
k-Means Image Segmentation

COSC450 Assignment 2

Due: 28th September 2015, 5pm

This assignment is worth 20% of your final grade.

1 Overview

Images often contain many different objects. One common task in many image
processing and computer vision systems is segmenting the image into different
objects or components. This is a difficult task, and often relies on domain-
specific knowledge. However, simple techniques can be quite effective.

In this assignment you will implement and experiment with the k-means
algorithm. This is an algorithm for grouping data elements into a set of k
partitions, where k is a parameter provided to the algorithm. While k-means is
used in a wide variety of applications, for this assignment the data elements are
pixels from an image, and the task is to assign a set of k labels to the pixels,
dividing the image into k partitions.

Figure 1 shows a simple example of this. The input image contains a number
of different colours of object. When k-means is applied on the basis of red-green-
blue triples, these objects can be separated out. The choice of k is important
however. If k is too small then some colours are grouped together, while if k is
too large then some colours are assigned a mix of two labels.

Figure 1: An example of k-means segmentation. Pixels from an input image
(left) is divided into k clusters. When k = 4 (center), the red and yellow objects
are grouped together. Increasing k to 8 resolves this, but the blue and red
objects now have two distinct clusters each (a darker and lighter version of each
colour).

1

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering


2 Assignment Requirements

Note: OpenCV provides an implementation of k-means. For this assignment
you are required to implement the algorithm yourself.

2.1 Basic k-Means

The basic k-means algorithm is fairly straightforward. Given a set of n data
points, k initial cluster centres are selected. Each point is then assigned to the
cluster centre that it is closest to. The cluster centres are then updated to be
the average of all the points assigned to that cluster. This process repeats until
the clusters are stable, and is summarised in Algorithm 1.

Algorithm 1 Basic k-means algorithm.

Input: A set of n data points, p1, p2, . . . pn; The number of clusters, k.
Output: A set of n labels, `1, `2, . . . `n, where 1 ≤ `i ≤ k.
1: Initialise k cluster centres, c1, c2, . . . , ck.
2: while not done do
3: for each data point, pi do
4: `i = 0
5: dmin =∞
6: for each cluster centre, cj do
7: dj = distance from pi to cj
8: if dj < dmin then
9: `i = j

10: dmin = dj
11: end if
12: end for
13: end for
14: for each cluster centre, cj do
15: cj = average (pi, such that `i = j)
16: end for
17: end while

There are a number of things here which need to be refined, including:

• How do you pick the initial cluster centres?

• What is the distance between a data point and a cluster centre?

• How do you tell when you have finished?

There are a number of different options for this, and they are discussed in the
following sections.

2.1.1 Initialisation Methods

The choice of initial cluster centres can have a large effect on the result, and
there are a number of different approaches. Some of the common ones include:

2



Random selection Choose k data elements at random to act as initial cluster
centres

Random clustering Assign each data element to one of the k clusters at ran-
dom. Use the average of these clusters as the initial cluster centres.

k-means++ Choose the first cluster centre at random, then choose the re-
mainder so that points which are distant from the centres that have al-
ready been chosen are more likely. See https://en.wikipedia.org/wiki/K-
means++ for more details.

You should implement at least two of these, and experiment with them to see
what difference they make.

2.1.2 Distance Metrics

The distance between data points can be computed in a number of different
ways. There most straightforward method for pixels is to treat the red, green,
and blue values as vectors and to use the usual Euclidean distance. Given two
pixels, p1 and p2, with RGB values {r1, g1, b1} and {r2, g2, b2} this distance is

d(p1, p2) =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2.

This works well in some cases, but there are some potential issues with this
approach.

Firstly, the colour values depend on lighting as well as the colour of the
object. Parts of an object in shadow are darker, so may appear quite different.
One way to overcome this is to convert from RGB colour to another representa-
tion such as HSV. HSV divides colour into its hue (basic colour, such as green
or yellow), saturation (how intense the colour is) and value (how light or dark
the colour is). Value then could be ignored, and just the hue and saturation
values used to determine the distance between pixels.

A second issue is that this metric doesn’t take location into account. Pix-
els on the same object are generally close to each other in the image, and this
information is ignored when just colour values are used. A direct way to in-
clude location information is to include the pixel’s co-ordinates to the distance
function. This could lead to

d(p1, p2) =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 + (x1 − x2)2 + (y1 − y2)2,

where p1’s image location is (x1, y1) and p2’s location is (x2, y2). This helps in
some cases, but in others (like the example from Figure 1) it may not. It also
raises questions about comparing colour to pixel distance. Is a difference of 10
between two red values more or less significant than a distance of 10 pixels in
the image?

Finally, information from a single pixel may not be sufficient to segment an
image. Consider the picture in Figure 2 for example. Most people would con-
sider this image to have four distinct regions, but there are only two colours. In

3

https://en.wikipedia.org/wiki/K-means%2B%2B
https://en.wikipedia.org/wiki/K-means%2B%2B
https://en.wikipedia.org/wiki/HSL_and_HSV


order to overcome this, a pixel’s description for clustering could be comptued
from a small window around it. This could be the average and standard devia-
tion of the neighbouring pixels, a histogram of pixel values, or based on gradient
computations.

Figure 2: An image which has four distinct regions but only two colours.

You should implement at least two different distance measures and compare
them in your assignment.

2.2 Termination Conditions

The k-means algorithm iteratively updates the cluster centres and segmentation,
and you need to determine when to stop this process. There are several criteria
which can be used to determine when the process has converged:

• Run for some (large) number of iterations. This is easy but if the number
of iterations is too small the segmentation might not be optimal, and if it
is too large then the later iterations might not change the result at all.

• Check to see if the cluster centres are changing between iterations. This
often checks to see how much change there is, and stops if the change is
very small.

• Check how many data points change labels between iterations. Again,
you could wait until no points change labels, or until very few points are
updated.

You should implement some reasonable termination criterion and discuss
it in your report. You should be able to guarantee that your program will
terminate in reasonable time (no infinite loops, please).

2.3 Experiments

Computer vision algorithms deal with measurements (images) of the real world.
As a result, experiments are of particular importance when evaluating computer

4



vision algorithms. Designing good experiments can be difficult, but here are
some things to keep in mind:

• A good experiment should answer a question. You should have a clear
question in mind and design an experiment that you expect to have dif-
ferent outcomes based on the possible answers to the question. This is
not always easy, because often our questions are not clear, but trying to
clarify your questions can make it much easier to decide what experiments
you need to do.

• Your experiments should enable you to tell what is the cause of any
changes in observations. For example, suppose you have two initialisa-
tion methods, Init1 and Init2, and two distance metrics, Dist1 and Dist2.
You find that when you run your program with Init1 and Dist1 it performs
much better than with Init2 and Dist2. What does this tell you? There
are a lot of possibilities:

– Init1 might be much better than Init2

– Dist1 might be much better than Dist2

– Init1 and Dist1 might work particularly well together

– Init2 and Dist2 might not be well suited to each other

– And so on. . .

A better design could be to fix the initialisation method and compare
distance metrics, or to compare all possible combinations of methods.

• The choice of images is important. The image in Figure 1 is very well
suited to segmentation based on colour information, but that in Figure 2
is not. Experiments on a single image rarely tell you anything for sure,
and there isn’t a ‘typical’ image, or even set of images that can be used.
A few things that might help for your assignment are:

– There are a lot of image data sets that are commonly used for different
applications. These are scattered around the internet, and you might
want to make use of some of them.

– You might want to restrict your experiments to a specific problem.
For example you might want to consider a task such as segmenting
faces from the background. Your test images then would be a set
of images with faces in them (and some without), and you could
evaluate how well your method works on them.

– There are a lot of different aspects to ‘good’ performance. The quality
of the output is obviously important, but can be hard to judge. For
this assignment it is OK to describe the differences qualitatively (e.g.:
Method X works well on brightly coloured objects, but not for more
subtle differences). Other differences, such as average run time or
memory usage can be more objectively measured.

5



Many of these questions are particularly difficult in the case of image seg-
mentation, since there is no agreement as to what a ‘correct’ segmentation is. I
do not expect you to solve this problem – if you have a good idea how to, then
come and talk to me about doing a PhD!

What I am looking for is some thought given to how to evaluate different
variants of the k-means algorithm. For example, suppose you have implemented
RGB-based and HSV-based methods. HSV is supposed to work better when
there is a range of lighting across areas which have the same underlying colour.
A good experiment would use a set of images where this is the case, and see
how the two methods compare. You would expect that the HSV-based method
would group similar colours regardless of light and shadow, while the RGB-based
algorithm would separate the brightly lit areas from the shadows.

3 Resources

OpenCV is available on the lab machines in ∼steven/Public/OpenCV. You
don’t need to take a copy, you can just link to that from your code. A sample
program (C++ source, Makefile, etc.) is in ~steven/Public/OpenCVTest. To
compile and run that, copy the contents of that directory somewhere then use
the commands

make
source setPath . sh
. / ocvTest

This builds the program, makes sure that the OpenCV libraries are in the library
search path, and then runs the program. This should pop up a window with
a bulls-eye pattern in it. Selecting that window and pressing any key will quit
the program.

Another example is given in∼steven/Public/Segmentation. This example
loads an image, waits for a key to be pressed, and then segments the image by
dividing the pixels into brightness. It can be built and run with the following
commands:

make
source setPath . sh
. / segmentat ion <input image> <k> <output image>

Where the parameters are the image to be segmented, the number of divisions,
and a file in which to save the result. This code may be used as a starting point
for this assignment, and the segmentation is done in a function called kMeans

(although it does not do k-means yet).
The version of OpenCV provided is 2.4.9. Online documentation is available,

including tutorials and a reference manual.

6

http://opencv.org/documentation/opencv-2-4-9.html
http://docs.opencv.org/2.4.9/doc/tutorials/tutorials.html
http://docs.opencv.org/2.4.9/modules/refman.html


4 Deliverables

In summary your program should:

• Implement the k-means algorithm.

• Implement the two initialisation methods, as discussed in Section 2.1.1.

• Implement at least two distance metrics, as discussed in Section 2.1.2.

• Implement a sensible termination criterion as discussed in Section 2.2

The user should be able to choose between different methods with command
line arguments.

Your report should:

• Give clear instructions for building and running your program on the lab
machines.

• Discuss the methods you have implemented, how they work, and why you
chose them.

• Present clearly experiments comparing the different methods you have
implemented.

• Discuss the relative strengths and weaknesses of different approaches, us-
ing the results of your experiments as evidence.

You should send your report (PDFs preferred), source code (including a
Makefile), and any supporting files required to steven@cs.otago.ac.nz. Your
code should build and run on the lab machines. You may find it convenient to
archive your files as a .tar or .zip, but be aware that archives sent from outside
the department often get caught in the University’s spam filters. This can be
easily circumvented by renaming your files to remove the archive extension. If
your submission is zipped up as astudent450ass2.zip then just rename it to
astudent450ass2.piz or something and tell me what you’ve done in the body
of your email. I will reply to acknowledge receipt of your assignment in any
case.

4.1 Marking Scheme

Marks for the assignment will come from an examination of your code, the
performance of your program, and your report. Marks will be divided as follows:

• 20% for your code. As with Assignment 1 clarity and correctness are
the main concerns here. Comments, naming conventions, and appropriate
division of code into functions and modules all help with this. While
efficient methods are preferred, you should worry primarily about making
sure that your program does what it should, and that this is clear to people
reading your code.

7

mailto:steven@cs.otago.ac.nz


• 20% of the marks will come from your choice, implementation, and dis-
cussion of different initialisation methods. For high marks you should
implement relatively complex methods, and may wish to implement more
than two.

• 20% of the marks will come from your choice, implementation, and dis-
cussion of different distance metrics. Again, for high marks you should
implement relatively complex methods, and may wish to implement more
than two.

• 40% of the marks will come from the design of your experiments and your
discussion and analysis of the experimental results. I will be looking for
experiments which are designed to highlight the difference between the
methods you have chosen to implement, results on a range of different
types of images, and clear presentation and analysis of the results of these
experiments.

Late assignment submissions will be penalised at the rate of 10% per working
day. Extensions to the deadline may be granted where appropriate, but should
be sought well in advance. The usual university regulations relating to plagia-
rism apply (http://www.otago.ac.nz/study/plagiarism/index.html), and
any work you submit must be your own, or be clearly attributed to the original
author.

8

http://www.otago.ac.nz/study/plagiarism/index.html

	Overview
	Assignment Requirements
	Basic k-Means
	Initialisation Methods
	Distance Metrics

	Termination Conditions
	Experiments

	Resources
	Deliverables
	Marking Scheme


