
Intel(R) Xeon(R) E7-4809 processor with 32 GB of memory.
The evaluation will answer the following research questions:

e RQ1. How effective is CrashTuner in detecting bugs,
especially new bugs?

e RQ2. How does CrashTuner compare with other fault-
injection testing approaches?

e RQ3. How efficient is CrashTuner?

4.1 RQ1:Effectiveness

We evaluate how effective CrashTuner is in reproducing
existing bugs, as well as its ability in detecting new bugs.

4.1.1 Reproducing Existing Bugs

We try to reproduce all bugs in Table 1 (14 non timing-
sensitive bugs are trivially reproduced hence not further
discussed). For each bug, we first check whether CrashTuner
can correctly locate its corresponding crash point or not. If
this is successful, we then inject a crash event at the crash
point to trigger the bug.

CrashTuner can successfully trigger 45 bugs out of the 52
bugs in Table 1. There are 7 bugs not reproduced. For the
3 bugs HBASE-13546, HBASE-14621, and YARN-4502, the
accessed variables are sub-fields of node instances which are
not directly printed in logs (e.g., Master. infoPort_). Hence
CrashTuner fails to locate their crash points. To expose these
bugs, manual annotation may be needed to identify such
variables as meta-info variables. For the other 3 bugs , and
HBASE-7111,HBASE-5722 and HBASE-5635, CrashTuner
fails to associate the accessing meta-info to the right target
node, which is in the lower layer system ZooKeeper. In HDFS-
4596, the bug is triggered when accessing a MD5 file whose
name is not associated to any node instance. To trigger these

https://issues.apache.org/jira/browse/HBASE-13546
https://issues.apache.org/jira/browse/HBASE-13546
https://issues.apache.org/jira/browse/HBASE-14621
https://issues.apache.org/jira/browse/YARN-4502
https://issues.apache.org/jira/browse/HBASE-13546
https://issues.apache.org/jira/browse/HBASE-14621
https://issues.apache.org/jira/browse/YARN-4502
https://issues.apache.org/jira/browse/HBASE-7111
https://issues.apache.org/jira/browse/HBASE-5722
https://issues.apache.org/jira/browse/HBASE-5635
https://issues.apache.org/jira/browse/HDFS-4596
https://issues.apache.org/jira/browse/HDFS-4596

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

J. Luet al.

Table 5. New bugs detected. All bugs are confirmed by the original developers, and 16 of them are already fixed. In
YARN-9164, YARN-8650, HDFS-14216, two bugs are grouped under one issue since they share the same root cause
and can be fixed with identical patches.

| Bug ID [Priority [Scenario [Status [Symptom [Meta-info ‘
YARN-9238 Critical | pre-read Fixed Allocating containers to removed ApplicationAttempt | ApplicationAttemptId
YARN-9165 Critical | pre-read Fixed Scheduling the removed container Containerld
YARN-9193 Critical | pre-read Fixed Allocating container to removed node Nodeld
YARN-9164(2) | Critical | pre-read Fixed Cluster down due to using the removed node Nodeld
YARN-9201 Major pre-read Fixed Invalid event for current state of ApplicationAttempt Containerld
HDFS-14216(2) | Major pre-read Fixed Request fails due to removed node DataNodelnfo
YARN-9194 Critical | pre-read Fixed Invalid event for current state of ApplicationAttempt Applicationld
HBASE-22041 | Critical | post-write | Unresolved Master startup node hang ServerName
HBASE-22017 | Critical | pre-read Fixed Master fails to become active due to removed node ServerName
YARN-8650(2) | Major pre-read Fixed Invalid event for current state of Container Containerld
YARN-9248 Major pre-read Fixed Invalid event for current state of Container ApplicationAttemptld
YARN-8649 Major pre-read Fixed Resource Leak due to removed container Applicationld
HBASE-21740 | Major | post-write Fixed Shutdown during initialization causing abort MetricsRegionServer
HBASE-22050 | Major pre-read | Unresolved Atomic violation causing shutdown aborts RegionInfo
HDFS-14372 Major pre-read fixed Shutdown before register causing abort BPOfferService
MR-7178 Major | post-write | Unresolved Shutdown during initialization causing abort TaskAttemptld
HBASE-22023 | Trivial | post-write | Unresolved Shutdown during initialization causing abort MetricsRegionServer
CA-15131 Normal | pre-read | Unresolved Request fails due to using removed node InetAddressAndPort

OpportunisticContainerAllocatorAMService.OpportunisticAMSProcessor

o

//allocate container for appAttempt

public void allocate(ApplicationAttemptId appAttemptId) {

échéduierApplicationAttempt appAttempt=rmContext.getAppAttempt (appAttemptId);
+ if (lappAttempt.getApplicationAttemptId().equals(appAttemptId)) {
+ LOG.error("Calling allocate on removed application attempt " + appAttemptId);

1
2 if (!appCache.exist(appAttemptId)) return;
3

4

5

6

7 + return;

6 +

8

9

Figure 8. The simplified code snippet and patch for YARN-9238.

4 bugs, we need to introduce extra logs to associate the meta-
info variable to the right target node.

4.1.2 Detecting New Bugs

CrashTuner detects 21! new bugs that have never been re-
ported before (Table 5), including 8 critical bugs (classified
by the original developers). All reported bugs are confirmed
by the original developers and 16 of them have already been
fixed (14 patches provided by us).

When submitting a bug issue, we are often required to
provide a unit test exposing the bug (7 unit tests). It is tricky
since we are not allowed to modify the source code to inject
faults at the crash point. The default method in writing unit
tests only supports fault injection before the invocation to
a public method. Very often, a bug cannot be exposed if its
crash point lies in the middle of a method.

IThe website https://github.com/lujiefsi/CrashTuner shows how to repro-
duce all new bugs in detail.

123

For instance, in YARN-9238 (Figure 8), variable appAttemp-
tId refers to an attempt instance to execute a given applica-
tion. If the current attempt fails, the recovery process will
try another attempt. The field currentAttempt (not shown
in the code) refers to the attempt instance for each applica-
tion. Hence, if the current attempt node (node associated
to appAttemptId) crashes, field currentAttempt is reset to
the new attempt node by the recovery process. In Figure 8,
line 4 get the field value of currentAttempt, which is the
new attempt node whose state is uninitialized. However, in
line 8, the buggy code is not aware of the crash and uses it
as the old attempt node (node associated to appAttemptId),
leading to aborts .

CrashTuner successfully exposes this bug by crashing the
node appAttempIdassociated to, before reading currentAtt-
empt in line 4. After the crash, field currentAttempt is reset
and the new attempt node is returned, exposing the error.
However, the bug cannot be exposed by unit tests created via

https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-8650
https://issues.apache.org/jira/browse/HDFS-14216
https://issues.apache.org/jira/browse/YARN-9238
https://issues.apache.org/jira/browse/YARN-9165
https://issues.apache.org/jira/browse/YARN-9193
https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-9201
https://issues.apache.org/jira/browse/HDFS-14216
https://issues.apache.org/jira/browse/YARN-9194
https://issues.apache.org/jira/browse/HBASE-22041
https://issues.apache.org/jira/browse/HBASE-22017
https://issues.apache.org/jira/browse/YARN-8650
https://issues.apache.org/jira/browse/YARN-9248
https://issues.apache.org/jira/browse/YARN-8649
https://issues.apache.org/jira/browse/HBASE-21740
https://issues.apache.org/jira/browse/HBASE-22050
https://issues.apache.org/jira/browse/HDFS-14372
https://issues.apache.org/jira/browse/MAPREDUCE-7178
https://issues.apache.org/jira/browse/HBASE-22023
https://issues.apache.org/jira/browse/CASSANDRA-15131
https://issues.apache.org/jira/browse/YARN-9238
https://issues.apache.org/jira/browse/YARN-9238

CrashTuner
HMaster RegionServer
TR TR R TR S TR USSR TR RS EEERES 1
startup liveMonitor
onlineServers
2 1)report
I’V .
1‘1[e

while (onlineServers.
contains(rs)){
retryConnect();

Figure 9. HBASE-22041. (1) RegionServer (RS) reports
to HMaster when it is alive. (2) The liveMonitor thread
handles the request and add RS to the list of on-
line servers. (3) RS crashes before it is registered in
ZooKeeper (ZK). (4) ZK cannot detect the crash. The
recovery process did not get a notification of the crash
event. (5) RS remains in the list of online servers, with-
out being removed. (6) The startup thread fails to read
from RS.

the default method. If the crash event is handled at the entry
of the method allocate, the sanity-check at line 2 will de-
tect the node crash and prevent the error. Hence, in our unit
tests, we manually reset the field currentAttempt before
invoking the method allocate, to emulate the system state
at the crash point.

Lines 5-6 present our patch, which validates currentAtte-
mpt before it is used (line 8). In general, it is easy to figure out
the root cause of a bug and provide a corresponding fix, by
examining its crash point and logs. We submitted 20 patches
in total, 15 patches were accepted, 5 patches were under
review and 1 patch was rejected. Among the 14 accepted
patches, 8 patches introduce sanity checks and another 7 add
handlers for unexpected exceptions or events. HBASE-22017
is a data race bug caused by crash-recovery procedure in
the server process HRegionServer. The original developers
rejected our patch, which fixes the race condition in the
server process. Instead, they created a new issue (HBASE-
22047) and fixed the problem on the client side. We did not
patch HBASE-22041, which is discussed below.

HBASE-22041 The bug is triggered after RegionServer
(RS) reports to HMaster (1), and before it is registered in
ZooKeeper (ZK) (3). If RS crashes after (3), ZK will detect
the crash and start the recovery process. The list of online
server can then be correctly updated (5). However, if the
crash happens between the two messages (1) and (3), the
startup thread fails to read from RS and will keep retrying
forever, causing system hang.

When trying to fix this bug, we find the following com-
ment: //TODO: How many times should we retry. The original
developers were already aware of the problem. But for some

124

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

1 AbstractYarnScheduler:HashMap<NodeId, N> nodes;

2 ScheNode getScheNode(NodeId id){return nodes.get(id);}
3 public void completeContainer(Container container) {

4 ScheNode node = getScheNode(container.getNodeId());
5 node.releaseContainer(container.getContainerId());
6

}

Figure 10. Simplified code snippet for YARN-9164 .

reason, they did not fix it. We could not figure out the right
retry threshold. Hence, we did not to patch this bug.

YARN-9164 InYARN-9164, when a job finishes or fails, the
method completeContainer releases containers of the job
on each node (Figure 10). At line 3, method getScheNode is
invoked to get the node that a container belongs to. However,
if the target node crashes just before line 4, a null value is
returned which will raises a Nul1lPointerException at line
5. The master node cannot handle the exception and aborts
immediately, bringing down the entire cluster.

CrashTuner successful identifies NodeId as meta-info types
and nodes as meta-info variables. By definition, the crash
point is the read access to nodes at line 2. Since at line 2, the
read reference is directly returned, CrashTuner promotes the
crash point to the callsites of method getSchedNode (e.g.,
line 4). There are 43 call-sites in total, corresponding to 43
potential static crash points, and 30 of them are optimized
out since their return values are either not used (5) or sanity-
checked (25). In the end, Profiler generates two dynamic
crash points from the 13 static crash points, including the
bug-triggering point before line 4. The other dynamic crash
point does not expose errors.

4.1.3 Timeouts

CrashTuner reports four timeout issues (default timeout
threshold is 4 times of 1 run). It is debatable whether these
issues are true bugs or false positives. Although the tasks
eventually finish (> 10 mins), they significantly slowdown
the system.

Three timeout issues exist in Hadoop2/Yarn. In the first is-
sue, when the map attempt task finishes, the task records the
attempt instance in its field successAttempt and changes
its state to success. CrashTuner injects a node crash event
after setting the field successAttempt. The reduce task fails
to read output from the map task due to the crash and it will
retry for a long time (~10 mins), which exceeds our default
timeout threshold. In the other two issues, the application
attempt is initialized to set the field container to its corre-
sponding node. If the node crashes after setting the field, the
application attempt will stuck in the running state. Eventu-
ally, after 10 minutes, the stuck application attempt will be
killed by AbstractLivelinessMonitor.

There is one similar timeout issue in HBase, which will
make the Region stuck in the OPENING state, before it is
killed in 10 minutes.

https://issues.apache.org/jira/browse/HBASE-22041
https://issues.apache.org/jira/browse/HBase-22017
https://issues.apache.org/jira/browse/HBASE-22047
https://issues.apache.org/jira/browse/HBASE-22047
https://issues.apache.org/jira/browse/HBASE-22041
https://issues.apache.org/jira/browse/HBASE-22041
https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-9164
https://issues.apache.org/jira/browse/YARN-9164

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 6. The complexity of fixing newly detected
bugs/existing bugs in CREB [21]. This table is dis-
cussed in Section 4.1.4.

LOC # # #
of patch | patches | days to fix | comments
CREB bugs 117 4 92 26
New bugs 114.8 3.8 16.8 8.6

4.1.4 Complexity of Fixes

Table 6 compares the patches of newly detected bugs with
existing bugs in CREB [21] (an existing bug study database).
The number of lines of code (Column 2) per patch and the
number of patches (Column 3) per bug are almost the same,
suggesting similar complexity between new bugs and ex-
isting bugs. However, for newly detected bugs, the average
time in fixing a bug (Column 4) and the number of comments
per bug issue (Column 5) are significantly less. This is be-
cause most comments are discussing on how to reproduce
the bug [62]. Once the bug is reproduced, it is generally easy
to figure out the root cause and fix the bug. In our submitted
bug issues, we illustrate in detail on how to reproduce each
bug (some with unit tests) and provide patches for them,
which significantly speeds up the fixing processes.

Discussion CrashTuner detected new bugs for all systems,
except for ZooKeeper. Unlike the other four systems where
global system states spread across multiple nodes, ZooKeeper
keeps a copy of the entire global states on each node. As
a result, even CrashTuner found 40 dynamic crash points
(Table 10), they can only trigger 4 different types of IO ex-
ceptions, which are all handled by the system.

4.2 RQ2: Comparison with Alternative Approaches

We compare CrashTuner with two alternative fault-injection
testing approaches: the random fault-injection approach
and the OpenStack approach [34] to inject faults around
IO events.

4.2.1 Random Crash Injection

In this experiment, each system is profiled with the normal
workload to get its run time T. We perform random fault-
injection testing by running each system 3000 times, and
for each time injecting a node (randomly chosen) crash (or
shutdown) event at a random time between range [0, T].
Table 7 gives the result.

Random fault-injection testing can successfully trigger 3
bugs:YARN-9194, HBASE-21470, and MR-7178, with each
bug being triggered 2, 12, and 2 times, respectively. All bugs
are also detected by CrashTuner. The three bugs are triggered
when a node crashes during the process of starting a new
node. Since it is time-consuming to start a new node, the ran-
dom approach has a good chance to hit the relatively-large
bug-triggering window. In summary, the random approach

125

J. Luet al.

Table 7. Results of random crash injection. This table
is discussed in Section 4.2.1.

l System l Times(h) l Known bugs l New bugs ‘
Hadoop2/Yarn 71.03 2(4) 0
HBase 61.37 1(12) 0
HDFS 72.55 0(0) 0
ZooKeeper 19.62 0(0) 0
Cassandra 47.92 0(0) 0

Table 8. Number of IO classes, methods and 10 points.
This table is discussed in Sectino 4.2.2.

Systems #10 #10 # Static | # Dynamic
classes | methods | IO points | IO points
YARN 539 823 1342 1312
HBase 341 667 456 196
HDFS 432 940 1658 1252
Zookeeper 145 580 619 492
Cassandra 203 687 1063 1248
Total 1660 3697 5138 4500

Table 9. Results of 10 fault injection. This table is dis-
cussed in Section 4.2.2.

l System [Times(h) [Known bugs [New bugs ‘
Hadoop2/Yarn 57.66 1(6) 0
HBase 20.91 0 0
HDFS 44.05 0 0
ZooKeeper 3.74 0 0
Cassandra 30.51 0 0

can trigger one bug in every 17.03 hours with averagely 937.5
runs (90.83 hours with averagely 5000 runs if repeated bugs
not considered). On the other hand, CrashTuner can find one
bug in every 1.70 hours with averagely 50.29 runs, which is
much more efficient and effective.

4.2.2 10 Fault Injection

Table 8 summarizes the number of IO points for each bench-
mark. IO classes are those classes implementing the inter-
face java.io.Closeable (Column 2), e.g., network and file
stream classes. I0 methods are public methods of IO classes
starting with one of the following keyword: read, write,
flush, and close (Column 3). Static IO points are call-sites
to IO methods (Column 4). We use the same profiling strat-
egy to obtain dynamic IO points, i.e., static IO points with
calling contexts (Column 5). In this experiment, we inject
crash event before and after each dynamic IO point. Table 9
gives the results.

IO fault injection can trigger only 1 bug (for 6 times):
YARN-9201. This bug is also reported by CrashTuner. In
summary, IO fault injection can trigger one bug in every

https://issues.apache.org/jira/browse/YARN-9194
https://issues.apache.org/jira/browse/HBASE-21470
https://issues.apache.org/jira/browse/MAPREDUCE-7178
https://issues.apache.org/jira/browse/YARN-9201

CrashTuner

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 10. Number of Types, fields, access points, and crash points. This table is discussed in Section 4.3.

System # Total # Meta-info # Crash Points
Types Fields Access Points Types Fields Access Points Static Dynamic
Hadoop2/Yarn | 6,265 43,223 206,087 107 1,251 5,109 1,524 453
HBase 3,257 26,802 130,969 34 733 4,032 920 257
HDFS 3,924 30,645 138,269 43 315 1,924 495 237
ZooKeeper 532 4,787 28,072 3 13 90 41 40
Cassandra 3,175 17,295 95,259 1 122 666 197 69
Total 17,153 | 122,752 598,656 188(1.10%) | 2,434(1.98%) | 11,821(1.97%) | 3,177(0.53%) | 1,056(0.18%)

Table 11. Analysis and testing times. This table is dis-
cussed in Section 4.3.

| System [Analysis(s) [Profile(s) [Test(h) [Total(h) ‘
Hadoop2/Yarn 265.67 365.34 17.22 17.39
HBase 276.34 812.72 7.97 8.27
HDFS 218.61 417.06 8.46 8.65
ZooKeeper 37.83 26.44 0.25 0.27
Cassandra 213.36 71.23 1.02 1.10

24.15 hours with averagely 750 runs (156.88 hours with aver-
agely 4500 runs if repeated bugs not considered). Most bugs
detected by CrashTuner cannot be triggered with IO fault
injection because the real crash points are far away from any
IO points.

Surprised by the results, we thoroughly checked the logs
generated during IO fault injection testing. Many tests lead
to exceptions. For instance, in HDFS, after crashing the name
node when it is writing a log file, the recovery node throws
a LogHeaderCorruptException due to the corrupted file.
However, the exception is well handled by the system. Fre-
quently, developers introduce exception handlers for IO op-
erations. As a result, IO faults are often tolerated and IO fault
injection is not as effective in triggering new bugs.

4.3 RQ3: Efficiency

Table 10 compares the number of meta-info types, fields, and
access points (Columns 5-7) to the total number of types,
fields, and access points for each system (Columns 2-4). Ac-
cording to log analysis and type-based static analysis, 2.20%
access points are accessing meta-info variables (Column 7).
Static optimizations and profiling further reduce the number
of static and dynamic crash points to 0.58% (Column 8) and
0.19% (Column 9) of the total access points in the program,
respectively. In the end, there are 453 dynamic crash points
for Hadoop2/Yarn, 257 dynamic crash points for HBase, 237
dynamic crash points for HDFS, 40 dynamic crash points for
ZooKeeper and 69 for Cassandra.

Table 11 shows the times of CrashTuner in testing each
system. The analysis times (Column 2) include the time in
running the system (we run each system once with the given
workload in Table 4) to generate logs, the log analysis time,
as well as the static analysis time. The profiling time is given

126

Table 12. Crash points pruned by different optimiza-
tions. This table is discussed in Section 4.3.1.

| System [Constructor [Unused [Sanity check ‘
Hadoop2/Yarn 1,140 1,778 608
HBase 849 876 1,387
HDEFS 355 373 701
Zookeeper 27 14 7
Cassandra 248 116 105

in Column 3, where at most 3 runs are sufficient to find out
all dynamic crash points. Column 4 is the total time to test
all dynamic crash points (Column 9 in Table 10) one by one.

CrashTuner is very efficient. It finishes its analyses in
5 minutes for all benchmarks (Column 2). In the testing
phase (Column 4), CrashTuner tests the 453 dynamic crash
points (Column 9 in Table 10) for Hadoop2/Yarn in 17.22
hours. Our instrumentation and online log analysis do not
introduce any noticeable performance degradation in testing
each individual crash point.

4.3.1 Optimizations

As stated in Section 3.1.2, we discard field references in any of
the three cases: 1) fields only set in the constructors of their
containing classes (Constructor); 2) read references unused
or only used in logging statements (Unused); 3) read refer-
ences checked before being used (Sanity check). Table 12
shows the number of pruned crash points by each optimiza-
tion. The 3 optimizations together reduce the number of
crash points by 3.76X, significantly improving efficiency.

To evaluate the soundness of CrashTuner, we randomly
selected 3000 crash points pruned by optimizations and
3000 non meta-info access points for fault-injection testing.
However, no new bugs were triggered.

4.4 Discussions

We implement CrashTuner in Java and evaluate it using 5
Java-based distributed systems in the Hadoop eco-system.
However, the approach is applicable to a wide range of dif-
ferent distributed systems. We studied the 14 scheduling-
related critical crash-recovery bugs in Kubernetes [15], a
popular distributed resource management system written
in Golang [12]. Table 13 shows that the 14 bugs are also

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Table 13. The studied bugs in Kubernetes [15].

Node #53647 #68984 #55262 #56622
Kubernetes #69758 #71063 #73097 #78782
Pod #72895 #68173 #68892 #70898

#71488 #72259

triggered when nodes crash at program points accessing
meta-info. Kubernetes dynamically allocates and deallocates
nodes (often from a cloud provider, e.g., google cloud), lead-
ing to frequent meta-info updates. When a node crashes, its
meta-info still scatters around in the system. It is very diffi-
cult for developers to find all meta-info of the crashed node
and update them accordingly, which often leads to bugs.

We believe that meta-info is a well-suited abstraction in
analyzing distributed systems. The root causes of crash-
recovery bugs are either 1) failing to handle corrupted meta-
info (the post-write scenario), or 2) using stale meta-info (the
pre-read scenario). This paper demonstrates the effective-
ness of meta-info analysis to fault-injection testing. It can
also help static detectors [61] and distributed system model
checkers [28, 35, 37, 38, 48, 54, 59] to more effectively detect
such bugs.

5 Related Work

Crash recovery bug study and detection There are many
empirical studies on crash recovery bugs [21, 29, 39, 46].
Mesbahi et al. [49] pointed out that 2.4% nodes can crash in
Google cluster per day, which may lead to many bugs [25].
TaxDC [39] shows that 63% of distributed concurrency bugs
suffice in the presences of node crash and other faults. In [21],
researchers conducted extensive empirical studies on crash-
recovery related bugs. The two papers [29, 46] study node
change bugs and exception-related bugs, respectively. These
studies motivate our approach.

Recent research focuses on crash recovery bug detection
via fault-injection testing, where faults are injected either
randomly [6] or systematically [18, 23, 32, 34]. The system-
atic approaches rely on user specifications to guide fault-
injection. They provide domain specific languages that allow
users to specify fault-injection sequences, scenarios, and so
on. Distributed model checkers [28, 35, 37, 38, 48, 54, 59]
intercept messages and events (e.g., crash) in the system
at runtime, then permute their orderings exhaustively. Al-
though powerful, they still suffer from the state space ex-
plosion problem. FCatch [43] models time-of-fault bugs as
a special type of concurrency bugs. It traces system execu-
tion via instrumentation and can predicate crash recovery
bugs from the correct execution trace. Aspirator [61] is a
static detector for exception handler bugs, some of which
may also be triggered by node crash events. However, many
crash-recovery bugs manifest themselves without involving

127

J. Luet al.

any exception handlers. It will be difficult for static detec-
tors to report these bugs with good precision. This paper
introduces a novel fault-injection testing approach for crash
recovery bug detection by automatically inferring meta-info
variables, whose access points are likely to be crash points.
DCatch [42] extends the classic happen-before relations
to distributed systems and adopts dynamic analysis to detect
distributed concurrency bugs. CloudRaid [47] detects con-
currency bugs in distributed systems by flipping the order of
a pair of messages that always happen in a fixed order. The
two works can be combined with our approach to uncover
more concurrency bugs in the crash recovery process.

Log analysis for distribute systems Log analysis has been
widely adopted in analyzing, monitoring, and diagnosing

distributed systems. Xu et al. [58] detect anomaly executions

by applying machine learning techniques to console logs

from a system. DISTALYZER [51] studies performance of
system components by comparing logs from abnormal exe-
cution and normal execution. Iprof [64] extracts request IDs

and timing information from logs to profile request latency.
Stitch [63] organizes log instances into tasks and sub-tasks,
to profile different components in the entire distributed soft-
ware stack. CloudRaid [47] employs log analysis for detection

of distributed concurrency bugs. We mine logs to discover

meta-info in distributed systems, for effectively detecting

crash recovery bugs.

6 Conclusions

We present CrashTuner, a novel fault-injection testing ap-
proach to crash recovery bug detection. CrashTuner pre-
cisely identifies fault-injection points via meta-info analysis,
which automatically infers meta-info variables (variables ref-
erencing high-level system state) whose accessing points are
fault-injection points likely to expose errors. We evaluate
CrashTuner against five representative distributed systems.
CrashTuner can successfully reproduce 59 out of 66 exist-
ing bugs, and can detect 21 new bugs that have never been
reported before. These bugs can cause severe damages such
as cluster down or start-up failures.

In our future work, we plan to further extend CrashTuner
to tackle crash-consistency bugs and deep bugs involving
multiple crash events.

Acknowledgement

We thank our shepherd Haryadi Gunawi, and other anony-
mous reviewers for their valuable inputs. We thank Ting
Yuan for his study on Kubernetes. This paper is supported by
the National Key R&D program of China (No. 2016YFB1000201),
the Innovation Research Group of National Natural Science
Foundation of China (No0.61521092), and the National Natural
Science Foundation of China (U1736028 and 61872043).

https://github.com/kubernetes/kubernetes/pull/53647
https://github.com/kubernetes/kubernetes/pull/68984
https://github.com/kubernetes/kubernetes/pull/55262
https://github.com/kubernetes/kubernetes/pull/56622
https://github.com/kubernetes/kubernetes/pull/69758
https://github.com/kubernetes/kubernetes/pull/71063
https://github.com/kubernetes/kubernetes/pull/73097
https://github.com/kubernetes/kubernetes/pull/78782
https://github.com/kubernetes/kubernetes/pull/72895
https://github.com/kubernetes/kubernetes/pull/68173
https://github.com/kubernetes/kubernetes/pull/68892
https://github.com/kubernetes/kubernetes/pull/70898
https://github.com/kubernetes/kubernetes/pull/71488
https://github.com/kubernetes/kubernetes/pull/72259

CrashTuner

References

(1]

[2

(19]
[20]

[21]

[22]

[23]

[24]

[25]

1999. Java bytecode engineering toolkit since 1999. https://www.
javassist.org/.

] 2012. Downtime costs per Hour. http://iwgcr.org/?p=404.

2012. MapReduce bug 3858.
MAPREDUCE-3858.

2015. Understanding HDFS Recovery Processes. https://blog.cloudera.
com/blog/2015/02/understanding-hdfs-recovery-processes-part-1/.
2015. WALA Home page. http://wala.sourceforge.net/wiki/index.php/
Main_Page/.

2016. Fault Injection Framework and Development Guide.
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/
hadoop-hdfs/FaultinjectFramework.html.

2016. Scheduling of opportunistic containers. https://issues.apache.
org/jira/browse/YARN-5542.

2016. YARN bug 5918. https://jira.apache.org/jira/browse/YARN-5918.
2018. Lloyd’s Estimates the Impact of a U.S. Cloud Outage at $19 Billion.
https://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.
s.-cloud-outage-at-19-billion.

2019. Apache log4j, a logging library for Java. http://logging.apache.
org/log4j/2.x/.

2019. Centralize, Transform & Stash Your Data. https://www.elastic.
co/products/logstash

2019. Go is an open source programming language that makes it easy
to build simple, reliable, and efficient software. https://golang.org/
2019. HintedHandoff. https://wiki.apache.org/cassandra/
HintedHandof.

2019. Simple logging facade for Java (SLF4]). http://www.slf4j.org/.
2019. What is Kubernetes. https://kubernetes.io/docs/concepts/
overview/what-is-kubernetes/

2019. Write Ahead Log (WAL). http://hbase.apache.org/book.html#
wal.

2019. ZooKeeper Smoketest. https://github.com/phunt/zk-smoketest.
Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-
driven Fault Injection. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD °15). ACM, New
York, NY, USA, 331-346.

Dhruba Borthakur et al. 2008. HDFS architecture guide. Hadoop Apache
Project 53 (2008).

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51, 1 (2008), 107-113.
Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun
Wei, Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An Empirical
Study on Crash Recovery Bugs in Large-scale Distributed Systems. In
Proceedings of the 2018 26th ACM SigSoft International Symposium on
the Foundations of Software Engineering (FSE’18). ACM, New York, NY,
USA, 539-550.

Lars George. 2011. HBase: the definitive guide: random access to your
planet-size data. " O’'Reilly Media, Inc".

Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI: A
Framework for Cloud Recovery Testing. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation
(NSDI °11). USENIX Association, Berkeley, CA, USA, 238-252.
Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Joseph M. Hellerstein,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Koushik
Sen. 2010. Towards Automatically Checking Thousands of Failures
with Micro-specifications. In Proceedings of the Sixth International
Conference on Hot Topics in System Dependability (HotDep °10). USENIX
Association, Berkeley, CA, USA, 1-8.

Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.

https://jira.apache.org/jira/browse/

128

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC ’14). ACM, New York, NY, USA, Article 7, 14 pages.
Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono,
Anang D. Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why
Does the Cloud Stop Computing?: Lessons from Hundreds of Ser-
vice Outages. In Proceedings of the Seventh ACM Symposium on Cloud
Computing (SoCC ’16). ACM, New York, NY, USA, 1-16.

Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher,
Swaminathan Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng,
Nematollah Bidokhti, Caitie McCaffrey, et al. 2018. Fail-slow at scale:
Evidence of hardware performance faults in large production systems.
ACM Transactions on Storage (TOS) 14, 3 (2018), 23.

Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and
Lintao Zhang. 2011. Practical Software Model Checking via Dynamic
Interface Reduction. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles (SOSP °11). ACM, New York, NY,
USA, 265-278.

Chen Haicheng, Dou Wensheng, Jiang Yanyan, and Qin Feng. 2019.
Understanding Exception-Related Bugs in Large-Scale Cloud Systems.
In Proceedings of the 34rd ACM/IEEE International Conference on Auto-
mated Software Engineering (ASE ’19). ACM.

Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou, and
Yingnong Dang. 2018. Capturing and Enhancing in Situ System Ob-
servability for Failure Detection. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI’18).
USENIX Association, Berkeley, CA, USA, 1-16.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In
Proceedings of the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIXATC ’10). USENIX Association, Berkeley, CA, USA,
11-11.

Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and
Nadia Papakonstantinou. 2013. SETSUDO: Perturbation-based Testing
Framework for Scalable Distributed Systems. In Proceedings of the First
ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS
’13). ACM, New York, NY, USA, 1-14.

Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. 2011. PREFAIL: A
Programmable Tool for Multiple-failure Injection. In Proceedings of the
2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’11). ACM, New York,
NY, USA, 171-188.

Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong Ryu, and Dilma
Da Silva. 2013. On Fault Resilience of OpenStack. In Proceedings of
the 4th Annual Symposium on Cloud Computing (SoCC ’13). ACM, New
York, NY, USA, 1-16.

Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat.
2007. Life, Death, and the Critical Transition: Finding Liveness Bugs
in Systems Code. In Proceedings of the 4th USENIX Conference on Net-
worked Systems Design & Implementation (NSDI'07). USENIX Asso-
ciation, Berkeley, CA, USA, 18-18.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentral-
ized Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April
2010), 35-40.

Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. 2015. SAMC:
A Fast Model Checker for Finding Heisenbugs in Distributed Systems
(Demo). In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA °15). ACM, New York, NY, USA, 423-427.
Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. 2014. SAMC: Semantic-aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI ’14). USENIX Association, Berkeley, CA,
USA, 399-414.

https://www.javassist.org/
https://www.javassist.org/
http://iwgcr.org/?p=404
https://jira.apache.org/jira/browse/MAPREDUCE-3858
https://jira.apache.org/jira/browse/MAPREDUCE-3858
https://blog.cloudera.com/blog/2015/02/understanding-hdfs-recovery-processes-part-1/
https://blog.cloudera.com/blog/2015/02/understanding-hdfs-recovery-processes-part-1/
http://wala.sourceforge.net/wiki/index.php/Main_Page/.
http://wala.sourceforge.net/wiki/index.php/Main_Page/.
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/FaultInjectFramework.html
https://issues.apache.org/jira/browse/YARN-5542
https://issues.apache.org/jira/browse/YARN-5542
https://jira.apache.org/jira/browse/YARN-5918
https://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion
https://www.eweek.com/cloud/lloyd-s-estimates-the-impact-of-a-u.s.-cloud-outage-at-19-billion
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://golang.org/
https://wiki.apache.org/cassandra/HintedHandof
https://wiki.apache.org/cassandra/HintedHandof
http://www.slf4j.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://hbase.apache.org/book.html#wal
http://hbase.apache.org/book.html#wal
https://github.com/phunt/zk-smoketest

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

[39] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and
Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic
Concurrency Bugs in Datacenter Distributed Systems. In Proceedings
of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’16). ACM,
New York, NY, USA, 517-530.

[40] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the
Performance of Flow-sensitive Points-to Analysis Using Value Flow.
In Proceedings of the 19th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’11). ACM, New York, NY,
USA, 343-353.

[41] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and
Scalable Context-sensitive Pointer Analysis via Value Flow Graph. In
Proceedings of the 2013 International Symposium on Memory Manage-
ment (ISMM ’13). ACM, New York, NY, USA, 85-96.

[42] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu,
Haryadi S. Gunawi, and Chen Tian. 2017. DCatch: Automatically
Detecting Distributed Concurrency Bugs in Cloud Systems. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 677-691.

[43] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian.

2018. FCatch: Automatically Detecting Time-of-fault Bugs in Cloud

Systems. In Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’18). ACM, New York, NY, USA, 419-431.

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian

Tang, Ming Wu, M. Frans Kaashoek, and Zheng Zhang. 2008. D3S:

Debugging Deployed Distributed Systems. In 5th USENIX Symposium

on Networked Systems Design & Implementation (NSDI *08). USENIX

Association, 423-437.

[45] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. 2007. WiDS
Checker: Combating Bugs in Distributed Systems. In Proceedings of
the 4th USENIX Conference on Networked Systems Design & Imple-
mentation (NSDI °07). USENIX Association, Berkeley, CA, USA, 19-19.

[46] JieLu,Liu Chen, Lian Li, and Xiaobing Feng. 2019. Understanding Node
Change Bugs for Distributed Systems. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 399-410.

[47] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. CloudRaid: Hunting
Concurrency Bugs in the Cloud via Log-mining. In Proceedings of the
2018 26th ACM International Symposium on the Foundations of Software
Engineering (FSE’18). ACM, New York, NY, USA, 3-14.

[48] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Da-
niar H. Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian,
Feng Ye, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu, and
Haryadi S. Gunawi. 2019. FlyMC: Highly Scalable Testing of Complex
Interleavings in Distributed Systems. In Proceedings of the Fourteenth
EuroSys Conference 2019 (EuroSys '19). ACM, New York, NY, USA, 1-16.

[49] Mohammad Reza Mesbahi, Amir Masoud Rahmani, and Mehdi Hos-
seinzadeh. 2017. Cloud dependability analysis: Characterizing Google
cluster infrastructure reliability. In 2017 3th International Conference
on Web Research (ICWR ’17). IEEE, 56-61.

[50] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,

and Vijay Chidambaram. 2018. Finding Crash-consistency Bugs with

Bounded Black-box Crash Testing. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation (OSDI’18).

USENIX Association, Berkeley, CA, USA, 33-50.

Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Struc-

tured Comparative Analysis of Systems Logs to Diagnose Performance

Problems. In Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation (NSDI’12). USENIX Association,

Berkeley, CA, USA, 26-26.

[44

=

[51

—

129

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

J. Luet al.

Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan Gupta,
Vinayak Khot, and Haryadi S Gunawi. 2019. {IASO}: A Fail-Slow
Detection and Mitigation Framework for Distributed Storage Services.
In 2019 {USENIX} Annual Technical Conference ({ USENIX}{ ATC} 19).
47-62.

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI '14). USENIX Association, 433-448.

Jiri Simsa, Randy Bryant, and Garth A. Gibson. 2010. dBug: Systematic
Evaluation of Distributed Systems. In 5th International Workshop on
Systems Software Verification (SSV ’10). USENIX Association, 1-8.
Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O. Suminto,
Huan Ke, Jeffrey F. Lukman, Wei-Chiu Chuang, Shan Lu, and Haryadi S.
Gunawi. 2019. Scalecheck: A Single-machine Approach for Discover-
ing Scalability Bugs in Large Distributed Systems. In Proceedings of
the 17th USENIX Conference on File and Storage Technologies (FAST’19).
USENIX Association, Berkeley, CA, USA, 359-373.

Yulei Sui and Jingling Xue. 2016. On-demand Strong Update Analysis
via Value-flow Refinement. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE’16). ACM, New York, NY, USA, 460-473.

Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the
4th Annual Symposium on Cloud Computing (SOCC ’13). ACM, New
York, NY, USA, Article 5, 16 pages.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jor-
dan. 2009. Detecting Large-scale System Problems by Mining Console
Logs. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP °09). ACM, New York, NY, USA, 117-132.
Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haox-
iang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009.
MODIST: Transparent Model Checking of Unmodified Distributed
Systems. In Proceedings of the 6th USENLX Symposium on Networked
Systems Design and Implementation (NSDI "09). USENIX Association,
Berkeley, CA, USA, 213-228.

Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A Light-
weight, General System for Finding Serious Storage System Errors.
In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation - Volume 7 (OSDI "06). USENIX Association,
Berkeley, CA, USA, 1-10.

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple
Testing Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-intensive Systems. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI ’14). USENIX Association, Berkeley, CA, USA, 249-265.
Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding Yuan.
2017. Pensieve: Non-Intrusive Failure Reproduction for Distributed
Systems Using the Event Chaining Approach. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP °17). ACM, New
York, NY, USA, 19-33.

Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm.
2016. Non-intrusive Performance Profiling for Entire Software Stacks
Based on the Flow Reconstruction Principle. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(OSDI ’16). USENIX Association, Berkeley, CA, USA, 603-618.

Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo,
Ding Yuan, and Michael Stumm. 2014. Lprof: A Non-intrusive Request

CrashTuner SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

Flow Profiler for Distributed Systems. In Proceedings of the 11th USENIX Proceedings of the 27th International Conference on Parallel Architectures
Conference on Operating Systems Design and Implementation (OSDI ’14). and Compilation Techniques (PACT ’18). ACM, New York, NY, USA,
USENIX Association, Berkeley, CA, USA, 629-644. Article 26, 13 pages.

[65] Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He, Jingling Xue, and
Haikun Liu. 2018. Towards Concurrency Race Debugging: An In-
tegrated Approach for Constraint Solving and Dynamic Slicing. In

130

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Pre-read Scenario
	2.2 The Post-write Scenario

	3 The CrashTuner Approach
	3.1 Identify Crash Points
	3.1.1 Log Analysis
	3.1.2 Static Crash Point Analysis
	3.1.3 Profiler

	3.2 Fault-injection Testing
	3.2.1 Online Log Analysis
	3.2.2 Trigger

	3.3 Implementation Details
	3.4 Limitations

	4 Evaluation
	4.1 RQ1:Effectiveness
	4.1.1 Reproducing Existing Bugs
	4.1.2 Detecting New Bugs
	4.1.3 Timeouts
	4.1.4 Complexity of Fixes

	4.2 RQ2: Comparison with Alternative Approaches
	4.2.1 Random Crash Injection
	4.2.2 IO Fault Injection

	4.3 RQ3: Efficiency
	4.3.1 Optimizations

	4.4 Discussions

	5 Related Work
	6 Conclusions
	References

