UNIVERSITY OF OTAGO EXAMINATIONS 2016

COMPUTER SCIENCE
Paper COSC441
CONCURRENT PROGRAMMING

Semester 2

(TIME ALLOWED: THREE HOURS)

This examination comprises 4 pages.

Candidates should answer questions as follows:

Candidates must answer 5 questions.
All questions are worth 20 marks, and submarks are shown thus: 5)
The total number of marks available for this examination is 100.

The following material is provided:

Nil.

Use of calculators:

No calculators are permitted.

Candidates are permitted copies of:

Nil.

TURN OVER



1.

COSC441 - 2016

Parallelism, concurrency, and distribution
Explain the similarities and differences between parallelism, concurrency, and distri-
bution. Your discussion should address at least the following points:

e What is the purpose of parallelism?

e What issues does parallelism add to sequential programming?

e What is the purpose of concurrency? Why was concurrency important even on
single-core machines?

What issues does concurrency add to parallelism?
What is distribution?

What are some reasons for using distribution?

What issues does distribution add to concurrency?

How do distributed computations find each other?

How is dealing with failure different in these models?

Deadlock

(a) What is deadlock?

(b) You might try to deal with deadlock in a system by killing one or more of the
deadlocked threads. If one of the threads you kill is holding a lock on a data
structure, what might go wrong?

(c) Sketch a small shared-memory program with two threads where a deadlock might
occur.

(d) Explain one way to avoid deadlocks.

(¢) Sketch a small message-passing program with two threads where a deadlock
might occur.

(f) Imagine two UNIX programs exchanging messages through UNIX pipes. Can
they deadlock? If so, how? If not, why not?

Message passing and happens-before

(2) In Newtonian physics we have the idea of time advancing linearly and regularly,
the same for every place. What goes wrong with this notion of time in distributed
programs?

(b) Since we don’t have a total temporal order, we use a partial order called happens-
before, between events. What are some things that might count as events? Define
happens-before.

(c) Briefly describe the message-passing approach to concurrent programming. Ex-
plain how this provides both data and time information. Explain the difference
between synchronous and asynchronous messages.

(d) Leslie Lamport showed how to derive a total ordering on events that is consistent
with happens-before. How?

(20)

2

3)

4)
4

4

3)

(4)

(6)

©6)

C))

2 TURN OVER



COSC441 - 2016

4. POSIX threads

(a) Explain POSIX or C11 threads. What is a thread? How is it like a POSIX
process? How is it unlike a POSIX process? What is the stack and how do you
know how big to make it? What does it mean for one thread to join another, and
why do you need to? )

(b) What is a mutex? Write a small function to add an element to the beginning of a
linked list, using a mutex to make it thread-safe. What might happen without the

mutex? (5)
(c) What is a condition? How are conditions related to monitors? ®))
(d) What is a bounded buffer? What are bounded buffers used for? How is a bounded

buffer like a POSIX pipe? S)

5. Memory and multicore

(a) Briefly explain the shared memory model. What is good about it? What is bad

about it? 3)
(b) What is a data race? 2)
(c) Briefly explain the memory hierarchy. Why does it matter that the memory stores

done by one CPU might appear to other CPUs to occur in a different order? 5)
(d) C and Java have a volatile keyword. What problem does it solve and when

should you use it? 2)
(e) What does it mean for loads, stores, or any other operation to be atomic? (N
(f) What does a Compare-And-Swap instruction do? How could you use it to provide

atomic updates on floating-point variables? 2)
(g) What is the A-B-A problem? 2)

(h) Suppose you have a Vect or<T> class with atomic get (index) and
set (index, element) methods, and you need to atomically increment an
element. Would

vector.set (index, vector.get (index) + 1)

work? If so, how? If not, why not, and what could you do about it? 3

3 TURN OVER



6.

COSC441 - 2016

Actor model

(a) Describe the actor model of concurrent programming. Your answer should men-
tion its relationship to object-oriented programming and the assumptions it makes
about message delivery.

(b) Discuss whether the actor model is better or worse for distributed programming
than the shared memory model. Does the actor model handle failure well?

(c) Briefly describe some similarities and differences between Erlang and the actor
model. In particular, how do they handle failure?

(d) What are timeouts? How are they relevant to failure in distributed systems? Is
there a straightforward rule you can use to set timeouts? If so, what? If not, why
not?

Erlang

(a) In the client-server model, the clients have to find the server. How does Erlang’s
registry deal with this?
(b) Erlang’s registry is effectively a global shared mutable dictionary with atomic

updates. What problem does having a single global registry create? What might
you do about it?

(c) Erlang ensures that no process can change another’s variables by not having C-
style mutable variables at all. Why does this also help in writing exception han-

dlers?
(d) What is selective receive and what is it good for?
() What is a supervision tree and what is it good for?

(f) In Erlang, there are no syntactic differences between sending a message to an-
other thread on the same machine and sending a message to thread on a different
machine. There are, however, some important pragmatic differences. What are
some of them?

(g) What is the end o end principle in system design, and what, if anything, does
it have to do with the fact that Erlang message passing does not include flow
control?

®)

(6)

3)

3

)

3

3
3)
3)

3)

3

END





