
Cameras and Projections

COSC342

Lecture 6
15 March 2015



So What’s This All About?

I The basic idea of cameras

I Pinhole cameras and lenses

I Projection matrices

I Rendering surfaces in cameras

COSC342 Cameras and Projections 2



Cameras and Projections

I Cameras project a 3D world onto a 2D image

I We will use (x , y , z) for 3D points, and (u, v) in 2D

I Input will be a 4-vector (homogeneous 3D point)

I Output will be a 3-vector (homogeneous 2D point)

uv
1

 ≡ P


x
y
z
1


I What form does P have?

COSC342 Cameras and Projections 3



Orthographic Projection

I Simple way to go from 3D to 2D – delete one dimension

I Discarding the Z value projects onto the X -Y plane

uv
1

 ≡

1 0 0 0
0 1 0 0
0 0 0 1



x
y
z
1


I This isn’t how our eyes or most cameras work

COSC342 Cameras and Projections 4



Which Cubes are Drawn Correctly?

COSC342 Cameras and Projections 5



The Eye as a Camera

I The eye has a narrow opening (the pupil) with a lens

I This focuses light onto the retina where it is received

I This arrangement means that distant objects seem smaller

COSC342 Cameras and Projections 6



A Simple Camera Model

I The pinhole camera is a simple but useful model

I There is a central point of projection (the pinhole)
I Given a point in the world:

I Cast a ray (line) from the point through the central point
I Intersect this with an imaging plane
I This intersection is the image of the world point

I This is a reasonable model for the eye and most cameras
I The role of the lens is to let a large hole act like a pinhole
I This lets enough light in to make an image with real sensors

COSC342 Cameras and Projections 7



The Pinhole Camera

I The distance from the pinhole to the image plane is the focal length, f

I By similar triangles, a 3D world point (x , y , z) projects to

u =
−fx

z
v =

−fy

z

x

z
f

u

COSC342 Cameras and Projections 8



The Pinhole Camera

I We can avoid the sign change by putting the image plane in front of
the camera centre

I This isn’t practical for real cameras, but is mathematically equivalent

u =
fx

z
v =

fy

z

I We can express this as a projection matrix

uv
1

 ≡

f 0 0 0
0 f 0 0
0 0 1 0



x
y
z
1

 =

f 0 0
0 f 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



x
y
z
1



COSC342 Cameras and Projections 9



Co-ordinate Frames

I This assumes that the camera centre is at the origin

I The camera faces along the positive Z -axis

I The U axis runs from left to right in the image

I For a right-handed system, the V axis runs top-to-bottom

I This is different to our usual axes for X − Y plots

X

Y
U

V
COSC342 Cameras and Projections 10



Camera Co-ordinates

I Our projection puts the origin at the centre of the image, (cu, cv )

I We can move it to the top left corner by a shift

I In matrix form this makes our projection matrixf 0 cu 0
0 f cv 0
0 0 1 0


I Often this is rewritten asf 0 cu

0 f cv
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 = K
[
I 0

]
where K is the camera calibration matrix

COSC342 Cameras and Projections 11



Transforming Cameras

I You can rotate and translate cameras

I It is easier to apply the inverse transform to the world

I E.g.: shifting the camera left 3 units = moving the scene right 3 units

I Often we rotate the camera by R and then shift by t

I Equivalently, shift the points by −t, then rotate them by RT

f 0 cu
0 f cv
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



r11 r21 r31 0
r12 r22 r32 0
r13 r23 r33 0
0 0 0 1




1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1


= K

[
I 0

] [RT 0
0 1

] [
I −t
0 1

]
= K

[
RT −RTt

]

COSC342 Cameras and Projections 12



Rendering Scenes

I The camera model lets us project 3D points into the image

I Generally we want to draw surfaces such as triangles, planes, etc.

I We also need to deal with occlusion – some surfaces are hidden
behind others

I A simple approach is the Painter’s Algorithm
I Order the surfaces by distance from camera
I Draw the furthest surfaces first, and the nearest last

COSC342 Cameras and Projections 13



Painter’s Algorithm

COSC342 Cameras and Projections 14



Painter’s Algorithm

I Which surface should you draw first?

COSC342 Cameras and Projections 15



Z-Buffering

I The usual solution to this is the use of Z -buffers

I As well as the colour values, we record the depth (Z ) at each pixel
I Only draw a new pixel if the new Z -value is less than the current one

I If two surfaces are at the same depth, this is not deterministic
I This leads to ‘Z -fighting’, and artefacts in the image
I Because of limited precision, this can happen with surfaces which are

close to each other but do not quite coincide

I You also need to be careful how you implement this
I Depth and z values not quite the same thing
I Linear interpolation across triangles is not quite right

COSC342 Cameras and Projections 16



Z-Buffering

COSC342 Cameras and Projections 17


