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Abstract
This paper introduces read-log-update (RLU), a novel exten-
sion of the popular read-copy-update (RCU) synchroniza-
tion mechanism that supports scalability of concurrent code
by allowing unsynchronized sequences of reads to execute
concurrently with updates. RLU overcomes the major limi-
tations of RCU by allowing, for the first time, concurrency
of reads with multiple writers, and providing automation that
eliminates most of the programming difficulty associated
with RCU programming. At the core of the RLU design is
a logging and coordination mechanism inspired by software
transactional memory algorithms. In a collection of micro-
benchmarks in both the kernel and user space, we show that
RLU both simplifies the code and matches or improves on
the performance of RCU. As an example of its power, we
show how it readily scales the performance of a real-world
application, Kyoto Cabinet, a truly difficult concurrent pro-
gramming feat to attempt in general, and in particular with
classic RCU.

1. Introduction
Context. An important paradigm in concurrent data struc-
ture scalability is to support read-only traversals: sequences
of reads that execute without any synchronization (and hence
require no memory fences and generate no contention [20]).
The gain from such unsynchronized traversals is significant
because they account for a large fraction of operations in
many data structures and applications [20, 34].

The popular read-copy-update (RCU) mechanism of
McKenney and Slingwine [28] provides scalability by en-
abling this paradigm. It allows read-only traversals to pro-
ceed concurrently with updates by creating a copy of the
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data structure being modified. Readers access the unmodi-
fied data structure while updaters modify the copy. The key
to RCU is that once modifications are complete, they are
installed using a single pointer modification in a way that
does not interfere with ongoing readers. To avoid synchro-
nization, updaters wait until all pre-existing readers have
finished their operations, and only then install the modi-
fied copies. This barrier-based mechanism allows for sim-
ple epoch-based reclamation [17] of the old copies, and
the mechanism as a whole eliminates many of the atomic
read-modify-write instructions, memory barriers, and cache
misses that are so expensive on modern multicore systems.

RCU is supported in both user-space and in the kernel.
It has been widely used in operating system programming
(over 6’500 API calls in the Linux kernel as of 2013 [30])
and concurrent applications (as reported at http://urcu.so/,
user-space RCU is notably used in a DNS server, a network-
ing toolkit, and a distributed storage system).
Motivation. Despite its many benefits, RCU programming
is not a panacea and its performance has some significant
limitations. First, it is quite complex to use. It requires the
programmer to implement dedicated code in order to dupli-
cate every object it modifies, and ensure that the pointers
inside the copies are properly set to point to the correct loca-
tions, before finally connecting this set of copies using a sin-
gle atomic pointer assignment (or using lock-protected crit-
ical sections). This complexity is evidenced by the fact that
there are not many RCU-enhanced data structures beyond
simple linked-lists, and the few other RCU-ed data structures
are innovative algorithms published in research papers [2, 5].
A classic example of this difficulty is the doubly linked list
implementation in the Linux Kernel, in which threads are
only allowed to traverse the list in the forward direction (the
backward direction is unsafe and may return in inconsistent
sequence of items) because of the limitations of the single
pointer manipulation semantics [5, 26].

Second, RCU is optimized for a low number of writers.
The RCU kernel implementation [25, 27] reduces contention
and latency, but does not provide concurrency among writ-
ers.

Third, threads using RCU experience delays when wait-
ing for readers to complete their operations. This makes
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RCU potentially unfit for time-critical applications. Recent
work by Arbel and Morrison [3] suggests how to reduce
these delays by having the programmer provide RCU with
predicates that define the access patterns to data structures.

Our objective is to propose an alternative mechanism
that will be simpler for the programmer while matching or
improving on the scalability obtainable using RCU.

Contributions. In this paper, we propose read-log-update
(RLU), a novel extension of the RCU framework that sup-
ports read-only traversals concurrently with multiple up-
dates, and does so in a semi-automated way. Unlike with
RCU, adding support for concurrency to common sequen-
tial data structures is straightforward with RLU because it
removes from the programmer the burden of handcrafting
the concurrent copy management using only single pointer
manipulations. RLU can be implemented in such a way that
it remains API-compatible with RCU. Therefore, it can be
used as a drop-in replacement in the large collection of RCU-
based legacy code.

In a nutshell, RLU works as follows. We keep the over-
all RCU barrier mechanism with updaters waiting until all
pre-existing readers have finished their operations, but re-
place the hand-crafted copy creation and installation with a
clock-based logging mechanism inspired by the ones used
in software transactional memory systems [1, 8, 33]. The
biggest limitation of RCU is that it cannot support multiple
updates to the data structure because it critically relies on a
single atomic pointer swing. To overcome this limitation, in
RLU we maintain an object-level write-log per thread, and
record all modifications to objects in this log. The objects
being modifiead are automatically copied into the write-log
and manipulated there, so that the original structures remain
untouched. These locations are locked so that at most one
thread at a time will modify them.

The RLU system maintains a global clock [8, 33] that
is read at the start of every operation, and used to decide
which version of the data to use, the old one or the logged
one. Each writer thread, after completing the modifications
to the logged object copies, commits them by incrementing
the clock to a new value, and waits for all readers that started
before the clock increment (have a clock value lower than
it) to complete. This modification of the global clock using
a single operation has the effect of making all the logged
changes take effect at the same time. In other words, if
RCU uses a single read-modify-write to switch a pointer to
one copy, in RLU the single read-modify-write of the clock
switches multiple object copies at once.

The simple barrier that we just described, where a writer
increments the counter and waits for all readers with smaller
clock values, can be further improved by applying a deferral
mechanism. Instead of every writer incrementing the clock,
we have writers increment it only if they have an actual con-
flict with another writer or with their own prior writes. These
conflicts are detectable via the locks placed on objects. Thus,

writers typically complete without committing their modifi-
cations, and if conflict is detected, only then the clock is in-
cremented. This deferred increment applies all the deferred
modifications at once, with a much lower overhead since
the number of accesses to the shared clock is lowered, and
more importantly, the number of times a writer must wait for
readers to complete is significantly reduced in comparison to
RCU. In fact, this deferral achieves in an automated way al-
most the same improvement in delays as the RCU predicate
approach of Arbel and Morrison [3].

We provide two versions of RLU that differ in the way
writers interact. One version allows complete writer concur-
rency and uses object locks which writers attempt to acquire
before writing. The other has the system serialize all writers
and thus guarantee that they will succeed. The writers’ oper-
ations in the serialized version can further be parallelized us-
ing hardware transactions with a software fallback [24, 36].
Our RLU implementation is available as open source from
https://github.com/rlu-sync.

We conducted an in-depth performance study and com-
parison of RLU against kernel and user-space RCU imple-
mentations. Our findings show that RLU performs as well as
RCU on simple structures like linked lists, and outperforms
it on more complex structures like search trees. We show
how RLU can be readily used to implement a doubly linked
list with full semantics (of atomicity), allowing threads to
move forward or backward in the list—this is a task that to
date is unattainable with RCU since the doubly linked list
in the Linux kernel restricts threads to only move forward
or risk viewing an inconsistent sequence of items in the list
[26]. We also show how RLU can be used to increase the
scalability of a real-world application, Kyoto Cabinet, that
would be difficult to apply RCU to because it requires to
modify several data structures concurrently, a complex feat
if one can only manipulate one pointer at a time. Replacing
the use of reader-writer locks with RLU improves the per-
formance by a factor of 3 with 16 hardware threads.

2. Background and Related Work
RLU owes much of its inspiration to the read-copy-update
(RCU) algorithm, introduced by McKenney and Slingwine
[28] as a solution to lock contention and synchronization
overheads in read-intensive applications. Harris et al. [16]
and Hart et al. [17] used RCU ideas for epoch-based explicit
memory reclamation schemes. A formal semantics of RCU
appears in [13, 15].

RCU minimizes synchronization overhead for sequences
of reads traversing a data structure, at the price of making the
code of writers more complex and slower. As noted in the
introduction, the core idea of RCU is to duplicate an object
each time it is modified and perform the modifications on the
private copy. In this way, writers do not interfere with readers
until they atomically update shared data structures, typically
by “connecting” their private copies. To ensure consistency,
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Figure 1. Principle of RCU: read-side critical sections and
grace periods.

such updates must be done at a safe point when no reader
can potentially hold a reference to the old data.

RCU readers delimit their read operations by calls to rcu -
read lock() and rcu read unlock(), which essentially define
read-side critical sections. RCU-protected data structures
are accessed in critical sections using rcu dereference()
and rcu assign pointer(), which ensure dependency-ordered
loads and stores by adding memory barriers as necessary.1

When they are not inside a critical section, readers are said to
be in a quiescent state. A period of time during which every
thread goes through at least one quiescent state is called a
grace period. The key principle of RCU is that, if an updater
removes an element from an RCU-protected shared data
structure and waits for a grace period, there can be no reader
still accessing that element. It is therefore safe to dispose
of it. Waiting for a grace period can be achieved by calling
synchronize rcu(). The basic principle of read-side critical
sections and grace periods is illustrated in Figure 1, with
three reader threads (T1, T2, T3) and one writer thread (T4).
As the grace period starts while T1 and T3 are in read-side
critical sections, T4 needs to wait until both other threads
exit their critical section. In contrast, T2 starts a critical sec-
tion after the call to synchronize rcu() and hence cannot hold
a reference to old data. Therefore the grace period can end
before the critical section completes (and similarly for the
second critical section of T3 started during the grace period).

An emblematic use case of RCU is for reclaiming mem-
ory in dynamic data structures. To illustrate how RCU helps
in this case, consider a simple linked list with operations to
add, remove, and search for integer values. The (simplified)
code of the search() and remove() methods is shown in List-
ing 1. It is important to note that synchronization between
writers is not managed by RCU, but must be implemented
via other mechanisms such as locks. Another interesting ob-
servation is how similar RCU code is to a reader-writer lock
in this simple example: read-side critical sections correspond
to shared locking while writers acquire the lock in exclusive
mode.

A sample run is illustrated in Figure 2, with thread T1

searching for element c while thread T2 concurrently re-
moves element b. T1 enters a read-side critical section while
T2 locates the element to remove. The corresponding node

1 Note that on many architectures rcu dereference() calls are replaced by
simple loads and hence do not add any overhead.

1 int search (int v ) {
2 node_t ∗n ;
3 rcu_read_lock ( ) ;
4 n = rcu_dereference (head−>next ) ;
5 while (n != NULL && n−>value != v )
6 n = rcu_dereference (n−>next ) ;
7 rcu_read_unlock ( ) ;
8 return n != NULL ;
9 }

10 int remove (int v ) {
11 node_t ∗n , ∗p , ∗s ;
12 spin_lock(&writer_lock ) ;
13 for (p = head , n = rcu_dereference (p−>next ) ;
14 n != NULL && n−>value != v ;
15 p = n , n = rcu_dereference (n−>next ) ) ;
16 if (n != NULL ) {
17 s = rcu_dereference (n−>next ) ;
18 rcu_assign_pointer (p−>next , s ) ;
19 spin_unlock(&writer_lock ) ;
20 synchronize_rcu ( ) ;
21 kfree (n ) ;
22 return 1 ;
23 }
24 spin_unlock(&writer_lock ) ;
25 return 0 ;
26 }

Listing 1. RCU-based linked list.

is unlinked from the list by T2 while T1 traverses the list. T2

cannot yet free the removed node, as it may still be accessed
by other readers; hence it calls synchronize rcu(). T1 contin-
ues its traversal of the list while T2 still waits for the end of
the grace period. Finally T1 exits the critical section and the
grace period completes, which allows T2 to free the removed
node.

RCU has been supported in the Linux kernel since
2002 [29] and has been heavily used within the operating
system. The kernel implementation is very efficient because,
by running in kernel space and being tightly coupled to the
scheduler, it can use a high-performance quiescent-state-
based reclamation strategy wherein each thread periodically
announces that it is in a quiescent state. The implementation
also provides a zero-overhead implementation of rcu read -
lock() and rcu read unlock() operations. As a drawback,
synchronization delays for writers can become unnecessar-
ily long as they are tied to scheduling periods. Furthermore,
the Linux kernel’s RCU implementation is not suitable for
general-purpose user-space applications.

User-space RCU [6] is another popular library imple-
menting the RCU algorithms entirely in user space. It pro-
vides several variants of synchronization algorithms (using
quiescent-state-based reclamation, signals, or memory barri-
ers) offering different trade-offs in terms of read-/write-side
overheads and usage constraints. User-space RCU is widely
applicable for general-purpose code but in general does not
perform as well as the kernel implementation.

Our implementation of RLU is based on the use of a
global clock mechanism inspired by the one used in some
software transactional memory systems [8, 33], which no-
tably use lock-based designs to avoid some of the costs in-
herent to lock-free or obstruction-free algorithms [11, 22].
The global clock is a memory location that is updated by
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Figure 2. Concurrent search and removal with the RCU-based linked list.

threads when they wish to establish a synchronization point.
All threads use the clock as a reference point, time-stamping
their operations with this clock’s value. The observation in
[1, 8, 33] is that despite concurrent clock updates and mul-
tiple threads reading the global clock while it is being up-
dated, the overall contention and bottlenecking it introduces
is typically minimal.

3. The RLU Algorithm
In this section we describe the design and implementation of
RLU.

3.1 Basic Idea
For simplicity of presentation, we first assume in this section
that write operations execute serially, and later show vari-
ous programming patterns that allow us to introduce concur-
rency among writers.

RLU provides support for multiple object updates in a
single operation by combining the quiescence mechanism of
RCU with a global clock and per thread object-level logs.
All operations read the global clock when they start, and use
this clock to dereference shared objects. In turn, a write oper-
ation logs each object it modifies in a per thread write-log: to
modify an object, it first copies the object into the write-log,
and then manipulates the object copy in this log. In this way,
write modifications are hidden from concurrent reads, and
to avoid conflicts with concurrent writes, each object is also
locked before its first modification (and duplication). Then,
to commit the new object copies, a write operation incre-
ments the global clock, which effectively splits operations
into two sets: (1) old operations that started before the clock
increment, and (2) new operations that start after the clock
increment. The first set of operations will read the old object
copies while the second set will read the new object copies
of this writer. Therefore, in the next step, the writer waits for
old operations to finish by executing the RCU-style quies-
cence loop, while new operations “steal” new object copies
of this writer by accessing the per thread write-log of this
writer. After the completion of old operations, no other op-
eration may access the old object memory locations, so the
writer can safely write back the new objects from the writer-
log into the memory, overwriting the old objects. It can then
release the locks.

Figure 3 depicts how RLU provides multiple object up-
dates in one operation. In the figure, execution flows from
top to bottom. Thread T2 updates objects O2 and O3,
whereas threads T1 and T3 only perform reads. Initially,

the global clock is 22, and T2 has an empty write-log and
a local write-clock variable that holds ∞ (maximum 64-bit
integer value). These per-thread write-clocks are used by the
stealing mechanism to ensure correctness (details follow).

In the top figure, threads T1 and T2 start by reading the
global clock and copying its value to their local clocks, and
then proceed to reading objects. In this case, none of the
objects is locked, so the reads are performed directly from
the memory.

In the middle figure, T2 locks and logs O2 and O3 before
updating these objects. As a result, O2 and O3 are copied
into the write-log of T2, and all modifications are re-routed
into the write-log. Meanwhile, T1 reads O2 and detects that
this object is locked by T2. T1 must thus determine whether
it needs to steal the new object copy. To that end, T1 com-
pares its local clock with the write clock of T2, and only
when the local clock is greater than or equal to the write-
clock of T2 does T1 steal the new copy. This is not the case
in the depicted scenario, hence T1 reads the object directly
from the memory.

In the bottom figure, T2 starts the process of committing
new objects. It first computes the next clock value, which
is 23, and then installs this new value into the write-clock
and global-clock (notice that the order here is critical). At
this point, as we explained before, operations are split into
“old” and “new” (before and after the clock increment), so
T2 waits for the old operations to finish. In this example,
T2 waits for T1. Meanwhile, T3 reads O2 and classifies this
operation as new by comparing its local clock with the write-
clock of T2; it therefore “steals” the new copy of O2 from
the write-log of T2. In this way, new operations read only
new object copies so that, after T2 wait completes, no-one
can read the old copies and it is safe to write back the new
copies of O2 and O3 to memory.

3.2 Synchronizing Write Operations
The basic idea of RLU described above provides read-write
synchronization for object accesses. It does not however
ensure write-write synchronization, which must be managed
by the programmer if needed (as with RCU). A simple way
to synchronize writers is to execute them serially, without
any concurrency. In this case, the benefit is simplicity of
code and the concurrency that does exist between read-only
and write operations. On the other hand, the drawback is a
lack of scalability.

Another approach is to use fine-grained locks. In RLU,
each object that a writer modifies is logged and locked by
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the RLU mechanism. Programmers can therefore use this
locking process to coordinate write operations. For example,
in a linked-list implementation, instead of grabbing a global
lock for each writer, a programmer can use RLU to traverse
the linked list, and then use the RLU mechanism to lock the
target node and its predecessor. If the locking fails, then the
operation restarts, otherwise the programmer can proceed
and modify the target node (e.g., insertion or removal) and
release the locks.

3.3 Fine-grained Locking Using RLU
Programmers can use RLU locks as a fine-grained locking
mechanism, in the same way they use standard locks. How-
ever, RLU locks are much easier to use due to the fact that
all object reads and writes execute inside “RLU protected”

sections that are subject to the RCU-based quiescence mech-
anism of each writer. This means that when some thread
reads or writes (locks and logs) objects, no other concurrent
thread may overwrite any of these objects. With RLU, after
the object lock has been acquired, no other action is nec-
essary whereas, with standard locks, one needs to execute
post-lock customized verifications to ensure that the state of
the object is still the same as it was before locking.

3.4 RLU Metadata
Global. RLU maintains a global clock and a global array
of threads. The global array is used by the quiescence mech-
anism to identify the currently active threads.

Thread. RLU maintains two write-logs, a run counter, and
a local clock and write clock for each thread. The write-logs
hold new object copies, the run counter indicates when the
thread is active, and the local clock and write clock con-
trol the write-log stealing mechanism of threads. In addi-
tion, each object copy in the write-log has a header that in-
cludes: (1) a thread identifier, (2) a pointer to the actual ob-
ject, (3) the object size, and (4) a special pointer value that
indicates this is a copy (constant).

Object. RLU attaches a header for each object, which in-
cludes a single pointer that points to the copy of this object
in a write-log. If this pointer is NULL, then there is no copy
and the object is unlocked.

In our implementation, we attach a header to each object
by hooking the malloc() call with a call to rlu alloc() that
allocates each object with the attached header. In addition,
we also hook the free() call with rlu free() to ensure proper
deallocation of objects that include headers. Note that any
allocator library can be used with RLU.

We use simple macros to access and modify the metadata
headers of an object. First, we use get copy(obj) to get ptr-
copy: the value of the pointer (to copy) that resides in the
header of obj. Then, we use this ptr-copy as a parameter in
macros: (1) is unlocked(ptr-copy) that checks if the object is
free, (2) is copy(ptr-copy) that checks if this object is a copy
in a write-log, (3) get actual(obj) that returns a pointer to the
actual object in memory in case this is a copy in a write-log,
and (4) get thread id(ptr-copy) that returns the identifier of
the thread that currently locked this object.

We use 64-bit clocks and counters to avoid overflows and
initialize all RLU metadata to zero. The only exception is
write clocks of threads, that are initialized to ∞ (maximum
64-bit value).

3.5 RLU Pseudo-Code
Algorithm 1 presents the pseudo-code for the main functions
of RLU. An RLU protected section starts by calling rlu -
reader lock() that registers the thread: it increments the run
counter and initializes the local clock to the global clock.
Then, during execution of the section, it dereferences each
object by calling the rlu dereference() function, which first



Algorithm 1 RLU pseudo-code: main functions
1: function RLU_READER_LOCK(ctx)
2: ctx.is-writer← false
3: ctx.run-cnt← ctx.run-cnt +1 . Set active
4: memory fence
5: ctx.local-clock← global-clock . Record global clock

6: function RLU_READER_UNLOCK(ctx)
7: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
8: if ctx.is-writer then
9: RLU_COMMIT_WRITE_LOG(ctx) . Write updates

10: function RLU_DEREFERENCE(ctx, obj)
11: ptr-copy← GET_COPY(obj) . Get copy pointer
12: if IS_UNLOCKED(ptr-copy) then . Is free?
13: return obj . Yes⇒ return object
14: if IS_COPY(ptr-copy) then . Already a copy?
15: return obj . Yes⇒ return object
16: thr-id← GET_THREAD_ID(ptr-copy)
17: if thr-id = ctx.thr-id then . Locked by us?
18: return ptr-copy . Yes⇒ return copy
19: other-ctx← GET_CTX(thr-id) . No⇒ check for steal
20: if other-ctx.write-clock ≤ ctx.local-clock then
21: return ptr-copy . Stealing⇒ return copy
22: return obj . No stealing⇒ return object

23: function RLU_TRY_LOCK(ctx, obj)
24: ctx.is-writer← true . Write detected
25: obj← GET_ACTUAL(obj) . Read actual object
26: ptr-copy← GET_COPY(obj) . Get pointer to copy
27: if ¬ IS_UNLOCKED(ptr-copy) then
28: thr-id← GET_THREAD_ID(ptr-copy)
29: if thr-id = ctx.thr-id then . Locked by us?
30: return ptr-copy . Yes⇒ return copy
31: RLU_ABORT(ctx) . No⇒ retry RLU section
32: obj-header.thr-id← ctx.thr-id . Prepare write-log
33: obj-header.obj← obj
34: obj-header.obj-size← SIZEOF(obj)
35: ptr-copy← LOG_APPEND(ctx.write-log, obj-header)
36: if ¬ TRY_LOCK(obj, ptr-copy) then . Try to install copy
37: RLU_ABORT(ctx) . Failed⇒ retry RLU section
38: LOG_APPEND(ctx.write-log, obj) . Locked⇒ copy object
39: return ptr-copy

40: function RLU_CMP_OBJS(ctx, obj1, obj2)
41: return GET_ACTUAL(obj1) = GET_ACTUAL(obj2)

42: function RLU_ASSIGN_PTR(ctx, handle, obj)
43: ∗handle← GET_ACTUAL(obj)

44: function RLU_COMMIT_WRITE_LOG(ctx)
45: ctx.write-clock← global-clock +1 . Enable stealing
46: FETCH_AND_ADD(global-clock, 1) . Advance clock
47: RLU_SYNCHRONIZE(ctx) . Drain readers
48: RLU_WRITEBACK_WRITE_LOG(ctx) . Safe to write back
49: RLU_UNLOCK_WRITE_LOG(ctx)
50: ctx.write-clock←∞ . Disable stealing
51: RLU_SWAP_WRITE_LOGS(ctx) . Quiesce write-log

52: function RLU_SYNCHRONIZE(ctx)
53: for thr-id ∈ active-threads do
54: other← GET_CTX(thr-id)
55: ctx.sync_cnts[thr-id]← other.run-cnt
56: for thr-id ∈ active-threads do
57: while true do . Spin loop on thread
58: if ctx.sync-cnts[thr-id] is even then
59: break . Not active
60: other← GET_CTX(thr-id)
61: if ctx.sync-cnts[thr-id] 6= other.run-cnt then
62: break . Progressed
63: if ctx.write-clock ≤ other.local-clock then
64: break . Started after me

65: function RLU_SWAP_WRITE_LOGS(ctx)
66: ptr-write-log← ctx.write-log-quiesce . Swap pointers
67: ctx.write-log-quiesce← ctx.write-log
68: ctx.write-log← ptr-write-log

69: function RLU_ABORT(ctx, obj)
70: ctx.run-cnt← ctx.run-cnt +1 . Set inactive
71: if ctx.is-writer then
72: RLU_UNLOCK_WRITE_LOG(ctx) . Unlock
73: RETRY . Specific retry code

checks whether the object is unlocked or a copy and, in that
case, returns the object. Otherwise, the object is locked by
some other thread, so the function checks whether it needs
to steal the new copy from the other thread’s write-log. For
this purpose, the current thread checks if its local clock is
greater than or equal to the write clock of the other thread
and, if so, it steals the new copy. Notice, that the write-clock
of a thread is initially ∞, so stealing from a thread is only
possible when it updates the write-clock during the commit.

Next, the algorithm locks each object to be modified
by calling rlu try lock(). First, this function sets a flag to

indicate that this thread is a writer. Then, it checks if the
object is already locked by some other thread, in which case
it fails and retries. Otherwise, it starts the locking process
that first prepares a write-log header for the object, and then
installs a pointer to object copy by using compare-and-swap
(CAS) instruction. If the locking succeeds, the thread copies
the object to the write-log, and returns a pointer to the newly
created copy. Note that the code also uses the rlu cmp -
objs() and rlu assign ptr() functions that hide the internal
implementation of object duplication and manipulation.



An RLU protected section completes by calling rlu -
reader unlock() that first unregisters the thread by incre-
menting the run counter, and then checks if this thread is a
writer. If so, it calls rlu commit write log() that increments
the global clock and sets the write clock of the thread to the
new clock to enable write-log stealing. As we mentioned be-
fore, the increment of the global clock is the critical point at
which all new object copies of the write-log become visible
at once (atomically) to all concurrent RLU protected sec-
tions that start after the increment. As a result, in the next
step, the function executes rlu synchronize() in order to wait
for the completion of the RLU protected sections that started
before the increment of the global clock, i.e., that currently
active (have odd run counter) and have a local clock smaller
than the write clock of this thread. Thereafter, the function
writes back the new object copies from the write-log to the
actual memory, unlocks the objects, and sets the write-clock
back to ∞ to disable stealing. Finally, It is important to no-
tice that an additional quiescence call is necessary to clear
the current write-log from threads that steal copies from this
write-log, before the given thread can reuse this write-log
once again. For this purpose, the function swaps the cur-
rent write-log with a new write-log, and only after the next
rlu synchronize() call is completed, the current write-log is
swapped back and reused.

3.6 RLU Correctness
The key for correctness is to ensure that RLU protected sec-
tions always execute on a consistent memory view (snap-
shot). In other words, an RLU protected section must be re-
sistant to possible concurrent overwrites of objects that it
currently reads. For this purpose, RLU sections sample the
global clock on start. RLU writers modify object copies and
commit these copies by updating the global clock.

More precisely, correctness is guaranteed by a combina-
tion of three key mechanisms in Algorithm 1.

1. On commit, an RLU writer first increments the global
clock (line 46), which effectively “splits” all concurrent
RLU sections into old sections that observed the old
global clock and new sections that will observe the new
clock. The check of the clock in the RLU dereference
function (line 20) ensures that new sections can only read
object copies of modified objects (via stealing), while old
sections continue to read the actual objects in the mem-
ory. As a result, after old sections complete, no other
thread can read the actual memory of modified objects
and it is safe to overwrite this memory with the new ob-
ject copies. Therefore, in the next steps, the RLU writer
first executes the RLU synchronize call (line 47), which
waits for old sections to complete, and only then write
backs new object copies to the actual memory (line 48).

2. After the write-back of RLU writer, the write-log cannot
be reused immediately since other RLU sections may be
still reading from it (via stealing). Therefore, the RLU

writer swaps the current write-log L1 with a new write-
log L2. In this way, L2 becomes the active write-log for
the next writer, and only after this next writer arrives
to the commit and completes its RLU synchronize call,
it swaps back L1 with L2. This RLU synchronize call
(line 46) effectively “splits” concurrent RLU sections
into old sections that may be reading from the write-
log L1 and new sections that cannot be reading from the
write-log L1. Therefore, after this RLU synchronize call
completes, L1 cannot be read by any thread, so it is safe
to swap it back and reuse. Notice that this holds since
the RLU writer of L1 completes by disabling stealing
from L1: it unlocks all modified objects of L1 and sets
the write-clock back to ∞ (line 49).

3. Finally, to avoid write-write conflicts between writers,
each RLU writer locks each object it wants to modify
(line 36).

The combination of these tree mechanisms ensures that
an RLU protected section that starts with a global clock
value g will not be able to see any concurrent overwrite that
was made for global clock value g′ > g. As a result, the RLU
protected section always executes on a consistent memory
view that existed at global time g.

3.7 RLU Deferring
As shown in the pseudo-code, each RLU writer must exe-
cute one RLU synchronize call during the process of com-
mit. The relative penalty of RLU synchronize calls depends
on the specific workload, and our tests show that, usually,
it becomes expensive when operations are short and fast.
Therefore, we implement the RLU algorithm in a way that
allows us to defer the RLU synchronize calls to as late a
point as possible and only execute them when they are nec-
essary. Note that a similar approach is used in flat combin-
ing [19] and OpLog [4]. However, they defer on the level of
data-structure operations, while RLU defers on the level of
individual object accesses.

RLU synchronize deferral works as follows. On commit,
instead of incrementing the global clock and executing RLU
synchronize, the RLU writer simply saves the current write-
log and generates a new log for the next writer. In this way,
RLU writers execute without blocking on RLU synchronize
calls, while aggregating write-logs and locks of objects be-
ing modified. The RLU synchronize call is actually only
necessary when a writer tries to lock an object that is al-
ready locked. Therefore, only in this case, the writer sends a
“sync request” to the conflicting thread to force it to release
its locks, by making the thread increment the global clock,
execute RLU synchronize, write back, and unlock.

Deferring RLU synchronize calls and aggregating write-
logs and locks over multiple write operations provides sev-
eral advantages. First, it significantly reduces the amount
of RLU synchronize calls, effectively limiting them to the
number of actual write-write data conflicts that occur during



runtime execution. In addition, it significantly reduces the
contention on the global clock, since this clock only gets up-
dated after RLU synchronize calls, which now executes less
often. Moreover, the aggregation of write-logs and the defer-
ral of the global clock update defers the stealing process to a
later time, which allows threads to read from memory with-
out experiencing cache misses that would otherwise occur
when systematically updating data in memory.

We note that the described deferral mechanism is sensi-
tive to scheduling constraints. For example, a lagging thread
may delay other threads that wait for a sync response from
this thread. In our benchmarks we have not experienced such
behavior, however, it is possible to avoid dependency on
scheduling constraints by allowing a waiting thread to help
the other thread: the former can simply execute the sync and
write-back for the latter.

Also, we point out that these optimizations work when
the code that executes outside of RLU protected sections
can tolerate deferred updates. In practice, this requires to
define specific sync points in the code where it is critical to
see the most recent updates. In general, as we later explain,
this optimization is more significant for high thread counts,
such as when benchmarking the Citrus tree on an 80-way
4 socket machine (see Section 4). In all other benchmarks
that execute on a 16-way processor, using deferral provides
modest improvements over the simple RLU algorithm.

3.8 RLU Implementation
We implement Algorithm 1 and provide two flavors of RLU:
(1) coarse-grained and (2) fine-grained. The coarse-grained
flavor has no support for RLU deferral and it provides writer
locks that programmers can use to serialize and coordinate
writers. In this way, the coarse-grained RLU is simpler to
use since all operations take an immediate effect, and they
execute once and never abort. In contrast, the fine-grained
flavor has no support for writer locks. Instead it uses per-
object locks of RLU to coordinate writers and does provide
support for RLU deferral. As a result, in fine-grained RLU,
writers can execute concurrently while avoiding RLU syn-
chronize calls.

Our current RLU implementation consists of approxi-
mately 1,000 lines of C code and is available as open source.
Note that it does not support the same set of features as
RCU, which is a more mature library. In particular callbacks,
which allow programmers to register a function called once
the grace period is over, are currently not supported. RCU
also provides several implementations with different syn-
chronization primitives and various optimizations.

This lack of customization may limit the ability to readily
replace RCU by RLU in specific contexts such as in the ker-
nel. For instance, RCU is closely coupled with the operating
system scheduler to detect the end of a grace period based
on context switches.

The current version of RLU can be used in the kernel
but it requires special care while interacting with signals,

synchronization primitives, or thread-specific features, in the
same way as RCU. For example, RCU can suffer from dead-
locks due to interaction of synchronize rcu() and RCU read-
side with mutexes. Furthermore, one should point out that
approximately one third of RCU calls in the Linux kernel
are performed using the RCU list API, which is supported
on top of RLU, hence enabling seamless use of RLU in the
kernel.

Finally, we note that a recently proposed passive locking
scheme [23] can be used to eliminate memory barriers from
RLU section start calls. Our preliminary results of RLU
with this scheme show that it is beneficial for benchmarks
that are read-dominated and have short and fast operations.
Therefore, we plan to incorporate this feature in the next
version of RLU.

4. Evaluation
In this section, we first evaluate the basic RLU algorithm
on a set of user-space micro-benchmarks: a linked list, a
hash table, and an RCU-based resizable hash table [35]. We
compare an implementation using the basic RLU scheme,
with the state-of-the-art concurrent designs of those data-
structures based on the user-space RCU library [6] with the
latest performance fix [2]. We use RLU locks to provide
concurrency among write operations, yielding code that is
as simple as sequential code; RCU can achieve this only by
using a writer lock that serializes all writers and introduces
severe overheads. We also study the costs of RLU object
duplication and synchronize calls in pathological scenarios.

We then apply the more advanced RLU scheme with the
deferral mechanism of synchronize calls to the state-of-the-
art RCU-based Citrus tree [2], an enhancement of the Bonsai
tree of Clements et al. [5]. The Citrus tree uses both RCU and
fine-grained locks to deliver the best performing search tree
to date [2, 5]. We show that the code of a Citrus tree based on
RLU is significantly simpler and provides better scalability
than the original version based on RCU and locks.

Next, we show an evaluation of RLU in the Linux kernel.
We compare RLU to the kernel RCU implementation on a
classic doubly linked list implementation, the most popular
use of RCU in the kernel, as well as a single-linked list and
a hash table. We show that RLU matches the performance
of RCU while always being safe, that is, eliminating the
restrictions on use imposed in the RCU implementation (in
the kernel RCU doubly linked list, traversing the list forward
and backwards is done in unsafe mode since it can lead to
inconsistencies [26]). We also evaluate correctness of RLU
using a subset of the kernel-based RCU torture test module.

Finally, to show the expressibility of RLU beyond RCU,
we convert a real-world application, the popular in-memory
Kyoto Cabinet Cache DB, to use RLU instead of using a
single global reader-writer lock for thread coordination. We
show that the new RLU-based code has almost linear scal-
ability. It is unclear how one could convert Kyoto Cabinet,



1 int rlu_list_add (rlu_thread_data_t ∗self ,
2 list_t ∗list , val_t val ) {
3 int result ;
4 node_t ∗prev , ∗next , ∗node ;
5 val_t v ;

6 restart :
7 rlu_reader_lock ( ) ;
8 prev = rlu_dereference (list−>head ) ;
9 next = rlu_dereference (prev−>next ) ;

10 while (next−>val < val ) {
11 prev = next ;
12 next = rlu_dereference (prev−>next ) ;
13 }
14 result = (next−>val != val ) ;
15 if (result ) {
16 if ( !rlu_try_lock (self , &prev ) | |
17 !rlu_try_lock (self , &next ) ) {
18 rlu_abort (self ) ;
19 goto restart ;
20 }
21 node = rlu_new_node ( ) ;
22 node−>val = val ;
23 rlu_assign_ptr(&(node−>next ) , next ) ;
24 rlu_assign_ptr(&(prev−>next ) , node ) ;
25 }
26 rlu_reader_unlock ( ) ;

27 return result ;
28 }

Listing 2. RLU list: add function.

which requires simultaneous manipulation of several con-
current data structures, to use RCU.

4.1 Linked List
In our first benchmark, we apply RLU to the linked list data-
structure. We compare our RLU implementation to the state-
of-the-art concurrent non-blocking Harris-Michael linked
list (designed by Harris and improved by Michael) [16, 31].
The code for the Harris-Michael list is from synchrobench
[14] and, since this implementation leaks memory (it has no
support for memory reclamation), we generate an additional
more practical version of the list that uses hazard pointers
[32] to detect stale pointers to deleted nodes. We also com-
pare our RLU list to an RCU implementation based on the
user-space RCU library [2, 6]. In the RCU list, the simple
implementation serializes RCU writers. Note that it may
seem that one can combine RCU with fine-grained per node
locks and make RCU writers concurrent. However, this is not
the case, since nodes may change after the locking is com-
plete. As a result, it requires special post-lock validations,
ABA checks, and more, which complicates the solution and
makes it similar to Harris-Michael list. We show that by us-
ing RLU locks, one can provide concurrency among RLU
writers and maintain the same simplicity as that of RCU
code with serial writers. Our evaluation is performed on a
16-way Intel Core i7-5960X 3GHz 8-core chip with two
hardware hyperthreads per core, on Linux 3.13 x86_64 with
GCC 4.8.2 C/C++ compiler.

In Figure 4 one can see throughput results for various
linked lists with various mutation ratios. Specifically, the
figure presents 2%, 20%, and 40% mutation ratios for each
algorithm (insert:remove ratio is always 1:1):
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1. Harris leaky: The original list of Harris-Michael that
leaks memory.

2. Harris HP: The more practical list of Harris-Michael
with a fixed memory leak via the use of hazard pointers.

3. RCU: The RCU-based list that uses the user-space RCU
library and executes serial writers.

4. RLU: The basic RLU, as described in Section 3, that uses
RLU locks to concurrently execute RLU writers.

5. RLU defer: The more advanced RLU that defers RLU
synchronize calls to the actual data conflicts between
threads. The maximum defer limit is set to 10 write-sets.

In Figure 4, as expected the leaky Harris-Michael list pro-
vides the best overall performance across all concurrency
levels. The more realistic HP Harris-Michael list with the
leak fixed is much slower due to the overhead of hazard
pointers that execute a memory fence on each object deref-
erence. Next, the RCU-based list with writers executing se-
rially has a significant overhead due to writer serialization.
This is the cost RCU must pay to achieve a simple imple-
mentation, whereas by using RLU we achieve the same sim-
plicity but a better concurrency that allows RLU to perform
much better than RCU. Listing 2 shows the actual code for
the list add() function that uses RLU. One can see that the
implementation is simple: by using RLU to lock nodes, there
is no need to program custom post-lock validations, ABA
identifications, mark bits, tags and more, as is usually done
for standard fine-grained locking schemes [2, 18, 21] (con-
sider also the related example in Listing 3). Finally, in this
execution, the difference between RLU and deferred RLU is
not significant, so we plot only RLU.

4.2 Hash Table
Next, we construct a simple hash table data-structure that
uses one linked list per bucket. For each key, it first hashes
the key into a bucket, and then traverses the associated linked
list using the specific implementations discussed above.

Figure 5 shows the results for various hash tables and mu-
tation ratios. Here we base the RCU hash table implementa-
tion on per-bucket locks, so RCU writers that access differ-
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ent buckets can execute concurrently. As a result, RCU is
highly effective and even outperforms (by 15%) the highly
concurrent hash table design that uses Harris-Michael lists as
buckets. The reason for this is simply the fact that RCU read-
ers do less constant work than the readers of Harris-Michael
(that execute mark bits checks and more). In addition, in this
benchmark we show deferred RLU since it has a more sig-
nificant effect here than in the linked-list. This is because
the probability of getting an actual data conflict in a hash ta-
ble is significantly lower than getting a conflict in a list, so
the deferred RLU reduces the amount of synchronize calls
by an order of magnitude as compared to the basic RLU.
As one can see, the basic RLU incurs visible penalties for
increasing mutation ratios. This is a result of RLU synchro-
nize calls that have more effect when operations are short
and fast. However, the deferred RLU eliminates these penal-
ties and matches the performance of Harris-Michael. Note
that hazard pointers are less expensive in this case, since op-
erations are shorter and are more prone to generate a cache
miss due to sparse memory accesses of hashing.

4.3 Resizable Hash Table
To further evaluate RLU on highly-efficient data structures,
we implement an RCU-based resizable hash table of Triplett,
McKenney, and Walpole [35]. In RCU, the table expand pro-
cess first creates a new array of buckets that is linked to the
old buckets. As a result, the new buckets are “zipped” and,
in the next stage, the algorithm uses a “column-wise” iter-
ative RCU process to unzip the buckets: it unzips each pair
of buckets one step and, before moving to the next step, it
executes the RCU synchronize call. The main reason for this
column-wise design is the single pointer update limitation
of RCU. Notice that this design exposes intermediate “un-
zip point” nodes to concurrent inserts and removes, which
significantly complicates these operations in RCU.

We convert the RCU table to RLU that uses per bucket
writer locks, and eliminate the column-wise design: each
pair of buckets is fully unzipped in “one shot” unzip oper-
ation. As a result, in RLU, there is no need to handle inter-
mediate “unzip point” nodes during inserts or removes, so
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they can can execute concurrently without any programming
effort.

The authors of RCU-based resizable hash table provide
source code that has no support for concurrent inserts or re-
moves (only lookups). As a result, we use the same bench-
mark as in their original paper [35]: a table of 216 items that
constantly expands and shrinks between 213 and 214 buck-
ets (resizing is done by a dedicated thread), while there are
concurrent lookups.

Figure 6 presents results for RCU and RLU resizable
hash tables. For both, it shows the 8K graph, which is the
213 buckets table without resizes, the 16K graph, which is
the 214 table without resizes, and the 8K-16K, which is the
table that constantly resizes between 213 and 214 buckets. As
can be seen in the graphs, RLU provides throughput that is
similar to RCU.

We also compared the total number of resizes and saw
that the RLU resize is twice slower than the RCU resize due
to the overheads of duplicating nodes in RLU. However, re-
sizes are usually infrequent, so we would expect the latency
of a resize to be less critical than the latency that it introduces
into concurrent lookups.

4.4 Update-only Stress Test
In order to evaluate the main overheads of RLU compared to
RCU, we execute an additional micro-benchmark that repro-
duces pathological cases that stress RLU object duplication
and synchronize calls. The benchmark executes 100% up-
dates on a 10,000 bucket hash table that has only one item
in each bucket. As a result, RCU-based updates are quick:
they simply hash into the bucket and update the single item
of this bucket, whereas the RLU-based updates must also
duplicate the single item of the bucket and then execute the
RLU synchronize call.

Figure 7 presents results for this stress test. As can be
seen, RLU is 2-5 times slower than RCU. Notice that, for
a single-thread, RLU is already twice slower than RCU,
which is a result of RLU object duplications (synchronize
has no penalty for a single thread). Then, with increased
concurrency, the RLU penalty increases due to RLU syn-
chronize calls. However, by using RLU deferral, this penalty
decreases to the level of the single-thread execution. This
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means that RLU deferral is effective in eliminating the
penalty of RLU synchronize calls.

4.5 Citrus Search Tree
A recent paper by Arbel and Attiya [2] presents a new design
of the Bonsai search tree of Clements et al. [5], which was
initially proposed to provide a scalable implementation for
address spaces in the kernel. The new design, called the
Citrus tree, combines RCU and fine-grained locks to support
concurrent write operations that traverse the search tree by
using RCU protected sections. The results of this work are
encouraging, and they show that scalable concurrency is
possible using RCU.

The design of Citrus is however quite complex and it re-
quires careful understanding of concurrency and rigorous
proof procedures. Specifically, a write operation in Citrus
first traverses the tree by using RCU protected read-side sec-
tion, and then uses fine-grained locks to lock the target node
(and possibly successor and parent nodes). Then, after node
locking succeeds, it executes post-lock validations, makes
node duplications, performs an RCU synchronize call, and
manipulates object pointers. As a result, the first phase that
traverses the tree is simple and efficient, while the second
phase of locking, validation, and modification is manual,
complex, and error-prone.

We use RLU to reimplement the Citrus tree, and our re-
sults show that the new code is much simpler: RLU com-
pletely automates the complex locking, validation, dupli-
cation, and pointer manipulation steps of the Citrus writer,
which a programmer would have previously needed to man-
ually design, code, and verify. Listings 3 and 4 present the
code of Citrus delete() function for RCU and RLU (for clar-
ity, some details are omitted). Notice, that the RCU imple-
mentation is based on mark bits, tags (to avoid ABA), post-
lock custom validations, and manual RCU-style node dupli-
cation and installation. In contrast, the RLU implementation
is straightforward: it just locks each node before writing to
it, and then performs “sequential” reads and writes.

Figure 8 presents performance results for RCU and RLU
Citrus trees. In this benchmark, we execute on an 80-way
highly concurrent 4 socket Intel machine, in which each
socket is an Intel Xeon E7-4870 2.4GHz 10-core chip with
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Figure 8. Throughput for the Citrus tree with RCU and
RLU (top) and RLU statistics (bottom).

two hyperthreads per core. In addition, we apply the deferred
RLU algorithm to reduce the synchronization calls of RLU
and provide better scalability. We show results for 10%,
20%, and 40% mutation ratios for both RCU and RLU, and
also provide some RLU statistics:

1. RLU write-back quiescence: The average number of iter-
ations spent in the RLU synchronize waiting loop. This
provides a rough estimate for the cost of RLU synchro-
nize for each number of threads (each iteration includes
one cpu relax() call to reduce bus noise and contention).

2. RLU sync ratio: The probability for a write operation to
execute the RLU synchronize call, write-back, and un-
lock. In other words, the sync ratio indicates the proba-
bility for an actual data conflict between threads, where a
thread sends a sync request that forces another thread to
synchronize and “flush” the new data to the memory.

3. RLU read copy ratio: The probability for an object read
to steal a new copy from a write-log of another thread.
This provides an approximate indication for how many
read-write conflicts occur during benchmark execution.

4. RLU sync request ratio: The probability for a thread
to find a node locked by other thread. Notice, that this
number is higher than the actual RLU sync ratio, since
multiple threads may find the same locked object and
send multiple requests to the same thread to unlock the
same object.



1 bool RCU_Citrus_delete (citrus_t ∗tree , int key ) {
2 node_t ∗pred , ∗curr , ∗succ , ∗parent , ∗next , ∗node ;

3 urcu_read_lock ( ) ;
4 pred = tree−>root ;
5 curr = pred−>child [ 0 ] ;

6 . . . Traverse the tree . . .

7 urcu_read_unlock ( ) ;
8 pthread_mutex_lock(&(pred−>lock ) ) ;
9 pthread_mutex_lock(&(curr−>lock ) ) ;

10 // Check that pred and curr are still there
11 if ( !validate (pred , 0 , curr , direction ) ) {
12 . . . Restart operation . . .
13 }

14 . . . Handle case with 1 child, assume 2 children now . . .

15 // Find successor and its parent
16 parent = curr ;
17 succ = curr−>child [ 1 ] ;
18 next = succ−>child [ 0 ] ;
19 while (next != NULL ) {
20 parent = succ ;
21 succ = next ;
22 next = next−>child [ 0 ] ;
23 }
24 pthread_mutex_lock(&(succ−>lock ) ) ;

25 // Check that succ and its parent are still there
26 if (validate (parent , 0 , succ , succDirection ) &&
27 validate (succ , succ−>tag [ 0 ] , NULL , 0 ) ) {
28 curr−>marked = true ;

29 // Create a new successor copy
30 node = new_node (succ−>key ) ;
31 node−>child [ 0 ] = curr−>child [ 0 ] ;
32 node−>child [ 1 ] = curr−>child [ 1 ] ;
33 pthread_mutex_lock(&(node−>lock ) ) ;

34 // Install the new successor
35 pred−>child [direction ] = node ;

36 // Ensures no reader is accessing the old successor
37 urcu_synchronize ( ) ;

38 // Update tags/marks and redirect the old successor
39 if (pred−>child [direction ] == NULL )
40 pred−>tag [direction ] + + ;
41 succ−>marked = true ;
42 if (parent == curr ) {
43 node−>child [ 1 ] = succ−>child [ 1 ] ;
44 if (node−>child [ 1 ] == NULL )
45 node−>tag [ 1 ] + + ;
46 }
47 } else {
48 parent−>child [ 0 ] = succ−>child [ 1 ] ;
49 if (parent−>child [ 1 ] == NULL )
50 parent−>tag [ 1 ] + + ;
51 }

52 . . . Unlock all nodes . . .

53 // Deallocate the removed node
54 free (curr ) ;

55 return true ;
56 }

Listing 3. RCU-based Citrus delete operation [2].

Performance results show that RLU Citrus matches RCU
for low thread counts, and improves over RCU for high
thread counts by a factor of 2. This improvement is due to
the deferral process of synchronize calls, which allows RLU
to execute expensive synchronize calls only on actual data
conflicts, whereas the original Citrus must execute synchro-
nize for each delete. As can be seen in RLU statistics, the
reduction is almost an order of magnitude (10% sync and

1 bool RLU_Citrus_delete (citrus_t ∗tree , int key ) {
2 node_t ∗pred , ∗curr , ∗succ , ∗parent , ∗next , ∗node ;

3 rlu_reader_lock ( ) ;
4 pred = (node_t ∗)rlu_dereference (tree−>root ) ;
5 curr = (node_t ∗)rlu_dereference (pred−>child [ 0 ] ) ;

6 . . . Traverse the tree, assume 2 children now . . .

7 // Find successor and its parent
8 parent = curr ;
9 succ = (node_t ∗)rlu_dereference (curr−>child [ 1 ] ) ;

10 next = (node_t ∗)rlu_dereference (succ−>child [ 0 ] ) ;
11 while (next != NULL ) {
12 parent = succ ;
13 succ = next ;
14 next = (node_t ∗)rlu_dereference (next−>child [ 0 ] ) ;
15 }

16 // Lock nodes and manipulate pointers as in serial code
17 if (parent == curr ) {
18 rlu_lock(&succ ) ;
19 rlu_assign_ptr(&(succ−>child [ 0 ] ) , curr−>child [ 0 ] ) ;
20 } else {
21 rlu_lock(&parent ) ;
22 rlu_assign_ptr(&(parent−>child [ 0 ] ) , succ−>child [ 1 ] ) ;
23 rlu_lock(&succ ) ;
24 rlu_assign_ptr(&(succ−>child [ 0 ] ) , curr−>child [ 0 ] ) ;
25 rlu_assign_ptr(&(succ−>child [ 1 ] ) , curr−>child [ 1 ] ) ;
26 }
27 rlu_lock(&pred ) ;
28 rlu_assign_ptr(&(pred−>child [direction ] ) , succ ) ;

29 // Deallocate the removed node
30 rlu_free (curr ) ;

31 // Done with delete
32 rlu_reader_unlock ( ) ;

33 return true ;
34 }

Listing 4. RLU-based Citrus delete operation.

write-back ratio) relative to the basic RLU. It is important to
note that Arbel and Morrison [3] proposed an RCU predicate
primitive that allows them to reduce the cost of synchronize
calls. However, defining an RCU predicate requires explicit
programming and internal knowledge of the data-structure,
in contrast to RLU that automates this process.

4.6 Kernel-space Tests
The kernel implementation of RCU differs from user-space
RCU in a few key aspects. It notably leverages kernel fea-
tures to guarantee non-preemption and scheduling of a task
after a grace period. This makes RCU extremely efficient
and have very low overhead. The rlu reader lock() can be
as short as a compiler memory barrier with non-preemptible
RCU. Thus, to compare the performance of the kernel im-
plementation of RCU with RLU, we create a Linux kernel
module along the same line as Triplett et al. with the RCU
hash table [35].

One main use case of kernel RCU are for linked lists that
are used throughout Linux, from the kernel to the drivers.
We therefore first compare the kernel RCU implementation
of this structure to our RLU version.

We implemented our RLU list by leveraging the same
API as the RCU list (list for each entry rcu(), list add -
rcu(), list del rcu()) and replacing the RCU API with RLU
calls. For benchmarking we inserted dummy nodes with ap-
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Figure 9. Throughput for kernel doubly linked lists
(list_* APIs) with 0.1% (left) and 1% (right) updates.

propriate padding to fit an entire cache line. We used the
same test machine as for the user-space experiment (16-way
Intel i7-5960X) with version 3.16 of the Linux kernel and
non-preemptible RCU enabled, and we experimented with
low update rates of 0.1% and 1% updates that represent
the common case for using RCU-based synchronization in
the kernel. We implemented a performance fix in the RCU
list implementation (in list entry rcu()), which we have re-
ported to the Linux kernel mailing list. Results with the fix
are labeled as “RCU (fixed)” in the graphs.

We observe in Figure 9 that RCU has reduced overhead
compared to RLU in read-mostly scenarios. However, the
semantics provided by the two lists is different. RCU cannot
add an element atomically in the doubly-linked list and it
therefore by restricts all concurrent readers to only traverse
forward. Traversing the list backwards is unsafe since it can
lead to inconsistencies, so special care must be taken to avoid
memory corruptions and system crash [26]. In contrast, RLU
provides a consistent list at a reasonable cost.

We also conducted kernel tests with higher update rates
of 2%, 20% and 40% on a single-linked list and a hash-
table to match the userspace benchmarks and compare RLU
against the kernel implementation of RCU. Note that these
data structure are identical to those tested earlier in user
space, but they use the kernel implementation of RCU in-
stead of the user-space RCU library. Results are shown in
Figure 10 and Figure 11. As expected, in the linked-list, in-
creasing writers in RCU introduces a sequential bottleneck,
while RLU writers proceed concurrently and allow RLU to
scale. In the hash-table, RCU scales since it uses per bucket
locks and RLU matches RCU. Note that the deferred RLU
slightly outperforms RCU, which due to faster memory deal-
locations (and reuse) in RLU compared to RCU (that must
wait for the kernel threads to context-switch).

4.7 Kernel-space Torture Tests
The kernel implementation of RCU comes with a module,
named RCU torture, which tests the RCU implementation
for possible bugs and correctness problems. It contains many
tests that exercise the different implementations and operat-
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ing modes of RCU. As RLU does not support all the features
and variants of RCU, we only considered the basic RCU tor-
ture tests that check for consistency of the classic implemen-
tation of RCU and can be readily applied to RLU.

These basic consistency tests consist of 1 writer thread, n
reader threads, and n fake writer threads. The writer thread
gets an element from a private pool, shares it with other
threads using a shared variable, then takes it back to the
private pool using RCU mechanism (deferred free, synchro-
nize, etc.). The reader threads continuously read the shared
variable while the fake writers just invoke synchronize with
random delays. All the threads perform consistency checks
at different steps and with different delays.

We have successfully run this RLU torture test with de-
ferred free and up to 15 readers and fake writers on our 16-
way Intel i7-5960X machine. While our experiments only
cover a subset of all the RCU torture tests, it still provides
strong evidence of the correctness of our algorithm and its
implementation. We plan to expand the list of tests as we
add additional features and APIs to RLU.

4.8 Kyoto Cabinet Cache DB
We finally illustrate how to use RLU for an existing applica-
tion with the popular in-memory database implementation
Kyoto Cabinet Cache DB [12]. Kyoto Cache DB is writ-
ten in C++ and its DBM implementation is relatively simple
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and straightforward. Internally, Kyoto breaks the database
into slots, where each slot is composed of buckets and each
bucket is a search tree. As a result, to find a key, Kyoto first
hashes the key into a slot, and then into a bucket in this slot.
Then, it traverses the search tree that resides in the bucket
and processes the record that includes the key and returns.

Database operations in Kyoto CacheDB are fast due to the
double hashing procedures and use of search trees. However,
Kyoto fails to scale with increasing numbers of threads, and
in fact it usually collapses after 3-4 threads. Recent work by
Dice et al. [9] observed a scalability bottleneck and indicated
that the problem is the global reader-writer lock that Kyoto
uses to synchronize database operations.

We conducted a performance analysis of Kyoto Cache
DB and concur with [9] that the global reader-writer lock
is indeed the problem. However, we also found that Kyoto
performs an excessive amount of thread context switches
due to the specific implementation of reader-writer spin
locks in the Linux pthreads library. We therefore decided to
first eliminate the context switches by replacing the reader-
writer lock of Kyoto with an ingress-egress reader-writer
lock implementation [7]. To the best of our knowledge, the
ingress-egress reader-writer locks perform the best on Intel
machines (ingress/enter counter and egress/exit counter for
read-lock/read-unlock) [1]. We note that one could use hier-
archical cohort-based reader-writer locks [10] in our bench-
mark to reduce the cache traffic in Kyoto, but this would
not have a significant effect since the performance analysis
reveals that the cache miss ratio is already low (4%-5%).

In addition to the global reader-writer lock, Kyoto also
uses a lock per slot. As a result, each operation acquires the
global reader-writer lock for a read or a write, depending
on whether the actual operation is read-only or not, and then
acquires the lock of the relevant slot. Based on this, we apply
the RLU scheme to Kyoto Cache DB in a way that eliminates
the need for the global reader-writer lock, and use the per slot
locks to synchronize the RLU writers. A good benefit of this
design is the fact that RLU writers are irrevocable and have
no need to support abort or undo procedures. As a result, the
conversion to RLU is simple and straightforward.

Figure 12 shows throughput results for the original, fixed
(ingress-egress reader-writer lock), and RLU-based Kyoto
Cache DB for 2% and 10% mutation ratios and 1GB DB.
This benchmark runs on a 16-way Intel 8-core chip, where
each thread randomly executes set(), add(), remove(), and
get() DB operations.

In the performance graph one can see that the new RLU
based Kyoto provides continued scalability where the origi-
nal Kyoto fails to scale due to the global reader-writer lock
(the slight drop of RLU from 8 to 10 threads is due to 8-
core hyper-threading). Observe that the original Kyoto im-
plementation fails to scale despite the fact that the amount
of read-only operations is high, about 90-98%. Fixing this
problem by replacing the global reader-writer lock with an
ingress-egress lock eliminates the excess context switching
and allows Kyoto to scale until 6-8 threads. Note that it is
possible to combine the ingress-egress lock with a passive
locking scheme [23] to avoid memory barriers on the read-
side of the lock, but writers still cannot execute concurrently
with readers and this approach introduces a sequential bot-
tleneck and limits scalability.

We believe that if one would convert Kyoto to RCU by
using the per slot locks for synchronization of writers (like
we did), it would provide the same performance as with
RLU. However, it is not clear how to even begin to convert
those update operations to use RCU. Kyoto’s update oper-
ation may modify multiple nodes in a search tree, multiple
locations in the hash tables, and maybe some more locations
in other helper data-structures. The result, we fear, will be a
non-trivial design, which in the end will deliver performance
similar to the one RLU provides quite readily today.

5. Conclusion
In summary, one can see that the increased parallelism hid-
den under the hood of the RLU system provides for a simple
programming methodology that delivers performance sim-
ilar or better than that obtainable with RCU, but at a sig-
nificantly lower intellectual cost to the programmer. RLU
is compatible with the RCU interface, and we hope that its
combination of good performance and more expressive se-
mantics will convince both kernel and user-space program-
mers to use it to parallelize real-world applications.
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