Erlang/QuickCheck

Thomas Arts, IT University
John Hughes, Chalmers University
Gothenburg



A little set theory...

 Recallthat X UY =Y U X?



A little set theory...

e Recalthat X UY =Y U X?
e Erlang hasasetslibrary. Does this hold?



A little set theory...

 Recallthat X UY =Y U X?

e Erlang hasasetslibrary. Does this hold?
* Property: XuUuY=YUX



A little set theory...

 Recallthat X UY =Y U X?

e Erlang hasasetslibrary. Does this hold?
e Property: VX.VY.XUY =Y UX



A little set theory...

 Recallthat X UY =Y U X?

e Erlang hasasetslibrary. Does this hold?
e Property: VX:Sa.VY:Sate. XUY =Y UX



A little set theory...

Recall that X UY =Y U X?

Erlang has a sets library. Does this hold?
Property: VX:Set.vVY:Saae. XUY =Y UX

In Erlang/QuickCheck:

?FORALL(X,set(),
?FORALL(Y,set(),
sets:union(X,Y) == sets:union(Y,X)))



A little set theory...

Recall that X UY =Y U X?

Erlang has a sets library. Does this hold?
Property: VX:Set.vVY:Saae. XUY =Y UX

In Erlang/QuickCheck:

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
sets:union(X,Y) == sets:union(Y,X))).



Verifying the property

12> qgc:quickcheck(
setsspec:prop_union_commutes()).



Verifying the property

12> qgc:quickcheck(
setsspec:prop_union_commutes()).

Falsifiable, after 45 successful tests:
{'@',sets,from_11st,[[-6,7,11,10,2]]}
{'@',sets,from_1ist,[[7,7,1,-4,11,-7]]}

ok
"function call” j These sets are a
counterexample.




Fixing the Property

o Setsare not represented uniquely by the sets library

 union buildstwo different representations of the
same set

equal (s1,S2) ->
Tists:sort(sets:to_list(sl)) ==
Tists:sort(sets:to_l1st(s2)).

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
equal (sets:union(X,Y),sets:union(Y,X)))).



Checking the fixed property

15> gc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests
ok



What 1s QuickCheck?

* A language for stating properties of
programs (Implemented as a library of
functions and macros).

A tool for testing properties in randomly
generated cases.



Properties
e Boolean expressions + ?FORALL + ?IMPLIES.

prop_positive_squares() ->
?FORALL(X,1nt() ,X*X>=0).

prop_larger_squares() ->
?FORALL(X,1nt(),
?IMPLIES(X>1, ——— A precondition




What are int() and set()?

e Types?



What are int() and set()?

e Types? NOI!I!

e Test data generators.
— Define a set of valuesfor test data. ..
— ...plus aprobability distribution over that set.

» Test data generators are defined by the
programmer.



Defining generators

« \We often want to define one generator Iin
terms of another, e.g. squares of Ints.

e But we cannot do this by writing
N = 1nt(), N*N

L S

Returns atest Result should be\
data generator, a generator, not
not an integer. an integer.

N _ N _




Defining generators

« \We often want to define one generator Iin
terms of another, e.g. squares of Ints.

e But we cannot do this by writing
N = 1nt(), N*N

* \We define agenerator language to handle
generatorsasan ADT.
PLET(N,1nt(Q,return(N*N))

Eﬁname to thej Convert avalueto a
value gener ated. constant generator.




How can we generate sets?

« An ADT can only be generated using the
ADT operations.

* Choose randomly between all ways of
creating a set.



Thisisasdlight ssmplification. To ensure termination, recursive
generators must limit the size of the result.

A generator for sets

set() -> frequency([
{6,?LET(L, Tist(int()),
return({'@',sets,from_list,[L]}))},
{6,?LET(S,set(),?LET(E,1nt(),
return({'@"',sets,add_element,[E,S]})))},
{1,?LET(P,function(bool ()),?LET(S,set(),
return({'@',sets,filter,[P,S]})))},

?FORALL performsacal
when it sees '@°

1)




A problem with random generation

 How do we know we tested a reasonable
range of cases, when we don’t see them?



A problem with random generation

 How do we know we tested a reasonable
range of cases, when we don’t see them?

 SiImple approach: collect statistics on test
cases, So we see a summary of the test data.

* (A simple way to measure test coverage,
which is atangled topic in its own right).



An instrumented property

prop_union_commutes() ->
?FORALL(X,set(),
?FORALL(Y,set(),
collect(sets:s1ze(sets:union(X,Y)),
equal (sets:union(X,Y),

sets:union(Y,X))))).
/Col lect statistics on
the sizes of the

resulting sets.
N 7




Output: the distribution of set sizes

27> qc:quickcheck(
setsspec:prop_union_commutes()).

OK, passed 100 tests

16% 3 7% 7 3% 16 2% 9 1% 21
11% 4 6% 12 3% 14 2% 0O 1% 18
% 2 5% 13 3% 11 1% 20 ok

8% 6 4% 8 3% 5 1% 10

8% 1 3% 17 2% 24 1% 22



Testing concurrent programs

A simple resource allocator:
. start() — startsthe server
. claim() —clamsthe resource . .
} INn the client
. free() —releases the resource

These functions are called for their effect, not
their result. How can we write QuickCheck
properties for them?



Traces

« Concurrent programs generate traces of
events.

* \We can write properties of traces —they are
lists!



Testing the resource allocator

client() -> claim(), free(), client().

clients(N) —Spawnsn clients.
system(N) -> start(), clients(N).

?FORALL(N,nat(Q),
?FORALL (T, ?TRACE(3, system(N)),
.. property of T ..))



The trace recorder

Running Events [ Trace
system recorder

 What should the recorded events be?

* How should we capture them?



Random traces. a problem
* What does this print?

test_spawn() ->
spawn(io, format,["a"]),
spawn(io, format,["b"]).



Random traces. a problem
* What does this print?

test_spawn() ->
spawn(io, format,["a"]),
spawn(io, format,["b"]).

. ab —every timel



Random traces. a problem
* What does this print?

test_spawn() ->
spawn(io, format,["a"]),
spawn(io, format,["b"]).

. ab —every time!

e But ba should also be a possible trace — the
Erlang scheduler is too predictabl el



Solution: ssmulate a random
schedul er

e |nsert calls of event(Event) IN code under
test.

— Sends Event to trace recorder
— Walts for areply, sent in random order

e Allowsthe trace recorder to smulate a
random scheduler.

« Answers question: which events should be
recorded?



Simple example revisited

do(E) -> event(spawned), event(E).

?FORALL(T,
?TRACE(3,begin spawn(?MODULE,do, [a]),
spawn (?MODULE,do, [b])
end),
collect(rename_pids(nowaits(T)),true)))



Simple example revisited

OK, passed 100 tests
18% [{exit,{pid,1},normal}, 18% [{exit,{pid,1},normal},

{event, {pi1d,2},spawned}, {event, {p1d,2},spawned},
{event, {pi1d, 3}, spawned}, {event, {p1d, 3}, spawned},
{event, {pi1d,2},a}, {event,{pid,3},b},
{ex1t,{pid,2},normal}, {exit,{pid,3},normal},
{event, {pi1d,3},b}, {event, {p1d,2},a},
{ex1t,{pid,3},normal}, {exit,{pid,2},normal},

timeout] timeout]



Simple example revisited

OK, passed 100 tests
18% [{exit,{pid,1},normal}, 18% [{exit,{pid,1},normal},

{event, {pi1d,2},spawned},
{event, {pi1d, 3}, spawned},
{event, {pi1d,2},a},
{ex1t,{pid,2},normal},
{event, {pi1d,3},b},
{ex1t,{pid,3},normal},
timeout]

Pids are renamed
for collecting
statistics

N _

{event, {p1d,2},spawned},
{event, {p1d, 3}, spawned},
{event, {p1d,3},b},
{exit,{pid,3},normal},
{event, {p1d,2},a},
{exit,{pid,2},normal},
timeout]

Trace recorder times
out If no events happen
for awhile

N~ R




A surprisel

Pid=spawn(fun() ->
event (spawned),
event(ok) end),

event(spawn),

ex1t(Pid,kill),
event(kill)

No doubt there is a good reason...

1% [{event,{pid,1l},spawn},
{event, {pid,2},spawned},
{event, {pi1d,2},0k},
{event, {p1d,1},ki11},

{ex1t,{pic
{ex1t,{pic

{ex1t,{pioc
timeout]

2}, killed},
,2},noproc},
,1},normal},



Trace properties

e Theresource allocator guarantees exclusion
* |nstrumented code:

client() ->
event(request),
claim(),
event(claimed),
event(freeing),
free(),
client().



Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T, ?TRACE(3, system(N)) ,
satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_,freeing}),
thot (?MATCHES ({event,_,claimed})))))))))



Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),

?FORALL (T, ?TRACE(3,system(N)),

satisfies(T,

alwas(timplies (?MATCHES ({event,_,claimed}),
nhe until (?MATCHES ({event,_,freeing}),

(?MATCHES ({event,_,claimed})))))))))

@e trace T satisfies.i




Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),

?FORALL (T, ?TRACE(3,system(N)),

satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
(unti1(?MATCHES ({event,_,freeing}),
(?MATCHES ({event,_,claimed})))))))))

...l sawaystruethat...




Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL (T, ?TRACE(3, system(N)),
satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
next(until(?MATCHES vent,_, freeing}),
thot (?MATCHES ({eve Taimed})))))))))

\ ...if the current event is claimed...




Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T, ?TRACE(3, system(N)) ,
satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_,freeing}),
tn TCHES ({event,_,claimed})))))))))

...then after thisevent..J




Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T, ?TRACE(3, system(N)) ,
satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_,freeing}),
thot (?MATCHES ({even Taimed})))))))))

...until afreaing event happens...




Trace properties

e Theresource allocator guarantees exclusion

?FORALL(N,nat(),
?FORALL(T, ?TRACE(3, system(N)) ,
satisfies(T,
always(timplies (?MATCHES ({event,_,claimed}),
next(until (?MATCHES ({event,_,freeing}),
thot (?MATCHES ({event,_,claimed})))))))))

there will be nofum




Trace property language

e Based on linear temporal logic
— Logical operations:
tand, tor, tnot, ?TIMPLIES.

— Temporal operations:
always, eventually, next, until.

— Event matching operations:
?MATCHES, ?AFTER, 7?NOW.



A falling property
* Theresourceisaways eventually granted.

prop_eventual ly_granted(N) ->

?FORALL (T, ?TRACE(3,system(2)),

satisfies(T,

always (?AFTER({event,Pid, request},

eventual ly(N,
tor(?Now({event,Pi1d2,claimed},
Pid==P1d2),
?MATCHES(more))))))).



A falling property

* Theresourceisaways eventually granted.

prop_eventual ly_granted(N) ->

Falling trace of 23
steps found after
80 successful tests.

?FORALL (T, ?TRACE(3, system(2)),

satisfies(T,
always (?AFTER({eV%EAfter at most N Stepa

eventual ly(N,

tor(?Now({event,Pi1d2,claimed},
Pid==Pi1d2),

.

?
End of the ATCHES (more))))))) .
recorded trace




N progress

» Testing generic leader election behaviour
e Properties

— Eventually aleader is elected, even in the
presence of fallures

— Thereisaways at most one elected |eader



Experience

* There are as many bugs in propertiesasin
programs!

— QuickCheck checks for consistency between the two,
hel ps improve understanding

« Random testing is effective at finding errors.
« Changes our perspective on testing

— Not "what cases should | test?’
— But "what properties ought to hold?”



QuickCheck 1s Fun!

Try it out!

www.cs.chalmers.se/~rjmh/ErlangQC



References

 Erlang/QuickCheck is based on a Haskell original
by Claessen and Hughes.

— QuickCheck: A Lightweight Tool for Random Testing of
Haskell Programs, |CFP 2000.

— Testing Monadic Code with QuickCheck, Haskell
Workshop 2002.

— Specification Based Testing with QuickCheck, in Fun of
Programming, Palgrave, 2003.

— Testing and Tracing Functional Programs, in
Advanced Functional Programming Summer School,
Springer-Verlag LNCS, 2002.



Questions?



ANnswers

(The remaining slides may be used to answer
specific questions).



Random functions are pure
functions!

1> F = gc:gen(qc:function(qc:nat()),10).
#Fun<qc.46.146

2> F(D). Invokes a generator |
8

3> F(2).

9 &Random results |

4> F(3).

3

5> F(D/CBut consistent ones |
8




Controlling sizes

o Test cases are regenerated w.r.t. asize
parameter, which increases during testing.

prop_union_commutes() ->
?SIZED(N,resize(5*N,

Blnd N to the Reset theS|z
ze parameter parameter

e Set sizes now range up to 135 elements.




