
Camera Calibration

COSC450

Lecture 2



Camera Calibration in OpenCV

cv::calibrateCamera function:

Input: Corresponding 3D and 2D points in a set of images, size of the image

Output: Calibration matrix, distortion co-efficients, camera poses, reprojection error

double cv:: calibrateCamera(

std::vector <std::vector <cv::Point3f >> objectPoints ,

std::vector <std::vector <cv::Point3f >> imagePoints ,

cv::Size imageSize ,

cv::Mat cameraMatrix ,

std::vector <double > distCoeffs ,

std::vector <cv::Mat > rvecs ,

std::vector <cv::Mat > tvecs);

Worth looking into the detail – many useful methods are used both here and elsewhere

COSC450 Camera Calibration 2



Calibration Targets

Calibration from 3D-2D matches

I Want easy to find points

I Want known 3D co-ordinates

Planar targets are common

I Easy to make with a printer

I Chess/Checkerboard patterns

I Grids of dots or lines

Is a 2D pattern enough?

COSC450 Camera Calibration 3



3D Point Locations

Can choose our co-ordinate frame

I X − Y plane is the calibration target

I Origin is at one internal corner

I Z goes into the target

We also need to decide on units

I Best to use a real world unit

I Here squares are 1cm

I Can just use 1 square = 1 unit

All points have Z = 0 – a problem?

X
Y

Z

(0,0,0)

(0,5, 0)

(6,5,0)

(6,0,0)

COSC450 Camera Calibration 4



Finding Checkerboard Corners

OpenCV’s method (in brief!)

I Threshold image to black & white

I Look for black & white quadrilaterals

I Link the quads into a checkerboard

I Followed by sub-pixel refinement

People are still researching this!

I Duda and Frese, BMVC 2018

I Edwards, Hayes, and Green, IVCNZ
2018

I Morten, Wilm, and Frisvad, 2019

COSC450 Camera Calibration 5



Matching 2D to 3D points

The corners are roughly in rows/cols

I OpenCV’s quad-based approach helps

I Requires a view of all the corners

I Aligns 2D corners to 3D target points

Calibration targets often odd-sized

I The example here is 7× 6

I Why is this helpful?

I Is this required?

COSC450 Camera Calibration 6



The Camera Calibration Problem

For the ith image we get:

I A set of n 3D points (j ∈ {1 . . . n}):

xi ,j =
[
xi ,j yi ,j zi ,j 1

]T
I Corresponding 2D points:

ui ,j =
[
ui ,j vi ,j 1

]T
I Related by

ui ,j ≡ K
[
Ri ti

]
vi ,j

Want to find K (get Ri s and ti s as a bonus)

Z

Y

X

U

V

COSC450 Camera Calibration 7



Zhang’s Calibration Method – Notation

450 Zhang Description

x M̃ 3D homogeneous point
u m̃ 2D homogeneous point

x̃ M̃ Planar homogenous point
R R Camera rotation matrix
ri ri ith column of R
t t Camera translation vector

450 Zhang Description
K A Calibration matrix
fu α Focal length in u
fv β Focal length in v
s γ Camera pixel skew
cu u0 Principal point u
cv v0 Principal point v
– s Homogeneous scale factor

COSC450 Camera Calibration 8



Method Summary

Basic steps:

I Find a homography between xs and us

I Use this to find constraints on K
I Solve for and estimate of K

I We get Rs and ts as well

I (Optional) add in lens distortions

I Refine estimate by minimising
reprojection error

Uses several common techniques

I Homographies

I Solving linear systems of equations

I Reprojection error

I Non-linear least squares

COSC450 Camera Calibration 9



Transformations in 2D

Euclidean Similarity Affine Homography

ma DoF 3 4 6 8

Matrix

r11 r12 tx
r21 r22 ty
0 0 1

 sr11 sr12 tx
sr21 sr22 ty

0 0 1

 a11 a12 tx
a21 a22 ty
0 0 1

 h11 h12 h13
a21 a22 h23
h31 h32 1


Preserves Length Ratios of lengths Parallelism Co-linearity

Area Angles Ratios of areas Ordering on a line

COSC450 Camera Calibration 10



Finding a Homography

We start with the projection equation

u ≡ K
[
R t

]
xuv

1

 ≡
fu s cu

0 fv cv
0 0 1




...
...

...
...

r1 r2 r3 t
...

...
...

...



x
y
0
1



=

fu s cu
0 fv cv
0 0 1




...
...

...
r1 r2 t
...

...
...


xy

1


u ≡ K

[
r1 r2 t

]
x̃

This defines a homography u ≡ Hx̃

I Mapping between two images of a plane

I Defined by a 3× 3 matrix, H

I Only defined up to a scale –
a homogeneous quantity

I General linear transform

I Preserves straight lines

I Also used in panaoramic image stitching

COSC450 Camera Calibration 11



Algorithm Overview

Each image gives us a homography, H
I The homography has 9 values

I Only defined up to a scale
I Only 8 independent values
I 8 degrees of freedom

I Six are the pose of the camera
I Three for translation
I Three for rotation

I Leaving us two constraints on K

I So we need at least three images

So the overall algorithm is for each image:

1. Find the homography H

2. Derive two constraints on K

Next, using all the images’ constraints

3. Estimate the value of K

Finally,

4. Estimate R and t for each image

5. Refine the estimate, adding in lens
distortion parameters

COSC450 Camera Calibration 12



1 – Finding the Homography

COSC450 Camera Calibration 13



The Direct Linear Transform

For a 2D–3D match, u ≡ Hx̃ so u is parallel to Hx̃

u×Hx̃ = 0uv
1

×
h11 h12 h13
h21 h22 h23
h31 h32 h33

xy
z

 =

0
0
0


 0 0 0 −x −y −1 xv yv v

x y 1 0 0 0 −xu −yu −u
−xv −yv −v xu yu u 0 0 0



h11
h12

...
h33

 =

0
0
0



COSC450 Camera Calibration 14



The Direct Linear Transform

This gives us three equations in H

I They are linear – which is good

I They are not independent – use first two[
0T −x̃T v x̃T

]
h = 0[

x̃T 0T −ux̃T
]

h = 0

I H has eight degrees of freedom (why?)

I So need at least four points

For n points we get the system

0T −x̃T1 v1x̃T1
x̃T1 0T −u1x̃T1
0T −x̃T2 v2x̃T2
x̃T2 0T −u2x̃T2
...

...
...

0T −x̃Tn vnx̃Tn
x̃Tn 0T −unx̃Tn





h11
h12
h13
h21

...
h32
h33


=



0
0
0
0
...
0
0


Ah = 0

COSC450 Camera Calibration 15



Linear Systems of Equations

Simple case:

I We have n unknowns, x1, x2, . . . xn
I We have m equations of the form

a11x1 + a12x2 + . . . a1nxn = b1

a21x1 + a22x2 + . . . a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + . . . amnxn = bm

Writing this more compactly,

Ax = b

I A is an m × n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


I x is a vector of n unknowns

x =
[
x1 x2 . . . xn

]T
I b is a vector of m known constants

b =
[
b1 b2 . . . bm

]T
COSC450 Camera Calibration 16



Solving Linear Systems

Simple case:

I A is square so m = n

I All equations are independent. . .

I . . . so A is invertible

I At least one bi 6= 0, so b 6= 0

Solution is usually given as:

x = A−1b

Complicated cases:

I More equations than unknowns, m > n

I Fewer equations than unknowns, m < n

I Homogeneous system: b = b

Solutions use the singular value
decomposition (SVD)

I First case gives least squares fit

I Other two give families of solutions

I SVD is also more stable for simple case

COSC450 Camera Calibration 17



The Singular Value Decomposition

Any real m × n matrix, A can be written as

A = USVT

I U is an m ×m orthonormal matrix

I S is an m × n diagonal matrix

I V is an n × n orthonormal matrix

Orthonormal matrices:

I Every row/column is a unit vector

I Different rows/columns are orthogonal

I Transpose is inverse, M−1 = MT

Simple case Ax = b

x = A−1b

= (USVT)−1b

= VS−1UTb

I S is easy to invert:
s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sn


−1

=


1
s1

0 . . . 0

0 1
s2

. . . 0
...

...
. . .

...
0 0 . . . 1

sn



COSC450 Camera Calibration 18



Solving Non-Square Linear Systems

More equations than unknowns, m > n

I A is not square, so no inverse

I Can form a pseuodoinverse

A+ = VS+UT,

I S+ is an n ×m diagonal matrix

S+ =


1
s1

0 . . . 0 0 . . . 0

0 1
s2

. . . 0 0 . . . 0
...

...
. . .

...
0 0 . . . 1

sn
0 . . . 0


I Least-squares fit: x = A+b

Fewer equations than unknowns, m < n

I Again, A is not square

I S has columns of zeros:

S =


s1 0 . . . 0 0 . . . 0
0 s2 . . . 0 0 . . . 0
...

...
. . .

...
0 0 . . . sn 0 . . . 0


I Many solutions – corresponding

columns of V span the solution space

I Smallest solution (minimising xTx) is

x = A+b

COSC450 Camera Calibration 19



Solving Homogeneous Equations

Our problem is Ah = 0

I Trivial solution: h = 0

I More interesting solutions

Ah = 0 = 0h

I This is an eigenvector of A

I The corresponding eigenvalue is 0

I Eigenvalues and the SVD are closely
related

Eigenvalues and SVD, A = USVT:

I Columns of U are eigenvectors of AAT

I Columns of V are eigenvectors of ATA

I S gives square roots of eigenvalues

ATAh = AT0 = 0

,

I Zeroes on diagonal of S → solutions

I These are corresponding columns of V

COSC450 Camera Calibration 20



Normalising Transforms

Now we can find h

I Form the matrix A

I Take the SVD and find the eigenvector
for the smallest (≈ 0) diagonal of s

This doesn’t work well in practice

I Entries of A vary in size

I u and v are typically ∼ 1000

I x and y depend on world units

I Changing some entries give large effects

I Others need large changes to correct

We apply normalising transforms

u′ = Tuu x̃′ = Tx x̃

I Tu and Tx are translation + scale

I Means of u′ and x̃′ are zero

I Means of ‖u′‖ and ‖x̃′‖ are
√

2

I Find homography H′ so that u′ = H′x̃′

I Then H = T−1u H′Tx

COSC450 Camera Calibration 21



Algorithm – Computing a Homography

procedure FindHomography(n ≥ 4 matches ui ↔ xi )
Compute normalising transforms Tu and Tx

Form a 2n × 9 matrix A
for i in {1 . . . n} do

Compute u′i = [u′i v
′
i 1]T ≡ Tuui and x′i = [x ′i y

′
i 1]T ≡ Txxi

A2i ,: ←
[
0 0 0 −x ′i −y ′i −1 v ′i x

′
i v ′i y

′
i v ′i

]
A2i+1,: ←

[
x ′i y ′i 1 0 0 0 −u′ix ′i −u′iy ′i −u′i

]
end for
Compute the SVD A = USVT

Find h′ as the column of V corresponding to smallest entry in S
H′ ← h′ reshaped to a 3× 3 matrix
return H = T−1u H′Tx

end procedure

COSC450 Camera Calibration 22



2 – Deriving Constraints on K

COSC450 Camera Calibration 23



Constraints from the Homography H

Recall that H ≡ K
[
r1 r2 t

]
I Columns of H are

h1 = λKr1 h2 = λKr2 h3 = λKt

I λ is a unknown scale factor

I r1 and r2 are unit vectors

I r1 and r2 are orthogonal

This gives us two constraints on K from H

rT1 r2 = h1K
−TK−1h2

h1K
−TK−1h1 = h2K

−TK−1h2

We know H, so the constraints are on

B = K−TKT

This matrix B is symmetric

B =

b1 b2 b3
b2 b4 b5
b3 b5 b6


And our constraints are of the form

hT
i Bhj

COSC450 Camera Calibration 24



3 – Estimating K

COSC450 Camera Calibration 25



Using the Constraints

We can re-write the constraints in the form vTij b, where

b =
[
b1 b2 b3 b4 b5 b6

]T
vij =

[
hi1hj1 hi1hj2 + hi2hj1 hi1hj3 + hi3hj1 hi2hj2 hi2hj3 + hi3hj2 hi3hj3

]T
Each calibration image gives us a homography, so two constraints on B

vT12b = 0 (vT11 − vT22)b = 0

Three (or more) images gives us six (or more) equations, so solve for b as for h

Can then recover K from B (see paper for details)

COSC450 Camera Calibration 26



4 – Estimating R and t for each Image

COSC450 Camera Calibration 27



Wait - Aren’t We Done?

We solved for H then K

I Used a linear solution

I These are easy to solve

Typically we have more points than needed

I More than 4 points on the pattern

I More than 3 images of the pattern

This lets us minimise the effects of errors

I Errors in measurements

I What function have we minimised?

Reprojection error

I We measure u in an image

I We estimate ũ = K
[
R t

]
x

I Reprojection error is u− ũ

If we have n images with m points

I Want to minimise total error

I Usually sum of squared errors

I Optimal assuming Gaussian errors

ε =
n∑

i=1

m∑
j=1

‖uij − ũij‖2

COSC450 Camera Calibration 28



Decomposing the Homography

We’ve estimated H

I We know H ≡ K
[
r1 r2 t

]
H =

[
h1 h2 h3

]
= λK

[
r1 r2 t

]
I We’ve also estimated K via B

I Can then solve

r1 = λK−1h1 r2 = λK−1h2 t = λK−1h3

I We know ‖r1‖ = ‖r2‖ = 1, so

λ =
1

‖K−1h1‖
=

1

‖K−1h2‖

This gives us t and most of R

I The third column of R is

r3 = r1 × r2

I R is not a ‘proper’ rotation

I This is due to estimation errors

I If we take the SVD

R = USVT

then the nearest true rotation is

R = UIVT

COSC450 Camera Calibration 29



5 – Refining the Estimate

COSC450 Camera Calibration 30



Non-Linear Least Squares

We know have estimates of:

I The calibration matrix K

I The rotation and translation

Ri ti

for each image i = 1 . . . n

I The 3D location

xj =
[
xj yj zj 1

]T
for each 3D point j = 1 . . .m

I The 2D image points uij

We want to minimise

ε =
n∑

i=1

m∑
j=1

‖uij − ũij‖2

=
n∑

i=1

m∑
j=1

‖uij −K
[
R t

]
x‖2

I This is a sum of squared terms

I But the terms are non-linear

I This makes minimising it hard

COSC450 Camera Calibration 31



Gradient Descent

Suppose we have an error function, f (x)

I We want to find x to minimise f

I We have an initial estimate, xo
I We make a linear approximation

f (x0 + δ) ≈ f (x0) + δf ′(x0)

I We update xi+1 ← xi + δ to reduce f

I Our step is down the gradient

δ = −λf ′(xi )

I A small enough λ > 0 always helps

x0

f(x)f'(x0)

x1

x2

f(x)f'(x1)

x1
COSC450 Camera Calibration 32



Gradient Descent in Higher Dimensions

The same basic approach applies

I The parameters become a vector

I The function can be vector valued

f(x) =


f1
([

x1 x2 . . . xk
]T)

f2
([

x1 x2 . . . xk
]T)

...

fn
([

x1 x2 . . . xk
]T)


I The derivatives are the Jacobian matrix

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xk

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xk


Linear approximation becomes

f(x0 + δ) ≈ f(x0) + J(x0)(x− x0)

Gradient descent update is

δ = −λJTf(xi )

COSC450 Camera Calibration 33



Levenberg-Marquardt

Gradient descent

I Small enough steps always help

I Can be slow to converge

Faster convergence with Gauss–Newton

I Update is the normal equations

JTJδ = −JTf(x0)

I Faster to converge

I May not always improve

Levenberg-Marquardt algorithm:

I Update equation is(
JTJ + λI

)
δ = −JTf(x0)

I If a step improves the error:
I Accept the correction
I Reduce λ and take another step
I This moves towards Gauss-Newton

I If the step makes things worse
I Reject the correction
I Increase λ and try again
I This moves towards gradient descent

COSC450 Camera Calibration 34



Algorithm – Levenberg-Marquardt (Basic Version)
procedure LevenbergMarquardt(function f, parameter estimate p)

Compute J at p
Initialise λ = 0.001 . Or similar small value
while not done do

Solve (JTJ + λI)δ = JTf(p)
p′ ← p + δ
if f(p′) < f(p) then . This step has helped

p← p′ . Accept the update
Recompute J at new p
λ← λ/2 . Move towards Gauss-Newton

else
λ← λ× 2 . Move towards Gradient Descent

end if
end while
return p

end procedure
COSC450 Camera Calibration 35



Modelling Lens Distortion

I Barrel/pincushion distortion

u′ = u(1 + k1r
2 + k2r

4 + k3r
6 + . . . )

I (u, v) measured from image centre
I r is distance from image centre

I Tangential distortion

u′ = u + (2p1uv + p2(r2 + 2u2))

v ′ = v + (2p2uv + p1(r2 + 2v2))

I Lens not parallel to image plane

I Add k1, k2, k3, p1, p2 to estimation

COSC450 Camera Calibration 36


	1 – Finding the Homography
	2 – Deriving Constraints on K
	3 – Estimating K
	4 – Estimating R and bold0mu mumu tttttt for each Image
	5 – Refining the Estimate

