
Scaling a file system to many cores
using an operation log

Srivatsa S. Bhat,† Rasha Eqbal,‡ Austin T. Clements,§
M. Frans Kaashoek, Nickolai Zeldovich

MIT CSAIL

ABSTRACT

It is challenging to simultaneously achieve multicore scala-
bility and high disk throughput in a file system. For exam-
ple, even for commutative operations like creating different
files in the same directory, current file systems introduce
cache-line conflicts when updating an in-memory copy of
the on-disk directory block, which limits scalability.
ScaleFS is a novel file system design that decouples the

in-memory file system from the on-disk file system using
per-core operation logs. This design facilitates the use of
highly concurrent data structures for the in-memory repre-
sentation, which allows commutative operations to proceed
without cache conflicts and hence scale perfectly. ScaleFS
logs operations in a per-core log so that it can delay propa-
gating updates to the disk representation (and the cache-line
conflicts involved in doing so) until an fsync. The fsync
call merges the per-core logs and applies the operations to
disk. ScaleFS uses several techniques to perform the merge
correctly while achieving good performance: timestamped
linearization points to order updates without introducing
cache-line conflicts, absorption of logged operations, and
dependency tracking across operations.
Experiments with a prototype of ScaleFS show that its

implementation has no cache conflicts for 99% of test cases
of commutative operations generated by Commuter, scales
well on an 80-core machine, and provides on-disk perfor-
mance that is comparable to that of Linux ext4.

1 INTRODUCTION

Many of today’s file systems do not scale well on multicore
machines, and much effort is spent on improving them to

† Now at VMware. ‡ Now at Apple. § Now at Google.

SOSP’17, October 28–31, 2017, Shanghai, China.
© 2017 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132779

allow file-system-intensive applications to scale better [4,
10, 13, 23, 26, 31]. This paper contributes a clean-slate file
system design that allows for good multicore scalability by
separating the in-memory file system from the on-disk file
system, and describes a prototype file system, ScaleFS, that
implements this design.
The main goal achieved by ScaleFS ismulticore scala-

bility. ScaleFS scales well for a number of workloads on an
80-core machine, but even more importantly, the ScaleFS
implementation is conflict-free for almost all commutative
operations [10]. Conflict freedom allows ScaleFS to take
advantage of disjoint-access parallelism [1, 20] and suggests
that ScaleFS will continue to scale even for workloads or
machines we have not yet measured.
In addition to scalability, ScaleFS must also satisfy two

standard file system constraints: crash safety (meaning that
ScaleFS recovers from a crash at any point and provides clear
guarantees for fsync) and good disk throughput (meaning
that the amount of data written to the disk is commensurate
with the changes that an application made to the file system,
and that data is written efficiently).
These goals are difficult to achieve together. Consider

directory operations in Linux’s ext4 file system [29]. Direc-
tories are represented in memory using a concurrent hash
table, but when Linux updates a directory, it also propagates
these changes to the in-memory ext4 physical log, which is
later flushed to disk. The physical log is essential to ensure
crash safety, but can cause two commutative directory oper-
ations to contend for the same disk block in the in-memory
log. For example, consider create(f1) and create(f2) un-
der the same parent directory, where f1 and f2 are distinct.
According to the Scalable Commutativity Rule [10], because
these two creates commute, a conflict-free and thus scal-
able implementation is possible. However, in Linux, they
may update the same disk block, causing cache conflicts and
limiting scalability despite commuting.
Multicore scalability is important even for a file system

on a relatively slow disk,1 because many workloads operate
in memory without flushing every change to disk. For exam-
ple, an application may process a large amount of data by
creating and deleting temporary files, and flush changes to

1In this paper, we use the term “disk” loosely to refer to persistent
storage, including rotational disks, flash-based SSDs, etc.

69

https://doi.org/10.1145/3132747.3132779
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

disk only after producing a final output file. It is important
that the application not be bottlenecked by the file system
when it is not flushing data to disk. Similarly, a file system
may be hosting multiple applications, such as a text editor
(which requires strong durability) and a parallel software
build (which does not require immediate durability but needs
the file system to scale well).
Our key insight is to decouple the in-memory file system

from the on-disk file system, and incur the cost of writing
to disk (including the cache-line conflicts to construct an
in-memory copy of the on-disk data structures that will be
written to disk) only when requested by the application. To
enable decoupling, ScaleFS separates the in-memory file
system from the on-disk file system using an operation log,
based on oplog [5]. The operation log consists of per-core
logs of file system operations (e.g., link, unlink, rename).
When fsync or sync are invoked, ScaleFS sorts the opera-
tions in the operation log by timestamp, and applies them to
the on-disk file system. For example, ScaleFS implements
directories in such a way that if two cores update different
entries in a shared directory, then no interaction is neces-
sary between the two cores. When an application calls fsync
on the directory, ScaleFS merges the per-core operation
logs into an ordered log, prepares the on-disk representation,
adds the updated disk blocks to a physical log, and finally
flushes the physical log to disk.
Although existing file systems decouple representations

for reads, the operation log allows ScaleFS to take this ap-
proach to its logical extreme even for updates. For example,
Linux has an in-memory cache that represents directory en-
tries differently than on disk. However, system calls that
modify directories update both the in-memory cache and
an in-memory copy of the on-disk representation. Keeping
an updated copy of the on-disk representation in memory
means that when it is eventually written to disk (e.g., when
an application invokes fsync), the on-disk state will cor-
rectly reflect the order in which the application’s system
calls executed.
ScaleFS’s log enables two independent file systems: an

in-memory file system tailored to achieve scalability, and an
on-disk file system tailored for high disk throughput. The
in-memory file system can choose data structures that allow
for good concurrency, choose inode numbers that can be allo-
cated concurrently without coordination, etc. (as in sv6 [10])
and be completely unaware of the on-disk data structures.
On the other hand, the on-disk file system can choose data
structures that allow for good disk throughput, and can even
reuse an existing on-disk format. The operation log connects
the two file systems, so that changes that took place in the
in-memory file system can be applied consistently to the
on-disk file system on fsync.
We have implemented ScaleFS by extending sv6 [10],

which does not provide crash safety, with the on-disk file
system from xv6 [12] using the decoupling approach. The
implementation does not support all of the file system op-

erations that, say, Linux supports (such as sendfile), but
ScaleFS does implement many operations required from a
file system, and supports complex operations such as rename
across directories. Furthermore, we believe that extending
ScaleFS to support additional features can be done without
impacting scalability of commutative operations.
Experiments with ScaleFS on Commuter [10] demon-

strate that ScaleFS maintains sv6’s high multicore scalabil-
ity for commutative operations while providing crash safety.
This demonstrates that ScaleFS’s decoupling approach is
effective at combining crash safety and scalability. Exper-
imental results also indicate that ScaleFS achieves better
scalability than the Linux ext4 file system for in-memory
workloads, while providing similar performance when ac-
cessing disk. ScaleFS is conflict-free in 99.2% of the com-
mutative test cases Commuter generates, while Linux is
conflict-free for only 65% of them. Furthermore, experiments
demonstrate that ScaleFS achieves good disk performance.
The main contributions of the paper are as follows.

• A new design approach for multicore file systems that
decouples the in-memory file system from the on-disk
file system using an operation log.

• Techniques based on timestamping linearization points
that ensure crash safety and high disk performance.

• An implementation of the above design and techniques
in a ScaleFS prototype.

• An evaluation of our ScaleFS prototype that confirms
that ScaleFS achieves good scalability and performance.
The rest of the paper is organized as follows. §2 describes

related work, §3 describes the semantics that ScaleFS aims
to provide, §4 provides an overview of ScaleFS, §5 describes
the design of ScaleFS, §6 summarizes ScaleFS’s implemen-
tation, §7 presents experimental results, and §8 concludes.

2 RELATEDWORK

The main contribution of ScaleFS is the split design that
allows the in-memory file system to be designed for multi-
core scalability and the on-disk file system for durability and
disk performance. The rest of this section relates ScaleFS’s
separation to previous designs.

File system scalability. ScaleFS adopts its in-memory
file system from sv6 [10]. sv6 uses sophisticated parallel-
programming techniques to make commutative file system
operations conflict-free so that they scale well on today’s
multicore processors. Due to these techniques, sv6 scales
better than Linux for many in-memory operations. sv6’s,
however, is only an in-memory file system; it does not write
data to durable storage. ScaleFS’s primary contribution over
sv6’s in-memory file system lies in combining multicore
scalability with durability. To do so, ScaleFS extends the
in-memory file system using oplog [5] to track linearization
points, and adds an on-disk file system using an operation
log sorted by the timestamps of linearization points.

70

NOVA [42] and iJournaling [32] take an approach similar
to ScaleFS by maintaining per-inode logs. ScaleFS gener-
alizes the per-inode log approach by allowing the use of
different on-disk file systems, whereas NOVA and iJournal-
ing dictate the on-disk layout by requiring the per-inode
log to be directly stored in non-volatile memory or on disk.
ScaleFS also allows directory operations to be more scal-
able than NOVA or iJournaling, because ScaleFS maintains
per-core logs, which avoid cache-line contention even when
modifying the same directory from different cores. Finally,
ScaleFS can absorb multiple operations to the same direc-
tory to reduce the amount of data written to disk.
Many existing file systems, including Linux ext4, suffer

from multicore scalability bottlenecks [4, 10, 31], and file sys-
tem developers are actively improving scalability in practice.
However, most practical file systems are taking an incremen-
tal approach to improving scalability, as demonstrated by
NetApp’s Waffinity design [13]. This improves scalability for
particular workloads and hardware configurations, but fails
to achieve ScaleFS’s goal of conflict-free implementations
for all commutative operations, which is needed to scale on
as-of-yet unknown workloads or hardware platforms.

Separation using logging. File systems use different data
structures for in-memory and on-disk operations. For exam-
ple, directories are often represented in memory differently
than on disk to allow for higher performance and parallelism.
Linux’s dcache [11, 30], which uses a concurrent hash table,
is a good example. Similarly, ext4’s delayed allocation allows
ext4 to defer accessing disk bitmaps until necessary. How-
ever, no file system completely decouples the in-memory file
system from the on-disk file system. In particular, in every
other scalable file system, operations that perform modifi-
cations to in-memory directories also manipulate a copy of
the on-disk data structures in memory. File systems update
an in-memory copy of the on-disk data structures so that
when these data structures are eventually written to disk,
they are consistent with the order in which the applications’
system calls executed in memory. This lack of decoupling
between the in-memory and on-disk representations causes
unnecessary cache-line movement and limits scalability.
ReconFS [28] pushes the separation further than tradi-

tional file systems do. For example, it decouples the volatile
and the persistent directory tree maintenance and emulates
hierarchical namespace access on the volatile copy. In the
event of system failures, the persistent tree can be recon-
structed using embedded connectivity and metadata per-
sistence logging. ReconFS, however, is specialized to non-
volatile memory, while ScaleFS’s design does not require
non-volatile memory.
The decoupling is more commonly used in distributed

systems. For example, the BFT library separates the BFT
protocol from NFS operations using a log [6]. However, these
designs do not use logs designed for multicore scalability.

ScaleFS implements the log that separates the in-memory
file system from the on-disk file system using an oplog [5].

Oplog allows cores to append to per-core logs without any
interactions with other cores. ScaleFS extends oplog’s de-
sign to sort operations by timestamps of linearization points
of file system operations to ensure crash safety.

Applying distributed techniques tomulti-core file sys-

tems. Hare is a scalable in-memory file system for multi-
core machines without cache coherence [17]. It does not
provide persistence and poses this as an open research prob-
lem. ScaleFS’s decoupling approach is likely to be a good
match for Hare too.
SpanFS [22] extends Hare’s approach by implementing

persistence. This requires each core to participate in a two-
phase commit protocol for operations such as rename that
can span multiple cores. Much like Hare, SpanFS shards
files and directories across cores at a coarse granularity, and
cannot re-balance the assignment at runtime. While SpanFS
can alleviate some file system scalability bottlenecks, its
rigid sharding requires the application developer to carefully
distribute files and directories across cores, and to not access
the same file or directory from multiple cores.

In contrast to SpanFS and Hare, ScaleFS does not require
the application developer to partition files or directories.
ScaleFS provides scalability for commutative operations,
even if they happen to modify the same file or directory. As
we show in §7, ScaleFS achieves good scalability even when
delivering messages to shared mailboxes on 80 cores; we do
not expect SpanFS or Hare would scale under this workload.

On-disk file systems. ScaleFS’s on-disk file system uses
a simple design based on xv6 [12]. It runs file system updates
inside of a transaction as many previous file systems have
done [8, 18], has a physical log for crash recovery of metadata
file system operations (but less sophisticated than, say, ext4’s
design [29]), and implements file system data structures on
disk in the same style as the early versions of Unix [37].

Because of the complete decoupling of the in-memory file
system and on-disk file system, ScaleFS could be modified to
use ext4’s disk format, and adopt many of its techniques to
support better disk performance. Similarly, ScaleFS’s on-
disk file system could be changed to use other ordering
techniques than transactions; for example, it could use soft
updates [16], a patch-based approach [15], or backpointer-
based consistency [7].

ScaleFS’s on-disk file system provides concurrent I/O us-
ing standard striping techniques. It could be further extended
using more sophisticated techniques from file systems such
as LinuxLFS [21], BTRFS [38], TABLEFS [36], NoFS [7], and
XFS [40] to increase disk performance.

ScaleFS’s on-disk file system can commit multiple trans-
actions concurrently using multiple physical journals. Prior
work [27, 32, 35] has also shown how concurrent fsync calls
can run in parallel. Using CCFS [35] or iJournaling [32] in-
stead of our prototype on-disk file systemmay provide better
disk performance; the contribution of this paper lies in the

71

decoupling of the in-memory and on-disk file systems, and
the multi-core scalability that this allows ScaleFS to achieve.
ScaleFS’s on-disk file system is agnostic about the

medium that stores the file system, but in principle should
be able to benefit from recent work using non-volatile mem-
ory, such as UBJ [25], byte-granularity logging [14, 42], or
ReconFS [28] to minimize intensive metadata writeback and
scattered small updates.

3 DURABILITY SEMANTICS

To achieve high performance, a file system must defer writ-
ing to persistent storage for as long as possible, allowing
two crucial optimizations: batching (flushing many changes
together is more efficient) and absorption (later changes may
supersede earlier ones). However, a file system cannot defer
forever, and may need to flush to persistent storage for two
reasons. First, it may run out of space in memory. Second,
an application may explicitly call fsync, sync, etc. Thus, for
performance, it is critical to write as little as possible in the
second case (fsync). To do this, it is important to agree on
the semantics of fsync.
A complication in agreeing on the semantics of fsync

comes from the application developer, whose job it is to
build crash-safe applications on top of the file system inter-
face. If the interface is too complex to use (e.g., the semantics
of fsync are subtle), some application developers are likely
to make mistakes [34]. On the other hand, an interface that
provides cleaner crash safety properties may give up perfor-
mance that sophisticated application programmers want. In
this paper, ScaleFS aims to provide high performance, tar-
geting programmers who carefully manage the calls to sync
and fsync in their applications, with a view to obtain the
best performance. This approach is in line with other recent
work on high-performance file systems [32, 35]. Additional
interfaces can help application developers write crash-safe
applications, such as CCFS streams [35], Featherstitch [15],
and failure-atomic msync [33], although the ScaleFS proto-
type does not support them.
ScaleFS’s semantics for fsync are defined by four prop-

erties. The first property is that fsync’s effects are local: an
fsync of a file or directory ensures that all changes to that
file or directory, at the time fsync was called, are flushed to
disk. For instance, calling fsync on one file will ensure that
this file’s data and metadata are durably stored on disk, but
will not flush the data or metadata of other files, or even of
the directory containing this file. If the application wants to
ensure the directory entry is durably stored on disk, it must
invoke fsync on the parent directory as well [34, 43].

The local property allows for high performance, but some
operations—specifically, rename—cannot be entirely local.
For instance, suppose there are two directories d1 and d2, and
a file d1/a, and all of them are durably stored on disk (there
are no outstanding changes). What should happen if the ap-
plication calls rename(d1/a, d2/a) followed by fsync(d1)?
Naïvely following the local semantics, a file system might

flush the new version of d1 (without a), but avoid flushing
d2 (since the application did not call fsync(d2)). However,
if the system were to now crash, the file would be lost, since
it is neither in d1 nor in d2. This purely local specification
makes it hard for an application to safely use rename across
directories, as articulated in our second property, as follows.

The second property for ScaleFS’s fsync semantics is that
the file system can initiate any fsync operations on its own.
This is crucial because the file system needs to flush changes
to disk in the background when it runs out of memory. How-
ever, this propertymeans that if the user types mv d1/a d2/a,
a file system implementing purely local semantics can now
invoke fsync(d1) to free up memory, and as in the above
example, lose this file after a crash. This behavior would be
highly surprising to users and application developers, who
do not expect that rename can cause a file to be lost, if the file
was already persistently stored on disk before the rename.

The third property aims to resolve this anomaly, by re-
quiring that rename will not cause a file or directory to be lost,
although it is acceptable if a crash during rename causes a
file to appear twice in the file system (both under the old
and new path names). As mentioned in the previous para-
graph, this property is not strictly necessary based on first
principles, but we believe a file system would be difficult to
use without this guarantee.
The fourth property requires that on-disk data structures

must be crash-safe, meaning the file system will not be cor-
rupted after it recovers from a crash. An example of what falls
under this property is what ext4 provides in data=ordered
mode, which prevents uninitialized data from being exposed
after a crash.
Taking all of ScaleFS’s properties together, the final se-

mantics of fsync are that it flushes changes to the file or
directory being fsynced, and, in the case of fsync on a direc-
tory, it also flushes changes to other directories where files
may have been renamed to, both to avoid losing files and to
maintain internal consistency.

4 OVERVIEW

ScaleFS consists of two file systems: an in-memory file sys-
tem called MemFS, and an on-disk file system called DiskFS.
The in-memory file system uses concurrent data structures
that allow commutative in-memory operations to scale, while
the on-disk file system deals with constructing disk blocks
and writing them to disk. This approach allows most com-
mutative file system operations to execute conflict-free. The
two file systems are coupled by an operation log [5], which
logs directory changes such as link, unlink, rename, etc. Al-
though an operation log is designed for update-heavy work-
loads, it is a good fit for ScaleFS’s design because MemFS
handles all of the reads, and the log entries are collected
when flushing changes to DiskFS.

To allow MemFS to operate independently of DiskFS,
MemFS uses different inode numbers from DiskFS; to make
this explicit, we use the term mnode to refer to inode-like

72

objects used byMemFS, and we reserve the term inode for
DiskFS. This allows MemFS to allocate mnode numbers in a
scalable way (e.g., by incrementing per-core counters), but
still preserves the ability of DiskFS to map inode numbers
to physical disk locations. As in traditional Unix file systems,
inode numbers are permanent; however, the application-
visible mnode number (which is returned by the stat system
call) can change after a reboot. To the best of our knowledge,
the only application that may rely on stable inode numbers
across reboots is qmail [2].

M
em

FS

mfile mfile mdir . . .

mnode hash table

page cache page cache directory
hash table

O
pl
og

hash table of per-core
per-mnode logs

ts,
op

ts,
op

ts,
op

ts,
op

mnode-inode table

mnode# ↔ inode#

. . . ↔ . . .

. . . ↔ . . .

D
is
kF

S address,
block

per-core physical journals

address,
block

buffer cache storing
directory, bitmap,
and inode blocks

D
isk

s

Disk 1 Disk 2 Disk . . .

Figure 1: An overview of ScaleFS.

Figure 1 presents an overview of ScaleFS’s design. At
the top of the figure, MemFS maintains an in-memory cache
in a hash table indexed by mnode number. The hash table
contains two types of mnodes: mfiles (for files) and mdirs
(for directories). Each mfile has a page cache, storing the
file’s blocks in memory. This cache is implemented using a
radix array [9], which allows for scalable access to file pages
from many cores. The page cache can be sparsely populated,
filling in pages on demand from disk. The page cache also
keeps track of dirty bits for file pages.
Directory mnodes (mdirs) maintain an in-memory hash

table mapping file names to their mnode numbers. The hash
table index is lock-free, but each hash table entry has a per-
entry lock. The use of a hash table allows for concurrent
lookups and for modifications of different file names from
different cores without cache line contention [10], and the
per-entry lock serializes updates to individual names in a
directory.

At the bottom, DiskFS implements a traditional on-disk
file system. The file system uses a physical journal to apply
changes atomically to disk. For scalability, DiskFS uses per-
core physical journals. DiskFS maintains a buffer cache for
on-disk metadata, such as allocation bitmaps and inodes,
for efficiently performing partial block writes; for example,
updating a single inode in an inode block does not require
reading the block from disk in the common case. File data
blocks, however, are stored only in theMemFS page caches
and not in DiskFS’s buffer cache.

Coupling MemFS and DiskFS is an oplog layer. The oplog
layer consists of per-core per-mnode logs of modifications to
that mnode on a particular core. These logs contain logical
directory changes, such as creating a new directory entry,
or removing one. The operations are not literally the system
calls, but rather capture the effect of the system call on a
specific directory; any results needed to complete the sys-
tem call are produced by MemFS using the in-memory state.
For example, the link system call creates a log entry that
specifies the operation (i.e., link), and contains the mnode
numbers of the parent directory and the file being linked,
and the name of the link being created. Each log entry also
contains a timestamp reflecting the order of the operation; as
we describe later, we use synchronized CPU timestamp coun-
ters for this purpose [5]. When MemFS makes any change
to an in-memory directory, it also appends a timestamped
log entry to the oplog layer.
WhenMemFS decides to flush changes to disk (e.g., as a

result of an fsync on a directory), oplog applies the logged
changes to DiskFS, which in turn generates physical journal
entries that are written to disk. The oplog layer allows con-
current modifications in MemFS to scale, as long as they do
not contend in the in-memory hash table. As a result, con-
current modifications to different file names in the same di-
rectory can avoid cache-line conflicts, because these changes
are added to different per-core logs. In contrast, in ext4, di-
rectory changes immediately update an in-memory copy
of the on-disk directory representation, which can incur
cache-line conflicts. When ScaleFS finally flushes changes
to disk, it incurs cache-line conflicts in merging per-core
oplogs (according to the timestamps of the log entries), but
this is inevitable, because changes from other cores must be
processed on the core executing the fsync. Furthermore, the
cost of the merge is amortized across all of the operations
collected by the fsync.
The oplog layer is crucial for ensuring integrity of inter-

nal file system data structures (directories and link counts)
when flushing directory changes to disk. In the absence of
oplog,MemFS would need to scan the in-memory hash table
of a directory to determine what changes must be made to
the on-disk directory state. To achieve scalability, we would
like for fsync (and thus this scan) to run concurrently with
other directory modifications. As a result, the scan might
miss some files altogether that were renamed within a direc-
tory, even though the file was never deleted. Flushing these

73

changes might cause the file to be deleted on disk, and be
lost after a crash. Cross-directory renames further compli-
cate matters in the absence of oplog, because MemFS would
need to obtain a consistent in-memory snapshot of multiple
concurrent hash tables. With oplog,MemFS never needs to
scan in-memory directory hash tables.
The above rationale also explains ScaleFS’s choice of

using oplog for directory changes but not file changes. If an
application concurrently modifies a file while calling fsync
on it, ScaleFS does not specify which of the concurrent
changes will be flushed to disk, and might flush concurrent
changes out of order. Most importantly, regardless of which
concurrent file changes are flushed to disk, there is no risk
of ending up with a corrupted on-disk file system.
To provide better intuition of how the pieces of ScaleFS

fit together, the rest of this section gives several example
system calls and walks through how those system calls are
implemented in ScaleFS.

File creation. When an application creates a file, MemFS
allocates a fresh mnode number for that file, allocates an
mfile structure for the file, adds the mfile to the mnode hash
table, and adds an entry to the directory’s hash table.MemFS
also logs a logical operation to the directory’s oplog, contain-
ing the new file name and the corresponding mnode number.
Many cores can perform file creation concurrently without
cache-line conflicts, even when creating files in the same
directory (as long as the file names differ). This is because
mnode numbers can be allocated with no cross-core com-
munication; the mnode hash table and the directory hash
tables can be updated concurrently; and the directory oplog
consists of per-core logs that avoid cache line sharing.

fsync. When an application calls fsync on a directory,
MemFS combines the log entries from all per-core logs for
the directory’s mnode. MemFS then sends the changes in
timestamp-sorted order to DiskFS, which makes the changes
durable using a physical on-disk journal. For any newly cre-
ated mnodes that do not yet have inode counterparts,MemFS
also allocates on-disk inodes and adds the corresponding tu-
ple to the mnode-inode table.

When an application invokes fsync on a file,MemFS scans
the file’s page cache for any dirty pages, and writes these
changes to DiskFS. MemFS also compares the in-memory
and on-disk file length, and adjusts the on-disk file length
if they differ. If there is no inode number corresponding to
the mfile being fsynced,MemFS allocates it first (as above),
and then updates the newly allocated on-disk file. Note that
this on-disk inode would have a zero link count, and would
not appear in any directory, until the application calls fsync
on some directory containing the file (or a background flush
does the same).

Background flush. ScaleFS periodically flushes in-
memory changes to disk by invoking sync. ScaleFS
implements the sync system call by iterating over all dirty

mfiles and all mnode oplogs, and flushing them to disk by in-
voking fsync. One optimization in this case is that ScaleFS
combines the changes into a single physical transaction in
DiskFS (to the extent allowed by the maximum size of the
journal).

readdir. When an application lists the contents of a direc-
tory,MemFS simply enumerates the in-memory hash table. If
the directory is not present in the mnode hash table, MemFS
looks up the directory’s inode number and reads the on-disk
representation from DiskFS. MemFS then builds up an mdir
representation of the directory, including the in-memory
hash table.MemFS also translates the inode numbers of the
files in that directory, which appear in the on-disk directory
format, into mnode numbers, which will appear in the mdir
format. MemFS performs this translation with the help of
the mnode-inode table. Any inodes that do not have corre-
sponding mnode numbers yet (i.e., have not been accessed
since boot) get a fresh mnode number allocated to them; this
is why mnode numbers can change across a reboot.

Reading a file. When an application reads a file, MemFS
looks up the corresponding page in the mfile’s page cache,
and returns its contents. If the page is not present,MemFS
looks up the corresponding inode number and asks DiskFS
to read in the data for that inode number from disk.

Writing to a file. Similarly, when an application writes to
a file, MemFS updates the page cache (possibly paging in
the page from DiskFS if the application performs a partial
page write on a missing page).MemFS also marks the page
as dirty, so that it will be picked up by a subsequent fsync.
Finally, if the write extended the length of the file,MemFS
adjusts the mfile’s length field in memory.

Crash recovery. After a crash, DiskFS recovers the on-
disk file system state by replaying the on-disk journals, after
sorting the journal entries by timestamps (since there are
multiple journals on disk, corresponding to DiskFS’s per-
core journals). One subtle issue is orphan inodes: these can
result from an application calling fsync on a file, and the sys-
tem crashing before the corresponding directory change was
flushed to disk (or, conversely, an application that unlinks a
file but retains an open file descriptor to it). Our prototype
DiskFS scans the inodes at boot and frees any orphan inodes
(allocated inodes with a zero link count).

5 DESIGN

ScaleFS’s design faces two challenges—performance and
correctness—and the rest of this section describes how
ScaleFS achieves both. We explicitly mark the aspects of the
design related to either performance or correctness with [P]

and [C] respectively.
5.1 Making operations orderable [P, C]

To ensure crash consistency, operations must be added to the
log in the order that MemFS applied the operations. Achiev-
ing this property while maintaining conflict freedom is dif-

74

ficult, because MemFS uses lock-free reads, which in turn
makes it difficult to determine the order in which different
operations ran. For example, consider a strawman that logs
each operation while holding all the locks that MemFS ac-
quires during that operation, and then releases the locks after
the operation has been logged. Now consider the scenario
in Figure 2. Directory dir1 contains three file names: a, b
and c. a is a link to inode 1, b and c are both links to inode 2.
Thread T1 issues the syscall rename(b, c) while thread T2
issues rename(a, c).
As an aside, although this may seem like a corner case,

our goal is to achieve perfect scalability without having to
guess what operations might or might not matter to a given
workload. We set this goal because sequences of system
calls that appear to be a corner case sometimes show up in
real applications and turn out to matter for overall applica-
tion performance, and it is difficult to determine in advance
whether a particular seemingly corner-case situation will or
will not show up in practice.

Directory dir1

directory entry a

directory entry b

directory entry c

inode 1

inode 2

Figure 2: Data structures involved in a concurrent execution
of rename(a,c) (by thread T2) and rename(b,c) (by thread
T1). Arrows depict a directory entry referring to an inode.
There are three directory entries in a single directory, two
of which are hard links to the same inode.

Returning to the example, assume T1 goes first. While
T1 and T2 do not commute, to ensure conflict freedom of
operations that would commute with T1, T1 performs a lock-
free read of b and c to determine that both are hardlinks
to the same inode. Thus, all it needs to do is remove the
directory entry for b and decrement the inode’s reference
count, which it can do without holding a lock by using a
distributed reference counter like Refcache [9]. The only lock
T1 acquires is on b, since it does not modify c at all. In this
case, T1’s rename(b, c) can now complete without having
to modify any cache lines (such as a lock) for c.

T2 then acquires locks on a and c and performs its rename.
Both of the threads now proceed to log the operations while
holding their respective locks. Because the locks they hold
are disjoint, T2 might end up getting logged before T1. Now
when the log is applied to the disk on a subsequent fsync,
the disk version becomes inconsistent with what the user
believes the file system state is. Even thoughMemFS has c
pointing to inode 1 (as a result of T1 executing before T2),
DiskFSwould have c pointing to inode 2 (T2 executing before

T1). Worse yet, this inconsistency persists on disk until all
file names in question are deleted by the application—it is
not just an ephemeral inconsistency that arises at specific
crash points. The reason behind this discrepancy is that reads
are not guarded by locks. However if we were to acquire
read locks, ScaleFS would sacrifice conflict freedom of in-
memory commutative operations.
We address this problem by observing that modern pro-

cessors provide synchronized timestamp counters across all
cores. This observation is at the center of oplog’s design [5:
§6.1], which ScaleFS builds on. On x86 processors, times-
tamp counters can be accessed using the RDTSCP instruction
(which ensures the timestamp read is not re-ordered by the
processor).

Building on this observation, ScaleFS orders in-memory
directory operations by requiring that all directory modi-
fications in the in-memory file system be linearizable [19].
Moreover, ScaleFS makes the linearization order explicit
by reading the timestamp counter at the appropriate lin-
earization point, which records the order in whichMemFS
applied these operations. This subsequently allows fsync
to order the operations by their timestamps, in the same
order that they were applied toMemFS, without incurring
any additional space overhead.

Timestamping lock-free reads [P, C]. In the above
example, the linearization point of rename(b, c) must
be before the linearization point of rename(a, c) be-
cause rename(b, c)’s lock-free read observes c before
rename(a, c)’s write modifies c. There is no explicit syn-
chronization between these operations, yet MemFS must
correctly order their linearization points.

To order lock-free reads with writes,MemFS protects such
read operations with a seqlock [24: §6], and ensures that
such read operations happen before any writes in the same
operation. With a seqlock, a writer maintains a sequence
number associated with the shared data. Writers update this
sequence number both before and after they modify the
shared data. Readers read the sequence number before and
after reading the shared data. If the sequence numbers are
different, or the sequence number is odd (indicating a writer
is in the process of modifying), then the reader assumes
that a writer has changed the data while it was being read.
In that case a reader simply retries until the reader reads
the same even sequence number before and after. In the
normal case, when a writer does not interfere with a reader,
a seqlock does not incur any additional cache-line movement.
By performing all reads before any writes,MemFS ensures
that it is safe to retry the reads.
To determine the timestamp of the linearization point

for an operation that includes a lock-free read,MemFS uses
a seqlock around that read operation (such as a lock-free
hash table lookup). Inside of the seqlock-protected region,
MemFS both performs the lock-free read, and reads the times-
tamp counter. If the seqlock does not succeed,MemFS retries,
which produces a new timestamp. The timestamp of the last

75

retry corresponds to the linearization point. This scheme
ensures that ScaleFS correctly orders operations in its log,
since the timestamp falls within a time range when the read
value was stable, and thus represents the linearization point.
This scheme also achieves scalability because it allows read-
only operations to avoid modifying shared cache lines.
5.2 Merging operations [C]

The timestamps of the linearization points allow operations
executed by different cores to be merged in a linear order, but
the merge must be done with care. ScaleFS’s oplog main-
tains per-core logs so that cores can add entries without
communicating with other cores, and merges the per-core
logs when an fsync or a sync is invoked. This ensures that
commutative operations do not conflict because of append-
ing log entries. The challenge in using an oplog in ScaleFS
is that the merge is subtle. Even though timestamps in each
core’s log grow monotonically, the same does not hold for
the merge, as illustrated by the example shown in Figure 3.

op1

op2

Core 1
LP1 log op1

Core 2
LP2 log op2

Merge per-core logs
time

Figure 3: Two concurrent operations, op1 and op2, running
on cores 1 and 2 respectively. The grayed-out box denotes
the start and end time of an operation. LP denotes the lin-
earization point of each operation. “log” denotes the time
at which each operation is inserted into that core’s log. The
dotted line indicates the time at which the per-core logs are
merged.

Figure 3 shows the execution of two operations on two
different cores: op1 on core 1 and op2 on core 2. The lineariza-
tion point of op1 is before the linearization point of op2, but
op2 is logged first. If the per-core logs happen to be merged
before op1 is logged, at the time indicated by the dotted line
in the figure, op1 will be missing from the merged log even
though its linearization point was before that of op2.

To avoid this problem, the merge must wait for in-progress
operations to complete. ScaleFS achieves this by tracking,
for each core, whether an operation is currently executing,
and if so, what its starting timestamp is. To merge, ScaleFS
first obtains the timestamp corresponding to the start of the
merge, and then waits if any core is running an operation
with a timestamp less than that of the merge start.

Concurrent fsyncs [P]. Per-core operation logs allow dif-
ferent CPUs to log operations in parallel without incurring
cache conflicts. However, an fsync must merge the logged
operations first before proceeding further. This means that
having a single set of per-core operation logs for the entire

filesystem would introduce a bottleneck when merging the
operations, thus limiting the scalability of concurrent fsyncs
even when they are invoked on different files and directories.
We solve this problem by using a set of per-core logs for ev-
ery mnode (file or directory). Per-mnode logs allow ScaleFS
to merge the operations for that mnode on an fsync with-
out conflicting with concurrent operations on other mnodes.
ScaleFS uses oplog’s lazy allocation of per-core logs to avoid
allocating a large number of logs that are never used [5].

5.3 Flushing an operation log [P, C]

ScaleFS’s per-mnode operation logs allow fsync to effi-
ciently locate the set of operations that modified a given file
or directory, and then flush these changes to disk. There are
three interesting complications in this process. First, for per-
formance, ScaleFS should perform absorption when flushing
multiple related operations to disk [P]. Second, as we dis-
cussed in §3, ScaleFS’s fsync specification requires special
handling of cross-directory rename to avoid losing files [C].
Finally, ScaleFS must ensure that the on-disk file system
state is internally consistent, and in particular, that it does
not contain any orphan directories, directory loops, links to
uninitialized files, etc. [C]

In flushing the operations to disk, ScaleFS first computes
the set of operations that must be made persistent, and then
produces a physical journal representing these operations.
Since the operations may exceed the size of the on-disk jour-
nal, ScaleFS may need to flush these operations in several
batches. In this case, ScaleFS orders the operations by their
timestamps, and starts writing operations from oldest to
newest. By design, each operation is guaranteed to fit in
the journal (the journal must be larger than the maximum
operation size, and if the journal is too full, its contents are
applied and the journal truncated to make space for the new
operation), so ScaleFS can always make progress by writing
at least one operation at a time to the journal. Furthermore,
since an operation represents a consistent application-level
change to the file system, it is always safe to flush an opera-
tion on its own (as long as it is flushed in the correct order
with respect to other operations).

Absorption [P]. Once fsync computes the set of opera-
tions to be written to disk in a single batch, it removes op-
erations that logically cancel each other out. For example,
suppose the application invokes fsync on a directory, and
there was a file created and then deleted in that directory,
with no intervening link or rename operations on that file
name. In this case, these two operations cancel each other,
and it is safe for fsync to make no changes to the contain-
ing directory (in our prototype, we ignore modification and
access times), reducing the amount of disk I/O needed for
fsync.
One situation where this shows up often is the use of

temporary files that are created and deleted before fsync is
ever called. One subtle issue is that some process can still
hold an open file descriptor for the non-existant file. Our

76

design deals with this by remembering that the in-memory
file has no corresponding on-disk representation, and never
will. This allows our design to ignore any fsync operations
on an orphaned file’s file descriptor.

Cross-directory rename [C]. Recall from §3 that ScaleFS
needs to avoid losing a file if that file was moved out of some
directory d and then d was flushed to disk. To achieve this
goal, ScaleFS implements dependency tracking. Specifically,
when ScaleFS encounters a cross-directory rename where
the directory being flushed, d, was either the source or the
destination directory, it also flushes the set of operations on
the other directory in question (the destination or source of
the rename, respectively). This requires ScaleFS to access
the other directory’s operation log as well. As an optimiza-
tion, ScaleFS does not flush all of the changes to the other
directory; it flushes only up to the timestamp of the rename
in question. This optimizes for flushing the minimal set of
changes for a given system call, but for some workloads,
flushing all changes to the other directory may give more
opportunities for absorption. ScaleFS avoids loops in de-
pendency tracking by relying on timestamps: a dependency
points not just to a particular mnode, but to an mnode at
a specific timestamp. Since timestamps increase monotoni-
cally, there can be no loops.

Internal consistency [C]. ScaleFS must guarantee that
its own data structures are intact after a crash. There are
three cases that ScaleFS must consider to maintain crash
safety for its internal data structures.
First, ScaleFS must ensure that directory links point to

initialized inodes on disk. This invariant could be violated if
a directory containing a link to a newly created file is flushed.
ScaleFS must ensure that the file is flushed first, before a
link to it is created. When flushing a directory, ScaleFS
also flushes the allocation of new files linked into that di-
rectory. In the common case, both are flushed together in a
single DiskFS transaction. However, in case ScaleFS builds
up a large transaction that does not fit in the journal (e.g.,
fsyncing a directory containing many new files), ScaleFS
must break up the changes into multiple DiskFS transac-
tions. In this case, it is crucial that ScaleFS performs the file
creations before linking the files into the directory.
Second, ScaleFS must ensure that there are no orphan

directories on disk. This invariant could be violated when
an application recursively deletes a directory, and then calls
fsync on the parent. ScaleFS uses dependencies to prevent
this problem, by ensuring that all deletion operations on the
subdirectory are flushed before it is deleted from its parent.

Finally, ScaleFS must ensure that the on-disk file system
does not contain any loops after a crash. This is a subtle
issue, which we explain by example. Consider the sequence
of operations shown in Figure 4. With all of the above checks
(including rename dependencies), if an application issues
the two mv commands shown in Figure 4 and then invokes
fsync(D), the fsyncwould flush changes to D and A, because

they were involved in a cross-directory rename. However,
flushing just D and A leads to a directory loop on disk, as
Figure 4 illustrates, because changes to B (namely, moving C
from B to the root directory) are not flushed.

Figure 4: A sequence of operations that leads to a directory
cycle (B-C-D-B) on disk with a naïve implementation of
fsync. The state of the file system evolves as an application
issues system calls. Large arrows show the application’s
system calls. Large rectangles represent the logical state of
the file system, either in-memory (shaded) or on disk (thick
border). The initial state of the file system, on the left, is
present both on disk and in memory at the start of this
example. Circles represent directories in a file system tree.

To avoid directory loops on disk, ScaleFS follows three
rules. First, in-memory renames of a subdirectory between
two different parent directories are serialized with a global
lock. Although the global lock is undesirable from a scalabil-
ity point of view, it allows for a simple and efficient algorithm
that prevents loops in memory, and also helps avoid loops
on disk in combination with the next two rules. Furthermore,
we expect this lock to be rarely contended, since we expect
applications to not rename subdirectories between differ-
ent parent directories in their critical path. Second, when
a subdirectory is moved into a parent directory d, ScaleFS
records the path from d to the root of the file system. This
list of ancestors is well defined, because ScaleFS is holding a
global lock that prevents other directory moves. Third, when
flushing changes to some directory d, if a child subdirectory
was moved into d, ScaleFS first flushes to disk any changes
to the ancestors of d as recorded by that rename operation. In-
tuitively, this ensures that the child being moved into d does
not also appear to be d’s parent. As an optimization, ScaleFS
flushes ancestor changes only up to the timestamp of the
rename operation. A thesis describing ScaleFS presents an
argument for the correctness of this algorithm [3: §A].

77

5.4 Multiple disks and journals [P]

On a computer with multiple disks or multiple I/O queues
to a single disk (as in NVMe), ScaleFS should be able to
take advantage of the aggregate disk throughput and par-
allel I/O queues by flushing in parallel to multiple journals.
This would allow two cores running fsync to execute com-
pletely in parallel, not contending on the disk controller or
bottlenecking on the same disk’s I/O performance.

To take advantage of multiple disks for file data, ScaleFS
stripes the DiskFS data across all of the physical disks in the
system. ScaleFS also allocates a separate on-disk journal
for every core, to take advantage of multiple I/O queues,
and spreads these journals across disks to take advantage
of multiple physical disks. The challenges in doing so are
constructing and flushing the journal entries in parallel, even
when there may be dependencies between the blocks being
updated by different cores.

To construct the journal entries in parallel, ScaleFS uses
two-phase locking on the physical disk blocks. This ensures
that, if two cores are flushing transactions that modify the
same block, they are ordered appropriately. Two-phase lock-
ing ensures that the result is serializable.
Dependencies between transactions also show up when

flushing the resulting journal entries to disk. Suppose two
transactions, T1 and T2, update the same block. Two-phase
locking will ensure that their journal entries are computed
in a serializable fashion. However, even if T1 goes first with
two-phase locking, T2 may end up being flushed to disk first.
If the computer crashes at this point, T2 will be recovered
but T1 will not be. This will result in a corrupted file system.
To address this problem, ScaleFS uses timestamps to de-

fer flushing dependent journal entries to disk. Specifically,
ScaleFS maintains an in-memory hash table recording, for
each disk block, what physical disk contains the last journal
entry updating it, and the timestamp of that journal entry.
When ScaleFS is about to flush a journal entry to a physi-
cal disk, it looks up all of the disk blocks from that journal
entry in the hash table, and, for each one, ensures that its
dependencies are met. This means waiting for the physical
disk indicated in the hash table to flush journal entries up to
the relevant timestamp. When ScaleFS finishes flushing a
journal entry to disk (i.e., the disk returns success from a bar-
rier command), ScaleFS updates an in-memory timestamp
to reflect that this journal’s timestamp has made it to disk.
An alternative approach that avoids waiting would be

to explicitly include the dependency information in the on-
disk journal. On recovery, DiskFS would need to check that
all dependencies of a transaction have been satisfied before
applying that transaction. In our example, this would prevent
T2 from being applied, because its on-disk dependency list
includes T1, and T1 was not found during recovery.
5.5 Discussion

The design described above achieves ScaleFS’s three goals.
First, ScaleFS achieves good multicore scalability, because
operations that commute should be mostly conflict-free.

SinceMemFS is decoupled from DiskFS, it is not restricted
in the choice of data structures that allow for scalability. All
that MemFS must do is log operations with a linearization
timestamp in the operation log, which is a per-core data
structure. As a result, commutative file system operations
should run conflict-free when manipulating in-memory files
and directories and while logging those operations in the
operation log. fsync is also conflict-free for file system opera-
tions it commutes with (e.g., creation of a file in an unrelated
directory).
Second, ScaleFS ensures crash safety through depen-

dency tracking and loop avoidance protocols described above.
Third, ScaleFS flushes close to theminimal amount of data to
disk on every fsync operation. In most cases, fsync flushes
just the changes to the file or directory in question. For
cross-directory renames, ScaleFS flushes operations on other
directories involved in the rename, and also on ancestor di-
rectories in case of a subdirectory rename. Although these
can be unnecessary in some cases, the evaluation shows that
in practice ScaleFS achieves high throughput for fsync (and
ScaleFS flushes less data than the ext4 file system on Linux).
Finally, ScaleFS achieves good disk throughput through

its optimizations (such as absorption and group commit).
ScaleFS avoids flushing unnecessary changes to disk when
applications invoke fsync, which in turn reduces the amount
of data written to disk, and also enables better absorption
and grouping. Finally, ScaleFS takes advantage of multiple
disks to further improve disk throughput.

6 IMPLEMENTATION

We implemented ScaleFS in sv6, a research operating system
whose design is centered around the Scalable Commutativity
Rule [10].MemFS is based on sv6’s in-memory file system,
modifying it to interact with the operation log. ScaleFS
augments sv6’s design with a disk file system DiskFS (that
is based on the xv6 file system [12]), and an operation
log. Figure 5 shows the number of lines of code involved
in implementing each component of ScaleFS. ScaleFS is
open-source and available at https://github.com/mit-
pdos/scalefs.

ScaleFS component Lines of C++ code

MemFS (§6.1) 2,458
DiskFS (§6.2) 2,331
MemFS–DiskFS interface 4,094

Figure 5: Lines of C++ code for each component of ScaleFS.

ScaleFS does not support the full set of file system calls in
POSIX, such as sendfile and splice; ScaleFS does not sup-
port triply indirect blocks (limiting file sizes); and ScaleFS
does not evict file system caches in response to memory
pressure. However, ScaleFS does support the major op-
erations needed by applications, specifically creat, open,
openat, mkdir, mkdirat, mknod, dup, dup2, lseek, read, pread,

78

https://github.com/mit-pdos/scalefs
https://github.com/mit-pdos/scalefs

write, pwrite, chdir, readdir, pipe, pipe2, stat, fstat,
link, unlink, rename, fsync, sync, and close. We believe
that supporting the rest of the POSIX operations would not
affect ScaleFS’s design.

6.1 MemFS

Decoupling the in-memory and the on-disk file systems
allows MemFS to be designed for multicore concurrency.
MemFS represents directories using chained hash tables that
map file/directory names to mnode numbers. Each bucket
in the hash table has its own lock, allowing commutative
operations to remain conflict-free with high probability.
Files use radix arrays to represent their pages, with

each page protected by its own lock; this design follows
RadixVM’s representation of virtual memory areas [9].
MemFS creates the in-memory directory tree on demand,
reading in components from the disk as they are needed.
To allow concurrent creates to scale, mnode numbers in

MemFS are independent of inode numbers on the disk and
might even change each time the file system is mounted (e.g.,
after a reboot). MemFS assigns mnode numbers in a scal-
able manner by maintaining per-core mnode counts. On cre-
ation of a new mnode by a core,MemFS computes its mnode
number by appending the mnode count on that core with
the core’s CPU ID, and then increments the core’s mnode
count. MemFS never reuses mnode numbers. However, if
an mnode is evicted to disk and then brought back into
memory, ScaleFS preserves the mnode number, using the
mnode-inode table.
ScaleFS maintains a hash table from mnode numbers

to inode numbers and vice versa for fast lookup. ScaleFS
creates this hash table when the system boots up, and adds
entries to it each time a new inode is read in from the disk
and a corresponding mnode created in memory. Similarly
ScaleFS adds entries to the hash table when an inode is
created on disk corresponding to a new mnode in memory.

ScaleFS does not update the hash table immediately after
the creation of an mnode; it waits for DiskFS to create the
corresponding inode on a sync or an fsync call, which is
when DiskFS looks up the on-disk free inode list to find
a free inode. This means that MemFS does not allocate an
on-disk inode number right away for a create operation.

Operations in the log. If MemFSwere to log all file system
operations, the operation log would incur a large space over-
head. For example, writes to a file would need to store the
entire byte sequence that was written to the file. So MemFS
logs operations selectively.

By omitting certain operations from the log, ScaleFS not
only saves space that would otherwise be wasted to log
them, but it also simplifies merging the per-core logs and
dependency tracking as described in §5.3. As a result the
per-core logs can be merged and operations applied to the
disk much faster.
To determine which operations are logged, MemFS di-

vides all metadata into two categories: oplogged and non-

oplogged. All directory state is oplogged metadata, and a
file’s link count, which is affected by directory operations,
is also oplogged metadata. However, other file metadata,
such as the file’s length, its modification times, etc., is not
oplogged. For example, MemFS logs the creation of a file
since it modifies directory state as well as a file’s link count.
On the other hand, MemFS does not log a change in file size,
or a write to a file, since it affects non-oplogged file data and
metadata.
When flushing a file from MemFS to DiskFS, ScaleFS

must combine the oplogged and non-oplogged metadata of
the flushed mnode. It updates the oplogged metadata of the
mnode by merging that mnode’s oplog. The non-oplogged
part of the mnode (such as a file’s length and data contents)
are directly accessed by reading the current in-memory state
of that mnode. These changes are then written to disk using
DiskFS, which is responsible for correctly representing these
changes on disk, including allocating disk blocks, updating
inode block pointers, etc. DiskFS journals all metadata (both
metadata that was oplogged as well as non-oplogged file
metadata such as the file’s length), but DiskFS writes file
data directly to the file’s blocks, which is similar to how
Linux ext4 writes data in data=ordered mode.

When MemFS flushes an oplogged change to DiskFS that
involves multiple mnodes (such as a cross-directory rename),
ScaleFS ensures that this change is flushed to disk in a
single DiskFS transaction. This in turn guarantees crash
safety: after a crash and reboot, either the rename is applied,
or none of its changes appear on disk.

6.2 DiskFS

ScaleFS’s DiskFS is based on the xv6 [12] file system, which
has a physical journal for crash recovery. The file system
follows a simple Unix-like format with inodes, indirect, and
double-indirect blocks to store files and directories. DiskFS
maintains a buffer cache to cache physical disk blocks that
are read in from the disk. DiskFS does not cache file data
blocks, since they would be duplicated with any cache main-
tained byMemFS. However,DiskFS does use the buffer cache
to store directory, inode, and bitmap blocks, to speed up read-
modify-write operations.

DiskFS implements high-performance per-core allocators
for inodes and disk blocks by carving out per-core pools of
free inodes and free blocks during initialization. This enables
DiskFS to satisfy concurrent requests for free inodes and
free blocks from fsyncs in a scalable manner, as long as the
per-core pools last. When the per-core free inode or free
block pool runs out on a given core, DiskFS satisfies the
request by either allocating from a global reserve pool or
borrowing free inodes and free blocks from other per-core
pools.
These scalability optimizations improve the scalability

of fsync, and the scalability of reading data from disk into
memory. However, when an application operates on a file
or directory that is already present in memory, no DiskFS
code is invoked. For instance, when an application looks up

79

a non-existent name in a directory, MemFS caches the entire
directory, and does not need to invoke namei on DiskFS.
Similarly, when an application creates or grows a file, no
DiskFS state is updated until fsync is called.

7 EVALUATION

This section evaluates ScaleFS’s overall performance and
scalability by answering the following questions:
• Does ScaleFS achieve conflict freedom for commutative
operations? (§7.2)

• Does durability introduce unnecessary conflicts in
ScaleFS? (§7.3)

• Does ScaleFS empirically achieve good scalability and
performance on real hardware? (§7.4)

• Does ScaleFS achieve good disk throughput? (§7.5)
• What overheads are introduced by ScaleFS’s split of
MemFS and DiskFS? (§7.6)

7.1 Methodology

To measure scalability of ScaleFS, we primarily rely on
Commuter [10] to determine if commutative filesystem op-
erations incur cache conflicts, limiting scalability. This allows
us to reason about the scalability of a file system without
having to commit to a particular workload or hardware con-
figuration. We disable background sync to obtain repeatable
measurements.

To confirm the scalability results reported by Commuter,
we also experimentally evaluate the scalability of ScaleFS by
running it on an 80-core machine with Intel E7-8870 2.4 GHz
CPUs and 256 GB of DRAM, running several workloads. We
also measure the absolute performance achieved by ScaleFS,
as well as measuring ScaleFS’s disk performance, comparing
the performance with a RAM disk, with a Seagate Constel-
lation.2 ST9500620NS rotational hard drive, and with up to
four Samsung 850 PRO 256 GB SSDs.
To provide a baseline for ScaleFS’s scalability and per-

formance results, we compare it to the results achieved by
the Linux ext4 filesystem running in Linux kernel version
4.9.21. We use Linux ext4 as a comparison because ext4 is
widely used in practice, and because its design is reasonably
scalable, as a result of many improvements by kernel devel-
opers. Linux ext4 is one of the more scalable file systems in
Linux [31].

7.2 Does ScaleFS achieve conflict freedom?

To evaluate ScaleFS’s scalability, we used Commuter, a tool
that checks if shared data structures experience cache con-
flicts. Commuter takes as input a model of the system and
the operations it exposes, which in our case is the kernel
with the system calls it supports, and computes all possi-
ble pairs of commutative operations. Then it generates test
cases that check if these commutative operations are actually
conflict-free by tracking references to shared memory ad-
dresses. Shared memory addresses indicate sharing of cache
lines and hence loss of scalability, according to the Scalable

12 12 5 5 2 1 6

1

16

2

1 3 4 13

1 1 4

5 8 6

10 5 15

12

24

24 21

1 5

9

fsync
sync
open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit
e

m
em

re
ad

m
pr
ot
ec
t

m
un

m
ap

m
m
ap

pw
rit
e

pr
ea
d

w
rit
e

re
ad

pi
pe

cl
os
e

lse
ek

fs
ta
t

st
at

re
na
m
e

un
lin

k
lin

k
op

en
sy
nc

fs
yn

c

100%

0%

Figure 6: Conflict-freedom of commutative operations in
ScaleFS. Numbers in boxes indicate the absolute number
of test cases that had conflicts. Out of 31,551 total test cases
generated, 31,317 (99.2%) were conflict-free.

Commutativity Rule [10]. We augmented the model Com-
muter uses to generate test cases by adding the fsync and
sync system calls, and used the resulting test cases to evalu-
ate the scalability of ScaleFS.
Figure 6 shows results obtained by running Commuter

with ScaleFS. 99% of the test cases are conflict-free. The
green regions show that the implementation of MemFS is
conflict free for almost all commutative file system opera-
tions not involving sync and fsync, as there is no interaction
with DiskFS involved at this point.MemFS simply logs the
operations in per-core logs, which is conflict-free. MemFS
also uses concurrent data structures that avoid conflicts.
ScaleFS does have some conflicts when fsync or sync

calls are involved. Some of the additional conflicts incurred
by fsync are due to dependencies between different files or
directories being flushed. Specifically, our Commuter model
says that fsync of one inode commutes with changes to any
other inode. However, this does not capture the dependencies
that must be preserved when flushing changes to disk to
ensure that the on-disk state is consistent. As a result, fsync
of one inode accesses state related to another inode (such as
its oplog and its dirty bits).
Some fsync calls conflict with commutative read opera-

tions. These conflicts are brought about by the way MemFS
implements the radix array of file pages. In order to save
space, the radix array element stores certain flags in the last
few bits of the page pointer itself, the page dirty bit being
one of them. As a result, an fsync that resets the page dirty
bit conflicts with a read that accesses the page pointer.

80

1 1 23 26 21 18 18 1 4 16 7 2 4 1 1 10 1 13
1 3 2 3 2 1 3 2 1
51 8 499 52 38 37 31 2 47 36 5 7 57 16 142138
35 5 137 48 25 34 23 18 5 68 14 87
12 2 43 12 8 13 7 9 1 1 16 6
35 5 135 40 26 40 24 27 2 4 66
12 2 43 10 6 8 6 1 1
1 20 8 13 16 20 4 16 7

86 145 96 51 33 4 117
28 4 4 7 9 4 39

1 2 1
17 2 222 57 44 50 32

6 5 25 3 310 64 50 48
21 2 254112 83
40 4 421131

1 6121804899
29 38
114

23 20
28

fsync
sync
open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit
e

m
em

re
ad

m
pr
ot
ec
t

m
un

m
ap

m
m
ap

pw
rit
e

pr
ea
d

w
rit
e

re
ad

pi
pe

cl
os
e

lse
ek

fs
ta
t

st
at

re
na
m
e

un
lin

k
lin

k
op

en
sy
nc

fs
yn

c

100%

0%

Figure 7: Conflict-freedom of commutative operations in
the Linux kernel using an ext4 file system. Numbers in boxes
indicate the absolute number of test cases that had conflicts.
Out of 31,551 total test cases generated, 20,394 (65%) were
conflict-free.

MemFS could, in principle, avoid these conflicts by keeping
track of the page dirty bits outside of the page pointer. But
in that case, as long as the dirty flags are stored as bits, there
would be conflicts between accesses to dirty bits of distinct
pages. In order to provide conflict freedom MemFS would
need to ensure that page dirty flags of different pages do not
share a cache line, which would incur a huge space overhead.
Our implementation of MemFS makes this trade-off, saving
space at the expense of incurring conflicts in some cases.
sync conflicts only with itself, and its only conflict is in

acquiring the locks to flush per-core logs. Although we could,
in principle, optimize this by using lock-free data structures,
we do not believe that applications would benefit from con-
current calls to sync being conflict-free. Note that concurrent
calls to sync and every other system call are conflict-free.
The rest of the conflicts are between idempotent opera-

tions. Two fsync calls are commutative because they are
idempotent, but they both contend on the operation log as
well as the file pages. fsync and pwrite also conflict despite
being commutative when pwrite performs an idempotent
update.

To provide a baseline for ScaleFS’s heatmap, we also ran
Commuter on the Linux kernel with an ext4 file system.2
The heatmap in Figure 7 shows the results obtained. Out of
a total of 31,551 commutative test cases, the heatmap shows
11,157 of them (35%) conflicting in the Linux kernel. Many

2We ran Commuter on Linux kernel version v3.16 (from 2014) because
we have not ported the Linux changes necessary to runCommuter to amore
recent version of the kernel. We expect that the results are not significantly
different from those that would be obtained on a recent version of Linux,
based on recent reports of Linux file system scalability [31].

9

2

2 4 12
1 1 4

5 6
5 13

12
24 12
1 1
9

open
link

unlink
rename

stat
fstat
lseek
close
pipe
read
write
pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit
e

m
em

re
ad

m
pr
ot
ec
t

m
un

m
ap

m
m
ap

pw
rit
e

pr
ea
d

w
rit
e

re
ad

pi
pe

cl
os
e

lse
ek

fs
ta
t

st
at

re
na
m
e

un
lin

k
lin

k
op

en

100%

0%

Figure 8: Conflict-freedom between commutative opera-
tions in sv6 with only an in-memory file system. Numbers
in boxes indicate the absolute number of test cases that had
conflicts. Out of 13,664 total test cases generated, 13,528 (99%)
were conflict-free.

of these can be attributed to the fact that the in-memory
representation of the file system is closely coupled with the
disk representation. Some commutative operations conflict
in the page cache layer. These results are in line with the
bottlenecks uncovered in prior work [4, 31]. Manually ana-
lyzing the source of some of these bottlenecks indicates that
they are the result of maintaining the on-disk data structure
while executing in-memory operations. For example, when
creating files in a directory, multiple cores contend on the
lock protecting that directory, which is necessary to serialize
updates to the on-disk directory structure. This is precisely
the problem that ScaleFS’s split design avoids.

7.3 Does durability reduce conflict freedom?

To evaluate the scalability impact of ScaleFS’s approach for
achieving durability, we compare the results of Commuter
on ScaleFS to the results of running Commuter on the orig-
inal sv6 in-memory file system, on whichMemFS is based.
Figure 8 shows results for sv6; this heatmap does not have a
column for fsync or sync because sv6 did not support these
system calls (it had no support for durability). Compared to
Figure 6, we see that ScaleFS introduces almost no new con-
flicts between existing syscalls. The exceptions have to do
with conflicts in various bitmaps, such as pread conflicting
with pwrite on the bits keeping track of the state of a page
in a file (including its dirty bit). Although ScaleFS could
avoid these cache line conflicts, its absolute performance
and memory cost would be worse.

81

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

m
a
ilb

e
n
ch

 t
h
ro

u
g

h
p

u
t

(r
e
la

ti
v
e
 t

o
 s

in
g

le
 c

o
re

)

Number of cores

ScaleFS (-p)
ScaleFS (-s)
Linux ext4

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

d
b

e
n
ch

 t
h
ro

u
g

h
p

u
t

(r
e
la

ti
v
e
 t

o
 s

in
g

le
 c

o
re

)

Number of cores

ScaleFS
Linux ext4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

la
rg

e
fi
le

 t
h
ro

u
g

h
p

u
t

(r
e
la

ti
v
e
 t

o
 s

in
g

le
 c

o
re

)

Number of cores

ScaleFS
Linux ext4

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

sm
a
llfi

le
 t

h
ro

u
g

h
p

u
t

(r
e
la

ti
v
e
 t

o
 s

in
g

le
 c

o
re

)

Number of cores

ScaleFS
Linux ext4

Figure 9: Throughput of the mailbench, dbench, largefile,
and smallfile workloads respectively, for both ScaleFS and
Linux ext4 in a RAM disk configuration.

7.4 Empirical scalability

To confirm that Commuter’s results translate into scalabil-
ity for actual workloads on real hardware, we compared the
performance of several workloads on ScaleFS to their per-
formance on Linux ext4; unfortunately, porting applications
to sv6 is difficult because sv6 is not a full-featured OS. To
avoid the disk bottleneck, we ran these experiments on a
RAM disk. Both ScaleFS and ext4 still performed journaling,
flushing, etc., as they would on a real disk. §7.5 presents the
performance of both file systems with real disks.

mailbench. One of our workloads is mailbench, a qmail-
like mail server benchmark from sv6 [10]. The version of
mailbench used by sv6 focused on in-memory file system
scalability. To make this workload more realistic, we added
calls to fsync, both for message files and for the containing
directories, to ensuremail messages are queued and delivered
in a crash-safemanner (6 fsyncs total to deliver onemessage).
The benchmark measures the number of mail messages deliv-
ered per second. We run mailbench with per-core spools, and
with either per-core user mailboxes (mailbench-p) or with
1,000 shared user mailboxes (mailbench-s). mailbench-s

in particular requires all cores to read and write the same
set of shared mailboxes; this workload would be difficult to
scale on a file system that partitioned directories across cores
(such as Hare or SpanFS).

dbench. The dbench benchmark [41] generates an I/O
workload intended to stress file systems and file servers.
This workload is more read-heavy than mailbench: the con-
figuration used in our experiments performs a mix of 124,199
reads and 39,502 writes (in a loop), as well as other opera-
tions (79,230 creates, 16,000 unlinks, 5,553 fsyncs, and 3,355
renames). We run the benchmark with the --sync-dir flag
to call fsync after unlink and rename operations. This con-
figuration stresses both MemFS and DiskFS. The dbench
benchmark was used by FxMark [31] to demonstrate scala-
bility bottlenecks in Linux file systems.

largefile. Inspired by the LFS benchmarks [39], largefile
creates a 100 MByte file and calls fsync after creating it.
Each core runs a separate copy of the benchmark, creating
and fsyncing its own 100 MByte file. All of the files are
in the same directory. We report the combined throughput
achieved by all cores, in MB/sec.

smallfile. The smallfile microbenchmark creates a new
file, writes 1 KByte to it, fsyncs the file, and deletes the file,
repeated 10,000 times (for different file names). Each core
runs a separate copy of the smallfile benchmark, each of
which performs 10,000 iterations. The files are spread among
100 directories that are shared across all cores. We report the
combined throughput achieved by all cores, in files/sec.

Results. Figure 9 shows the results. ScaleFS scales well for
all of our workloads, achieving approximately 40× perfor-
mance at 80 cores. ScaleFS does not achieve perfect 80× scal-
ability because going across sockets is more expensive than
accessing cache and DRAM within a single socket (which
occurs with 1-10 cores), and because multiple cores contend

82

for the same shared L3 cache. Linux ext4 fails to scale for
all workloads, achieving no more than 13× the performance
of a single core, and collapsing at 80 cores. We run only the
mailbench-p variant on Linux since it is more scalable.

7.5 Disk performance

Single disk, single core. To evaluate whether ScaleFS can
achieve good disk throughput, we compare the performance
of our workloads running on ScaleFS to their performance
on Linux ext4. Figure 10 shows the results, running with a
single disk and a single CPU core. ScaleFS achieves com-
parable or better performance to Linux ext4 in all cases.
For the smallfile microbenchmark, ScaleFS achieves higher
throughput because ScaleFS’s precise fsync design flushes
only the file being fsynced. Linux ext4, on the other hand,
maintains a single journal, which means that flushing the
fsynced file also flushes all other preceding entries in the
journal as well, which includes the modification of the parent
directory. ScaleFS achieves higher performance than Linux
ext4 on the dbench benchmark for the same reason.

Disk Benchmark ScaleFS Linux ext4

RAM disk

mailbench-p 641 msg/sec 675 msg/sec
dbench 317 MB/sec 216 MB/sec
largefile 331 MB/sec 378 MB/sec
smallfile 7151 files/sec 3553 files/sec

SSD

mailbench-p 61 msg/sec 66 msg/sec
dbench 47 MB/sec 28 MB/sec
largefile 180 MB/sec 180 MB/sec
smallfile 364 files/sec 277 files/sec

HDD

mailbench-p 9 msg/sec 9 msg/sec
dbench 7 MB/sec 5 MB/sec
largefile 83 MB/sec 92 MB/sec
smallfile 51 files/sec 27 files/sec

Figure 10: Performance of workloads on ScaleFS and Linux
ext4 on a single disk and a single core.

Multiple disks, 4 cores. Since the disk is a significant bot-
tleneck for both ScaleFS and ext4, we also investigated
whether ScaleFS can achieve higher disk throughput with
additional physical disks. In this experiment, we striped sev-
eral SSDs together, and ran either ScaleFS or Linux ext4
on top. To provide sufficient parallelism to take advantage
of multiple disks, we ran the workload using 4 CPU cores.
Figure 11 shows the results for the four workloads. For the
largefile workload, both ScaleFS and Linux cannot obtain
more throughput because the SATA controller is saturated.

With four disks, ScaleFS achieves more throughput than
Linux for mailbench, dbench, and smallfile. This is because
when Linux ext4’s fsync issues a barrier to the striped disk,
the Linux striping device forwards the barrier to every disk
in the striped array. ScaleFS is aware of multiple disks, and
its fsync issues a barrier only to the disks that have been
written to by that fsync.

 0

 50

 100

 150

 200

 250

 1 2 3 4

m
a
ilb

e
n
ch

 t
h
ro

u
g
h
p
u
t

(m
e
ss

a
g
e
s/

se
c)

Number of disks

ScaleFS
Linux ext4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4
d
b
e
n
ch

 t
h
ro

u
g
h
p
u
t

(M
B

/s
e
c)

Number of disks

ScaleFS
Linux ext4

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4

la
rg

e
fi
le

 t
h
ro

u
g
h
p
u
t

(M
B

/s
e
c)

Number of disks

ScaleFS
Linux ext4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4

sm
a
llfi

le
 t

h
ro

u
g
h
p
u
t

(fi
le

s/
se

c)

Number of disks

ScaleFS
Linux ext4

Figure 11: Throughput of the mailbench-p, dbench, large-
file, and smallfile workloads respectively, for both ScaleFS
and Linux ext4, using 4 CPU cores. The x-axis indicates the
number of SSDs striped together.

83

7.6 Overhead of splitting MemFS and DiskFS

The main worry about ScaleFS’s split of a separate in-
memoryMemFS file system and an on-disk DiskFS file sys-
tem is that ScaleFS might incur higher memory overhead
because it has to keep the operation log in memory and
because metadata (e.g., block allocator state, inodes, and di-
rectory contents) may be kept in memory twice: once in
MemFS’s in-memory representation and once in DiskFS’s
buffer cache. However, file data blocks are not stored twice.

To evaluate how severe this overhead is, we measured the
peakmemory usage for each benchmark. Figure 12 shows the
results. For largefile, there is little metadata, so the overhead
is minimal. For smallfile, the overhead is significant because
ScaleFS allocates an oplog for each directory and, in our pro-
totype, for each file as well. At 25 KB per oplog, 10,000 oplogs
translates into 250 MBytes of memory overhead. The mem-
ory overhead for mailbench is also dominated by the oplogs.
The mailbench-s configuration in particular creates 1,000
user mailboxes, with each Maildir-format mailbox consisting
of four directories (a parent directory and three subdirec-
tories). In the mailbench-p configuration, there are only 80
user mailboxes (one per core), which accounts for the lower
memory usage. For dbench, there are relatively fewer files
and directories involved, and ScaleFS does not introduce
much memory overhead.

Benchmark

Memory use Memory use ScaleFS

inMemFS in ScaleFS overhead

mailbench-p 12 MB 21 MB 75%
mailbench-s 515 MB 770 MB 49.5%
dbench 84 MB 94 MB 11.9%
largefile 106 MB 107 MB 0.9%
smallfile 296 MB 561 MB 89.5%

Figure 12: Peak memory use inMemFS and ScaleFS during
the execution of different benchmarks.

8 CONCLUSION

It is a challenge to achieve multicore scalability, durability,
and crash consistency in a file system. This paper proposes
a new design that addresses this challenge using the insight
of completely decoupling the in-memory file system from
the on-disk file system. The in-memory file system can be
optimized for concurrency and the on-disk file system can
be tailored for durability and crash consistency. To achieve
this decoupling, this paper introduces an operation log that
extends oplog [5] with a novel scheme to timestamp the
logged operations at their linearization points in order to
apply them to the disk in the same order a user process
observed them in memory. The operation log also minimizes
the data that must be written out at an fsync by computing
dependencies and absorbing operations that cancel out each
other. We implemented this design in a prototype file system,
ScaleFS, that was built on the existing sv6 kernel and we

analyzed the implementation using Commuter. The results
show that the implementation of ScaleFS achieves good
multicore scalability.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, and our shepherd,
Remzi Arpaci-Dusseau. This research was supported by NSF
award CNS-1301934.

REFERENCES

[1] H. Attiya, E. Hillel, and A. Milani. Inherent limitations
on disjoint-access parallel implementations of transac-
tional memory. In Proceedings of the 21st Annual ACM
Symposium on Parallelism in Algorithms and Architec-
tures, pages 69–78, Calgary, Canada, Aug. 2009.

[2] D. J. Bernstein. qmail internals, 1998. http://www.
qmail.org/man/misc/INTERNALS.txt.

[3] S. S. Bhat. Designing multicore scalable filesystems
with durability and crash consistency. Master’s the-
sis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science, June
2017.

[4] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An analy-
sis of Linux scalability to many cores. In Proceedings
of the 9th Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, Vancouver, Canada,
Oct. 2010.

[5] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. OpLog: a library for scaling update-heavy data
structures. Technical Report MIT-CSAIL-TR-2014-019,
MIT Computer Science and Artificial Intelligence Lab-
oratory, Cambridge, MA, Sept. 2014.

[6] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation (OSDI), pages 173–
186, New Orleans, LA, Feb. 1999.

[7] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Consistency without ordering.
In Proceedings of the 10th USENIX Conference on File and
Storage Technologies (FAST), pages 101–116, San Jose,
CA, Feb. 2012.

[8] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett,
W. A. Mason, and R. N. Sidebotham. The Episode file
system. In Proceedings of the Winter 1992 USENIX Tech-
nical Conference, pages 43–59, Jan. 1992.

[9] A. T. Clements, M. F. Kaashoek, and N. Zeldovich.
RadixVM: Scalable address spaces for multithreaded
applications. In Proceedings of the 8th ACMEuroSys Con-
ference, pages 211–224, Prague, Czech Republic, Apr.
2013.

84

http://www.qmail.org/man/misc/INTERNALS.txt
http://www.qmail.org/man/misc/INTERNALS.txt

[10] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T.
Morris, and E. Kohler. The scalable commutativity rule:
Designing scalable software for multicore processors.
In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–17, Farmington, PA,
Nov. 2013.

[11] J. Corbet. Dcache scalability and RCU-walk, Apr. 2012.
http://lwn.net/Articles/419811/.

[12] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a simple
Unix-like teaching operating system, 2016. http://
pdos.csail.mit.edu/6.828/xv6.

[13] M. Curtis-Maury, V. Devadas, V. Fang, and A. Kulka-
rni. To Waffinity and beyond: A scalable architecture
for incremental parallelization of file system code. In
Proceedings of the 12th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 419–434,
Savannah, GA, Nov. 2016.

[14] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System software
for persistent memory. In Proceedings of the 9th ACM
EuroSys Conference, Amsterdam, The Netherlands, Apr.
2014.

[15] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,
S. Hovsepian, A. Matsuoka, and L. Zhang. Gener-
alized file system dependencies. In Proceedings of
the 21st ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 307–320, Stevenson, WA, Oct. 2007.

[16] G. R. Ganger and Y. N. Patt. Metadata update perfor-
mance in file systems. In Proceedings of the 1st Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), pages 49–60, Monterey, CA, Nov. 1994.

[17] C. Gruenwald, III, F. Sironi, M. F. Kaashoek, and N. Zel-
dovich. Hare: a file system for non-cache-coherent
multicores. In Proceedings of the 10th ACM EuroSys
Conference, Bordeaux, France, Apr. 2015.

[18] R. Hagmann. Reimplementing the Cedar file system
using logging and group commit. In Proceedings of
the 11th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 155–162, Austin, TX, Nov. 1987.

[19] M. P. Herlihy and J. M. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM Trans-
actions on Programming Languages Systems, 12(3):463–
492, 1990.

[20] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
In Proceedings of the 13th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Los Ange-
les, CA, Aug. 1994.

[21] M. Jambor, T. Hruby, J. Taus, K. Krchak, and V. Holub.
Implementation of a Linux log-structured file system
with a garbage collector. ACM SIGOPS Operating Sys-
tems Review, 41(1):24–32, Jan. 2007.

[22] J. Kang, B. Zhang, T.Wo,W. Yu, L. Du, S. Ma, and J. Huai.
SpanFS: A scalable file system on fast storage devices.
In Proceedings of the 2015 USENIX Annual Technical
Conference, Santa Clara, CA, July 2015.

[23] Y. Klonatos, M. Marazakis, and A. Bilas. A scaling
analysis of Linux I/O performance. Poster presented at
EuroSys, 2011. http://eurosys2011.cs.uni-
salzburg.at/pdf/postersubmission/
eurosys11-poster-klonatos.pdf.

[24] C. Lameter. Effective synchronization on Linux/NUMA
systems. In Gelato Conference, May 2005. http://www.
lameter.com/gelato2005.pdf.

[25] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer
cache and journaling layers with non-volatile memory.
In Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), pages 73–80, San Jose,
CA, Feb. 2013.

[26] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and S. Lu. A study of Linux file system evolution. In
Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST), pages 31–44, San Jose, CA,
Feb. 2013.

[27] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Physical disentan-
glement in a container-based file system. In Proceedings
of the 11th Symposium on Operating Systems Design and
Implementation (OSDI), pages 81–96, Broomfield, CO,
Oct. 2014.

[28] Y. Lu, J. Shu, and W. Wang. ReconFS: A reconstructable
file system on flash storage. In Proceedings of the
12th USENIX Conference on File and Storage Technolo-
gies (FAST), pages 75–88, Santa Clara, CA, Feb. 2014.

[29] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas,
and L. Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux Symposium,
pages 21–34, Ottawa, Canada, June 2007.

[30] P. E. McKenney, D. Sarma, and M. Soni. Scaling dcache
with RCU. Linux Journal, 2004(117), Jan. 2004.

[31] C. Min, S. Kashyap, S. Maass, and T. Kim. Understand-
ing manycore scalability of file systems. In Proceedings
of the 2016 USENIX Annual Technical Conference, Den-
ver, CO, June 2016.

[32] D. Park and D. Shin. iJournaling: Fine-grained jour-
naling for improving the latency of fsync system call.
In Proceedings of the 2017 USENIX Annual Technical
Conference, pages 787–798, Santa Clara, CA, July 2017.

85

http://lwn.net/Articles/419811/
http://pdos.csail.mit.edu/6.828/xv6
http://pdos.csail.mit.edu/6.828/xv6
http://eurosys2011.cs.uni-salzburg.at/pdf/postersubmission/eurosys11-poster-klonatos.pdf
http://eurosys2011.cs.uni-salzburg.at/pdf/postersubmission/eurosys11-poster-klonatos.pdf
http://eurosys2011.cs.uni-salzburg.at/pdf/postersubmission/eurosys11-poster-klonatos.pdf
http://www.lameter.com/gelato2005.pdf
http://www.lameter.com/gelato2005.pdf

[33] S. Park, T. Kelly, and K. Shen. Failure-atomic msync():
A simple and efficient mechanism for preserving the
integrity of durable data. In Proceedings of the 8th ACM
EuroSys Conference, pages 225–238, Prague, Czech Re-
public, Apr. 2013.

[34] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All file systems are not created equal: On the
complexity of crafting crash-consistent applications. In
Proceedings of the 11th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 433–448,
Broomfield, CO, Oct. 2014.

[35] T. S. Pillai, R. Alagappana, L. Lu, V. Chidambaram, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Applica-
tion crash consistency and performance with CCFS. In
Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), pages 181–196, Santa Clara,
CA, Feb.–Mar. 2017.

[36] K. Ren and G. Gibson. TABLEFS: Enhancing metadata
efficiency in the local file system. In Proceedings of
the 2013 USENIX Annual Technical Conference, pages
145–156, San Jose, CA, June 2013.

[37] D.M. Ritchie and K. Thompson. The UNIX time-sharing
system. Communications of the ACM, 17(7):365–375,
July 1974.

[38] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux
B-tree filesystem. ACM Transactions on Storage, 9(3):
9:1–32, Aug. 2013.

[39] M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. In Proceedings
of the 13th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 1–15, Pacific Grove, CA, Oct. 1991.

[40] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system.
In Proceedings of the 1996 USENIX Annual Technical
Conference, San Diego, CA, Jan. 1996.

[41] A. Tridgell and R. Sahlberg. DBENCH, 2013. https:
//dbench.samba.org/.

[42] J. Xu and S. Swanson. NOVA: A log-structured file
system for hybrid volatile/non-volatile main memories.
In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), pages 323–338, Santa
Clara, CA, Feb. 2016.

[43] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. eX-
plode: A lightweight, general system for finding se-
rious storage system errors. In Proceedings of the 7th
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 131–146, Seattle, WA, Nov. 2006.

86

https://dbench.samba.org/
https://dbench.samba.org/

	Introduction
	Related work
	Durability semantics
	Overview
	Design
	Making operations orderable [P, C]
	Merging operations [C]
	Flushing an operation log [P, C]
	Multiple disks and journals [P]
	Discussion

	Implementation
	MemFS
	DiskFS

	Evaluation
	Methodology
	Does ScaleFS achieve conflict freedom?
	Does durability reduce conflict freedom?
	Empirical scalability
	Disk performance
	Overhead of splitting MemFS and DiskFS

	Conclusion

