Camera Calibration

COSC450

Lecture 2

Camera Calibration in OpenCV

cv::calibrateCamera function:
Input: Corresponding 3D and 2D points in a set of images, size of the image

Output: Calibration matrix, distortion co-efficients, camera poses, reprojection error

double cv::calibrateCamera(
std::vector<std::vector<cv::Point3f>> objectPoints,
std::vector<std::vector<cv::Point3f>> imagePoints,
cv::S8ize imageSize,
cv::Mat cameraMatrix,
std::vector<double> distCoeffs,
std::vector<cv::Mat> rvecs,
std::vector<cv::Mat> tvecs);

Worth looking into the detail — many useful methods are used both here and elsewhere

COSC450 Camera Calibration

Calibration Targets

Calibration from 3D-2D matches
» Want easy to find points
» Want known 3D co-ordinates
Planar targets are common
» Easy to make with a printer
» Chess/Checkerboard patterns
» Grids of dots or lines
Is a 2D pattern enough?

COSC450

Camera Calibration

3D Point Locations

Can choose our co-ordinate frame
» X — Y plane is the calibration target
» Origin is at one internal corner
» Z goes into the target
We also need to decide on units
> Best to use a real world unit
» Here squares are 1cm
» Can just use 1 square = 1 unit
All points have Z =0 — a problem?

COSC450

Camera Calibration

Finding Checkerboard Corners

OpenCV's method (in brief!)
Threshold image to black & white

v

v

Look for black & white quadrilaterals

v

Link the quads into a checkerboard

v

Followed by sub-pixel refinement
People are still researching this!
» Duda and Frese, BMVC 2018

» Edwards, Hayes, and Green, IVCNZ
2018

» Morten, Wilm, and Frisvad, 2019

COSC450

Camera Calibration

Matching 2D to 3D points

The corners are roughly in rows/cols
» OpenCV's quad-based approach helps
» Requires a view of all the corners
> Aligns 2D corners to 3D target points
Calibration targets often odd-sized
» The example here is 7 x 6
» Why is this helpful?

> Is this required?

COSC450

Camera Calibration

The Camera Calibration Problem

For the ith image we get:
» A set of n 3D points (j € {1...n}):

xij=|xj Yij zj 1]
» Corresponding 2D points:

wij=[uy vij 1]

» Related by

u,"jEK[R,' t,-}v,-,j

Want to find K (get Rjs and t;s as a bonus)

COSC450 Camera Calibration

Zhang's Calibration Method — Notation

450 Zhang Description 450 Zhang Description

X M 3D homogeneous point K A Calibration matrix

u m 2D homogeneous point fu @ Focal length in u

% M Planar homogenous point fy B Focal length in v

R R Camera rotation matrix s 0 Camera pixel skew

r; r; ith column of R Cy U Principal point u

t t Camera translation vector Cy Vo Principal point v

- s Homogeneous scale factor

COSC450 Camera Calibration

Method Summary

Basic steps:
» Find a homography between xs and us
» Use this to find constraints on K

» Solve for and estimate of K
» We get Rs and ts as well

» (Optional) add in lens distortions

> Refine estimate by minimising
reprojection error

COSC450

Uses several common techniques
» Homographies
> Solving linear systems of equations
» Reprojection error

» Non-linear least squares

Camera Calibration

Transformations in 2D

Euclidean Similarity Affine Homography
ma DoF 3 4 6 8
ni na2 tx sn1 sn2 tx al a2 tx b1 hi2 M3
Matrix 1 r2 oty Sro1 Sr ty a1 axn ty a1 ax» hys
0 0 1 0 0 1 0 0 1 h31 h3p 1
Preserves Length Ratios of lengths Parallelism Co-linearity
Area Angles Ratios of areas Ordering on a line

COSC450 Camera Calibration

10

Finding a Homography

We start with the projection equation

u=K [R t] X

u [f, s ¢,

vi=1(0 f, ¢
1 |0 0 1]
[f, s ¢,

=10 f, ¢

|0 0 1]
u=K [rl) t]

COSC450

— o< X

>

v

v

v

v

v

This defines a homography u = Hx

Mapping between two images of a plane
Defined by a 3 x 3 matrix, H

Only defined up to a scale —
a homogeneous quantity

General linear transform
Preserves straight lines

Also used in panaoramic image stitching

Camera Calibration

11

Algorithm Overview

Each image gives us a homography, H

» The homography has 9 values
» Only defined up to a scale
» Only 8 independent values
» 8 degrees of freedom

» Six are the pose of the camera

» Three for translation
» Three for rotation

» Leaving us two constraints on K
> So we need at least three images

COSC450

So the overall algorithm is for each image:
1. Find the homography H
2. Derive two constraints on K

Next, using all the images’ constraints

3. Estimate the value of K

Finally,
4. Estimate R and t for each image

5. Refine the estimate, adding in lens
distortion parameters

Camera Calibration

12

COSC450

1 - Finding the Homography

Camera Calibration

13

The Direct Linear Transform

For a 2D-3D match, u = HX so u is parallel to Hx

uxHx =0
u hi1 h2 his] [X] [
v| X |hat hxn hs| |y| =
1 hs1 h32 h3z| |z i
hi1]

0 0 0 —x -y -1 xv yv v his
X y 1 0 0 0 —xu —yu —u =
—XV —yv —Vv Xxu yu u 0 0 0 :

hs3 |

COSC450 Camera Calibration

The Direct Linear Transform

This gives us three equations in H
» They are linear — which is good
They are not independent — use first two

v

07 %" vx']h=0

7 07 —ux"]h=0

v

H has eight degrees of freedom (why?)

v

So need at least four points

COSC450

For n points we get the system

=T

—Xl V]_)‘EI
OT —u)'Z-lr

—%3 k)
OT - U2)~(;—

—xI T
) L— u,,)”(I_

Camera Calibration

h11 0
hio 0
his 0
h1| — |0
h3o 0
| h33] 10]

Ah=0

15

Linear Systems of Equations

Simple case: . .
P » A is an m x n matrix
» We have n unknowns, x1, xo,...Xp
» We have m equations of the form i 412 ... din
ani a2 ... aop
A=]

aix1 + axo + ... ainXxp = by
ac1x1 + axnxo + ... amX, = by aml am2 .- amn

» X is a vector of n unknowns

am1X1 + amex2 + ... amnXn = bm T
X = [Xl X2 ... Xn]
Writing this more compactly,)
» b is a vector of m known constants
Ax=b T
b= [bl by ... bm]

COSC450 Camera Calibration

16

Solving Linear Systems

Simple case:

» A issquareso m=n

» All equations are independent. . .

> ...s0 A is invertible
> At least one b; #0,s0b # 0
Solution is usually given as:

x=A"1b

COSC450

Complicated cases:
» More equations than unknowns, m > n
» Fewer equations than unknowns, m < n
» Homogeneous system: b =b

Solutions use the singular value
decomposition (SVD)

> First case gives least squares fit
» Other two give families of solutions

» SVD is also more stable for simple case

Camera Calibration

17

The Singular Value Decomposition

Any real m x n matrix, A can be written as
A=USV'T

» U is an m x m orthonormal matrix

» S is an m x n diagonal matrix

» V is an n X n orthonormal matrix
Orthonormal matrices:

» Every row/column is a unit vector

» Different rows/columns are orthogonal

» Transpose is inverse, M1 = MT

COSC450

Simple case Ax =Db

x=A"1b
= (USVH™b
=VS U™

> S is easy to invert:

S1 0o ... 0 5
0 S 0 0
0 O Sn 0

Camera Calibration

9|~ o

18

Solving Non-Square Linear Systems

More equations than unknowns, m > n Fewer equations than unknowns, m < n
» A is not square, so no inverse » Again, A is not square
» Can form a pseuodoinverse » S has columns of zeros:
A+:VS+UT, ss 0 ... 00 ... 0
0 s, ... 0 0 ... O
» ST is an n x m diagonal matrix S=1. . L
g O 0 O . O 0 0 DY Sn O DY O
0 00 .0 > Many solutions - di
gt —) y solutions — corresponding
: : columns of V span the solution space
0 0 ... s—ln 0 ... 0 » Smallest solution (minimising x'x) is
» Least-squares fit: x = Atb x=ATb

COSC450 Camera Calibration

19

Solving Homogeneous Equations

Our problem is Ah =0
» Trivial solution;: h=10

» More interesting solutions

Ah =0=0h
» This is an eigenvector of A
» The corresponding eigenvalue is 0
» Eigenvalues and the SVD are closely

related

COSC450

Eigenvalues and SVD, A = USVT:

>

v

v

v

v

Columns of U are eigenvectors of AAT
Columns of V are eigenvectors of ATA

S gives square roots of eigenvalues
ATAh=AT0=0

Zeroes on diagonal of S — solutions

These are corresponding columns of V

Camera Calibration

20

Normalising Transforms

Now we can find h

>

>

Form the matrix A

Take the SVD and find the eigenvector
for the smallest (= 0) diagonal of s

This doesn’t work well in practice

>

>

>

v

v

Entries of A vary in size

u and v are typically ~ 1000

x and y depend on world units
Changing some entries give large effects

Others need large changes to correct

COSC450

We apply normalising transforms

v

v

v

v

u'=T,u X' = Txx

T, and T, are translation + scale
Means of u’ and X’ are zero

Means of ||u’|| and ||X'|| are v/2

Find homography H’ so that u’ = H'X’
Then H = T, 1H'T,

Camera Calibration

21

Algorithm — Computing a Homography

procedure FINDHOMOGRAPHY(n > 4 matches u; <> x;)
Compute normalising transforms T, and T
Form a 2n x 9 matrix A
for i in {1...n} do
Compute v, = [u} v/ 1]T = T u; and X} = [x/ y/ 1]T = Tx;
Agj. [0 0 0 —x/ —y/ —1 vix vyl v,’}
Agity: [x,’ yi 1.0 0 0 —ulxl —uly! —u,’-]
end for
Compute the SVD A = USVT
Find h’ as the column of V corresponding to smallest entry in S
H’ < h' reshaped to a 3 x 3 matrix
return H = T, 'H'T,
end procedure

COSC450 Camera Calibration

22

COSC450

2 — Deriving Constraints on K

Camera Calibration

23

Constraints from the Homography H

Recall that H=K [r1 1y t]

» Columns of H are
hi = Kr; hy = AKry, h3 =)\Kt

»)\ is a unknown scale factor
» r1 and ry are unit vectors
> ry and rp are orthogonal

This gives us two constraints on K from H

rir, =h K TK 1hy
hiK"TK 'h; = h,K"TK th,

COSC450

We know H, so the constraints are on
B=K TK'

This matrix B is symmetric

b1 by b3
B=|by bs bs
bz bs bg

And our constraints are of the form

h] Bh;

Camera Calibration

24

COSC450

3 — Estimating K

Camera Calibration

25

Using the Constraints

We can re-write the constraints in the form v}b, where
b=[b1 by by by bs bl
vij = [hithjn hirhjp + hishjt - hinhjz + hishjt - hishja hiohjz + hishj hi3hj3]T
Each calibration image gives us a homography, so two constraints on B
V-1r2b =0 (VII - V-2I—2)b =0
Three (or more) images gives us six (or more) equations, so solve for b as for h

Can then recover K from B (see paper for details)

COSC450 Camera Calibration

26

COSC450

4 — Estimating R and t for each Image

Camera Calibration

27

Wait - Aren't We Done?

We solved for H then K
» Used a linear solution
» These are easy to solve
Typically we have more points than needed
» More than 4 points on the pattern
» More than 3 images of the pattern
This lets us minimise the effects of errors
» Errors in measurements

» What function have we minimised?

COSC450

Reprojection error
» We measure u in an image
> We estimate it = K [R t] X
> Reprojection error is u — Ui
If we have n images with m points
» Want to minimise total error
» Usually sum of squared errors
» Optimal assuming Gaussian errors

n m
~ 12
e=> > lluj — il

i=1 j=1

Camera Calibration

28

Decomposing the Homography
We've estimated H
» We know H=K [r; rp t
H= [hl h, h3] =K [rl ro t]

» We've also estimated K via B

» Can then solve
ri=MK"th; r=XK"th, t=\K 'h;
» We know |[|ri|| = [|r2|| = 1, so

1 1

)\ = =
K] K= thy|

COSC450

This gives us t and most of R
» The third column of R is

r3=1r1 Xryp

» R is not a ‘proper’ rotation
» This is due to estimation errors
» If we take the SVD

R=TUSV'
then the nearest true rotation is

R=UIVT

Camera Calibration

29

COSC450

5 — Refining the Estimate

Camera Calibration

30

Non-Linear Least Squares

We know have estimates of: We want to minimise
» The calibration matrix K n m
. . _]2

» The rotation and translation €= Z ZHUU — g

i=1 j=1
R; t; n m ,
=Y > lluy-K[R t]x|

for each image i=1...n i=1 j=1

» The 3D location

» This is a sum of squared terms
X = [XJ Vi % 1} » But the terms are non-linear
for each 3D point j=1...m > This makes minimising it hard

» The 2D image points uj;

COSC450 Camera Calibration

31

Gradient Descent

Suppose we have an error function, f(x)
» We want to find x to minimise f
» We have an initial estimate, x,

» We make a linear approximation
f(Xo + 5) ~ f(Xo) + (Sf,(Xo)

» We update xj11 < x; + 9 to reduce f

» Our step is down the gradient

0= —)\f'(x,-)

v

A small enough A > 0 always helps

COSC450

f'(xo) f(x)
f'(xy1) £(x)

X1 Xp

Camera Calibration

Gradient Descent in Higher Dimensions

The same basic approach applies of Ofi ofi
Ox1 8);2 e 8);](
» The parameters become a vector ofh Ofy of
. J= Ox1 Ox2 Tt Oxk
» The function can be vector Va|_|L_le(_Z I : :
fi [Xl Xo ... Xk] of, 0Ofy ofy
T Ox1 Oxp T Oxk
> [xl X2 ... xk]) . .
f(x) = Linear approximation becomes
. T f(xg + 0) ~ f(xg) + J(x0)(x — xg
- (0 + 8) = F(x0) + I (x0) (x — o)

» The derivatives are the Jacobian matrix ~ Gradient descent update is

o = -\JTE(x))

COSC450 Camera Calibration

Levenberg-Marquardt

Gradient descent

» Small enough steps always help

» Can be slow to converge
Faster convergence with Gauss—Newton

» Update is the normal equations
JTI6 = —JTf(x0)

> Faster to converge

» May not always improve

COSC450

Levenberg-Marquardt algorithm:

> Update equation is

(JTJ + AI) &8 = —JTf(xo)

> If a step improves the error:

> Accept the correction

» Reduce A and take another step

» This moves towards Gauss-Newton
> If the step makes things worse

» Reject the correction
» Increase \ and try again
» This moves towards gradient descent

Camera Calibration

34

Algorithm — Levenberg-Marquardt (Basic Version)

procedure LEVENBERGMARQUARDT(function f,
Compute J at p
Initialise A = 0.001
while not done do
Solve (JTJ + AI)é = JTf(p)
pPP<p+9o
if f(p’) < f(p) then
p<p
Recompute J at new p
A+)\/2
else
A Ax2
end if
end while
return p

end procedure
COSC450

parameter estimate p)

> Or similar small value

> This step has helped
> Accept the update

> Move towards Gauss-Newton

> Move towards Gradient Descent

Camera Calibration 35

Modelling Lens Distortion

» Barrel/pincushion distortion / \

U =u(l+kr?+kor* + kar®+..0)

» (u,v) measured from image centre
» ris distance from image centre

» Tangential distortion

u' = u+ (2pruv + pa(r? + 2u°))
V= v+ @pauv + pu(+ 22))

» Lens not parallel to image plane

» Add ki, ko, k3, p1, po to estimation

COSC450 Camera Calibration 36

	1 – Finding the Homography
	2 – Deriving Constraints on K
	3 – Estimating K
	4 – Estimating R and bold0mu mumu tttttt for each Image
	5 – Refining the Estimate

