
COSC441 Concurrent Programming
Patterns of Concurrency and Parallelism

Richard A. O’Keefe

September 19, 2017

Outline

I map/2 again

I pmap/2

I problems with pmap/2

I spawn link/2

I throttling

I supervision

I behaviours

map/2 again

% return [F (X1), . . . , F (Xn)]

map(F , [X |Xs]) →
[F (X) | map(F , Xs)];

map(, []) →
[].

pmap/2

% return [F (X1), . . . , F (Xn)]
% computing the results in separate threads.

pmap(F , [X |Xs]) →
S = self(),
P = spawn(fun () → S ! {self(), F (X)} end),
Ys = pmap(F , Xs)
receive {P , Y } → [Y |Ys] end;

pmap(, []) →
[].

Problems with pmap/2: process dictionary

I Erlang processes each own a “dictionary”

I erase(Key) → Value | undefined

I get(Key) → Value | undefined

I put(Key, Value) → OldValue | undefined

I Keys and Values may be any Erlang term

I spawning does not copy the process dictionary;
if F uses or changes it switching from map/2
to pmap/2 will break.

Problems with pmap/2: waiting forever

I If one of the new processes crashes, pmap/2
will wait forever.

I We can make the calling process and all the
child processes crash if any of them does by
using spawn link instead of spawn.

I Erlang has two ways to notice the death of a
process: monitoring (one-way link) and linking
(two-way link).

monitor/2

I monitor(process, Pid) → Ref

I The calling process receives {’DOWN’, Ref,
process, Pid, Info} where

I Info = noproc (process didn’t exist),
noconnection (connection to process lost), or
the exit reason if Pid crashed.

I This message is sent once and only once.

I There is a timing window: create process, it
crashes, call monitor, get noproc Info instead of
exit reason. Always beware of timing windows!

Using monitor/2

P = spawn(fun () →
receive → ok end,
S ! {self(), F (X)}

end),
R = erlang:monitor(process, P),
P ! go,
. . .

Using monitor/2

receive
{’DOWN’, R , process, P , Info} →

handle failure
; {P , Y } →

[Y |Ys]
end

Oh dear. To handle failure, we want to kill the
other child processes.

Avoiding the timing window

I There is a combination function
spawn monitor/1 that atomically spawns a new
process and monitors it. The result is a
{Pid,Ref} pair.

I There is a function spawn(Node, Fun) that
starts a new process on another node.

I There happens to be no spawn monitor/2.

I So the “spawn; wait; twiddle; resume” pattern
is still worth knowing, also in other languages.

Linking

I Links are bidirectional.

I link(Pid) links Pid and the caller.

I unlink(Pid) removes a link.

I If two processes are linked, and one of them
crashes, the other will receive an exit signal.

I If A sends B an exit signal with reason R,
I If B is trapping exits, it receives a message

{’EXIT’,A,R}.
I If B is not trapping exits, B exits with reason R.

Trapping exits

I process flag(trap exit, true) makes the caller
trap exits (get ’EXIT’ messages)

I process flag(trap exit, false) makes the caller
die in response to exit signals

I either way the old value is returned.

I “application” code normally doesn’t do this,
but library code like pmap/2 might.

Timing windows again

I It is possible for the new process to crash
before you can link to it.

I We can use the “spawn; wait; twiddle; resume”
pattern.

I spawn link/1 atomically creates a new process
and links to it.

I spawn link(Node, Fun) does exist.

I “application” code does use spawn link.

Throttling

I Creating an Erlang process is cheap

I but it isn’t free.

I If you are after speedup and have N cores, 2N
processes might be useful, but N2 will not be.

I If you need N2 processes for concurrent
structure, fine.

I pmap(F , Xs) creates length(Xs) processes.

I How do you create fewer?

pmap4(F , Xs) →
S = self(),
Pids = map(fun (Part) →

spawn link(fun →
S ! {self(), map(F , Part)} end)

end, split4(Xs)),
join4(map(fun (Pid) →

receive {Pid,Ans} → Ans end
end, Pids)).

What do we have?

I A design pattern called Master-Worker.

I Two reusable components.

I Prefer components to patterns.

It looks sequential, but. . .

foldl(F , A, [X |Xs]) →
foldl(F , F (A,X), Xs);

foldl(, A, []) →
A.

This looks sequential. For arbitrary F , it is. But for
associative F , that is, F (X ,F (Y ,Z)) =
F (F (X ,Y),Z), it doesn’t have to be.

% folding over a binary tree.

fold(F , L, {fork,X ,Y }) →
S = self(),
P = spawn(fun () → S ! {self(),fold(F ,L,Y)} end),
U = fold(F , L, X),
receive {P ,V } → F (U ,V) end;

fold(, L, {leaf,X}) →
L(X).

Algorithmic Skeletons

I “Algorithmic Skeletons (alias Parallelism
Patterns) take advantage of common
programming patterns to hide the complexity
of parallel and distributed applications.
Starting from a basic set of patterns
(skeletons), more complex patterns can be built
by combining the basic ones.”

I Not limited to parallelism: concurrency too.

I Look at Wikipedia in class.

I Not a closed set!

Supervision

I A supervisor is a process that is monitoring a
number of child processes.

I If the supervisor dies, the children pointless and
should be killed.

I If a child dies, the supervisor should make a
decision on what to do, e.g.,

I kill everything
I kill everything and restart
I restart the dead process
I make do without . . .

Behaviours

I Erlang modules embodying concurrent patterns

I “OTP Design Principles User’s Guide”

I handle startup, termination, reload

I as well as core pattern

I Obviously parameterised, but how?

Behaviour parameters

I Provide the name of a callback module

I Each behaviour has a set of callback functions

I The callback module must implement them

I Using a module instead of a function or
functions means the module can be hot-loaded.

	Lecture

