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Abstract
Batteryless energy-harvesting devices eliminate the need in
batteries for deployed sensor systems, enabling longer life-
time and easier maintenance. However, such devices cannot
support an event-driven execution model (e.g., periodic or
reactive execution), restricting the use cases and hampering
real-world deployment. Without knowing exactly howmuch
energy can be harvested in the future, robustly scheduling
periodic and reactive workloads is challenging.

We introduce CatNap, an event-driven energy-harvesting
system with a new programming model that asks the pro-
grammer to express a subset of the code that is time-critical.
CatNap isolates and reserves energy for the time-critical
code, reliably executing it on schedule while deferring ex-
ecution of the rest of the code. CatNap degrades execution
quality when a decrease in the incoming power renders it
impossible to maintain its schedule.
Our evaluation on a real energy-harvesting setup shows

that CatNap works well with end-to-end, real-world deploy-
ment settings. CatNap reliably runs periodic events when
a prior system misses the deadline by 7.3× and supports
reactive applications with a 100% success rate when a prior
work shows less than a 2% success rate.

CCS Concepts: • Computer systems organization →
Embedded systems; Sensor networks.
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1 Introduction
Ultra-low-power processors and energy harvesters enable
batteryless devices that operate using energy collected
from their environment. These devices harvest, e.g., radio
waves [17, 57] or solar energy [17, 25], avoiding costs as-
sociated with batteries, such as thermal limits, short life-
times, and replacement costs. Batteryless devices are appeal-
ing for applications such as long-term environmental and
infrastructure monitoring, sensing in adversarial environ-
ments, and chip-scale satellites [17, 25, 40, 57]. Harvestable
power sources are weak and unreliable, causing an energy-
harvesting device to operate intermittently when energy is
available. A device charges an energy buffer (capacitor) while
inactive. After accumulating sufficient energy, the device per-
forms a burst of computation, depleting the accumulated en-
ergy [17, 24, 25, 57]. Time spent charging is typically longer
than time spent computing and varies with the environment.
Prior work enables safe, efficient software on batteryless

devices [6, 8, 10, 15, 34, 45, 46, 51, 64] by saving state across
failures. However, these systems lack support for timed
events and interrupts, failing to realize event-driven execu-
tion as in continuously-powered systems [18, 19, 37, 38].
Importance of an event-driven execution. Many modern
embedded systems are event-driven, responding to events,
such as timer interrupts. Event-driven systems exist to sup-
port periodic and reactive execution [18, 19, 37, 38]. Periodic
execution allows running a workload with a particular fre-
quency (e.g., sampling temperature at 1 Hz). Reactive execu-
tion allows a timely response to a signal of interest (e.g., on
a smoke detector interrupt). Periodic and reactive execution
are widespread and important embedded operating modes.

Periodic and reactive execution on an energy-harvesting
device is a challenge. Periodic execution is challenging be-
cause the time to harvest sufficient energy for a workload
depends on incoming power. If recharge time exceeds the
event’s period, periodic execution is not viable. Figure 1 (top)
shows a failure to run periodically. Reactive execution is
challenging because the device may be powered-off or have
insufficient energy for an asynchronous event [9, 55, 65].
Figure 2 (top) shows a failure to run reactively.
Shortcomings of prior approaches. Prior approaches [12,
13, 22, 39, 48] schedule tasks and recharges like a real-time
operating system (RTOS) on an energy-harvesting device.
These schedulers fail in real-world scenarios where incoming
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Figure 1. Periodic execution. Attempts to periodically take
a photo (shaded blue) every 10 seconds is shown. Periodic
execution fails with low power (top) because the charging
time (shaded red) necessary to take a photo exceeds the
desired period of 10 seconds. With degradation (bottom), the
periodic requirement is met by the system deciding to start
recharging early (shaded gray) after taking a smaller photo.

power cannot be precisely predicted (Section 2.3). While an
RTOS typically schedules based on worst-case execution
time, which is predictable, an energy-harvesting device’s
charge time varies with input power and is hard to estimate.
The result ofmispredicting charge time and overusing energy
is catastrophic: misprediction by the lowest-priority task
can lead to the entire system powering off, halting higher-
priority tasks. Avoiding this complexity, most intermittent
systems rely on a simplistic executionmodel, blindly running
a workload whenever energy is available [10, 28, 46, 47, 64].
Our contribution To enable robust event-driven execution
on an energy-harvesting device, we propose CatNap, a run-
time system and programming model that isolates time-
critical events from time-insensitive tasks. The programmer
writes a collection of events, containing time-critical opera-
tions, and tasks, containing code that need not run immedi-
ately. With the event and task definitions, CatNap schedules
only events like an RTOS scheduler, executing tasks using
spare energy. The scheduler also schedules recharges to col-
lect energy to execute events. By isolating energy for events
and tasks, CatNap tolerates short-term power fluctuations,
when harvested energy is less than expected. CatNap is sim-
pler and more robust than systems that enforce a global
schedule [12, 13, 22, 39, 48], because CatNap schedules events
and recharges only, occasionally discarding tasks.
When power decreases for a longer period, CatNap en-

sures it can collect sufficient energy to schedule events by
degrading event quality. CatNap detects such a long-term
power fluctuation by monitoring incoming power directly
and estimating the schedule’s feasibility. If a schedule be-
comes infeasible because there is no way to collect enough
energy to run the events, CatNap falls back to a degraded
version of the application that either runs different code
or the same code less frequently. Figure 1 (bottom) shows
how degradation enables periodic execution, and Figure 2
(bottom) shows how scheduling enables reactive execution.
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Figure 2. Reactive execution. Attempts to reactively set an
alarm (shaded yellow) when smoke is detected (gray smoke
icon) is shown. Reactive execution can fail (top) if the system
is off recharging (shaded red) or have insufficient energy
to react when the smoke is detected. With proper recharge
scheduling (bottom), the system can postpone less important
computations (shaded blue) and recharge early (shaded gray),
having enough energy to respond reactively.

We implemented CatNap, including its new programming
model, scheduler, feasibility test, and quality degradation
facility. We evaluated CatNap against state-of-the-art event-
driven intermittent systems [48, 65] and show that CatNap
has high performance and is correct when prior systems fail.

The main contributions of this paper are:
• A new programming model that allows the user to expose
the time-critical parts of the code.
• A scheduler that schedules the time-critical events using
a provably correct scheduling policy, while isolating their
energy from the time-insensitive tasks for robustness.
• A QoS degradation facility that adjusts the quality to save
energy, by directly monitoring input power.
• An evaluation showing that CatNap enables event-driven
execution even with low input power. CatNap meets tim-
ing requirements while prior state-of-the-art misses its
deadlines by 7.3×. CatNap is reactive, capturing 100% of
aperiodic events while prior work misses 98% of them.

2 Background and Related Work
Prior work enabled computing on embedded and intermit-
tent devices but did not directly target intermittent event-
driven execution or incompletely realized it. We discuss sev-
eral prior systems, including ones that attempt intermittent
event-driven execution.

2.1 Requirements for an Event-Driven Execution
Intermittent event-driven execution has three requirements,
which are executing across power failures (R1) and support-
ing timer (R2) and hardware interrupts (R3). Fulfilling these
requirements is, however, insufficient for event-driven execu-
tion, additionally requiring three correctness criteria. Correct-
ness requires that the system be able to schedule recharges
and code properly (C1), to maintain a valid schedule even

1006



Adaptive Low-Overhead Scheduling for Periodic and Reactive Intermittent Execution PLDI ’20, June 15–20, 2020, London, UK

when incoming power has short-term fluctuations (C2) or
long-term fluctuations (C3). Robustness against short-term
power fluctuation is crucial in the real-world: an RF power
source configured to emit 15dBm has 10–12% fluctuation [33].
Adapting to a longer-term power variation is also necessary
as, e.g., solar-harvester power varies with cloud cover (e.g.,
Figure 1). Table 1 compares prior work, showing that only
CatNap meets all requirements.

Table 1. Comparison to prior work. O indicates successfully
meeting, X indicates not meeting, and △ indicates partially
meeting the requirements. - indicates the comparison is not
applicable. (*except InK, which has its own row).

category R1 R2 R3 C1 C2 C3
trad OS X O O - - -
NI X O O - - -
intermittent O X X - - -
dynamic O △ X - - -
pers clk* O O X - - -
interrupt* O X O - - -
InK [65] O O O △ X X
M-RTOS O O O O X △
CatNap O O O O O O

2.2 Peripherally-Related Systems
Many prior systems target an orthogonal, though related goal
and do not meet the fundamental requirements of R1–3. Tra-
ditional low-power operating systems (trad OS) [18, 19, 37, 38]
do not consider recharges or handle power failures (R1).
Non-intermittent energy-harvesting systems (NI) [20, 32, 61]
rely on a large energy buffer that mostly powers the system
continuously (e.g., a battery). They do not precisely control
recharges or handle intermittent power failures (R1). Simple
intermittent systems (intermittent) [6, 8, 10, 15, 16, 28, 34, 44–
47, 51, 64] execute whenever energy is available and do not
support timer-based or external interrupts [9, 26, 65] (R2–3).
Dynamic energy storage systems (dynamic) [11, 17] change
the size of the energy buffer dynamically to vary the execu-
tion interval, which gives only coarse control (R2). Persistent
clock systems (pers clk) [26, 27, 65] propose a specialized clock
that runs even when the system is powered off. However, ex-
cept for InK [65] which we discuss separately below, they do
not allow interrupt-based execution (R3). Interrupt-enabled
intermittent systems (interrupt) [9, 55, 65] do not support
periodic execution (R2), again except for InK [65].

Because the above systems do not attempt to achieve inter-
mittent event-driven execution, we concentrate our compar-
ison against other systems that is more relevant to tackling
event-driven execution directly (Section 2.3).

2.3 Prior Event-Driven Energy-Harvesting Systems
InK [65] attempts to achieve periodic and reactive execution
by adopting a persistent clock and enabling interrupts on an
energy-harvesting device. InK greedily runs tasks whenever
energy becomes available, without ever saving energy for
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(a) Deadlines missed with short-term power fluctuation (C2).
The figure shows deadlines missed as power fluctuation in-
creases for LSA, InK, and CatNap.
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(b) Execution periodicity with short-term power fluctuation
(C2). The figure shows the observed execution frequency as
power fluctuation increases. For CatNap, we separately show
the period for events and for tasks. An interval over the horizon-
tal line is a missed deadline, except for time-insensitive tasks in
CatNap which have no deadline.

Figure 3. The impact of a fluctuating power source on event-
driven energy-harvesting systems.

the future. Such greedy scheduling can result in a timing
requirement violation as seen in Figure 2 (C1). InK can only
detect a deadline violation without the capability of prevent-
ing it. It is the programmer’s responsibility to ensure that
there would be no deadline violation by statically selecting
system parameters using an oracular knowledge of the en-
ergy the system will harvest on deployment. Whenever the
incoming energy deviates from the provisioned amount, the
system fails in an undefined manner (C2–3).
Others, e.g., LSA [48], modify existing RTOS scheduling

algorithms to schedule both code execution and recharges [12,
13, 22, 39, 48]. Although they work with an ideal, non-
fluctuating power source, RTOS-based systems start to fail
when the incoming power fluctuates (C2). These systems
also do not adapt to long-term power variation; however,
some systems (e.g., LSA [48]) offer a feasibility test similar
to CatNap (Section 3.2), making it possible to adapt to power
variation, which they currently do not (C3).

We further demonstrate that prior systems show unre-
liable behaviors when the incoming power fluctuates. We
built a simulator that models an energy-harvesting environ-
ment, where the harvested power is modeled as a Gaussian
distribution instead of a constant value. We varied the stan-
dard deviation of the Gaussian up to 10% of the mean and
simulated the execution of three systems, LSA [48], InK [65],
and CatNap. The systems ran two different workloads, each
consisting of 20% time-sensitive activities (e.g., data collec-
tion) and 80% time-insensitive activities (e.g., computation).
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To program in InK or LSA, it is natural to make the two
workloads into two RTOS tasks1. We assumed each RTOS
task was properly sized so as not to experience any deadline
violations unless there are power fluctuations.

Figure 3a shows that prior systems miss deadlines when
the incoming power fluctuates, even when provisioned with
oracular data. LSA started to miss 10% of the deadlines when
1% standard deviation was introduced; it missed up to 50%
of the deadlines when the standard deviation of the input
power was 3.6%–10%. InK missed 35%–50% of its deadline as
soon as any fluctuation was introduced.
LSA and InK assume by design that an expected amount

of energy will always be harvested. If the harvested energy
is less than what was expected, they end up draining the
energy buffer more than planned, leaving insufficient energy
for subsequent tasks. The draining of energy can harm other
tasks because the energy use of tasks is not isolated from each
other; if the lowest-priority task consumes excessive energy,
the entire system shuts down.

CatNap divides the program into time-critical events and
time-insensitive tasks. From our simulation, CatNap never
violated the event deadline. Figure 3b further illustrates why
CatNap meets the deadline while others do not. The figure
plots the observed frequency of code execution (RTOS tasks
for LSA and InK, events and tasks for CatNap) on different
power fluctuations. We only show the subset of the data
points for clarity. LSA and InK have an average period that
meets the deadline (indicated by the horizontal line); how-
ever, they incur high variance in RTOS tasks’ execution time.
CatNap also has a high variance on code execution time,
but crucially, the variance only affects time-insensitive tasks,
not time-critical events. CatNap isolates event energy from
task energy and prioritizes event execution and the corre-
sponding recharges over tasks (as Section 3 explains in detail).
CatNap’s events always meet the deadline even with a very
high standard deviation of incoming power, e.g., up to 100%
variation. Unless the mean of the incoming power changes,
CatNap accumulates enough energy to run events within
their periods, even if power variation is high. CatNap does
not run a task until it reserves enough energy for events,
ensuring events always run reliably at an occasional cost in
the variation of task execution time.
As Figure 3b shows, the downside of CatNap is the risk

of unpredictable execution time for time-insensitive tasks,
which is the price paid for reliable event-driven execution.
Despite the unpredictable task execution time, CatNap
practically has higher performance than prior work [65]
(Section 7), thanks to several favorable design choices
discussed in Section 5.

To summarize, all prior work either does not support
intermittent event-driven execution directly (R1–3) or

1In RTOS, “tasks” are code regions with a deadline

was able to partially support it only when the incoming
energy does not fluctuate (C1–3). CatNap is the first
energy-harvesting system that can robustly support
event-driven execution even with short- and long-term
energy fluctuations.

3 The Recharge Scheduler
CatNap’s scheduler (1) isolates the energy for time-critical
events from time-insensitive tasks, (2) schedules events and
the necessary recharges, (3) runs tasks with the remaining
energy, and (4) estimates the feasibility of events online.

3.1 Events and Tasks
CatNap’s design stems from the observation that (1) sched-
uling all the workloads perfectly is in general impossible
with non-ideal incoming power, and (2) many parts of an
application do not have a strict scheduling requirement. Con-
sider an application that samples audio and computes its fast
Fourier transform (FFT). Audio samples must be collected
at a precise frequency, while the FFT computation can be
delayed. From this observation, CatNap requires the pro-
grammer to separate the time-critical code (i.e., events) from
the time-insensitive code (i.e., tasks) explicitly. The two can
communicate data or trigger each other. CatNap schedules
events and the necessary recharges using a provably-correct
policy similar to that of an RTOS. CatNap runs tasks using
the remaining energy. CatNap’s programming model is simi-
lar to TinyOS [37], which uses a two-level priority of events
and tasks for reducing overheads.

An event is a short code region that must execute respon-
sively, at a specified time. CatNap executes events atomically,
without interruption by a recharge or a power failure. Events
are a good fit for I/O and peripheral manipulations because
they are responsive and atomic. An event may be periodic or
posted by an interrupt handler, another event, or a task. As
in TinyOS [37], events do not preempt each other and must
be short to avoid impeding responsiveness.
A task is a long-running computation that need not be

responsive, is preemptable, and can run intermittently. Cat-
Nap disallows the programmer from specifying any tim-
ing requirements (e.g., deadline) for tasks. CatNap exploits
the interruptability of tasks, deferring them when events or
recharges must run. Tasks run with spare time and energy.
A task can be posted by an event or another task. Tasks do
not preempt each other. Like TinyOS [37], CatNap does not
specify the execution order or a deadline of posted tasks; a
posted task finishes eventually.

CatNap also schedules recharges, inactive periods used to
collect energy. A recharge’s priority is higher than tasks and
lower than events. CatNap schedules recharges to ensure
events are timely and avoid power failures.
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3.2 Operation of the Scheduler
CatNap adopts an RTOS-style scheduling policy for execut-
ing events. We first explain how CatNap schedules events.
Then, we explain how tasks run without interfering with
the events. Finally, we explain how CatNap estimates the
feasibility of the event schedule.
Scheduler Overview To enable periodic and reactive execu-
tion, the system must always have enough energy to execute
an event immediately as it arrives. CatNap logically (but
not physically) divides its energy buffer into an event bucket
and a task bucket, which stores the energy to be used by the
events and tasks, respectively. The event bucket is sized to be
bigger than the sum of the worst-case energy consumption
of all events.
CatNap tries to always keep the event bucket full to pro-

cess events even if they arrive all at once. When the event
bucket is not full, CatNap refills it by scheduling recharges
and (logically) transferring energy from the task bucket.
When an event arrives, CatNap runs the event using the

energy in the event bucket. When the event bucket is full
and there is no event to run, CatNap runs a task with the
excess energy; however, CatNap never allows tasks to use
energy from the event bucket. When there are no tasks to
execute, CatNap fills up the task bucket for future task execu-
tions. Task execution can always be preempted by an event
execution or a recharge to fill the event bucket.
CatNap physically uses a single energy buffer, logically

partitioned for events and tasks. CatNap monitors the energy
in its energy buffer (ec ) and compares it with eevent , the size
of the event bucket. If ec ≤ eevent , the energy is in the event
bucket. If ec > eevent , the event bucket is full and the task
bucket holds ec −eevent energy. Using a single buffer has sev-
eral advantages over physically-separate buffers: changing
either bucket size is simple (e.g., via a programmable com-
parator IC) and energy transfer between buckets is trivial.
Algorithm 1 summarizes the scheduler’s operation. Cat-

Nap’s scheduler can be in one of three states: running events,
running tasks, or recharging. CatNap defaults to recharging
when an event or task finishes (Line 1-2). CatNap never in-
terrupts an event execution until it finishes (Line 3). CatNap
always runs events with the highest priority (Line 4) and
only runs tasks when the event bucket is full (Line 6, 8).

Algorithm 1 CatNap charge scheduler.
1: if state ∈ Events ∪Tasks then
2: if F inished then state ← Recharдe
3: if state < Events then
4: if ReadyEvents , ∅ then state ← ϵ ∈ ReadyEvents
5: else
6: if ec ≤ eevent then state ← Recharдe
7: else
8: if ReadyTasks , ∅ then state ← τ ∈ ReadyTasks
9: else state ← Recharдe

Energy IsolationCatNap isolates energy in the event bucket
from tasks, allowing reactive event execution despite power

fluctuations. Short-term fluctuations affect only tasks be-
cause events can rely on the energy reserved in the event
bucket. When an input power varies over a longer period,
CatNap’s feasibility test and degradation generate a degraded
set of events that runs even with the lower input power.
Feasibility Test and Degradation When the incoming
power decreases, CatNap might not be able to keep the event
bucket full. We say a set of events is infeasible and CatNap de-
grades the quality of the events to use less energy. To degrade,
CatNap increases the events’ period or runs a programmer-
provided approximate version of the code. Degrading events
yields an alternative, feasible set of events.
CatNap uses a feasibility test to check the feasibility of

events at a given input power, similarly to how an RTOS
would check the schedulability of RTOS tasks. The feasibility
test assumes that an event execution time itself is negligi-
bly short compared to charge time, which is true in most
energy-harvesting scenarios [17]. Assume an event ϵi has
a period ti and a worst-case energy consumption ei . With
an incoming power P , the time to charge up ei is ci = ei

P .
CatNap’s feasibility test states that:

Theorem 1. Events {ϵ0, ..., ϵn} are feasible if
∑n

i=0
ci
ti
≤ 1.

We briefly sketch an informal proof and provide a formal
proof as an Appendix (Section ??). If the energy used by any
event is replenished before the next instance of the same
event, the system is feasible. In other words, if we define di
as the deadline to recharge after the event ϵi , never violating
a deadline of di = ti guarantees feasibility. This deadline
formulation allows casting our feasibility test as a typical
RTOS task (code regions with a deadline) schedulability test.
Prior RTOS literature proved an RTOS task i with an inter-
arrival period tRTOS,i , worst-case execution time cRTOS,i
and deadline dRTOS,i = tRTOS,i is schedulable if and only
if
∑n

i=0
cRTOS,i
tRTOS,i

≤ 1 [67].
∑n

i=0
cRTOS,i
tRTOS,i

defines utilization and
represents the fraction of time spent running RTOS tasks [67].
The schedulability result implies that recharges in our system
are schedulable without violating their deadlines (i.e., the
system is feasible) if and only if

∑n
i=0

ci
ti
≤ 1. Following the

RTOS’s convention, we refer to
∑n

i=0
ci
ti
as utilization orU . An

aperiodic event can be treated as periodic, using its minimum
expected arrival interval as its period ti , which is a technique
widely accepted in prior work [67]. Section 4.3 describes
aperiodic events in detail. When CatNap’s feasibility test
fails, CatNap invokes its degradation logic (Section 4.5).

4 The CatNap System
CatNap consists of a programming model with events and
tasks, a charge scheduler, a compiler, and a runtime system.
CatNap’s runtime system includes the facility for evaluating
feasibility online based onmeasurements. CatNap’s program-
ming model allows the programmer to define how to degrade
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Figure 4. Overview of CatNap.

quality to use less energy. CatNap preserves memory state
if power fails. Figure 4 summarizes CatNap.

4.1 The Assumptions of CatNap
CatNap assumes a single user running a single application
with possibly multiple concurrent computations. CatNap
assumes a simple, single-core microprocessor with a byte-
addressable non-volatile memory and a capability to monitor
the buffered energy. The assumptions of CatNap align with
most of the prior work [8, 11, 17, 24, 25, 34, 47, 57].

4.2 The CatNap Programming Model and Compiler
CatNap asks the programmer to express a program using
events and tasks and express guidelines regarding degra-
dation. Figure 5 shows a simplified example of a CatNap
program. The programmer defines events and tasks (Line
3-5), the period and the parameter (optional) of events (Line
1-2), and the code for tasks and events (Lines 7-17). The pro-
grammer can optionally express how to degrade quality e.g.,
by increasing the period (Line 1) or the parameter (Line 2).
The programmer can also guide the system to use alternative
code on degradation by providing more than one function
inside the func={} argument (not shown). Tasks and events
have a structured mechanism for communication, called a
channel (Line 6). CatNap’s compiler generates an executable
instrumented to run tasks and events based on their speci-
fications. Within events or tasks, CatNap can use common
C constructs without restrictions, including dynamic mem-
ory allocation, recursive calls, and arbitrary pointers, unlike
prior work restricting the use of such capabilities [41, 45, 46].

In many cases, programming in CatNap has a reasonable
overhead. Dividing events and tasks is mostly straightfor-
ward: periodic and reactive I/O operations are good candi-
dates to be an event and compute-intensive code becomes
tasks. Many I/O operations have configurable parameters,
e.g., resolution of a camera or a transmission power of a
radio, that can be directly used for degradation. A CatNap
programmer can also leverage approximate computing [3–
5, 30, 36, 56, 59, 61] technologies for code degradation. Al-
though CatNap gives programmers the freedom to guide the
degradation in a fine-grained manner, programmers can rely
on the default parameters unless necessary. In our evalua-
tions, we only specified the core requirements of the appli-
cations (in Section 6) and left everything else at its default.

1.PERIOD(name=”T”,min=1,max=10);
2.PARAM(name=”P”,min=10,max=100);
3.EVENT(name=”capture”,period=”T”
        type=”periodic”, 
        func={f_capture});
4.TASK(name=”compute”,
       func={f_compute});
5.EVENT(name=”tx”,period=”T”,
        type=”aperiodic”, 
        param=”P”,func={f_tx});
6.CHANNEL(name=”chan”, 
 src=”capture”, 
          dst=”compute”,
          struct=img_t);

11.void f_compute() {
12. img_t img
      =chan.pop();
13. if (is_dog(img))
14.  POST(tx);}

7.void f_capture() {
8. img_t img=getImg();
9. chan.push(img);
10.POST(compute);}

15.void f_tx() {
16. setTxPower(param);
17. send(”Dog!”);}

Period, event, task, channel declaration Event, task de�nition

Figure 5. Example CatNap code. The code for an application
that captures an image periodically (event capture), predicts
a presence of a dog (task compute), and sends an alarm (event
tx). Event period is between 1 second to 10 seconds (period
T) and the system controls the transmission power between
10 to 100 (param P, which f_tx is accessing via the keyword
param). A channel holding an image data is defined between
capture and compute (channel chan).

4.3 The Scheduler
CatNap’s scheduler is the core of the runtime system.
The scheduler runs a loop dispatching events, tasks, and
recharges, as well as handling aperiodic events (i.e., inter-
rupts). CatNap periodically estimates feasibility by comput-
ing utilization. If utilization is over a threshold, CatNap
deems the events infeasible and invokes degradation logic.

4.4 Tasks, Events, and Channels
Events and tasks contain application code. They can ex-
change values using a First-In-First-Out (FIFO) channel.
Tasks A task is a potentially long-running region of code
without a deadline that can be posted to the scheduler to
execute. A task does not run immediately after being posted.
Instead, CatNap has a FIFO task queue and runs one at a time.
The task queue has a fixed size and an overflow loses posted
tasks in extreme cases. The POST function returns an error
code when a task is dropped. While the responsibility to
handle dropped tasks can be left to the programmer, CatNap
implements a backpressure mechanism to minimize such
overflows (Section 4.5.2) to reduce programmer effort.
A task can be interrupted any time by an event or a

recharge. When interrupted, execution pauses and resumes
later from the point where it was interrupted. Similarly, if
power fails during a task, the system reboots to the point
where power failed, relying on an existing technique called
just-in-time (JIT) checkpointing [8, 34, 47] (Section 4.6).
Events Events are units of computation that must run at
a specific time, e.g., periodically or when an interrupt oc-
curs. Events can be periodic or aperiodic, can be statically or
dynamically scheduled, and cannot be interrupted by other
events, tasks, or recharges. If power fails during an event, the
system re-runs the interrupted event from its start on reboot
for atomic execution. To rollback any partial results, CatNap
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logs every access to the event’s channel. Other event-local
memory accesses need not be logged.

The scheduler tracks time and dispatches periodic events
at their user-defined frequency. Aperiodic events can be
posted by an interrupt handler, by another event, or by a task.
The scheduler handles aperiodic events similarly to periodic
ones by associating each aperiodic event with a minimum
inter-arrival period. The programmer specifies this minimum
interval based on domain knowledge. During scheduling,
CatNap accounts for an aperiodic event as though it were
periodicwith its period equal to theminimum interval, which
is the worst-case provisioning. To avoid over-consuming
energy, the scheduler prohibits an aperiodic event being
posted at a frequency higher than the frequency defined by
the minimum interval.
Channels The programmer can define a FIFO channel that
allows a task or event to exchange values with another task
or event. A channel allows directional data exchange: the
source puts data into the channel and the destination removes
data from the channel. Exchanging data between tasks or
events outside of a channel is not allowed. The data structure
of a channel element is arbitrary and programmer-defined.
Each channel element stores a logical time value indicat-

ing when the element was inserted. The logical time is a
counter that increments on each power failure. An event
or a task reading an element from a channel can compare
the current logical time and the time value of the channel
element to determine whether the element was produced
after the most recent power failure. The logical time helps to
handle data with a “timeliness” requirement [26], i.e., data
that become stale and unusable if a certain amount of time
passes. If power fails after data are collected and before they
are used in a computation, an arbitrary amount of time could
pass between data collection and use. The destination of the
channel can discard the data in such cases to ensure time-
liness, similar to prior work [26]. Channel makes CatNap
free from data-races between tasks and events because chan-
nel operations execute atomically and other shared memory
accesses are forbidden.

4.5 Degradation Logic
CatNap allows the programmer to specify rules bywhich task
and event execution can gracefully degrade to decrease their
energy use. There are several ways to specify degradation.
Period degradation decreases event frequency. Parameter
degradation exposes a parameter that, when varied, scales
the amount of energy required by a task or event. Code
degradation allows the programmer to specify multiple ver-
sions of task or event code that consume different amounts
of energy. With degradations specified, CatNap gracefully
degrades when events are infeasible. CatNap also degrades
tasks when the task queue overflows.

4.5.1 Graceful Degradation to Avoid Infeasibility.
Utilization varies depending on incoming power. A previ-
ously feasible set of events can become infeasible if the in-
coming power decreases. The scheduler invokes degradation
when its estimate of utilization indicates infeasibility.

By default, the system is deemed infeasible if the utiliza-
tion goes over 1. CatNap optionally allows the programmer
to specify a threshold utilizationUthres below 1, so that the
system is considered infeasible if

∑n
i=0

ci
ti
> Uthres . The com-

puted utilization can be imprecise because it is based on
measurements of limited precision; setting a conservative
Uthres adds a guard band to avoid scheduling insufficient
recharges due to imprecise utilization estimates. Specifying
Uthres is an optional feature which is usually not necessary
because CatNap’s measurements have low error (Section 7.4).
Period degradation increases the period of an event, run-

ning less frequently and requiring commensurately less fre-
quent recharges. The programmer can specify an event’s
minimum and maximum period and the scheduler tries to
run the event at the highest possible frequency. The pro-
grammer can also define a degradation function specifying
how to increase the period allowing, e.g., linear or exponen-
tial variation. CatNap allows correlating different events’
periods so that they vary together (e.g., periods of a sens-
ing event and a corresponding radio transmission should be
degraded together). By default, CatNap doubles an event’s
period to degrade. When degrading, CatNap calculates the
utilization’s gradient with respect to each event’s period
and increases the period that will result in the maximum
utilization decrease.
Parameter degradation decreases a parameter used by an

event computation that determines the energy cost in an
application-specific way. The programmer can define for
each event one parameter variable. As with period degrada-
tion, the programmer can specify minimum and maximum
tolerable values, a degradation function, and the relationship
between different events’ parameters. The meaning of the
parameter is up to the programmer. It can be a configuration
parameter of an I/O device (e.g., the transmission power of a
radio) or a knob for an approximate algorithm such as loop
perforation [59]. CatNap degrades the parameter associated
with the event contributing the most to utilization with the
degradation function. Parameter degradation also applies to
tasks (Section 4.5.2).

Code degradation runs an alternative version of an event’s
code that uses less energy. The programmer can provide
multiple different implementations of the event that provide
interchangeable functionality and use the same channel inter-
face. The programmer specifies the expected relative energy
consumption of the events and CatNap degrades from one
event variant to another by selecting the next highest energy
variant. CatNap applies code degradation to the event con-
tributing the most to utilization. Prior work [36, 61] studied
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similar algorithmic relaxations for energy efficiency. Code
degradation also applies to tasks (Section 4.5.2).

Degradation memoization stores the working degradation
setting associated with the incoming power level. When
the incoming power changes, CatNap reloads the memoized
settings associated with the new incoming power if one
exists, avoiding the need to search for a feasible setting. If
a memoized setting is insufficient, CatNap searches for a
new degradation setting, replacing the memoized ones. To
avoid high memoization overhead, CatNap quantizes the
incoming power into four bins and memoizes for each bin.
Our prototype degrades different settings in a fixed order
starting with periods, then parameters, then code (the order
is not fundamental). Memoization can eliminate unnecessary
searches for the degradation parameters, which can have
high runtime overhead.

4.5.2 Handling Task Queue Overflow. CatNap uses
degradation to mitigate task queue overflow as well. When
the task queue is full, it applies backpressure to the scheduler
which applies parameter and code degradation to tasks. After
degrading a task, CatNap lets execution progress for a fixed
interval and checks whether the overflow resolved. If not,
CatNap degrades the task again. When the task queue over-
flow resolves, CatNap memoizes the task degradation con-
figuration. With no task to degrade, CatNap reducesUthres ,
which has the effect of increasing the time and energy avail-
able for tasks to clear the overflowed queue.

4.6 Handling Power Failure
CatNap may still suffer a power failure if incoming power
is very low; a solar-powered device cannot run in the dark.
CatNap tolerates power failures using JIT checkpoints, a
well-studied solution for handling intermittent power fail-
ures [7, 8, 34, 47, 53]. JIT checkpointing monitors a device’s
remaining energy, saves state when a power failure is immi-
nent, and stops executing until more energy accumulates.

As in prior work [34, 47], CatNap uses a fully non-volatile
main memory which is commercially available [17, 57, 63]
and only saves the register files on a checkpoint. If power
fails in the scheduler or a task, CatNap restarts from where
it left off. If power fails in an event, CatNap rolls back the
event’s channel and restarts the event.

5 Implementation
We implemented CatNap using a combination of commodity
off-the-shelf hardware, some simple custom power system
circuits, and its full software stack, including the program-
ming model, compiler, and runtime system.
Overview We implemented CatNap in C on a TI MSP430FR-
5994 [63] microprocessor, harvesting RF energy into a 1mF
capacitor with a dipole antenna and a P2110-EVB har-
vester [50]. To monitor stored energy and compare it with
eevent , we used the MCU’s built-in configurable comparator.

Utilization Measurement Implementing charge schedul-
ing requires tracking the utilization by measuring the in-
coming power and the worst-case energy consumption of
each event. CatNap uses the MCU’s analog-to-digital con-
verter (ADC) to measure the voltage drop on the energy
buffer across an event’s execution, approximating the event’s
worst-case energy consumption by selecting the maximum
value ever measured. An alternative design could profile
worst-case energy statically (e.g., [16]).

CatNap estimates incoming power by measuring how
much energy was accumulated during recharge, again using
the ADC to measure the energy buffer voltage before and
after a recharge. CatNap measures time spent charging us-
ing the MCU’s scheduling timer, which is already running
continuously to support periodic event scheduling.
CatNap must occasionally re-estimate P , the incoming

power, because harvestable power may change over time.
The frequency with which CatNap re-estimates P determines
the rate of long-term power fluctuation to which CatNap
adapts. Instead of re-estimating P at a fixed interval, CatNap
does so on a transition from charging to an event or task
execution. This design more frequently re-estimates P when
events are frequent or recharging is fast, avoiding unneces-
sarily frequent state changes while events are infrequent or
charging is slow.

By measuring incoming power and the worst-case energy
consumption of events dynamically, CatNap adapts to long-
term incoming power fluctuations (e.g., less sunlight on a
cloudy day) and variation in system power consumption (e.g.,
component degradation, temperature changes). As a result,
CatNap’s measurement-based utilization estimate closely
matches real utilization (Section 7.4).

6 Benchmarks and Methodology
6.1 Evaluation Setup
We conducted end-to-end evaluations on a real energy-
harvest-ing setup with a full prototype of CatNap, comparing
with InK [65]. We could not compare against the original
implementation of LSA [48] on real hardware because the
implementation was not available and its multi-level priority
scheme makes context switching expensive and challeng-
ing to implement efficiently for the platform we target. A
simulated comparison with LSA was presented in Figure 3.
For the evaluations, we ran CatNap and InK harvesting

915MHz radio waves generated by a ThingMagic Astra-EX
RFID reader.We used InK as publishedwithminor changes to
support time-keeping. Rather than using a custom persistent
clock [65], we emulated a persistent clock with an MCU
clock powered by a dedicated energy buffer.

6.2 Event-Driven Benchmarks
We ran mixtures of event-driven benchmarks with each de-
signed to have distinct, representative characteristics.
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Audio Sampling 0 (AUD0) represents a class of time-
critical, energy-hungry, low frequency, degradable, and pe-
riodic workloads. AUD0 samples audio at 12kHz using a
SPU0414HR5H MEMS microphone. The program has a strict
timing requirement to collect a block of audio samples every
2.3 seconds. Each block ideally consists of at most 500 sam-
ples, while the number can be degraded to accommodate the
deadline of 2.3 seconds. Other energy-hungry, time-critical
workloads that are degradable, e.g., cameras with adjustable
resolution or long-range (LoRa) radios with adjustable trans-
mission power [31] also fall into this category. Requirement:
(1) sample a block every 2.3 seconds, (2) collect as many samples
as possible, up to 500.
Audio Sampling 1 (AUD1) represents a class of time-
critical, energy-hungry, low frequency, non-degradable, and
periodic workloads. AUD1 is similar to AUD0 except it is not
degradable, i.e., it has to always sample exactly 300 audio
data points every 5.7 seconds. AUD1 represents the events
without a degradable knob. Requirement: (1) sample a block
every 5.7 seconds, (2) collect exactly 300 samples per block.
Audio Sampling 2 (AUD2) represents a class of time-
critical, less energy-hungry, high frequency, non-degradable,
and periodic workloads. AUD2 continuously collects audio
data every 0.1 second. AUD2 is different from AUD0 or
AUD1; instead of collecting a burst of high frequency signals,
it continuously monitors a low frequency signal. Require-
ment: (1) sample an audio signal every 0.1 second.
Temperature Monitoring (TEMP) represents time-critical,
less energy-hungry, middle frequency, non-degradable, and
periodic workloads. TEMP measures temperature using an
on-chip sensor [63] every 0.57 seconds and cannot be de-
graded. Unlike AUD0 and AUD1, AUD2 and TEMP consumes
less energy per execution but is more frequently executed.
Typical sensor readings usually fall into this category. Re-
quirement: sense every 0.57 second.
Button Press Detection (BTN) represents time-critical, less
energy-hungry, middle frequency, non-degradable, and reac-
tive workloads. BTN detects a button presses at most every
0.57 seconds and cannot be degraded. We emulate button
presses from a second MSP430FR5994 MCU’s GPIO. BTN
represents a reactive workload whose arrival time cannot
be precisely estimated. Peripherals that generates a hard-
ware interrupt usually fall into this category. Requirement:
detect the randomly occurring GPIO signal that can occur as
frequently as every 0.57 second.
Downsampling (DSP) represents time-insensitive and
degradable workloads. DSP performs downsampling over
300 data points with a square filter, downsampling at a 20:1
ratio. The quality of the filter can vary, using a convolution
approximation from ParaProx [56]. Many signal processing
workloads with a well-studied approximation can fall into
this category. Requirement: (1) downsample 300 samples with
20:1 ratio, (2) use the highest filter quality possible.

Fast-Fourier Transform (FFT) represents time-insensitive
and non-degradable workload. FFT takes 16 data points as
an input to compute an FFT. Although a degradable FFT
algorithm might exist, we did not adopt such degradation to
represent a set of time-insensitive workloads that cannot be
degraded. Requirement: (1) Compute FFT over 16 samples.

The benchmarks and their characteristics are summarized
in Table 2. Since DSP and FFT are time-insensitive, they are
tasks in CatNap, while others more as an event. Because
CatNap does not consider the energy use of a task, we do
not characterize or vary the energy use of DSP and FFT
(marked as -). Tasks also do not have an inherent frequency
or periodicity constraints. We ran all the benchmarks with
the device placed 65cm away from for the RF supply.

Table 2. Summary of benchmarks. DSP and FFT are tasks,
whose energy use is not an important concern and do not
have an inherent frequency or periodicity (marked as -).

name time-
critical?

energy-
hungry? frequency? degradable? category

AUD0 O O low O periodic
AUD1 O O low X periodic
AUD2 O O high X periodic
TEMP O X med X periodic
BTN O X med X reactive
DSP X - - O -
FFT X - - X -

6.3 Performance Benchmarks
We also ran intermittent performance benchmarks used in
prior work [15, 41, 45, 64] to evaluate the overhead of Cat-
Nap. A subset of the benchmarks was also used in InK’s eval-
uation [65], allowing direct comparison. The benchmarks
consist of six compute-intensive IoT programs. CEM LZW-
compresses data.CF stores and searches numbers in a cuckoo
filter. RSA encrypts a string using a 64-bit key. AR classifies
accelerometer data with a nearest-neighbor classifier. BF
encrypts a string using Blowfish encryption. BC counts the
number of 1s in a bitstream.
We use four applications (CEM, CF, AR, BC) written for

InK by its authors and ported ones that were omitted from
InK’s evaluation [65]. For CatNap, we ran plain C versions
of the benchmarks from prior work [45], running code in a
task. We again ran all tests 65cm away from the RF supply.

7 Evaluation
Our evaluation uses the benchmarks from Section 6 to an-
swer the following four questions:
• Does CatNap support periodic and reactive events?
• What are CatNap’s main overheads?
• Does CatNap precisely estimate utilization?
• Is CatNap practically applicable?
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7.1 CatNap Supports Event-Driven Execution
We compared CatNap’s ability to execute periodic and reac-
tive programs with InK [65], a state-of-the-art event-driven
kernel for energy-harvesting devices whose implementation
is available. We evaluated whether the system can support
periodic and reactive execution when amixture of events and
tasks with different characteristics run together (Section 6.2).
We only present the subset of the evaluations where the specific
mixture of the benchmarks and the power level resulted in
interesting behavior. The omitted data points showed trivial
results (e.g., all systems running or failing) or trends similar
to those included.

7.1.1 CatNap Degrades Events Properly (AUD0). Cat-
Nap properly degrades the quality of the event on a long-
term variation of the incoming power. Figure 6a summarizes
how the period of AUD0 changed as we vary the input power
level with both CatNap and InK. As the result shows, Cat-
Nap always executed AUD0 with constant, user-specified
frequency. However, InK violated the timing requirement by
177% on average at 27.25dBm RFID reader power. Figure 6b
shows quality degradation for each power level, reporting
samples lost out of 500. CatNap scales quality to meet the
timing requirement, while InK cannot scale.

To avoid the deadline violation, an InK programmer must
have an oracular knowledge of the possible incoming power
that the device may ever experience and manually tune
the event parameters before deployment. While such an
assumption is unrealistic, we additionally compare to such a
manually-optimized InK by an oracular programmer (InK_O-
racle). CatNap is still better than InK_Oracle; CatNap col-
lects 2.33×more samples by dynamically increasing collected
samples with abundant power while InK_Oracle is statically
provisioned for the worst-case.

7.1.2 CatNap Isolates Events and Tasks (TEMP+DSP).
CatNap can keep the periodic event’s schedule even when
there is a concurrently running task. Figure 6c shows the
period of TEMP while running DSP concurrently. We again
included InK_Oracle, whichmanually degraded DSP as much
as possible to save more time and energy for TEMP. Cat-
Nap always met TEMP’s requirement of 0.57 second, while
even InK_Oracle abundantly violated the timing require-
ment. InK and InK_Oracle violate the timing requirement
by 732% and 358%, respectively, at 27.25dBm. InK_Oracle
meets TEMP’s deadline better than InK because it uses less
energy for DSP and hence more for TEMP. However, even
InK_Oracle still fails due to the lack of energy isolation;
when the time-insensitive computation (DSP) uses up all
the energy, InK and InK_Oracle fail to run a time-critical
measurement (TEMP) properly.

7.1.3 CatNap Supports Reactive Events (BTN+DSP).
CatNap can reserve and isolate energy for the possible future
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Figure 6. Result of different benchmarks. The (a) period and
(b) quality for AUD0, the (c) period of TEMP+DSP, the (d) cap-
ture rate of BTN+DSP, and the (e) portion of processed data
and the (f) quality for AUD1+DSP is shown. User-specified
requirement is shown as a horizontal line (a, c). *InK_Oracle
was manually tuned for best performance.

reactive event (BTN), even when there is a concurrently run-
ning task. Figure 6d shows the percentage of the button press
events (BTN) that were captured and processed with differ-
ent incoming power level, while DSP is running concurrently.
We again included InK_Oracle, which manually degraded
DSP as much as possible to save more time and energy for
BTN. While CatNap captured all button presses, InK and
InK_Oracle missedmost of the button presses, capturing only
1.4% and 1.8% respectively on low input power (27.25dBm).
On average across power levels, InK and InK_Oracle only
captured around 25% and 50% of the button presses. Cat-
Nap reserves energy for BTN and isolates it from DSP. InK
and InK_Oracle allow DSP to use too much energy, leaving
insufficient energy for BTN when a button press arrives.

7.1.4 CatNap Degrades Tasks Properly (AUD1+DSP).
CatNap can properly degrade the quality of the task when
the task queue overflows, using its backpressure mecha-
nism 4.5.2. A long-running task like DSP poses a risk of
overflowing the task queue if events post tasks more quickly
than the task completes. Such a task queue overflow loses
data. InK uses pipes [65] that act as a task queue, exposing
a similar problem. Figure 6e shows the fraction of collected
data processed by DSP’s filtering task without being lost
due to the task queue/pipe overflow. Figure 6f shows the
degraded performance of the filter, which we report by cal-
culating the L2 relative error norm ( | |deдraded−or iдinal | || |or iдinal | | ) of
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downsampled data. CatNap’s backpressure avoids task queue
overflow by degrading the tasks, sacrificing the quality of the
downsampling on low input power (Figure 6f). In contrast,
InK loses 76% of the collected data at 27.25dBm.
InK_Oracle represents an oracular programmer stati-

cally configuring the filter accuracy, assuming knowledge
of future input power (InK_Oracle). In our experiment,
InK_Oracle was able to process all the data collected; how-
ever, InK_Oracle suffered from 2.97× higher mean quality
degradation because it cannot adaptively increase quality
when power is abundant.

7.1.5 CatNap Fails Gracefully (AUD2+FFT). While
running AUD2 with FFT, we observed that CatNap fails
gracefully with an infeasible setup. AUD2 + FFT requires
that FFT with 16 samples be calculated every 1.6 seconds.
With a power level of 29.75dBm, such parameters were too
demanding for any system to reliably meet the deadline.
While operating on such an infeasible operating point,

even CatNap experienced 31 power failures because the sys-
tem is neither feasible nor degradable. CatNap still collected
samples at 10Hz (AUD2) when there was no power failure,
correctly computing 17 of 17 FFTs attempted. InK, however,
incorrectly computed 19 FFT results, because InK could not
consistently sample at 10Hz. The interference of the FFT
computation with AUD2 led InK to have an average sam-
pling period of 0.4s and a high standard deviation of 0.47s.
FFT results on such non-uniformly sampled data are not
meaningful. The comparison shows that CatNap meets tim-
ing requirements (i.e., AUD2) better than InK because of
energy isolation, even when both fail to run perfectly.

7.2 CatNap Has High Performance
CatNap has a higher performance than InK. Figure 7a shows
the end-to-end execution time of the energy-harvesting
performance benchmarks (Section 6.3) with different input
power levels. CatNap outperforms InK by 4.84× on aver-
age, with up to 73.3× performance benefit. The main per-
formance benefit of CatNap comes from using JIT check-
pointing (Section 4.6) to keep memory consistent on a power
failure. Instead, an InK programmer decomposes a program
into multiple small code chunks and logs data shared be-
tween them at their boundaries [65]. Prior work showed that
JIT checkpointing has a 2.7×-4.1× run time benefit over a
user-specified, boundary-based approach [47], which is con-
sistent with our results. InK is even slower in some cases (e.g.,
CEM) because InK logs all shared memory at each boundary
using DMA, scaling overhead with memory use.
CatNap’s scheduler overhead is also reasonably low. To

measure the scheduler overhead that varies with the num-
ber and period of events, we ran sets of one, ten, and thirty
dummy events with frequencies between 1 second to 8 mi-
croseconds for a single benchmark, CEM. We only report the
result with the RF power at 29.75dBm for brevity, although
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Figure 7. Performance and memory use of CatNap.

the trend was not sensitive to input power. The overhead
was only 0.77% of the total execution time with thirty events
running every 0.25 seconds. With ten events running every
second, the overhead was 0.12%. The data show that the
overhead is reasonably low for practical use.

7.3 CatNap Has Modest Memory Overhead
We evaluated CatNap’s memory overhead, inspecting
our performance benchmarks (CEM–BF) and event-driven
benchmarks (AUD0–FFT). Figure 7b shows that CatNap in-
curs 1.5× higher memory overhead than InK on average,
most of which is due to its runtime library code (i.e., .text).
The 50% memory overhead is the cost of CatNap’s precise
event-driven execution and high performance.

7.4 CatNap Precisely Estimates Utilization
CatNap assesses the feasibility of a schedule based on its
utilization estimates. We assessed the accuracy of CatNap’s
utilization estimates on real energy-harvesting hardware by
studying its behavior with different static input power levels,
then with time-variant power.
Fixed Input Power To evaluate the accuracy of the utiliza-
tion estimate, we ran a large collection of parameterized mi-
crobenchmarks with degradation disabled. Each microbench-
mark has 1–3 events, each running a spin-loop consuming a
small, medium, or large amount of energy, with a period (T )
of 0.5 one second. The RF transmitter 30cm away was config-
ured to emit one of twelve power levels between 29.75dBm
and 23.75dBm for oneminute.We logged CatNap’s utilization
estimates and compared them with the measured utilization.
Utilization is essentially the portion of time spent replenish-
ing the energy used, which was measured with a voltage
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Figure 8. Accuracy of the utilization calculation. The esti-
mated utilization versus the measured utilization is plotted.
Different shapes indicate different applications and different
colors indicate different incoming power.

comparator. We plotted measured utilization over 1 (i.e., the
energy never fully replenishes) as 1.1.
Figure 8 plots 2496 pairs of estimated (x-axis) and mea-

sured (y-axis) utilizations. We distinguish microbenchmarks
with shapes and RF power levels with colors. CatNap’s es-
timates are accurate: most points lie on or slightly below
the line, y = x , showing a high correlation of 0.9506 when
estimated utilization is below 1 (x < 1). We could not cal-
culate the correlation above x >= 1 because the measured
utilization clamps at 1.1. Points below the line mean utiliza-
tion may have been overestimated. Points may still lie below
y = x , even with perfect estimation because the estimate as-
sesses worst-case utilization. Overestimating may degrade an
already feasible schedule unnecessarily, if estimated utiliza-
tion is above one and actual utilization is below one (x >= 1,
y < 1). Overestimation may thus degrade quality, but will not
lead to insufficient recharging that causes a timing violation.
The data show that CatNap rarely underestimates utiliza-

tion: few points lie above y = x . Underestimation is po-
tentially problematic if an infeasible schedule is incorrectly
considered feasible, which can cause a power failure or event
timing violation (i.e., if points in x < 1, y >= 1). We never
observed an instance where CatNap incorrectly assumes an
infeasible environment is feasible.
Points in x <= 1, y <= 1 and x > 1, y > 1 are instances

correctly estimated as feasible or infeasible. As long as points
are within these regions, overestimation or underestimation
is still safe. The data reveal a 10.3% margin between the dan-
gerous x <= 1, y > 1 region and its nearest point — an
empirical guard-band in the utilization estimates. The green
line shows that with a conservativeUthres of 0.8 instead of
1.0, there is a margin increase to 23.3%. With the conser-
vative threshold, the chances of unnecessary degradation
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Figure 9. Additional characterization of Figure 8. The his-
togram shows the difference between utilizations from Fig-
ure 8 (a) without and (b) with a weight ofw = 1

1−est imated .

also increased (points in 0.8 <= x < 1, y < 1 additionally
triggers unnecessary degradation).
Detailed Characterization To further evaluate data in Fig-
ure 8, we look into two metrics representing how accurate
the estimated utilization is compared to the measured uti-
lization. We plot the difference between the measured and
estimated utilization (measured − estimated , Figure 9a). We
preserve the sign which additionally gives us information on
whether the system is overestimating (negative sign) or un-
derestimating (positive sign). Figure 8 shows the histogram
of the difference of (1) all data (Figure 9a, left) and (2) the
data whose estimated utilization is over 0.8 (Figure 9a, right).
Although CatNap sometimes overestimates and sometimes
underestimates utilization by a modest amount (left), the
plot shows that, crucially, CatNap rarely underestimates
near high utilization (right). CatNap tends to underestimate
by less when utilization is high, avoiding an incorrect judg-
ment that an infeasible schedule is feasible (recall that un-
derestimation leads to a scheduling failure only when real
utilization goes above one). The relatively frequent under-
estimation at low utilization (left) is due to the assumption
that event execution time is negligible compared to recharge
time (Section 3.2); low utilization invalidates this assumption.
However, underestimation in low utilization is safe.

We also define theweighted difference, which is the dif-
ference (as above) multiplied by a weight,w = 1

1−est imated .
The weight grows larger as estimated utilization approaches
one, reflecting the fact that an error is critical when the uti-
lization is near one, but that low utilization tolerates more
error. A negative value represents an overestimation and a
positive value is an underestimation. Among the underesti-
mated cases, values over one mean the system is incorrectly
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Figure 10. Utilization estimation over time. (a) shows an
example patterns of an input power. (b) shows the utiliza-
tion estimated (red) and measured (green) with degradation
disabled (top), and the utilization measured (green) and the
output quality (blue) with degradation enabled.

assessing an infeasible set of events to be feasible, which is
a critical failure for CatNap. Figure 9b plots the weighted
difference for all trials. The figure shows that even when the
system underestimates (x > 0), the weighted difference is far
from one: its maximum is below 0.4. The result implies Cat-
Nap’s robustness against incorrectly estimating feasibility
and failing to schedule recharges properly. The values span
from below −8 on the low end, showing that CatNap is prone
to overestimation that may lead to unnecessary degradation.
Occasionally imposing such conservative degradation is the
main drawback imposed by CatNap as it achieves the highly
reliable schedulability demonstrated in Section 7.1.1–7.1.5.
Time-Varying Incoming Power We evaluated CatNap’s
ability to adapt to long-term power variation, running a mi-
crobenchmark (large energy cost, T = 1s). We varied power
from 29.75dBm to 23.75dBm following several power traces.
We show one example trace of a sawtooth in Figure 10a. We
also tested with a triangle wave and a reverse sawtooth wave.
We tested each trace with a period of 30, 60, and 120 seconds.

Figure 10b shows estimated and measured utilization with
varying power with and without degradation. Degradation
halved the spin-loop iteration count in the event and we
model quality loss as r educed loop size

or iдinal loop size . Results from other
waves are omitted; the trends are similar to Figure 10b The
upper plot shows that the estimated utilization (red) is always
above actual utilization (green line) and the estimate updates
rapidly as power changes. CatNap estimates perfectly or
overestimates, but never dangerously underestimates, even

as power drops sharply. The lower plot shows that the mea-
sured utilization (green) is consistently below 1.0, while the
quality (blue line) degrades in response to sharp drops in
input power. The data show CatNap’s ability to adapt to
varying input power by degrading the quality.

7.5 Limitations of CatNap
Although CatNap successfully ran periodically and reactively
on our benchmarks (except for FFT), there are scenarios
where CatNap can fail. We summarize cases where CatNap
may fail. First, if CatNap cannot further degrade and the uti-
lization is above one, the situation is infeasible and CatNap
may fail to run periodically or reactively. Such a situation is
like starvation in traditional scheduling, where some events
use too much energy for others to run. Even in such an infea-
sible situation, however, CatNap fails gracefully compared to
prior work (Section 7.1.5). Second, if CatNap underestimates
an infeasible system as feasible, CatNap may fail to schedule
sufficient recharges, although our empirical study shows that
such underestimation is unlikely (Figure 8–9). To mitigate
these possible failures, the programmer can adjustUthres to
be more conservative (Section 4.5). Third, if the incoming
energy rapidly changes, CatNap may schedule recharges
with an outdated utilization value. However, from Figure 10,
we show that with reasonable energy fluctuation this error
mode is not an issue. Finally, under heavy load, CatNap may
cause tasks to run with a large execution time variance, as
shown in Figure 3b. In an extreme case, this high variance
may lead to a task queue overflow. It is the programmer’s
responsibility to write a program to tolerate these overflows.

7.6 Case Study: Particle Filter Orbit Estimation
As a case study demonstrating the applicability of CatNap,
we built a satellite orbit estimator appropriate for chip-scale
satellites [17, 66] in low-earth orbit. The estimator uses a par-
ticle filter [52] with 200 particles to determine the chipsat’s
orbital position by fitting sequential magnetometer readings
to a stored map of Earth’s magnetic field [49]. The appli-
cation goal is to frequently enough run the particle filter,
which is complicated by orbiting into and out of Earth’s
eclipse. In eclipse, harvestable energy is about 10%-20% of
sunlight energy, and CatNap degrades the number of filter
particles to reduce energy cost. Every two minutes, an event
reads the magnetometer and posts a particle filter task. We
emulated magnetic field readings by simulating the chipsat’s
orbital dynamics (i.e., position and velocity) and reporting
magnetic field data at its position, using a field map [49].
We simplistically assume an equatorial low-Earth orbit, a 90
minute period, 2.5mW harvestable power in sun, and 0.5mW
in eclipse. We used the RFID reader to emulate solar energy.
In general, simulating solar energy with RF energy is not
ideal because their characteristics, e.g., the I-V curve, can
be different. We use RF power to emulate the proportion of
incoming energy in the sunlight/eclipse cycle experienced
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Figure 11. Orbit detection using a particle filter.

by the solar-harvesting system only and we do not depend
on the similarity of low-level power characteristics.
Figure 11 shows a time series illustrating how CatNap

adapts to the changing orbital power environment. In sun-
light, tasks are fast. In eclipse, power drops. The first task’s
time violates the deadline because CatNap does not degrade
tasks in progress. CatNap degrades subsequent tasks, which
finish within the deadline. The data suggest that CatNap
practically supports sophisticated state estimation problems.

8 Additional Related Work
Intermittent and Energy-Harvesting Systems Section 1
and Section 2 covered prior intermittent systems [6, 8–11,
15, 16, 26, 28, 34, 41, 44–46, 51, 55, 64, 65], energy-harvesting
platforms and hardware [17, 24, 25, 27, 32, 57, 61, 68], and
energy-harvesting RTOS-based systems [12, 13, 22, 39, 48].
Section 2 also introduces low-power embedded systems [18,
19, 37, 38, 61] that influenced the design of CatNap. They all
fail to satisfy requirements for event-driven execution on an
energy-harvesting device (Table 1).
Others target specific application domains on energy-

harvesting devices, including neural networks [23], com-
munication [42], wildlife tracking [35], and multi-tenant
sensing [2]. Incidental computing [43] and WN [21] approx-
imate intermittent computation in the architecture. Some
work helps develop intermittent systems, including software
updates [1, 62], debugging [14, 69], and modeling [58].
Approximate Computing A large body of work has been
done on trading the quality of the system and the system per-
formance by tuning a parameter [29, 30, 56, 59] or selecting
between a user-provided code [3–5, 36]. These work can be
applied to CatNap in building degradable events and tasks.
Energy-aware OS Prior energy-aware systems bear similar-
ities with CatNap in that they dynamically adjust the energy
use of applications. These systems, however, mainly concen-
trate on energy-efficiency, while CatNap’s main focus is also
in deciding when to use energy or recharge.
Eon [61] degrades application quality by monitoring the

incoming power. Using a rechargeable battery, Eon has the
luxury to operate on a coarse time scale and does not assume
frequently being interrupted due to low energy. CatNap,
whose design choice was to exclude the battery, must make

much more fine-grained decisions on when to recharge or
execute with an RTOS-style recharge scheduler.
Koala OS [60] degrades system parameters, e.g., clock

speed, to achieve energy-efficiency. Adopting such a system-
level degradation is an interesting future work for CatNap.
Cinder OS [54] allows the programmer to delegate por-

tions of the available energy as a resource to different ap-
plications, isolating energy between them. The concept of
isolating energy is similar to CatNap’s. Cinder OS assumes
a reliable power supply and applications continuously con-
suming a portion of the supply. The model is not directly
applicable in the intermittent event-driven context, where
the incoming power is weak and events and tasks must take
turns in consuming energy.

LAB [36], JouleGuard [29], and PowerDial [30] automati-
cally find the optimal approximation balancing performance
and energy. CatNap’s trial-and-error-based parameter find-
ing can be improved by adopting such theoretical models.
These systems, however, concentrate on improving energy
efficiency rather than scheduling energy use.

9 Conclusion
This paper presents CatNap, a system with a new program-
ming model enabling reliable event-driven execution on
energy-harvesting devices in environments where prior sys-
tems failed. CatNap truly achieves event-driven execution
on energy-harvesting devices, opening up new possibilities
for energy-harvesting applications.
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