COSC441

Message Passing



Outline

e Conceptual model
 Rapid survey of message passing for POSIX
e Issues



Conceptual model

Imagine a car

You don't want a failure in the engine control
system to disrupt the brakes

You don't want a failure in the entertainment
system to disrupt the engine control

Put these on physically separate machines
Communicating through wires
Using small secure protocols



UNIX has...

System V message queues
POSIX message queues
Pipes

Named pipes

Unix domain sockets
TCP/IP sockets

(possibly MPI)



System V

msgget . create/open queue
msgctl : query/change attributes, close
msgsnd : send a message

has type, size, data, wait/nowait

Mmsgrcv : receive a message
has type wanted/received, size, data,
wait/nowait



POSIX

mQg_open
mqg_close

mg_send (data, size, priority)
mg_timedsend (data, size, priority, timeout)

mqg_receive (data, size, priority got)

mg_timedreceive (data, size, priority got,
timeout)

mq_ getattr, mg_setattr



Pipes and named pipes

 Should already be familiar

 Like message queues but no message
boundaries, types, or priorities



Issues: Naming

How does a thread/process find a
communication channel it wants to use?

How can you name one you are creating?

Are they even named at all (pipes weren't, but
what about using /proc/${pid}/fd/${num}?

Can you send a reference to a channel through
a channel?



Issues: I/O rates

e latency: time between send and receive

 bandwidth: how many bytes or messages per
second can be sent?

e capacity: how many bytes or messages can be
buffered before the sender blocks?



Issues: flow control

If the sender sends too fast, the receiver needs to be able to
slow it down

If the sender sends too slowly, the receive might need to give
It a nudge

Messages can be lost if they arrive too fast

If messages arrive too slowly, timeouts and disconnections
may occulr.

Flow control done by OS for message queues, pipes, UNIX
domain sockets, by network stack for TCP

Not done by system if you use UDP



Issues: encoding

e How are data encoded?
— binary
- ASN.1
- XDR
— ad hoc text
- XML
- JSON
— S-expressions
- UBF(A)



Issues: copying

* Putting a value on the wire involves copying it (perhaps
In another form): marshalling, pickling, serialisation

e Recelving a value from the wire involves copying it
(perhaps from another form): unmarshalling, unpickling,
deserialisation.

* This Is a cost that shared memory systems do not pay.
* Object identity may be lost
e Unless you use the PROXY pattern



Issues: monitoring and debugging

e Message capture Is a great non-invasive tool

— for record/replay debugging

— for record/replay resilience

— for performance monitoring

— for checking conformance to protocols/contracts
— for visualising system behaviour



Issues: system partitioning

Processes that communicate by sending
messages do not care whether they are on the
same core, on the same chip, in the same box,
or on a network

PROVIDED THAT NAMING WORKS.

Unix message queues and pipes do not work
between hosts. TCP does.

Relays (gateways) can bridge such gaps.



Issues: selective recelve

 Can the sender prioritise messages?

e Can the receiver choose which messages to
process first?

e Ada, Occam, Concurrent ML, Erlang all have
some form of selective receive. Itis a
wonderful programming tool.






Outline

e Conceptual model
 Rapid survey of message passing for POSIX
e Issues



