

COSC441

Message Passing

Outline

● Conceptual model

● Rapid survey of message passing for POSIX

● Issues

Conceptual model

● Imagine a car

● You don't want a failure in the engine control
system to disrupt the brakes

● You don't want a failure in the entertainment
system to disrupt the engine control

● Put these on physically separate machines

● Communicating through wires

● Using small secure protocols

UNIX has...

● System V message queues

● POSIX message queues

● Pipes

● Named pipes

● Unix domain sockets

● TCP/IP sockets

● (possibly MPI)

System V

● msgget : create/open queue

● msgctl : query/change attributes, close

● msgsnd : send a message

has type, size, data, wait/nowait

● msgrcv : receive a message
has type wanted/received, size, data,
wait/nowait

POSIX

● mq_open

● mq_close

● mq_send (data, size, priority)

● mq_timedsend (data, size, priority, timeout)

● mq_receive (data, size, priority got)

● mq_timedreceive (data, size, priority got,
timeout)

● mq_getattr, mq_setattr

Pipes and named pipes

● Should already be familiar

● Like message queues but no message
boundaries, types, or priorities

Issues: Naming

● How does a thread/process find a
communication channel it wants to use?

● How can you name one you are creating?

● Are they even named at all (pipes weren't, but
what about using /proc/${pid}/fd/${num}?

● Can you send a reference to a channel through
a channel?

Issues: I/O rates

● latency: time between send and receive

● bandwidth: how many bytes or messages per
second can be sent?

● capacity: how many bytes or messages can be
buffered before the sender blocks?

Issues: flow control

● If the sender sends too fast, the receiver needs to be able to
slow it down

● If the sender sends too slowly, the receive might need to give
it a nudge

● Messages can be lost if they arrive too fast

● If messages arrive too slowly, timeouts and disconnections
may occur.

● Flow control done by OS for message queues, pipes, UNIX
domain sockets, by network stack for TCP

● Not done by system if you use UDP

Issues: encoding

● How are data encoded?

– binary

– ASN.1

– XDR

– ad hoc text

– XML

– JSON

– S-expressions

– UBF(A)

Issues: copying

● Putting a value on the wire involves copying it (perhaps
in another form): marshalling, pickling, serialisation

● Receiving a value from the wire involves copying it
(perhaps from another form): unmarshalling, unpickling,
deserialisation.

● This is a cost that shared memory systems do not pay.
● Object identity may be lost
● Unless you use the PROXY pattern

Issues: monitoring and debugging

● Message capture is a great non-invasive tool

– for record/replay debugging

– for record/replay resilience

– for performance monitoring

– for checking conformance to protocols/contracts

– for visualising system behaviour

Issues: system partitioning

● Processes that communicate by sending
messages do not care whether they are on the
same core, on the same chip, in the same box,
or on a network

● PROVIDED THAT NAMING WORKS.

● Unix message queues and pipes do not work
between hosts. TCP does.

● Relays (gateways) can bridge such gaps.

Issues: selective receive

● Can the sender prioritise messages?

● Can the receiver choose which messages to
process first?

● Ada, Occam, Concurrent ML, Erlang all have
some form of selective receive. It is a
wonderful programming tool.

Outline

● Conceptual model

● Rapid survey of message passing for POSIX

● Issues

