
The Kalman Filter

COSC450



Pose Tracking

Pose Estimation

I Camera pose at each frame

I Computed fresh each time

Motion tracking

I Model of an object’s motion

I Computed through a sequence

I Able to make predictions

Measurement vs modelling

The typical model consists of:

I A measurement model

I A motion model

I A combining filter

These are used to

I Make measurements

I Predict the future

I Weight these two parts

COSC450 The Kalman Filter 2



Example – Follow the Red Car

Measurement

COSC450 The Kalman Filter 3



Example – Follow the Red Car

Prediction

COSC450 The Kalman Filter 4



Example – Follow the Red Car

Measurement

COSC450 The Kalman Filter 5



Example – Follow the Red Car

Combined

COSC450 The Kalman Filter 6



Example – Follow the Red Car

Prediction

COSC450 The Kalman Filter 7



Example – Follow the Red Car

Measurement

COSC450 The Kalman Filter 8



Example – Follow the Red Car

Combined

COSC450 The Kalman Filter 9



Example – Follow the Red Car

Prediction

COSC450 The Kalman Filter 10



Example – Follow the Red Car

Measurement

COSC450 The Kalman Filter 11



Example – Follow the Red Car

Combined

COSC450 The Kalman Filter 12



A Simple Example

We have

I A state we want to estimate

s =

[
location
velocity

]
=

[
x
v

]
I A measurement model at each time, t,

mt = xt + rt

I A motion model from time t − 1 to t

xt = xt−1 + vt−1 + qx ,t

vt = vt−1 + qv ,t

I q and r are error (noise) terms

The Kalman filter assumes

I A linear state update model

st = Ast−1 + qt

I A linear measurement model

mt = Bst + rt

I Random errors qt , rt
I Errors have Gaussian distributions

I Known (co)variance, Qt , Rt

I Predicts the state and covariance, Pt

I Designed to minimise Pt

COSC450 The Kalman Filter 13



Kalman Filter Equations

Previous state estimate and covariance s̃t−1 Pt−1

Predict next state and covariance s̃−t = As̃t−1 P−
t = APt−1A

T + Qt

Predict the measurement m̃t = Bs̃−t = BAs̃t−1

Update with real − predicted measurement s̃t = s̃−t + Kt(mt − m̃t) Pt = P−
t −KtBP

−
t

Kt is the Kalman gain – designed to minimise Pt :

Kt = P−
t B

T
(
BP−

t B
T + Rt

)−1

Note: Many presentations include a control term (e.g. steering a robot)

st = Ast−1 + Cut + qt

COSC450 The Kalman Filter 14



Example: 2D Motion Constant Acceleration

I State:
[
x y u v a b

]T
I Update equation:

xt
yt
ut
vt
at
bt


︸ ︷︷ ︸

st

=



1 0 1 0 1
2 0

0 1 0 1 0 1
2

0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

A



xt−1

yt−1

ut−1

vt−1

at−1

bt−1


︸ ︷︷ ︸

st−1

I Measurement:
[
x y

]T
I Measurement equation:

[
xt
yt

]
︸︷︷︸
mt

=

[
1 0 0 0 0 0
0 1 0 0 0 0

]
︸ ︷︷ ︸

B



xt
yt
ut
vt
at
bt


︸ ︷︷ ︸

st

COSC450 The Kalman Filter 15



Extended Kalman Filter

Kalman filter assumes linear models

I This is not always the case

I Non-linear state update measurement:

st = f (st−1) + qt mt = g(st) + rt

I Replace A and B with Jacobians:

Fij =
∂fi
∂sj

Gij =
∂gi
∂sj

I This makes a linear approximation

s̃t−1 Pt−1

s̃−t = f (s̃t−1) P−
t = FPt−1F

T + Qt

m̃t = g(s̃−t ) = g(f (s̃t−1))

s̃t = s̃−t + Kt(mt − m̃t) Pt = P−
t −KtGP−

t

Kt = P−
t G

T
(
GP−

t G
T + Rt

)−1

COSC450 The Kalman Filter 16



Unscented Kalman Filter

Kalman filter assumes known covariance

I This is often not true

I It is hard to estimate Q and R even in
simple cases

UKF estimates covariance as it goes

I Samples points around the estimate

I Propagates them through state update
and measurement

I Uses these to estimate covariance

COSC450 The Kalman Filter 17



Kalman Filter to Track Camera Pose

Even simple cases lead to lots of questions:

I State model – constant velocity

s =
[
r1 r2 r3 t1 t2 t3 ω1 ω2 ω3 v1 v2 v3

]T
or constant acceleration

s =
[
r1 r2 r3 t1 t2 t3 ω1 ω2 ω3 v1 v2 v3 α1 α2 α3 a1 a2 a3

]T
I Is a standard Kalman filter sufficient, or do you need an EKF?

I How best to represent rotations?

I How to determine the covariance matrices?

I How to tell if you have good choices?

COSC450 The Kalman Filter 18


