
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Intermittent Computation without Hardware
Support or Programmer Intervention

Joel Van Der Woude, Sandia National Laboratories; Matthew Hicks, University of Michigan

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude

Intermittent Computation without Hardware Support
or Programmer Intervention

Joel Van Der Woude
Sandia National Laboratories∗

Matthew Hicks
University of Michigan

Abstract
As computation scales downward in area, the limi-

tations imposed by the batteries required to power that
computation become more pronounced. Thus, many fu-
ture devices will forgo batteries and harvest energy from
their environment. Harvested energy, with its frequent
power cycles, is at odds with current models of long-
running computation.

To enable the correct execution of long-running appli-
cations on harvested energy—without requiring special-
purpose hardware or programmer intervention—we pro-
pose Ratchet. Ratchet is a compiler that adds lightweight
checkpoints to unmodified programs that allow exist-
ing programs to execute across power cycles correctly.
Ratchet leverages the idea of idempotency, decompos-
ing programs into a continuous stream of re-executable
sections connected by lightweight checkpoints, stored
in non-volatile memory. We implement Ratchet on top
of LLVM, targeted at embedded systems with high-
performance non-volatile main memory. Using eight
embedded systems benchmarks, we show that Ratchet
correctly stretches program execution across frequent,
random power cycles. Experimental results show that
Ratchet enables a range of existing programs to run on
intermittent power, with total run-time overhead averag-
ing below 60%—comparable to approaches that require
hardware support or programmer intervention.

1 Introduction
Improvements in the design and development of com-

puting hardware have driven hardware size and cost to
rapidly shrink as performance improves. While early
computers took up entire rooms, emerging computers are
millimeter-scale devices with the hopes of widespread
deployment for sensor network applications [23]. These

∗Work completed while at the University of Michigan

rapid changes drive us closer to the realization of smart
dust [20], enabling applications where the cost and size
of computation had previously been prohibitive. We are
rapidly approaching a world where computers are not
just your laptop or smart phone, but are integral parts
your clothing [47], home [9], or even groceries [4].

Unfortunately, while the smaller size and lower cost of
microcontrollers enables new applications, their ubiqui-
tous adoption is limited by the form factor and expense of
batteries. Batteries take up an increasing amount of space
and weight in an embedded system and require special
thought to placement in order to facilitate replacing bat-
teries when they die [20]. In addition, while Moore’s
Law drives the development of more powerful comput-
ers, batteries have not kept pace with the scaling of
computation [18]. Embedded systems designers attempt
to address this growing gap by leveraging increasingly
power-efficient processors and design practices [49]. Un-
fortunately, these advances have hit a wall—the battery
wall; enabling a dramatic change in computing necessi-
tates moving to batteryless devices.

Batteryless devices, instead of getting energy from the
power grid or a battery, harvest their energy from their
environment (e.g., sunlight or radio waves). In fact,
the first wave of energy harvesting devices is available
today [4, 50, 9]. These first generation devices prove
that it is possible to compute on harvested energy. This
affords system designers the novel opportunity to remove
a major cost and limitation to system scaling.

Unfortunately, while harvested energy represents an
opportunity for system designers, it represents a chal-
lenge for software developers. The challenge comes
from the nature of harvested energy: energy harvest-
ing provides insufficient power to perform long-running,
continuous, computation [37]. This results in frequent
power losses, forcing a program to restart from the be-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 17

Figure 1: Energy harvesting devices replace batteries with a small
energy storage capacitor. This is the ideal charge and decay of that
capacitor when given a square wave input power source. The voltage
across the capacitor must be above v trig for program computation
to take place as that is the minimum energy required to store the
largest possible checkpoint in the worst-case environmental and device
conditions. The energy expended going from v on to v trig and
from v trig to v off is wasted in what is called the guard band.
The guard band is essential for correctness in one-time checkpointing
systems [39, 17, 3]. In real systems, the charge and discharge rate
is chaotic, depending on many variables, including temperature and
device orientation.

ginning, in hopes of more abundant power next time.
While leveraging faster non-volatile memory technolo-
gies might seem like an easy way to avoid the problems
associated with these frequent power cycles, previous
work exposes the inconsistent states that can result from
power cycles when using these technologies [26, 38].

Previous research attempts to address the problem of
intermittent computation using two broad approaches:
rely on specialized hardware [39, 29, 3, 17, 27] or require
the programmer to reason about the effects of common
case power failures on mixed-volatility systems [26].
Hardware-based solutions, rely on a single checkpoint
that gets saved just before power runs out. It is critical
for correctness that every bit of work gets saved by the
checkpoint and that there is no (non-checkpointed) work
after a checkpoint [38]. On the other hand, taking a
checkpoint too early wastes energy after the checkpoint
that could be used to perform meaningful work. This
tradeoff mandates specialized hardware to measure avail-
able power and predict when power is likely to fail. Due
to the intermittent nature of harvested energy, predict-
ing power failure is a risky venture that requires large
guard bands to accommodate a range of environmental
conditions and hardware variances. Figure 1 depicts how
guard-bands waste energy that could otherwise be used
to make forward progress. In addition to the guard-bands

wasting energy, the power monitoring hardware itself
consumes power. Even simple power monitoring circuits
(think 1-bit voltage level detector) consume power up to
33% of the power of modern ultra-low-power microcon-
trollers [5, 43].

An alternative approach, as taken by DINO [26], is
to forgo specialized hardware, instead, placing the bur-
den on the programmer to reason about the possible
outcomes of frequent, random, power failures. DINO
requires that programmers divide programs into a series
of checkpoint-connected tasks. These tasks then use data
versioning to ensure that power cycles do not violate
memory consistency. Smaller tasks increase the like-
lihood of eventual completion, at the cost of increased
overhead. Larger tasks result in fewer checkpoints, but
risk never completing execution. Thus, the burden is on
the programmer to implement—for all control flows—
correct-sized tasks given the program and the expected
operating environment. Note that even small changes
in the program or operating environment can change
dramatically the optimal task structure for a program.

Our goal is to answer the question: What can be
done without requiring hardware modifications or bur-
dening the programmer? To answer this question, we
propose leveraging information available to the compiler
to preserve memory consistency without input from the
programmer or specialized hardware. We draw upon the
wealth of research in fault tolerance [31, 24, 21, 51, 25,
13] and static analysis [7, 22] and construct Ratchet,
a compiler that is able to decompose unmodified pro-
grams into a series of re-executable sections, as shown
in Figure 2. Using static analysis, the compiler can
separate code into idempotent sections—i.e., sequences
of code that can be re-executed without entering a state
inconsistent with program semantics. The compiler
identifies idempotent sections by looking for loads and
stores to non-volatile memory and then enforcing that no
section contains a write after read (WAR) to the same
address. By decomposing programs down to a series
of re-executable sections and gluing them together with
checkpoints of volatile state, Ratchet supports existing,
arbitrary-length programs, no matter the power source.
Ratchet shifts the burden of reasoning about the effects
of intermittent computation and mixed-volatility away
from the programmer to the compiler—without relying
on hardware support.

We implement Ratchet as a set of modifications to the
LLVM compiler [22], targeting energy harvesting plat-
forms that use the ARM architecture [2] and have wholly
non-volatile main memory. We also implement an ARM-
based energy-harvesting simulator that simulates power

18 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

failures at frequencies experienced by existing energy
harvesting devices. To benchmark Ratchet, we use it to
instrument the newlib C-library [45], libgcc, and eight
embedded system benchmarks [14]. Finally, we ver-
ify the correctness of Ratchet by executing all instru-
mented benchmarks, over a range of power cycle rates,
on our simulator, which includes a set of memory con-
sistency invariants dynamically check for idempotence
violations. Our experimental results show that Ratchet
correctly stretches program execution across frequent,
random power cycles, while adding 60% total run-time
overhead1. This is comparable to approaches that require
hardware support or programmer intervention and much
better than the alternative of most benchmarks never
completing execution with harvested energy.

This paper makes several key contributions:
• We design and implement the first software-only

system that automatically and correctly stretches
program execution across random, frequent power
cycles. As a part of our design, we extend the notion
of idempotency to memory.

• We evaluate Ratchet on a wider range of bench-
marks than previously explored and show that its
total run-time overhead is competitive with existing
solutions that require hardware support or program-
mer intervention.

• We open source Ratchet, including our energy har-
vesting simulator [16], our benchmarks [15], and
modifications to LLVM to implement Ratchet [44].

2 Background
The emergence of energy harvesting devices poses the

question: How can we perform long-running computa-
tion with unreliable power? Answering this question
forces us to go beyond a direct application of existing
work from the fault tolerance community due to four
properties of energy harvesting devices:
• Power availability and duration are unknowable for

most use cases.
• Added energy drain by hardware is just as important

as added cycles by software.
• Small variations in the device and the environment

have large effects on up time.
• Faults (i.e., power cycles) are the common case.

1We say total run-time overhead to cover all sources of run-time
overhead, including hardware and software. Keep in mind that adding
hardware indirectly increases the run time of programs by decreasing
the amount of energy available for executing instructions. Because
Ratchet is software only, the total run-time overhead is equal to the
overhead due to saving checkpoints and re-execution.

Figure 2: Ratchet-compiled program in operation. The checkmarks
represent completed checkpoints, the x’s represent power failures, and
the dashed lines to the backward rotating arrows represent the system
restarting execution at the latest checkpoint. This figure shows how
programs execute as normal with added overhead from checkpoints and
re-execution.

These four properties dictate how system builders con-
struct energy harvesting devices and how researchers
make programs amenable to intermittent computation.

2.1 Prediction vs. Resilience
Given the properties of harvested energy, there are

two checkpointing methods for enabling long-running
computation: one-time and continuous. One-time check-
pointing approaches attempt to predict when energy is
about to run out and checkpoint all volatile state right
before it does. Doing this requires measuring the volt-
age across the energy storage capacitor as depicted in
Figure 1. Measuring the voltage requires an Analog-to-
Digital Converter (ADC) configured to measure the ca-
pacitor’s voltage. Hibernus [3], the lowest overhead one-
time checkpointing approach, utilizes an advanced ADC
with interrupt functionality and a configurable voltage
threshold that removes the need to periodically check the
voltage from software. As Table 1 shows, this produces
very low overheads, with the two main sources of over-
head being the extra power consumed by the ADC and
the energy wasted waiting in the guard bands.

While many energy-harvesting systems have ADCs,
the program may require use of the ADC, the ADC may
not support interrupts, or the ADC may not be config-
ured (in hardware) to monitor the voltage of the energy
storage capacitor. Without such an ADC, programs must
be able to fail at any time and still complete execution
correctly. Making programs resilient to spontaneous
power failures is the domain of continuous checkpointing
systems. Continuous checkpointing systems must main-
tain the abstraction of re-execution memory consistency
(i.e., a section of code is unable to determine if it is being
executed for the first time or being re-executed by exam-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 19

Property
Commodity

Checkpointing
[32, 11, 31, 34]

Energy Harvesting
HW-assisted

[17, 3, 29]
DINO [26] Idempotence [7, 13] Ratchet

Failure Rate Days/Weeks 100 ms 100 ms Days/Weeks 100 ms
Requires Varies HW+Compiler Programmer+Compiler Compiler Compiler
Failure Type Transient Fault Power Loss Power Loss Transient Fault Power Loss
Memory type DRAM+HDD FRAM SRAM+FRAM DRAM+HDD FRAM
Chkpt. Trigger Time Low Voltage Task Boundary Register WAR NV WAR
Chkpt. Contents Varies VS VS+NV TV — VS
Overhead Varies 0–145% [3] 80–170% 0–30% 0–115%
Primary Factor Varies Measurement Task Size # Faults Section Size

Table 1: Requirements and behavior of different checkpointing/logging techniques. WAR represents a Write-After-Read dependence, VS represents
Volatile State (e.g., SRAM and registers), NV represents Non-Volatile memory (e.g., FRAM), NV TV represents Task Variables stored in Non-
Volatile memory, and Measurement represents the added time and energy consumed by using voltage-monitoring hardware.

ining memory)2. To maintain re-execution memory con-
sistency, continuous checkpointing systems periodically
checkpoint volatile state and guard against inconsistent
updates to non-volatile memory. DINO [26] does this
through data versioning, while Ratchet does this through
maintaining idempotence. Table 1 shows that this class
of approach also yields low total overheads, with the
primary source being time spent checkpointing.

2.2 Memory Volatility
Another consideration for energy harvesting devices

is the type, placement, and use of non-volatile memory.
While the initial exploration into support for energy har-
vesting devices, Mementos [39], focuses on supporting
Flash-based systems with mixed-volatility main mem-
ory, all known follow-on work focuses on emerging
systems with Ferroelectric RAM (FRAM)-based, non-
volatile, main memory [17, 3, 26, 27]. This transi-
tion is necessary as several properties of Flash make
it antithetical to harvested energy. The primary reason
Flash is ill suited is its energy requirements. Flash
works by pushing charge across a dielectric. Doing so
is an energy intense operation requiring high voltage that
makes little sense when the system is about to run out of
power. In fact, on MSP430 devices, Flash writes fail at a
much higher voltage than the processor itself fails [5]—
increasing the energy wasted in the guard band. A second
limitation of Flash is that most programs avoid placing
variables there, increasing the amount of volatile state
that requires checkpointing. Flash writes, beyond being
energy expensive, are slow and complex. Updating a

2Note that this is a relaxation on the requirement for deterministic
re-execution [48, 31, 30, 33], where it is required that each re-execution
produce the same exact result. Our problem only requires that re-
executions produce a semantically correct execution.

variable stored in Flash requires erasing a much larger
block of memory and rewriting all data, along with the
one updated value. This process adds complexity to
applications and increases write latency over FRAM by
two-orders of magnitude.

In comparison with Flash memory, FRAM boasts ex-
tremely low voltage writes, as low as a single volt [35].
Writes to FRAM are also nearly as fast as writes to
SRAM and are bit-wise programmable. The flexibility
and low overheads of FRAM allows for processor de-
signers to create wholly non-volatile main memory, de-
creasing the size and cost of checkpoints. This opens the
door to continuous checkpointing systems as the cost of
checkpointing is outweighed by the power requirement
of the ADC. While, like previous approaches, we focus
on FRAM due to its commercial availability, there are
competing non-volatile memory technologies (e.g., Mag-
netoresistive RAM [46] and Phase Change RAM [40])
that we expect to work equally well with Ratchet. Mov-
ing program data to non-volatile memory does come
with a cost: previous work reveals that mixing non-
volatile and volatile memory is prone to error [38, 26].
Ratchet deals with this by pushing such complexity into
the compiler, relieving the programmer from the burden
of reasoning about mixed volatility main memory and the
effects of power cycles.

3 Design
Ratchet seeks to extend computation across common

case power cycles in order to enable programs on energy
harvesting devices to complete long-running computa-
tion with unreliable power sources. Ratchet enables
re-execution after a power failure by saving volatile
state to non-volatile memory during compiler-inserted
checkpoints. However, checkpointing alone is insuffi-

20 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) (b) (c)

Figure 3: The same code executed without failures, with failures, and with failures with Ratchet. This basic example illustrates one of the difficulties
with using non-volatile main memory on intermittently powered computers: failures can create states not possible given program semantics.

cient to ensure correct computation due to the problems
with maintaining consistency between volatile and non-
volatile memory give unpredictable failures [38, 26]. To
ensure correct re-execution, we use compiler analysis
to determine sections of code that may be re-executed
from the beginning, without producing different results;
a property called idempotence. After decomposing pro-
grams into idempotent sections, we connect the indepen-
dent sections with checkpoints of volatile state. This
ensures that after a power failure the program will re-
sume with a view of all memory identical to the first
(attempted) execution3.

3.1 Idempotent Sections
Idempotent sections are useful because they are natu-

rally side effect free. Nothing needs to be changed about
them in order to protect against memory consistency
errors that may arise from partial execution. By recog-
nizing code sections with this property, Ratchet is able to
find potentially long sequences of instructions that can
be re-executed without any additional work required to
ensure memory consistency.

De Kruijf et al. identify idempotent sections by look-
ing for instruction sequences that perform a Write-After-
Read (WAR) to the same memory address [7]. Under
normal execution, overwriting a previously read memory
location is inconsequential. However, on systems that
roll back to a previous state for recovery (due to potential
issues such as power failures), overwriting a value that
was previously read will cause a different value to be
read when the code section is re-executed. Figure 3
shows an example of how re-executing a section of code
with a WAR dependency may introduce execution that
diverges from program semantics.

In order to prevent these potential consistency prob-

3We are not saying the memory must be identical. We are saying
that the values that a given idempotent section of code reads are
identical to the initial execution. Idempotency enables this relaxation.

lems Ratchet inserts a checkpoint between the write and
the read. This breaks the dependency, separating the
read and the write in different idempotent sections. This
ensures that the read always gets the original value and
the write will be contained in a different idempotent
section, where it is free to update the value. Note that
a sequence of instructions that contains a WAR may still
be idempotent if there exists a write to the same memory
address before the first read. For example a WARAW
dependency chain is idempotent since the first write ini-
tializes the value stored at the memory address so that
even if it is changed by the last write, it will be restored
upon re-execution before the address is read again. Note
that this holds for a potentially infinite sequence of writes
and reads, the sequence will be idempotent if there is a
write before the first read.

It is important to remember that in order for a load
followed by a store cause consistency problems, they
must read and modify the same memory. In order to
determine which instructions rely on the same memory
locations, Ratchet uses intraprocedural alias analysis due
to its availability, performance, and precision. Alias
analysis conservatively identifies instructions that may
read or modify the same memory locations. Since the
alias analysis is intraprocedural we conservatively as-
sume all stores to addresses outside of the stack frame
may alias with loads that occurred in the caller. This
forces Ratchet to insert a checkpoint along any control
flow path that includes a store to non-local memory.

After finding all WARs we use a modified hitting set
algorithm to insert the minimum number of checkpoints
between the loads and stores. The algorithm works by
assigning weights to different points along the control
flow graph based upon metrics such as loop depth and
the number of other idempotency violations intersected.
It uses these metrics to identify checkpointing locations
that prevent all possible idempotency violations while
trying to avoid locations that will be re-executed more

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 21

often than necessary. For example, do not checkpoint
within a loop if a checkpoint outside the loop will sep-
arate all WARs. For a more in-depth discussion of this
algorithm, we refer you to de Kruijf et al. [7].

3.2 Implicit Idempotency Violations
While looking for WARs identifies the majority of

code sequences that violate idempotence, some instruc-
tions may implicitly violate idempotence. A pop in-
struction can be modeled by a read and subsequent
update to the stack pointer. This update immediately
invalidates the memory locations just read by allowing
future push instructions to overwrite the old values. On
a system with interrupts, this scenario occurs when an
interrupt fires after a pop instruction. In this case, the
pop instruction will read from the stack and update the
stack pointer. When the interrupt occurs it will perform
a push instruction to callee save registers, in order to
preserve the state of the processor before the interrupt
fired. However, the state saved by the interrupt is written
to the stack addresses that were read by the initial pop. If
the system re-executes the pop instruction, it will read a
value from the interrupt handler—not the original value!
This behavior forces Ratchet to treat all pop instructions
as implicit idempotency violations since interrupts are
not predictable at compile time.

In order to enable a checkpoint before the slots on the
stack are freed Ratchet exchanges pop instructions for
a series of instructions that perform the same function.
The first duty of the pop instruction is to retrieve a
set of values from the stack and insert them into reg-
isters. Ratchet emulates this by inserting a series of
load instructions to retrieve these values from the stack
and place them in their respective registers. Note that
the load instructions do not update the stack pointer so
any interrupt that fires will push the new values above
these values. After the data is retrieved from the stack,
Ratchet inserts a checkpoint. Finally, Ratchet inserts
an update to the stack pointer to free the space previ-
ously occupied by the values that we just loaded into
registers. By emitting this sequence of instructions we
have deconstructed an atomic read write instruction that
is an implicit idempotency violation and replaced it by a
series of instructions that enable separation of potential
idempotency violations.

3.3 Checkpoints
In between each naturally occurring idempotent sec-

tion, we insert checkpoints in order to save all volatile
memory necessary to restart from the failure. In emerg-
ing systems we observe non-volatile memory moving
closer and closer to the CPU, so far that it has non-
volatile RAM [42]. In such a system, all that is needed to

Figure 4: Shows the relationship between checkpoint overhead and
live registers. A checkpoint’s cost is the number of cycles it takes to
commit and its weight refers to how often they occur in our benchmarks
relative to the total number of checkpoints.

restore state are the values stored in the registers. In fact,
not all registers are necessary, only registers that are used
as inputs to instructions that occur after the checkpoint
location. These registers are denoted live-in registers.

Traditionally, compilers keep a list of live-in and live-
out registers to determine which registers are needed in
a basic block to perform some computation and which
ones are unused and can be reallocated to reduce register
spilling. This information is available to the compiler
after registers have been allocated. We are interested in
which registers are live-in to a checkpoint because they
denote the volatile memory needed to correctly restart
from a given location in a program. Figure 4 shows the
relationship between checkpoint overhead and number of
live-in registers.

In order to prevent power failures during a check-
point from causing an inconsistent state, we use a dou-
ble buffering scheme. One buffer holds the previous
checkpoint, while the other is used for writing a new
checkpoint. A checkpoint is committed by updating the
pointer to the valid checkpoint buffer as the last part of
writing the checkpoint. We tolerate failures even while
taking a checkpoint by never overwriting a checkpoint
until a more recent checkpoint is available in the other
buffer. The atomicity of the store instruction for a singe
word ensures that we always have a valid checkpoint
regardless of when we experience a power failure.

3.4 Recovery
In order to recover from a power failure, we insert

code before the main function to check to see if there ex-
ists a valid checkpoint. If so, we determine that we have
experienced a power failure and need to restore state,

22 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

otherwise we begin executing from main. Restoring state
consists of moving all saved registers into the appropriate
physical registers. Once the program counter has been
restored, execution will restart from the instruction after
the most recently executed checkpoint.

In the case that some idempotent sections are too long,
that is, power may repeatedly fail before a checkpoint is
reached, we use a timer that triggers an interrupt in order
to ensure forward progress. Each interrupt checks to see
if a new checkpoint has been taken since the last time
it was called. It does this by zeroing-out the program
counter value in the unset checkpoint buffer each time it
is called. It can then tell if a checkpoint has been taken
since its last call and only checkpoint if the program
counter of the unused checkpoint buffer is still zero.

When checkpointing from the timer interrupt it is
impossible to foresee which registers are still live and
we must instead conservatively save all of the registers
to non-volatile memory. There exists a trade off when
selecting the timer speed. A timer that is short increases
the overhead due to checkpointing, while a timer that is
long increases re-execution overhead. Without additional
hardware to measure environmental conditions, the timer
can be set on the order of experts estimation of average
lifetime for transiently powered devices [39]. Note that
for our benchmarks, a timer was not needed in order to
make forward progress.

3.5 Challenges
During implementation of Ratchet we encountered a

number of design challenges with actually implementing
our ideal design. Most of these challenges related to
being entrenched at different levels of abstraction within
the compiler. While the code is in the compiler’s in-
termediate representation (IR), powerful alias analysis
and freedom from architecture level specifics made for a
logical location to identify WAR dependencies and insert
checkpoints. However, these decisions are dependent
on the choices made during the translation from the
compiler’s IR to machine code, such as which calls are
tail calls and information about when register pressure
causes register spilling.

This semantic gap causes conservative decision mak-
ing about where to place checkpoints, since the decisions
made in the front end rely on assumptions about where
checkpoints will be inserted in the back-end.

3.6 Optimizations
As we began to implement our design, it became clear

that we were inserting checkpoints more frequently than
needed. As a result of profiling our initial design we
implemented several optimizations to remove redundant
checkpoints.

r1 = mem[sp + 4]

checkpoint()

mem[sp + 4] = r2

...

r3 = mem[r2 + 8]

checkpoint()

mem[r2 + 8] = r4

r1 = mem[sp + 4]

r3 = mem[sp + 8]

checkpoint()

mem[sp + 4] = r2

...

checkpoint()

mem[sp + 8] = r4

a. b.

Figure 5: Two possible code sequences. In (a) each WAR dependency
is separated by a checkpoint, but the two checkpoints cannot be com-
bined without violating idempotency. In (b), the second checkpoint
could be moved to the same line as the first checkpoint since there are
no potentially aliasing reads separating the two checkpoints.

3.6.1 Interprocedural Idempotency Violations
Because of the limits on interprocedural alias anal-

ysis, we initially conservatively inserted a checkpoint
on function entry. This protects against potential WAR
violations between caller and callee code. We observed
that this was often conservative and could be relaxed. A
checkpoint is only necessary on function entry if there
exists a write that may alias with an address outside of
the function’s local stack frame. In the presence of an
offending write, the function entry is modeled as the
potentially offending read (since an offending load could
have occurred in the caller).

In addition, we noticed that some tail calls could be
implemented without any checkpoints. Since tail calls
operate on the stack frame of their caller, a checkpoint
on return is unnecessary, assuming that the tail call does
not modify non-local memory. However, opportunities
for this optimization were observed to be limited due to
the difficulty of determining where to put checkpoints for
intraprocedural WAR dependencies. This is a result of
the semantic gap between compiler stages, when iden-
tifying WAR dependencies, we do not yet have perfect
information about which calls can be represented as tail
calls. We imagine a more extensive version of Ratchet
that takes information from each stage of the compiler
pipeline and iteratively adjusts checkpoint locations to
find the near-minimal set of checkpoints that maintain
correctness.

3.6.2 Redundant Checkpoints
Due to the semantic gap between our alias analysis and

insertion of checkpoints in the front-end of the compiler
(while the code is still in IR), and the instruction schedul-
ing of the back-end, we observed cases where optimiza-
tions or other scheduling decisions caused redundant
checkpoints. We consider redundant checkpoints to be
a pair of checkpoints where any potential idempotency

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 23

violations could be protected with a single checkpoint.
In general, a checkpoint can be relocated within its basic
block to any dominating location does not cross any
reads and any dominated location that does not cross
any writes. This conservative rule follows even without
knowing alias information, which allows us to reorder
instructions after machine code has been generated and
we no longer know which instructions generated the
WAR dependency. Figure 5 shows an example of how
checkpoints can be combined safely by relocation.

3.6.3 Special Purpose Registers
Since all volatile state must be saved during a check-

point, all live special purpose registers must be saved
along with the live general-purpose registers. Some of
the special purpose registers have higher costs to save
than the general purpose registers. In our experience
implementing Ratchet, we found the cost of checkpoint-
ing condition codes to be high. Instead of paying this
overhead, we ensured checkpoints were placed after the
condition code information was consumed, while still en-
suring all non-volatile memory idempotency violations
were cut. Ratchet does this by reordering instructions
to ensure a checkpoint is not placed between a condi-
tion code generator and all possible consumers. This
instruction reordering is done with the same constraints
as combining checkpoints.

3.7 Architecture Specific Tradeoffs
There are a number of architectural decisions that

influence the overhead of our design. Register-rich
architectures reduce the number of idempotent section
breaks required by reducing the frequency of register
spills, at the cost of increasing checkpoint size. Atomic
read-modify-write instructions are incompatible with our
design since there is no way to checkpoint between the
read and the write. On such an architecture, Ratchet
could separate the instruction into separate load and store
operations by our compiler implementation.

4 Implementation
We implement Ratchet using the LLVM compiler in-

frastructure [22]. Beyond verifying that Ratchet output
executes correctly on an ARM development board [41],
we build an ARMv6-M [2] energy-harvesting simulator,
with wholly non-volatile memory. The simulator allows
for fine-grain control over the frequency, arrival time,
and effects of power cycles, as well as allowing us to
verify Ratchet’s correctness. The benchmarks we use for
evaluation all depend on libc, so we also use Ratchet to
instrument newlib [45], and link our benchmarks against
our instrumented library.

4.1 Compiler
We build our compiler implementation on top of the

LLVM infrastructure [22]. We add a front end, IR level
pass that detects idempotent section breaks by tracking
loads and stores to non-volatile memory that may alias
(based on earlier work targeted at registers [7]). This
top-level pass inserts checkpoint placeholders that are
eventually passed to the back end where machine code
is eventually emitted. The back end replaces pop in-
structions with non-destructive reads and a checkpoint
followed by an update to the stack pointer. Next, the
back end relocates the inserted placeholders to minimize
the number of checkpoints required by combining them
and avoiding bisecting condition code def-use chains.
After register allocation, each placeholder is replaced by
a function call to the checkpointing routine that saves
the fewest possible registers. We determine the minimal
set of registers to save using the liveness information
available in the back end.

One compiler-inserted idempotency-violating con-
struct that we modify the compiler to prevent is the
use of shared stack slots for virtual registers. If the
compiler were able to re-assign the same stack slot to
a different virtual register, it would create an idem-
potency violation as the original virtual register value
is overwritten by a different virtual register’s value.
While it is possible to include some backend analy-
sis to uncover such situations, we choose to sacrifice
some stack space and prevent the sharing of stack slots.
Achieving this in LLVM is as simple as adding the flag
-no-stack-slot-sharing to the compile com-
mand. In addition, we include the mem2reg optimiza-
tion that causes some variables that would otherwise be
stored in memory to be stored in registers. This reduces
the number of idempotency violations thereby reducing
the number of checkpoints and increasing idempotent
section length.

4.2 Energy Harvesting Simulator
We also implement a cycle accurate ARMv6-M sim-

ulator. Many of the coming internet of things class
devices are choosing to use ARM devices as they are the
performance per Watt leader. As the price of new non-
volatile memory technologies decreases and their speed
increases, we expect ARM to follow in the footsteps of
the MSP430 [42] and move to a wholly non-volatile main
memory. In fact, even Texas Instruments, the maker of
the MSP430, recently moved to ARM for their newest
MSP devices [43].

An energy-harvesting simulator is required because of
the difficulties associated with developing and debugging
intermittently powered devices. Using a cycle accurate

24 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: Runtime overhead for several versions of Ratchet.

simulator we are able to simulate failures with a proba-
bility distribution that can model the true frequency and
effects of power failures experienced by devices in the
real world. Using a simulator also allows us to take
precise measurements of how much progress a program
makes per power cycle and the cycles consumed by re-
execution. Lastly, our simulator allows for us to verify
the correctness of Ratchet for every benchmark run.

4.3 Idempotent Libraries
In order to ensure that each section of code that runs

is idempotent, we instrument all of the libraries needed
by the device. In order to facilitate real applications
we compile newlib [45], a basic libc and libm library
aimed at embedded systems, with Ratchet. This requires
a modifying three lines in newlib’s makefile to prevent it
from building these optimized versions of libc calls. We
did this because any uninstrumented code could cause
memory consistency to be violated (due to idempotency
violations) if power fails after a write-after-read depen-
dency and before a checkpoint.

Lastly, we produce an instrumented version of the
minimum runtime functions expected by clang that are
included in the compiler-rt project [1]. These functions
implement the libgcc interfaces expected by most com-
pilers. As with newlib, we use only the bare minimum
optimized assembly implementations. Those that we use,
we insert checkpoints by hand between potential write-
after-read dependencies. Thankfully, this only needs to
be done once by the library’s author.

Note that Ratchet supports assembly as long as the
assembly is free of idempotence violations or all poten-
tial idempotency violations are separated by checkpoints.
With additional engineering effort, it is possible to cre-

ate a tool that inserts these checkpoints automatically
through static analysis of the assembly [8].

5 Evaluation
In order to provide a comparison against other check-

pointing solutions for energy harvesting devices, we
evaluate Ratchet on benchmarks common to these ap-
proaches, namely, RSA, CRC, and FFT. For a more
complete analysis, we port4 several benchmarks from
MiBench, a set of embedded systems benchmarks cate-
gorized by run-time behavior [14]. Expanding the bench-
mark set used to evaluate energy harvesting systems is
crucial, because testing with a wide range of program
behaviors and truly long-running programs is more likely
to expose an approach’s tradeoffs.

Unless otherwise noted, we compile all benchmarks
with -O2 as the optimization level. We choose the
-O2 level since it includes most optimizations while
avoiding code size versus speed tradeoffs. As Section 5.3
illustrates, Ratchet supports all of LLVM’s optimization
levels. We use an average lifetime of 100 ms to match
the setup of previous works. With an average lifetime
of 100 ms running with a 24 MHz clock, this gives us a
mean lifetime of 2,400,000 cycles. Before each bout of
execution, the simulator samples from a Gaussian whose
mean is the desired mean lifetime (in cycles) and uses
that value as the number of clock cycles to execute for
before inducing the next power cycle. To simulate a
power cycle, we clear the register values.

Given this experimental setup, we set out to answer
several key questions about Ratchet:

4Some of these applications require input that is read in from a
file. Since many energy-harvesting systems do not include an operating
system or file system, we instead compile the input into the binary.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 25

Figure 7: The average number of cycles per idempotent section break.

1. Does Ratchet stretch computation across frequent,
unpredictable losses of power correctly?

2. What is the overhead of running Ratchet due to
checkpoints and re-execution?

3. Is Ratchet compatible with compiler optimizations?
4. What impact does Ratchet have on code size?
We use the results of this evaluation to compare

Ratchet against alternative approaches that require hard-
ware support or programmer intervention. See the results
of this comparison in Table 1 and Section 7.2.

5.1 Performance
To understand the effects of power cycles on long-

running programs and the overhead of Ratchet, we per-
form 10 trials of each benchmark with power failures as
described earlier. Figure 6 displays the results of this
experiment for each benchmark, averaged and normal-
ized to the run time of the benchmark executed without
power failures. The first thing to note is that 6 out of
8 of the benchmarks fail to complete execution on har-
vested energy without Ratchet (w/o Ratchet). There
are several other results for each benchmark that repre-
sent successive Ratchet optimizations (all levels except
Ideal maintain correctness): Ratchet shows the per-
formance from our naive implementation; RatchetFE
denotes placing a checkpoint at function entry only when
there is a store to a non-local variable that is not preceded
by a checkpoint; RatchetFE+RD is RatchetFE, but
with duplicate checkpoints removed in LLVM’s back-
end; RatchetFE+RD+LR adds a further optimization
of only checkpointing the live-in registers; and finally,
Ideal represents a lower bound on Ratchet’s overhead
that assumes perfect intraprocedural alias analysis and
zero idempotence violations. Ideal bounds what is

Figure 8: Re-execution overhead decreases as failure frequency in-
creases. Note that CRC and RSA have zero re-execution overhead
throughout since they are short enough to complete in a single power
cycle.

possible with more compiler engineering.
We observe an average run-time overhead of 58.9%

using Ratchet+FE+RD+LR—a 20.1% improvement
over Ratchet. The Ideal result suggests that further
compiler engineering can reduce this overhead by over
60%. The total overhead includes run-time overhead due
to saving checkpoints and re-execution, but checkpoint
overhead dominates total overhead, because re-execution
overhead approaches zero.

Looking at Figure 6, we can see that overhead varies
dramatically between benchmarks. This shows that per-
formance of our method is highly program dependent.
Intuitively, this makes sense. If one program includes an
implicit WAR dependence buried deep in the hot sections
of code and another has very few WAR dependencies,
we would expect their run times to vary dramatically. In
order to determine the effect of idempotent section length
of a benchmark on performance we measure the number
of cycles between each checkpoint commit. To measure
this, we instrument our simulator to measure the number
of cycles5 between each call to any of our checkpointing
functions. We then run each benchmark to completion,
without power cycles. The average number of cycles
per idempotent section for each benchmark is shown in
Figure 7. By comparing Figures 6 and 7 we notice that
programs with shorter idempotent sections have higher
overheads.

We also investigate the relationship between idempo-
tent section length and re-execution overhead. To do this,
we instrument our simulator to measure the number of

5Most instructions take a single clock cycle to complete in the
ARMv6-M instruction set.

26 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 9: The runtime overhead of each benchmark compiled with
Ratchet at various LLVM optimization levels normalized to the runtime
of the uninstrumented benchmark compiled at -O0.

cycles from the last checkpoint to a checkpoint restore.
This includes the cycles spent executing code that occurs
after the last checkpoint and the cycles spent restarting
and restoring the last checkpoint. Figure 8 shows the
fraction of run-time overhead due to re-execution for a
range of average power-on times. While short idempo-
tent sections tend to cause higher overall overhead due
to checkpoint overhead dominating the total overhead,
Figure 8 combined with Figure 7 shows that bench-
marks with shorter idempotent sections have lower re-
execution costs. This is reasonable considering that a
failure halfway through an idempotent section requires
the program to re-execute from the last checkpoint. The
more cycles since the last checkpoint, the higher the
re-execution overhead. This suggests that increases in
idempotent section length eventually will expose re-
execution time as a key component of overhead.

5.2 Correctness
We validate Ratchet’s correctness using both formal

and experimental approaches. First, to test that Ratchet
enforces idempotency with respect to non-volatile mem-
ory, we instrument the simulator to log reads and detect
WAR dependencies that occur during execution. We con-
sider a program to fail if there exists any load and sub-
sequent store, to the same address, that are not separated
by a checkpoint6. Second, to test that Ratchet enables
long-running execution even with power-cycle-induced
volatile state corruption, we simulate random power fail-
ures like those experienced in energy-harvesting devices

6This was especially helpful in debugging, as it exposed missed
WAR dependencies, such as ones caused by spilling registers onto the
stack due to register pressure, in early prototypes.

Program Ratchet Uninstrumented Change

AVERAGE 563720 560824 1.79%
rsa 41326 40694 1.55%
crc 36037 34677 3.92%
FFT 182362 183612 -0.68%
sha 3286631 3284544 0.06%
picojpeg 379134 373051 1.63%
stringsearch 184656 177567 3.99%
dijkstra 183554 178465 2.85%
basicmath 216053 213978 0.96%

Table 2: Code size increase due to Ratchet (sizes are in bytes).

and verify the results. We check the validity by running
different sequences of failures and hashing memory con-
tents and registers at the completion of each benchmark
run to compare the hash to the hash of the ground truth
run without power failure. Lastly, to ensure Ratchet
works even in the most energy starved environments we
repeat this experiment with lifetimes as short as 1 ms.

5.3 Impact of Compiler Optimizations
In order to understand the performance of Ratchet

under varying compiler optimizations, we benchmark
Ratchet across each LLVM optimization level. Figure 9
shows the performance of the benchmarks compiled,
with Ratchet, at different optimization levels relative to
uninstrumented benchmarks compiled at -O0. We ob-
serve that in general, traditional compiler optimizations
improve the performance of Ratchet. However, it also
shows that in some cases, aggressive optimization results
in higher perceived overheads. This suggests that break-
ing the program into idempotent sections can not only
reduce the efficiency of optimizations, but also cause
them to be detrimental (see Dijkstra).

5.4 Code size increase from Ratchet
Code size is a critical constraint for many energy-

harvesting devices. In order to evaluate Ratchet’s prac-
ticality with respect to code size, we measure the effect
Ratchet has on code size. On average, Ratchet increases
the size of the program by 1.79% or 2896 bytes. This
increase is caused by adding our checkpoint recovery
code, a number of optimized checkpointing functions,
checkpoint calls throughout the program, and exchang-
ing pop instructions for loads. Table 2 shows the change
in code size for each benchmark. We notice that about
1356 bytes are a result of the additional function calls
and reserved areas in memory. The rest of the code size
increase can be attributed to inserted code or code that
has been rewritten to support Ratchet, namely the trans-
lation of pop instructions. Note that the FFT program

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 27

actually sees a decrease in size. We suspect this might
be a result of Ratchet limiting optimization opportunities
such as loop unrolling.

6 Discussion
There are several issues that represent corner-cases to

Ratchet’s design, such as avoiding repeating outputs on
re-execution, instrumenting hand-written assembly, and
dealing with the effects of power cycles too short to make
forward progress. Instead of distracting from the core
design, we discuss them here.

6.1 Output Commit Problem
In any replay-based system, there is a dilemma called

the output commit problem, which states that a process
should not send data to the outside world until it knows
that that data is error free. The output commit problem
takes on new meaning for energy harvesting devices;
the problem is one of sending multiple outputs when
only one should have been sent in a correct execution.
This problem occurs during the re-execution of a code
section that created an output during an earlier execu-
tion. Imagine an LCD interface on an embedded system,
where there is re-execution while printing to the screen.
We suggest placing checkpoints immediately before and
after these output instructions to minimize the chance of
re-execution due to the instruction being at the end of
a long idempotent section. We believe that there is a
wealth of future work on making protocols themselves
robust against the effects of intermittent computation.
One step in this direction is delay/disruption-tolerant
networking [12].

6.2 Hand-Written Assembly
Hand-written assembly poses another challenge for

Ratchet. Because it is never transformed into LLVM
IR we cannot run our passes to determine if there are
idempotency violations, and if so, where they occur. One
naive approach is to simply checkpoint before and after
the assembly. While that is a good start, there still re-
mains the possibility of idempotency violations between
loads and stores within a section of assembly. While we
hand-process the assembly files required for newlib, and
libgcc it is possible to create a tool to perform this pro-
cessing automatically [8]. We choose not to write such
a tool, since only three assembly files have idempotency
violations. Instead we instrument those by hand.

6.3 Ensuring Completion
Extremely short power cycles pose a problem in that

they prevent programs from making forward progress
and thus never complete execution. Ratchet handles this

problem both at compile time and at run time. At compile
time, the programmer informs Ratchet of the expected
on time for the device. Ratchet uses this information to
make sure that no idempotent section is longer than the
expected on time. Note that adding arbitrary checkpoints
(i.e., artificial idempotent section breaks) only affects
overhead, not correctness. The second approach is to use
the watchdog timer (commonly available on embedded
systems) to insert checkpoints dynamically, when these
quick power cycles prevent forward progress. That being
said, the longest idempotent sections in our benchmarks
(roughly 5000 cycles) require on-times of less than 0.2
ms to expose this issue.

7 Related Work
Ratchet builds upon previous work from three broad

categories of research: rollback recovery, intermittently
powered computing, and idempotence. We start by ex-
amining the history of general-purpose checkpointing
and logging schemes, followed by how previous ap-
proaches to stretching program execution across frequent
power cycles have so far adapted those general-purpose
approaches. Lastly, since Ratchet builds upon previous
work on idempotence, we cover that previous work.

7.1 Rollback Recovery
Research from the fault tolerance community presents

the idea of backward error recovery, “backing up one or
more of the processes of a system to a previous state
which is hoped is error-free, before attempting to con-
tinue further operation” [36]. Backward error recovery
systems often choose checkpointing as the underlying
technique [11]. CATCH is an example of a check-
pointing system that leverages the compiler to provide
transparent rollback recovery [24].

The challenge of checkpointing is identifying and
minimizing the state that needs to be protected by a
checkpoint [36]. BugNet [31] eliminates the need for
full-state checkpoints, while maintaining correctness, by
logging the values loaded after an initial checkpoint.
This represents a dramatic reduction in overhead as it
is unlikely that a process reads the entire contents of
memory. Revive [34] reduces overhead further (up to
50%) by using undo logging to record stores instead of
loads—assuming a reliable memory.

Ratchet further reduces the bandwidth required by log-
ging/checkpointing by extending idempotency to main
memory. Idempotency tells us that only a subset of pro-
gram stores actually require logging—those that earlier
loads depend on. By checkpointing at stores that alias
with earlier loads (since the last checkpoint), Ratchet is

28 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

able to increase, by orders of magnitude, the number of
instructions between log entries/checkpoints.

7.2 Intermittently Powered Computing
Research into fault tolerant computing traditionally

targets persistently powered computers. However, new
ultra-low-power devices challenge traditional power re-
quirements, making them ideal candidates for energy
harvesting techniques. Unfortunately, these techniques
provide unreliable power availability that results in frag-
mented and incorrect execution—violating the assump-
tions of continuous power and infrequent errors. Be-
cause of this, previous work on intermittent computation
adopts known rollback recovery techniques, but must
adapt them to the properties of this new domain.

7.2.1 Hardware-assisted Checkpointing
Mementos [39] is the first system that attempts to

tackle the intermittent computation problem through the
use of a one-time (ideally) checkpoint. Mementos uses
periodic voltage measurements of the system’s energy
storage capacitor to estimate how much energy remains.
The goal is to checkpoint as late as possible. Me-
mentos provides three ways to control the periodicity
of voltage measurement: (1) function triggered: volt-
age measurement after every function return; (2) loop
triggered: voltage measurement after every loop itera-
tion; and (3) timer assisted: a countdown timer added
to either of the first two variants that gates whether a
voltage measurement is needed. Unfortunately, while
Mementos works well when programs write to volatile
state only, recent research shows that Mementos is in-
correct in the general case [26, 38]. The problem is
that Mementos allows for uncheckpointed work to oc-
cur. If uncheckpointed work updates both volatile and
non-volatile memory, only the non-volatile memory will
persist, creating an inconsistent software state. Applying
the idea of Mementos to wholly non-volatile memory, as
done by QUICKRECALL [17], actually makes the prob-
lem worse: in contrast to Flash-based systems, in sys-
tems with wholly non-volatile main memory, all program
data is stored in non-volatile memory. This makes it a
near certainty that a program will write to non-volatile
memory after a checkpoint, leading to an inconsistent
software state.

Hibernus [3] addresses QUICKRECALL’s correctness
issues through the introduction of guard bands. A guard
band is a voltage threshold that represents the amount of
energy required to store the largest possible checkpoint
to non-volatile memory in the worst-case device and
environmental conditions. Execution occurs while the
voltage is above the threshold, but hibernates when the

voltage is below the threshold. Doing this ensures that
all work gets checkpointed, at the cost of wasting energy
waiting for voltage to build up to the threshold and in the
time after a non-worst-case checkpoint—there is no safe
way to scavenge unused energy.

Hibernus also improves upon Mementos in terms
of performance. Hibernus employs a more advanced
analog-to-digital converter (ADC) (for voltage measure-
ment) that allows software to set a threshold value that
triggers an interrupt when the voltage goes below the
threshold. This removes all software overhead caused
by periodically checking the voltage (similar to polling
versus interrupts in software).

Comparing voltage-triggered checkpointing systems
to Ratchet is difficult. Fortunately, Hibernus provides a
detailed performance comparison between itself and Me-
mentos by implementing Mementos on their wholly non-
volatile development platform. Their experimental re-
sults at 100ms on-time show that Mementos’s total over-
head varies between 117% and 145%, approximately,
depending on the variant of Mementos. Hibernus’s
polling reduces total overhead to 38%, approximately. In
comparison, Ratchet’s overhead for the same benchmark
program (potentially different inputs and configuration)
is a comparable 32%.

In deciding between a one-time, voltage-triggered
checkpointing scheme and Ratchet, the biggest factor
is the ADC. Mandating an ADC is a non-starter for
many existing systems that either do not have one al-
ready or systems that have one, but not connected in a
way that supports power monitoring. This is a problem
even for Mementos, “Voltage supervisors are common
circuit components, but most—crucially, including ex-
isting prototype RFID-scale devices—-do not feature an
adjustable threshold voltage.” For future systems and
those existing systems that have an ADC capable of
voltage monitoring, even the most power efficient ADCs
consume as much as 1/3 of the power of today’s ultra-
low-power microcontrollers [5]. The future is direr as
performance/Watt tends to scale at 2x every 1.57 years
for processors (known as Dennard scaling [10]), while
ADC’s performance/Watt tends to scale at 2x every 2.6
years [19].

7.2.2 Software-only Checkpointing
DINO [26], is a software-only, programmer-driven

checkpointing scheme for tolerating an unreliable power
source. Programmers leverage the DINO compiler to
decompose their programs into a series of independent
transactions backed by data versioning to achieve mem-
ory consistency in the face of intermittent execution.
To accomplish this, the authors rely on programmer

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 29

annotated logical tasks to define the transactions. Con-
trast this with Ratchet, which automatically decomposes
programs using idempotency information inherent to a
program’s structure—allowing programmers to ignore
the effects of power cycles and mixed volatility memory.

DINO enforces a higher-level property than does
Ratchet, namely task atomicity, i.e., tasks either com-
plete or re-execute from the beginning, as viewed by
other tasks on the system. This contrasts Ratchet, which
allows intermediate writes as long as they maintain idem-
potency. Enforcing task atomicity happens to also solve
the problem of intermittent computation (assuming the
programmer defines short tasks), but enforcing a more
restrictive property incurs more run-time overhead, 80%
to 170%. Note that even though DINO is evaluated on a
mixed-volatility system, these numbers are comparable
to Ratchet’s because DINO’s overhead is more depen-
dent on the amount of state a task may update than the
volatility of that state.

7.3 Idempotence
Mahlke et al. develops the idea of idempotent code

sections in creating a speculative processor [28]. The
authors construct restartable code sections that are bro-
ken by irreversible instructions, which, “modifies an
element of the processor state which causes intolerable
side effects, or the instruction may not be executed more
than one time.” They use this notion to define how to
handle a speculatively executing instruction that throws
an exception and show that they can use the idempotence
property to begin execution from the start of the inter-
rupted section and still follow a valid control-flow path.

Kim et al. applies the idea of idempotency to data
storage, showing that idempotency is useful for reduc-
ing the amount of data stored in speculative storage
on speculatively multithreaded architectures [21]. The
authors note that there are idempotent references that are
independent of the memory dependencies that result in
errors in non-parallizable code.

Encore is a software-only system that leverages idem-
potency for probabilistic rollback-recovery [13]. Tar-
geted at systems using probabilistic fault detection
schemes, Encore provides rollback recovery without
dedicated hardware. The key insight of Encore is proba-
bilistic idempotence: ignoring infrequently executed in-
structions that break idempotence can increase the length
of idempotent sections. While this violates correctness—
something Ratchet must maintain—the authors realized
a performance improvement at the cost of not recovering
3% of the time.

De Kruijf et al. [7] presents an algorithm for iden-
tifying idempotent regions of code and show that it is

possible to segment a program into entirely idempotent
regions with minimal overhead. In this initial work,
the authors focus their attention on soft faults that do
not mangle the register state, noting that registers are
usually protected by other means. While soft faults may
not corrupt register state, power failures cause the entire
register file to be lost.

In follow-on work, de Kruijf et al. [6] presents al-
gorithms that utilize the idempotence information gen-
erated by the idempotent compiler to better inform the
register allocation step of compilation. This allows the
compiler to extend the live range of registers. Extending
the live range of register values that are live-in to a given
idempotent section all the way to the end of that section
creates a free checkpoint that enables recovery from side-
effect free faults. In contrast, faults on energy harvesting
come with significant side effects.

8 Conclusion
Ratchet is a compiler that automatically enables the

correct execution of long-running applications on de-
vices that run on harvested energy, without hardware
support. Ratchet leverages the notion of idempotence
to decompose programs into a series of checkpoint-
connected, re-executable sections. Experiments show
that Ratchet stretches program execution across random,
frequent, power cycles for a wide range of programs—
that would not be able to run completely otherwise—
at a cost of less than 60% total run-time overhead.
Ratchet’s performance is similar to existing approaches
that require hardware support or programmer reasoning.
Experiments also show that, with more engineering, it is
possible to reduce run-time overheads to around 20%.

Ratchet shows that it is possible for compilers to
reason about frequent failures and volatile versus non-
volatile memory in languages not designed with either
in mind. Pushing these burdens on the compiler opens
the door for non-expert programmers to code for energy
harvesting devices.

Acknowledgment
We thank our shepherd Y. Charlie Hu for his guidance

and the anonymous reviewers for their feedback and
suggestions. This work was supported in part by C-
FAR, one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA.

30 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References
[1] compiler-rt runtime [computer software]. Retrieved from

http://compiler-rt.llvm.org/, Mar 2015.

[2] ARM. ARMv6-M Architecture Reference Manual, Sept 2010.

[3] BALSAMO, D., WEDDELL, A., MERRETT, G., AL-HASHIMI,
B., BRUNELLI, D., AND BENINI, L. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting
systems. IEEE Embedded Systems Letters 7, 1 (2014), 15–18.

[4] BUETTNER, M., PRASAD, R., SAMPLE, A., YEAGER, D.,
GREENSTEIN, B., SMITH, J. R., AND WETHERALL, D. RFID
sensor networks with the Intel WISP. In Conference on Embed-
ded Networked Sensor Systems (2008), SenSys, pp. 393–394.

[5] DAVIES, J. H. MSP430 Microcontroller Basics, 1 ed. Elsevier
Ltd., 2008.

[6] DE KRUIJF, M., AND SANKARALINGAM, K. Idempotent code
generation: Implementation, analysis, and evaluation. In Interna-
tional Symposium on Code Generation and Optimization (2013),
CGO, pp. 1–12.

[7] DE KRUIJF, M. A., SANKARALINGAM, K., AND JHA, S. Static
analysis and compiler design for idempotent processing. In Con-
ference on Programming Language Design and Implementation
(2012), PLDI, pp. 475–486.

[8] DEBRAY, S., MUTH, R., AND WEIPPERT, M. Alias analysis of
executable code. In Symposium on Principles of Programming
Languages (1998), POPL, pp. 12–24.

[9] DEBRUIN, S., CAMPBELL, B., AND DUTTA, P. Monjolo: An
energy-harvesting energy meter architecture. In Conference on
Embedded Networked Sensor Systems (2013), SenSys, pp. 18:1–
18:14.

[10] DENNARD, R. H., GAENSSLEN, F. H., RIDEOUT, V. L., BAS-
SOUS, E., AND LEBLANC, A. R. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits 9, 5 (Oct 1974), 256–268.

[11] ELNOZAHY, E. N., AND ZWAENEPOEL, W. Manetho: Trans-
parent roll back-recovery with low overhead, limited rollback,
and fast output commit. IEEE Transactions on Computers 41,
5 (May 1992), 526–531.

[12] FARRELL, S., CAHILL, V., GERAGHTY, D., HUMPHREYS, I.,
AND MCDONALD, P. When TCP breaks: Delay and disruption
tolerant networking. IEEE Internet Computing 10, 4 (July 2006),
72–78.

[13] FENG, S., GUPTA, S., ANSARI, A., MAHLKE, S. A., AND
AUGUST, D. I. Encore: Low-cost, fine-grained transient fault re-
covery. In International Symposium on Microarchitecture (2011),
MICRO, pp. 398–409.

[14] GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T.,
MUDGE, T., AND BROWN, R. MiBench: A free, commer-
cially representative embedded benchmark suite. In International
Workshop on Workload Characterization (2001), pp. 3–14.

[15] HICKS, M. Mibench port targeted at IoT devices. https:
//github.com/impedimentToProgress/MiBench2,
2016.

[16] HICKS, M. Thumbulator: Cycle accurate ARMv6-
m instruction set simulator. https://github.com/
impedimentToProgress/thumbulator, 2016.

[17] JAYAKUMAR, H., RAHA, A., AND RAGHUNATHAN, V.
QUICKRECALL: A low overhead hw/sw approach for enabling
computations across power cycles in transiently powered com-
puters. In International Conference on Embedded Systems and
International Conference on VLSI Design (2014), pp. 330–335.

[18] JOGALEKAR, A. Moore’s law and battery technology: No dice.
Scientific American (Apr 2013).

[19] JONSSON, B. E. A survey of A/D-converter performance evo-
lution. In International Conference on Electronics, Circuits, and
Systems (Dec 2010), ICECS, pp. 766–769.

[20] KAHN, J. M., KATZ, R. H., AND PISTER, K. S. J. Next century
challenges: Mobile networking for smart dust. In International
Conference on Mobile Computing and Networking (1999), Mo-
biCom, pp. 271–278.

[21] KIM, S. W., OOI, C.-L., EIGENMANN, R., FALSAFI, B., AND
VIJAYKUMAR, T. N. Exploiting reference idempotency to re-
duce speculative storage overflow. ACM Trans. Program. Lang.
Syst. 28, 5 (2006), 942–965.

[22] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (2004), CGO,
pp. 75–86.

[23] LEE, Y., KIM, G., BANG, S., KIM, Y., LEE, I., DUTTA, P.,
SYLVESTER, D., AND BLAAUW, D. A modular 1mm3 die-
stacked sensing platform with optical communication and multi-
modal energy harvesting. In International Solid-State Circuits
Conference Digest of Technical Papers (2012), pp. 402–404.

[24] LI, C.-C., AND FUCHS, W. Catch-compiler-assisted techniques
for checkpointing. In International Symposium on Fault-Tolerant
Computing (1990), pp. 74–81.

[25] LOWELL, D. E., CHANDRA, S., AND CHEN, P. M. Exploring
failure transparency and the limits of generic recovery. In Sym-
posium on Operating Systems Design & Implementation (2000),
OSDI.

[26] LUCIA, B., AND RANSFORD, B. A simpler, safer programming
and execution model for intermittent systems. In Conference
on Programming Language Design and Implementation (2015),
PLDI, pp. 575–585.

[27] MA, K., ZHENG, Y., LI, S., SWAMINATHAN, K., LI, X., LIU,
Y., SAMPSON, J., XIE, Y., AND NARAYANAN, V. Architecture
exploration for ambient energy harvesting nonvolatile processors.
In International Symposium on High Performance Computer Ar-
chitecture (2015), HPCA, pp. 526–537.

[28] MAHLKE, S. A., CHEN, W. Y., BRINGMANN, R. A., HANK,
R. E., MEI W. HWU, W., RAMAKRISHNA, B., MICHAEL,
R., AND SCHLANSKER, S. Sentinel scheduling: a model for
compiler-controlled speculative execution. ACM Transactions on
Computer Systems 11 (1993), 376–408.

[29] MIRHOSEINI, A., SONGHORI, E., AND KOUSHANFAR, F. Ide-
tic: A high-level synthesis approach for enabling long com-
putations on transiently-powered asics. In International Con-
ference on Pervasive Computing and Communications (2013),
PerComm, pp. 216–224.

[30] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS,
J. Capo: A software-hardware interface for practical determin-
istic multiprocessor replay. In International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (2009), ASPLOS, pp. 73–84.

[31] NARAYANASAMY, S., POKAM, G., AND CALDER, B. BugNet:
Continuously recording program execution for deterministic re-
play debugging. In International Symposium on Computer Ar-
chitecture (2005), ISCA, pp. 284–295.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 31

https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/MiBench2
https://github.com/impedimentToProgress/thumbulator
https://github.com/impedimentToProgress/thumbulator

[32] PLANK, J. S., BECK, M., KINGSLEY, G., AND LI, K. Libckpt:
Transparent checkpointing under Unix. In USENIX Technical
Conference (1995), TCON, pp. 18–29.

[33] POKAM, G., DANNE, K., PEREIRA, C., KASSA, R., KRANICH,
T., HU, S., GOTTSCHLICH, J., HONARMAND, N., DAUTEN-
HAHN, N., KING, S. T., AND TORRELLAS, J. QuickRec:
Prototyping an Intel architecture extension for record and replay
of multithreaded programs. In International Symposium on Com-
puter Architecture (2013), ISCA, pp. 643–654.

[34] PRVULOVIC, M., ZHANG, Z., AND TORRELLAS, J. Re-
Vive: cost-effective architectural support for rollback recovery
in shared-memory multiprocessors. In International Symposium
on Computer Architecture (2002), ISCA, pp. 111–122.

[35] QAZI, M., CLINTON, M., BARTLING, S., AND CHAN-
DRAKASAN, A. A low-voltage 1 Mb FRAM in 0.13 mu m
CMOS featuring time-to-digital sensing for expanded operating
margin. IEEE Journal of Solid-State Circuits 47, 1 (Jan 2012),
141–150.

[36] RANDELL, B., LEE, P., AND TRELEAVEN, P. C. Reliability
issues in computing system design. ACM Computer Surveys 10,
2 (1978), 123–165.

[37] RANSFORD, B., CLARK, S., SALAJEGHEH, M., AND FU, K.
Getting things done on computational RFIDs with energy-aware
checkpointing and voltage-aware scheduling. In Conference on
Power Aware Computing and Systems (2008), HotPower, pp. 5–
10.

[38] RANSFORD, B., AND LUCIA, B. Nonvolatile memory is a bro-
ken time machine. In Workshop on Memory Systems Performance
and Correctness (2014), MSPC, pp. 5:1–5:3.

[39] RANSFORD, B., SORBER, J., AND FU, K. Mementos: System
support for long-running computation on RFID-scale devices.
In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2011), ASPLOS,
pp. 159–170.

[40] RAOUX, S., BURR, G. W., BREITWISCH, M. J., RETTNER,
C. T., CHEN, Y.-C., SHELBY, R. M., SALINGA, M., KREBS,
D., CHEN, S.-H., LUNG, H.-L., AND LAM, C. H. Phase-
change random access memory: A scalable technology. IBM J.
Res. Dev. 52, 4 (July 2008), 465–479.

[41] SILICON LABS. EFM32ZG-STK3200 zero gecko starter kit.

[42] TEXAS INSTRUMENTS. MSP430FR59xx Datasheet, 2014.

[43] TEXAS INSTRUMENTS. MSP432P401x Mixed-Signal Microcon-
trollers, 2015.

[44] VAN DER WOUDE, J., AND HICKS, M. Ratchet
source code repository. https://github.com/
impedimentToProgress/Ratchet, 2016.

[45] VINSCHEN, C., AND JOHNSTON, J. Newlib [computer soft-
ware]. Retrieved from https://sourceware.org/newlib/, Mar 2015.

[46] WANG, J., DONG, X., AND XIE, Y. Enabling high-performance
lpddrx-compatible mram. In Proceedings of the 2014 Interna-
tional Symposium on Low Power Electronics and Design (New
York, NY, USA, 2014), ISLPED ’14, ACM, pp. 339–344.

[47] WU, Y.-C., CHEN, P.-F., HU, Z.-H., CHANG, C.-H., LEE, G.-
C., AND YU, W.-C. A mobile health monitoring system using
RFID ring-type pulse sensor. In International Conference on
Dependable, Autonomic and Secure Computing (2009), pp. 317–
322.

[48] XU, M., BODIK, R., AND HILL, M. A ”flight data recorder” for
enabling full-system multiprocessor deterministic replay. In In-
ternational Symposium on Computer Architecture (2003), ISCA,
pp. 122–135.

[49] ZHAI, B., PANT, S., NAZHANDALI, L., HANSON, S., OLSON,
J., REEVES, A., MINUTH, M., HELFAND, R., AUSTIN, T.,
SYLVESTER, D., AND BLAAUW, D. Energy-efficient subthresh-
old processor design. Transactions on Very Large Scale Integra-
tion Systems 17, 8 (Aug 2009), 1127–1137.

[50] ZHANG, H., GUMMESON, J., RANSFORD, B., AND FU, K.
Moo: A batteryless computational RFID and sensing platform.
Tech. Rep. UM-CS-2011-020, Department of Computer Science,
University of Massachusetts Amherst, Amherst, MA, 2011.

[51] ZHANG, W., DE KRUIJF, M., LI, A., LU, S., AND SANKAR-
ALINGAM, K. ConAir: Featherweight concurrency bug recovery
via single-threaded idempotent execution. In International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2013), ASPLOS, pp. 113–126.

32 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/impedimentToProgress/Ratchet
https://github.com/impedimentToProgress/Ratchet

	Introduction
	Background
	Prediction vs. Resilience
	Memory Volatility

	Design
	Idempotent Sections
	Implicit Idempotency Violations
	Checkpoints
	Recovery
	Challenges
	Optimizations
	Interprocedural Idempotency Violations
	Redundant Checkpoints
	Special Purpose Registers

	Architecture Specific Tradeoffs

	Implementation
	Compiler
	Energy Harvesting Simulator
	Idempotent Libraries

	Evaluation
	Performance
	Correctness
	Impact of Compiler Optimizations
	Code size increase from Ratchet

	Discussion
	Output Commit Problem
	Hand-Written Assembly
	Ensuring Completion

	Related Work
	Rollback Recovery
	Intermittently Powered Computing
	Hardware-assisted Checkpointing
	Software-only Checkpointing

	Idempotence

	Conclusion

