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Feature Detection, Tracking, and Matching
Natural feature tracking

I Avoids need for targets like checkerboards or markers
I Feature detection – corners and blobs
I Feature description – SIFT and related methods
I Tracking – KLT tracker for corners
I Matching – Bag-of-Words
I Application – Image Mosaicing
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Corners and Tracking
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Edges and Corners

Want points that can be accurately located

I Often called keypoints or features

I Image corners can be used
I Formalised using image gradients

I No gradient – flat region
I Gradient in one direction – edge
I Gradient in all directions – corner

How do we compute this?

I Need to estimate image gradients

I Need to find corners
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Convolution and Filtering

Convolution common in image processing

I Uses a filter or kernel

I Input is image + kernel

I Output is a new image

I Kernel is a small array of numbers

For a kernel, K , of size ((2r + 1)× (2r + 1))
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7 7 4 6 8 6

6 9 3 7 9 3
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[I ∗ K ] (x , y) =
r∑

dx=−r

r∑
dy=−r

I (x + dx , y + dy )K (r + dx , r + dy )

[I ∗ K ] (4, 3) =
1

16
(7 + 8 + 6 + 18 + 12 + 14 + 2 + 8 + 5) = 5
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Edge Detection Filters

Sobel filters

I Commonly used for edge detection

I Two filters – compute gradients

I Horizontal (Ix) and vertical (Iy )

I Gradient is a vector, g =
[
Ix Iy

]T
Ix =

−1 0 1
−2 0 2
−1 0 1

Iy =
−1 −2 −1
0 0 0
1 2 1
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Shi-Tomasi Corners

Shift image from (x , y) to (x + dx , y + dy )

I Make a linerar approximation near (x , y)

I Need gradients to do this (Sobel)

I Look at a region (R) around (x , y)

I Arithmetic gives a structure matrix

I Tells us about local area of image

I Corner: high change for all (dx , dy )
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Eigenvectors and Eigenvalues

We want high gradient in all directions

I Structure matrix tells us about change
in each direction

I Eigenvalues tell us about how a matrix
transforms space

I Defined as vectors where Mv = λv

I v is an eigenvector of M and λ the
corresponding eigenvalue

Our matrix is 2× 2 real symmetric

I So it has 2 eigenvalues/vectors

I Compute characteristic polynomial

det(M− λI) = 0

I Large eigenvalues = large variation

I Want smaller eigenvalue to be large
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Eigenvalues for Shi-Tomasi Corners

To save space when writing equations we substitute

X =
∑(

∂I

∂x

)2

Y =
∑(

∂I

∂y

)2

Z =
∑(

∂I

∂x

∂I

∂y

)
so we have

det(M− λI) = 0

det

[
X − λ Z
Z Y − λ

]
= 0

(X − λ)(Y − λ)− Z 2 = 0

λ2 − λ(X + Y ) + (XY − Z 2) = 0

λ =
(X + Y )±

√
(X + Y )2 − 4(XY − Z 2)

2
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Shi-Tomasi Corner Example
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KLT Tracking

Kanade-Lucas-Tomasi

I Begin with Shi-Tomasi corners

I Suppose we have image sequence
I (x , y , t)

I Want to find (u, v) so that

I (x , y , t) = I (x + u, y + v , t + 1)

in some region around the corner

Easier to begin with a 1D case

δ

f(x,t)

f(x,t+1)

f (x , t) = f (x + δ, t + 1)

COSC450 Feature Detection 11



1D KLT Formulation
We can try to align a single point using a linear approximation

0 = f (x + δ, t)− f (x , t + 1)

≈ f (x , t) +
∂f

∂x
δ − f (x , t + 1)

δ ≈ f (x , t + 1)− f (x , t)
∂f
∂x

Over a region, R, we add the squared errors,

E =
∑

(f (x + δ, t)− f (x , t + 1))2

To minimise, set dE
dδ = 0, giving

δ =

∑
(f (x , t + 1)− f (x , t))∑

(f ′(x , t))
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2D KLT Formulation

We consider images, I (x , y , t), over time and we want to minimise

E =
∑

(x ,y)∈R

(I (x + u, y + v , t)− I (x , y , t + 1))2

This leads to the solution:

[
u
v

]
=

 ∑
(x ,y)∈R

( ∂I∂x )2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
−1 ∑

(x ,y)∈R

[ ∂I
∂x (I (x , y , t)− I (x , y , t + 1))
∂I
∂y (I (x , y , t)− I (x , y , t + 1))

]
Note that the matrix we are inverting is the same as in Shi-Tomasi corner detection
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Improving tracking

These methods make some assumptions

I They work for small motions

I Linear approximations

Pyramid-based optical flow

I Subsample image by half repeatedly

I Compute motion at lowest level

I Double motion to go up one level

I Refine estimate, and repeat

Can also expand on the motion model

I Affine motion – rotation, scaling, etc.
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Blobs and Matching
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Blob Features

I More recently, blob features have seen a lot of use

I Blobs are dark regions surrounded by bright regions or vice-versa

I We can find blobs with a difference of Gaussian filter

I Blobs have a scale, determined by the variances of the two Gaussians
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Blob Detection

I Blur the image with larger and larger Gaussian kernels
I You can do this by repeatedly blurring with a small Gaussian kernel
I For efficiency the image can be halved after every k blurs

I Subtract the adjacent images in the stack from one another
I Blobs are minima and maxima in the stack of difference images

I Must be locally minimal/maximal in the current difference image
I Must also be minimal/maximal compared to the two adjacent images
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Blob Detection

Original Image

Gaussian blur with σ = 1.5, 3, 4.5, 6, 7.5

Difference of Gaussians
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Corners and Blobs
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Feature Descriptors

I Features are matched on the basis of some descriptor
I This is a list of numbers, represented as a vector

I Typically this is a high-dimensional vector
I SIFT descriptors, for example, have 128-dimensions

I The distance between matching vectors should be small
I The distance should be low regardless of changes in the image

I Translation and rotation in the image plane
I Changes in viewing direction
I Changes in scale
I Changes in lighting and brightness
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A Simple Feature Descriptor

I We could use the pixel values in a window around the feature
I This is easy to compute, and works well in some cases
I For simplicity we’ll use greyscale images
I Generalises easily to colour images

I If we take a n × n window, we get a vector of n2 values

I We can compare them with the usual (Euclidean) vector distance

1

(5, 3, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 3, 4, 4, 5, 5, 6, 7, 7, 5, 5, 6, 7, 7)
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Feature Invariance

I Translation

1 1

|(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)| =
√

35

I Rotation

1
1

|(4, 2,−3,−6,−6,−2, 0,−3,−6,−6, . . . , 0, 2, 2, 2, 2)| =
√

260
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Feature Invariance
I Scale

1 1

|(0,−2,−2, 0, 0,−2,−2, 0, 0, 0,−1,−1, 0, 0 . . . , 0, 0)| =
√

18

I Brightness changes

1

|(−2,−2,−2,−2,−2,−2,−2,−2,−2,−2 . . . ,−2,−2)| =
√

100
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SIFT Features

I In 1999 David Lowe proposed an invariant feature detector1

I Translation invariance is easy, as we’ve seen
I Scale invariance comes from using blob features

I Descriptor is computed from a window around the feature
I The size of the blob determines the size of the window

I Brightness invariance comes from using image gradients
I The relative brightness of pixels is fairly constant
I Gradients do not change much under moderate intensity change

I Rotation invariance comes from finding a dominant gradient direction
I The window is oriented to the dominant gradient

1D. G. Lowe, Object recognition from local scale-invariant features, ICCV 1999
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SIFT Features

I Blob features are detected and their scale determined

I A histogram of gradients around the blob are computed

I Peak(s) in the histogram determine the orientation
I A square region is used to compute the descriptor

I The size of the square comes from the size of the blob
I The square is aligned to the feature’s orientation

I This region is divided into a 4× 4 grid of squares

I In each sub-region a gradient histogram is made with 8 bins

I This gives 4× 4× 8 = 128 values, which is the descriptor
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SIFT Features
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SIFT Features
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Matching Features

I The final descriptor is 128 values, usually bytes
I Finding the distance between two descriptors takes 256 operations
I OK to compute squared difference (no square root needed)

I If we find 10,000 features in each image
I Matching one feature takes ∼ 2, 500, 000 operations
I Matching all features takes ∼ 25, 000, 000, 000 operations

I This is often too expensive, so approximate methods are used
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Space Subdivision and Approximate Neighbours

I Split space into smaller regions

I 2D examples easier to draw. . .
I Uniform subdivision

I Division into regular grid
I Look for neighbours in the same cell

as the point we are matching

I Quadtrees, octrees, etc.
I Recursively split in half
I Stop splitting when only a few

elements in a cell
I 2D gives a quadtree

3D gives an octree
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Space Subdivision

I This gets difficult in high dimensions
I Consider uniform subdivision with 8 divisions along each axis

I In 2D this is 8× 8 = 64 cells
I In 3D we get 8× 8× 8 = 512 cells
I In nD we get 8n cells, and 8128 ≈ 3.9× 10115

I Even if we just have 2 divisions (such as one layer of a generalised quad-/oct-tree), we
have 2128 ≈ 3.4× 1038 cells

I So we can’t split along all axes
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k-d Trees

I One solution is the use of k-d trees
I Choose an axis and split data along it

I Axis with the greatest spread?
I The first axis, or a random one?
I Try to split the data roughly in half

I Then take each half and split again
I The axis could be chosen as above
I Try to split each cell’s data in half

I Repeat until cells have only a few items
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k-d Trees and Feature Matching

I Put all the features in one image into a k-d Tree
I Given a feature from the other image:

I Find which cell in the k-d Tree it lies in
I Compute the distance to all features in that cell
I The nearest one is probably the best match

I For a tree with n layers and 10,000 features this requires:
I n comparisons to find the appropriate cell
I 256 10,000

O(2n) operations in the distance computations

I If n = 10, then 10,000
O(2n) ≈ 10

I This doesn’t always find the best match – why not?
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Matching SIFT features

I Even if we use brute-force matching most SIFT matches are wrong
I A lot of blob features don’t have much texture detail
I A lot of scenes have repeating features
I This leads to ambiguous matches
I SIFT is often the best we have 2

I With k-d Trees this gets a little worse, but not much
I Solution: Find the two best matches to check for ambiguity

I Can use other methods to reject unreliable matches3

I Only keep matches if the best distance is much lower than the second

I This makes things better, but still some wrong matches

I Need robust methods (RANSAC)

2N. Kahn, B. McCane, S. Mills Better than SIFT?, MVA 26(6), 2015
3S. Mills, Relative Orientation and Scale for Improved Feature Matching, ICIP, 2013
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Application – Image Mosaicing

Basic algorithm:

1. Align features between image pairs

2. Compute Homographies

3. These warp the images to line them up

Details

I Corner tracking or blob matching?

I Incorrect matches cause big problems

I Accumulating transforms over time

pk = HkHk−1 . . .H2H1p0

I Blending images together
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