
COSC441 Concurrent Programming
Time, Happens-Before, Logical Clocks

Richard A. O’Keefe

August 2, 2016



Newtonian time

“Absolute, true, and mathematical time, in and of
itself and of its own nature, without reference to
anything external, flows uniformly and by another
name is called duration. Relative, apparent, and
common time is any sensible and external measure
(precise or imprecise) of duration by means of
motion; such a measure — for example, an hour, a
day, a month, a year — is commonly used instead of
true time.” — Newton, Principia Mathematica.



Unpacking Newton

I Time is universal

I Time is regular

I Time is unbranching

I Time is continuous (Archimedean)



Modelling with Time (1)

The natural way to model systems given such a
view of time is as systems of coupled partial
differential equations.



Parting with Newton: discrete time

I Digital computers are (made from analogue
circuits pretending quite successfully to be)
discrete-valued systems making state
transitions at discrete points in time.

I Time is discrete, not continuous; like the
integers, not the reals.



Modelling with Time (2)
I The natural way to model computer systems is

as deterministic finite state automata
augmented with inputs, outputs, and some sort
of memory.

s(0) = initial state

m(0) = initial memory

s(t + 1) = f (s(t),m(t), i(t))

m(t + 1) = g(s(t),m(t), i(t))

o(t + 1) = h(s(t),m(t), i(t))

I We can specify and reason about such systems
using a temporal logic



Temporal Logic

I φ : φ is true at t

I Xφ : φ is true at t + 1

I Fφ : φ is true at t + n for some n ≥ 0

I Gφ : φ is true at t + n for all n ≥ 0

I φUψ : there is an n ≥ 0 such that ψ is true at
t + n and φ is true at all t + m where
0 ≤ m < n.



Parting with Newton: nondeterminism

I VLSI systems are actually quantum devices.

I Modern Pentiums have a True Random
Number Generator in hardware (based on
thermal noise) accessed using the rdrand and
rdseed instructions.

I We might want to model the environment of a
system as unpredictable.

I This treats time as branching in the future
(“the Trousers of Time”).



Modelling with Time (3)

I Now deal with nondeterministic automata

I Temporal logic now quantifies over paths in the
tree of time as well as levels.

I Look up CTL and CTL*

I Model checkers often use LTL, CTL, or some
other selection from CTL*.



Parting from Newton: nonuniformity

I Computer clocks are a “sensible and external
measure of duration by means of [electronic]
motion”. They have always been subject to
drift.

I In order to save electrical power, modern CPUs
reduce the clock frequency when there is little
to do and increase it when there is much to do
— frequency scaling.

I So the number of CPU clock pulses per second
changes often.

I Not an issue for discrete modelling and
temporal reasoning.



The Story so Far

For single-processor systems,

I Time is universal (within a program)

I Time is irregular

I Time is branching

I Time is discrete



Relativistic Time

I Time passes at different rates for different
observers

I Passing at high speed, two observers each think
the other’s clock is running slow

I Even the order of events may be perceived
differently by different observers

I For details, see The Feynman Lectures on
Physics



Goodbye, Newton

I In a distributed program,

I or even a multicore program,

I time is no longer universal.

I Different “places” have their own rubber
clocks.



Rebuilding time

Instead of thinking of time as a coördinate, think of
time as a network of relations between events,
reflecting our basic ideas of causality and
information flow



Events

An event is a thing that happens in a single instant
at a single “place”. Examples include

I Entry to/exit from a procedure

I Creation/death of a thread

I Sending/receiving a message (like an interrupt)

I Writing/reading a variable

I Acquiring/releasing a lock



Places

For our purposes, a thread is a place.
Events in a thread occur in the order specified by
the program.



A partial order, even in one place

Consider f (g(), h()) in C.

I g ↑→ g ↓→ f ↑
I h ↑→ h ↓→ f ↑
I f ↑→ f ↓
I but NO order between g ↑ and h ↑ or g ↓ and
h ↓; the compiler is allowed to inline and
interleave the g() and h() calls.



Just for clarity

I’m not saying that the execution of a
single-threaded C program is nondeterministic. (It
is, I’m just not saying that.) The elementary events
in a process will take place in some definite order.
What I’m saying is that the language definition does
not fully specify that order.



Lamport’s Paper

The “happened-before” relation was defined by
Leslie Lamport, Time, Clocks, and the Ordering of
Events in a Distributed System, CACM 21.7, July
1978.
“A system is distributed if the message transmission
delay is not negligible compared to the time
between events in a single process.”



Lamport’s Definition

The relation “→” on the set of events of a system
is the smallest relation satisfying . . .

1. If a and b are events in the same thread and a
comes before b, then a→ b.

2. If a is the sending of a message by one thread
and b is the receipt of the same message . . . ,
then a→ b.

3. If a→ b and b → c then a→ c .

4. a 6→ a (so → is a partial < not a partial ≤).



Extending Lamport’s Definition

I Lamport was giving a minimal definition.
Sending and receiving a message was chosen as
a typical causal connection.

I A lock must be released by the thread that
owns it before it can be acquired by another.

I C11 and C++11 and Java and Go use
happens-before with memory management
events to define the effects of locks and atomic
variable operations.



What does it mean for us?

I If we want a→ c , we have to make that so by
setting up a series of a→ · · · → c causal
connections.

I If we don’t have such a series we can make no
judgements about order.



An example

I (1) Process P sends message A to process Q
then

I (2) Process P sends message B to process Q.

I (3) Process Q receives message A.

I (4) Process Q receives message B.

I We can conclude that (1)→ (2) and (1)→ (3)
and (2)→ (4).

I We can’t conclude that (3)→ (4).



That Example continued

I With UDP, out of order receipt really happens.

I With TCP, it doesn’t.

I We need new events: (process) sends
(message) through (channel) and (process)
receives (message) through (channel) where
events on the same channel are serialised like
events in the same process.



Logical clocks

A logical clock for a thread p is a function Cp that
assigns a number Cp(e) to every event e that occurs
in p, such that if a→ b then Cp(a) < Cp(b).
Given a system of logical clocks, define C (e) to be
Cp(e) where e occurs in p.



But but but

I Didn’t we just finish overthrowing Newton?

I This isn’t Newtonian time. It’s not even
uniquely defined. But any partial order can be
embedded in a total order and any total order
can be numbered.

I Clock Condition: if a→ b then C (a) < C (b),
but C (a) < C (b) does not imply a→ b.



Getting started

I Each thread p maintains a counter Cp.

I If a happens in p, associate Cp with a, a
happens, Cp is increased.

I If a is sending message m to q, send (m,Cp)
instead.

I If a is receiving message m from q, we get
(m,Cq) instead, set Cp > max(Cp,Cq).



Why?

If we want to say things like “requests must be
served in the order in which they are made”, we
have to agree on what that order is.
If we want to say “keep the most recent version”,
we have to agree on what “recent” means.
Both of these need a total order.


	Lecture

