
UNIVERSITY OF OTAGO EXAMINATIONS 2012

COMPUTER SCIENCE
Paper COSC441

Concurrent Programming

Semester 2

(TIME ALLOWED: THREE HOURS)

This examination consists of 3 pages including this cover page.

Candidates should answer all 4 questions.

All questions are worth 25 marks, and submarks are shown thus: (5)

No supplementary material is provided for this examination.

Candidates may not bring reference books, notes, or other written material into this exami-
nation.

Candidates may not bring calculators into this examination.

TURN OVER



2 COSC441 – 2012

1. Memory and multicore

(a) Explain the memory hierarchy and some of its consequences for multicore com-
puters. (10)

(b) Consider the following code fragment:

struct Point3D { double x, y, z; };
struct Point3D const x = {1, 0, 0};
struct Point3D const y = {0, 1, 0};
struct Point3D const z = {0, 0, 1};
struct Point3D w = x;
// In one thread:
w = y;
// In another thread:
w = z;

Assuming that loads and stores of double variables are atomic, what are some
possible states that w might end up in? What does it mean for loads, stores, or
any other operation to be atomic? (5)

(c) What two POSIX features could you use to manage access to the variable z
above? Sketch the code for one of them. (5)

(d) What do the Load-Link and Store Conditional instructions do? Why are they
not immediately useful here? Would the Compare-And-Swap instruction be any
better? (5)

2. Monitors
A monitor groups together some data, some operations on those data, a lock, and
perhaps some condition variables.

(a) Why? (5)

(b) What is a recursive lock, and why might a monitor need to use one? What might
happen if a monitor needed to use a recursive lock but used a POSIX default
lock? (3)

(c) How would you simulate a monitor using Java? What guarantees do you get from
a compiler-supported monitor abstraction that you do not get from Java? (4)

(d) How would you simulate a monitor using a message-passing language like
Erlang? (3)

(e) Suppose you have an Account class in a Java program in which every operation
is synchronised, and you need to transfer a sum of money from one Account
instance to another. Why isn’t Java’s automatic locking enough? (4)

(f) What is a total order on locks good for? (2)

(g) What is Transactional Memory and how would it help with the Account prob-
lem? (4)

TURN OVER



3 COSC441 – 2012

3. Shared Memory and Message Passing

(a) Explain what shared memory is. Give an example of a programming language
that supports shared memory concurrency. What is good about shared memory?
What is bad about it? Give an example of a kind of program that might be suitable
for shared memory. (8)

(b) Explain what message passing is. Give an example of a programming language
that supports message passing concurrency. What is good about message pass-
ing? What is bad about it? Give an example of a kind of program that might be
suitable for shared memory. (8)

(c) What is deadlock? Use the example of two processes trying to transfer money
between the same two Accounts. What is one way we can avoid deadlock? Can
deadlocks happen in a message passing system? Why don’t people using NoSQL
databases worry about deadlocks? (9)

4. Design

(a) What is flow control and what is it needed for? (5)

(b) What is the end to end principle and why does it matter in system design? (5)

(c) Java has methods to suspend() a thread (put it to sleep for a while), resume()
it (wake it up again) and even destroy() it (blast it away completely without
any cleanup). Why should you avoid these if you possibly can? (5)

(d) What is a supervision tree in Erlang and what is it good for? (5)

(e) What are some issues in testing a concurrent program? (5)


