
COSC441 Concurrent Programming
C11 Threading Basics

Richard A. O’Keefe

August 2, 2016

C11

I The C11 standard added threads to ISO C.

I Some libraries still haven’t caught up (OSX).

I https://github.com/jtsiomb/c11threads
provides a C11 interface to POSIX threads

I Atomic and Thread local need compiler
support

I Look for <threads.h>

Threads (1)

I thrd t — implementation-defined type for
identifying threads.

I thrd current() — identifier for current thread

I thrd equal(x , y) — do x and y refer to the
same thread?

I thrd exit(n) — cleans up this thread’s
thread-specific storage, sets result to n, and
terminates thread.

Threads (2)

I thrd create(&id, fun, arg) calls fun(arg) in a
new thread, setting id to the identifier of that
thread.

I No control over size or location of stack or any
other property. fun returns int.

I thrd join(id, &res) — waits for thread id to
terminate, stores result in res

I thrd detach(id) makes id unjoinable.

parbegin

The older parbegin s1; . . . ; sn end is
thrd create(&t1, f1, a1); // f1(a1) does s1
. . .
thrd create(&tn, fn, an); // fn(an) does sn
thrd join(t1, NULL); // wait for t1 to finish
. . .
thrd join(tn, NULL); // wait for tn to finish

Threads: missing operations

Some operations you might expect are missing.

I is thread x still alive?

I suspend thread x

I resume thread x

I kill thread x (in POSIX)

I enquire about properties of x

Mutexes: concepts

I A mutex is a queue of waiting threads.

I And an indication of whether (plain) or which
(recursive) thread holds the mutex, if any.

I Recursive mutex has a counter.

I Support MUTual EXclusion.

Plain mutexes

I atomic lock(plain) {
if plain is unlocked then mark plain as locked
otherwise add this thread to the waiting queue
}

I atomic unlock(plain) {
it is an error if plain is not locked.
if the queue is empty mark plain as unlocked
otherwise wake one thread from the queue }

I Doing lock(&m); lock(&m); deadlocks the
calling thread.

Recursive mutexes
I atomic lock(mutex) {

if mutex’s count is 0 set count to 1 and record
this thread as the owner, otherwise if this
thread is recorded as the owner, increment the
count, otherwise add this thread to the waiting
queue }

I atomic unlock(mutex) {
it is an error if this thread is not the mutex’s
owner.
decrement the count.
if the count is 0 and any thread is waiting,
wake a waiting thread. }

I Doing lock(&m); lock(&m); works.

Mutexes: interface (1)

I mtx t — implementation-defined type of
mutex objects (not pointers or identifiers). Do
not copy/assign.

I mtx init(&mutex, type) Do not call on mutex
currently in use!

I type is mtx plain, mtx timed (allows
timeouts), mtx plain|mtx recursive (can be
repeatedly locked by same thread), or
mtx timed|mtx recursive

I mtx destroy(&mutex) — opposite of init. Do
not call if still in use.

I No way to tell if mutex is still in use.

Mutexes: interface (2)
I mtx lock(&mutex)

lock the mutex; if you can’t do it now, wait
until you can.

I mtx trylock(&mutex)
if you can lock the mutex now, do so and
return thrd success, otherwise return thrd busy.

I mtx unlock(&mutex)
unlock the mutex. (For recursive, might still
own.)

I mtx timedlock(&mutex, &when)
like mtx lock but gives up and returns
thrd timedout if the clock reaches when and
not able to lock yet.

Barriers and ordering

I Locking and unlocking mutexes acts as a
memory barrier. Pending loads and stores are
completed, then the locking operation done,
then new loads and stores can start.

I Actions in independent threads are generally
unordered but init, (lock | trylock | timedlock |
unlock)*, destroy operations on any one lock
happen in some total order.

Mutexes: missing operations

There is no way to ask “lock exactly one of these
and tell me which one”.
You can use trylock to find out if a mutex is locked,
but you can’t ask how many other threads want it.
Deadlock diagnosis requires a graph of which
threads hold/want which locks, but you can’t access
it.

Mutexes: missing language feature

A mutex exists to protect specific data.
There is no link between the data and the mutex in
C.
Put the data in a struct and put the mutex in the
same struct.

Conditions: concepts

The basic idea is that inside a critical region, we
want to wait until some logical expression is true.
To make it true, some other thread will have to get
the lock. Ideally, we’d write await expr;
A “condition variable” is a queue of threads waiting
for the same condition to become true of the same
protected data.

Conditions: interface (1)

I cnd t — implementation-defined type of
condition objects (not pointers or identifiers).
Do not copy/assign.

I cnd init(&cond). Do not call on cond already
in use!

I cnd destroy(&cond). Opposite of init. Do
not call if cond still in use.

Conditions: interface (2)

I cnd wait(&cond, &mutex)
atomically, add the current thread to the queue
of threads in cond, and unlock mutex. When
awoken, re-lock mutex.

I cnd timedwait(&cond, &mutex, when)
Like cnd wait but if clock reaches when, wake
up anyway and return thrd timedout.

I cnd signal(&cond)
wake up one waiting thread

I cnd broadcast(&cond)
wake up all waiting threads

Conditions: beware

I signals/broadcasts are not counted; if there are
no waiting threads when you issue a signal, it’s
as if it never happened.

I We expect signalling a condition to wake one
thread. The POSIX specification for this
operation says it wakes at least one thread.
This concession is for multicore machines, and
some libraries do wake multiple threads.

Thread-local variables

I Thread local object-declaration;
for declaring variables such that each thread
gets its own copy.

I can be combined with static (the name is
local to this file, but every thread still has a
copy)

I or extern, the default.

I <threads.h> defines thread local as a
synonym

I Such variables may be initialised.

Thread-specific storage (1)

I tss t — implementation-defined type of
thread-specific storage key type.

I tss create(&key, destructor)
creates a new thread-local variable at run time;
key identifies this (relative to the calling
thread). Values are void*, initially NULL.
destructor is called to clean up.

I texttttss destroy(&key)
Reclaims storage used for this key in every
thread. Does NOT call destructor.

I Destructor is called ONLY when thread exits.

Thread-specific storage (2)

I tss get(&key)
return void* value associated with key in
calling thread.

I tss set(&key, value)
set value associated with key in calling thread,
does not call destructor to clean up old value.

I Note: cannot get or set tss value in any other
thread, or form a pointer to it so that could be
done indirectly.

I Use Thread local if you can because that
gets type-checked.

Lazy initialisation: single-threaded

static initialised = 0;
. . .
if (!initialised) {

initialised = 1;
do initialisation();

}

Lazy initialisation: multi-threaded

static once flag initialised = ONCE FLAG INIT;
. . .
call once(&initialised, do initialisation);

Atomic types and operations

I Atomic(t) is a type specifier provided t is a
type name other than a function, array, atomic,
or qualified type.

I Atomic may be used as a qualifier along with
a type that is not a function or array type.

I Operations are in <stdatomic.h>

Atomic operations (simplified, 1)

I atomic store(&dst, val)

I val = atomic load(&src)

I old = atomic exchange(&dst, new)

I if (atomic compare exchange weak(&dst,
&old, new) — LL+SC, strong is CAS.

Atomic operations (simplified, 2)

I old = atomic fetch op(&dst, operand)
add like +=, sub like -=, and like &=, or

like |=, xor like ˆ=, except that old value is
returned, not new value.

I You can atomically update integers and
pointers, but apparently not floats/doubles.

	Lecture

