
Feature Detection

COSC450

Lecture 3

Feature Detection, Tracking, and Matching
Natural feature tracking

I Avoids need for targets like checkerboards or markers
I Feature detection – corners and blobs
I Feature description – SIFT and related methods
I Tracking – KLT tracker for corners
I Matching – Bag-of-Words
I Application – Image Mosaicing

COSC450 Feature Detection 2

Corners and Tracking

COSC450 Feature Detection 3

Edges and Corners

Want points that can be accurately located

I Often called keypoints or features

I Image corners can be used
I Formalised using image gradients

I No gradient – flat region
I Gradient in one direction – edge
I Gradient in all directions – corner

How do we compute this?

I Need to estimate image gradients

I Need to find corners

COSC450 Feature Detection 4

Convolution and Filtering

Convolution common in image processing

I Uses a filter or kernel

I Input is image + kernel

I Output is a new image

I Kernel is a small array of numbers

For a kernel, K , of size ((2r + 1)× (2r + 1))

4 8 3 5 6 4

7 7 4 6 8 6

6 9 3 7 9 3

5 2 4 5 6

3 1 3 5 8

5

7

5 6 4 3 4 2

1

16

1 2 1

2 4 2

1 2 1

[I ∗ K] (x , y) =
r∑

dx=−r

r∑
dy=−r

I (x + dx , y + dy)K (r + dx , r + dy)

[I ∗ K] (4, 3) =
1

16
(7 + 8 + 6 + 18 + 12 + 14 + 2 + 8 + 5) = 5

COSC450 Feature Detection 5

Edge Detection Filters

Sobel filters

I Commonly used for edge detection

I Two filters – compute gradients

I Horizontal (Ix) and vertical (Iy)

I Gradient is a vector, g =
[
Ix Iy

]T
Ix =

−1 0 1
−2 0 2
−1 0 1

Iy =
−1 −2 −1
0 0 0
1 2 1

COSC450 Feature Detection 6

Shi-Tomasi Corners

Shift image from (x , y) to (x + dx , y + dy)

I Make a linerar approximation near (x , y)

I Need gradients to do this (Sobel)

I Look at a region (R) around (x , y)

I Arithmetic gives a structure matrix

I Tells us about local area of image

I Corner: high change for all (dx , dy)

∑
(x,y)∈R

(I (x + dx , y + dy)− I (x , y))2

≈
∑(

I (x , y) + dx
∂I

∂x
+ dy

∂I

∂y
− I (x , y)

)2

=
∑(

d2
x

(
∂I

∂x

)2

+ 2dxdy

(
∂I

∂x

∂I

∂y

)
+ d2

y

(
∂I

∂y

)2
)

= d2
x

∑(
∂I

∂x

)2

+ 2dxdy
∑(

∂I

∂x

∂I

∂y

)
+ d2

y

∑(
∂I

∂y

)2

=
[
dx dy

] ∑(
∂I
∂x

)2 ∑(
∂I
∂x

∂I
∂y

)
∑(

∂I
∂x

∂I
∂y

) ∑(
∂I
∂y

)2
[dx

dy

]

COSC450 Feature Detection 7

Eigenvectors and Eigenvalues

We want high gradient in all directions

I Structure matrix tells us about change
in each direction

I Eigenvalues tell us about how a matrix
transforms space

I Defined as vectors where Mv = λv

I v is an eigenvector of M and λ the
corresponding eigenvalue

Our matrix is 2× 2 real symmetric

I So it has 2 eigenvalues/vectors

I Compute characteristic polynomial

det(M− λI) = 0

I Large eigenvalues = large variation

I Want smaller eigenvalue to be large

COSC450 Feature Detection 8

Eigenvalues for Shi-Tomasi Corners

To save space when writing equations we substitute

X =
∑(

∂I

∂x

)2

Y =
∑(

∂I

∂y

)2

Z =
∑(

∂I

∂x

∂I

∂y

)
so we have

det(M− λI) = 0

det

[
X − λ Z
Z Y − λ

]
= 0

(X − λ)(Y − λ)− Z 2 = 0

λ2 − λ(X + Y) + (XY − Z 2) = 0

λ =
(X + Y)±

√
(X + Y)2 − 4(XY − Z 2)

2

COSC450 Feature Detection 9

Shi-Tomasi Corner Example

COSC450 Feature Detection 10

KLT Tracking

Kanade-Lucas-Tomasi

I Begin with Shi-Tomasi corners

I Suppose we have image sequence
I (x , y , t)

I Want to find (u, v) so that

I (x , y , t) = I (x + u, y + v , t + 1)

in some region around the corner

Easier to begin with a 1D case

δ

f(x,t)

f(x,t+1)

f (x , t) = f (x + δ, t + 1)

COSC450 Feature Detection 11

1D KLT Formulation
We can try to align a single point using a linear approximation

0 = f (x + δ, t)− f (x , t + 1)

≈ f (x , t) +
∂f

∂x
δ − f (x , t + 1)

δ ≈ f (x , t + 1)− f (x , t)
∂f
∂x

Over a region, R, we add the squared errors,

E =
∑

(f (x + δ, t)− f (x , t + 1))2

To minimise, set dE
dδ = 0, giving

δ =

∑
(f (x , t + 1)− f (x , t))∑

(f ′(x , t))

COSC450 Feature Detection 12

2D KLT Formulation

We consider images, I (x , y , t), over time and we want to minimise

E =
∑

(x ,y)∈R

(I (x + u, y + v , t)− I (x , y , t + 1))2

This leads to the solution:

[
u
v

]
=

 ∑
(x ,y)∈R

(∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2
−1 ∑

(x ,y)∈R

[∂I
∂x (I (x , y , t)− I (x , y , t + 1))
∂I
∂y (I (x , y , t)− I (x , y , t + 1))

]
Note that the matrix we are inverting is the same as in Shi-Tomasi corner detection

COSC450 Feature Detection 13

Improving tracking

These methods make some assumptions

I They work for small motions

I Linear approximations

Pyramid-based optical flow

I Subsample image by half repeatedly

I Compute motion at lowest level

I Double motion to go up one level

I Refine estimate, and repeat

Can also expand on the motion model

I Affine motion – rotation, scaling, etc.

COSC450 Feature Detection 14

Blobs and Matching

COSC450 Feature Detection 15

Blob Features

I More recently, blob features have seen a lot of use

I Blobs are dark regions surrounded by bright regions or vice-versa

I We can find blobs with a difference of Gaussian filter

I Blobs have a scale, determined by the variances of the two Gaussians

COSC450 Feature Detection 16

Blob Detection

I Blur the image with larger and larger Gaussian kernels
I You can do this by repeatedly blurring with a small Gaussian kernel
I For efficiency the image can be halved after every k blurs

I Subtract the adjacent images in the stack from one another
I Blobs are minima and maxima in the stack of difference images

I Must be locally minimal/maximal in the current difference image
I Must also be minimal/maximal compared to the two adjacent images

COSC450 Feature Detection 17

Blob Detection

Original Image

Gaussian blur with σ = 1.5, 3, 4.5, 6, 7.5

Difference of Gaussians

COSC450 Feature Detection 18

Corners and Blobs

COSC450 Feature Detection 19

Feature Descriptors

I Features are matched on the basis of some descriptor
I This is a list of numbers, represented as a vector

I Typically this is a high-dimensional vector
I SIFT descriptors, for example, have 128-dimensions

I The distance between matching vectors should be small
I The distance should be low regardless of changes in the image

I Translation and rotation in the image plane
I Changes in viewing direction
I Changes in scale
I Changes in lighting and brightness

COSC450 Feature Detection 20

A Simple Feature Descriptor

I We could use the pixel values in a window around the feature
I This is easy to compute, and works well in some cases
I For simplicity we’ll use greyscale images
I Generalises easily to colour images

I If we take a n × n window, we get a vector of n2 values

I We can compare them with the usual (Euclidean) vector distance

1

(5, 3, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 3, 4, 4, 5, 5, 6, 7, 7, 5, 5, 6, 7, 7)

COSC450 Feature Detection 21

Feature Invariance

I Translation

1 1

|(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)| =
√

35

I Rotation

1
1

|(4, 2,−3,−6,−6,−2, 0,−3,−6,−6, . . . , 0, 2, 2, 2, 2)| =
√

260

COSC450 Feature Detection 22

Feature Invariance
I Scale

1 1

|(0,−2,−2, 0, 0,−2,−2, 0, 0, 0,−1,−1, 0, 0 . . . , 0, 0)| =
√

18

I Brightness changes

1

|(−2,−2,−2,−2,−2,−2,−2,−2,−2,−2 . . . ,−2,−2)| =
√

100

COSC450 Feature Detection 23

SIFT Features

I In 1999 David Lowe proposed an invariant feature detector1

I Translation invariance is easy, as we’ve seen
I Scale invariance comes from using blob features

I Descriptor is computed from a window around the feature
I The size of the blob determines the size of the window

I Brightness invariance comes from using image gradients
I The relative brightness of pixels is fairly constant
I Gradients do not change much under moderate intensity change

I Rotation invariance comes from finding a dominant gradient direction
I The window is oriented to the dominant gradient

1D. G. Lowe, Object recognition from local scale-invariant features, ICCV 1999
COSC450 Feature Detection 24

http://ieeexplore.ieee.org/document/790410/

SIFT Features

I Blob features are detected and their scale determined

I A histogram of gradients around the blob are computed

I Peak(s) in the histogram determine the orientation
I A square region is used to compute the descriptor

I The size of the square comes from the size of the blob
I The square is aligned to the feature’s orientation

I This region is divided into a 4× 4 grid of squares

I In each sub-region a gradient histogram is made with 8 bins

I This gives 4× 4× 8 = 128 values, which is the descriptor

COSC450 Feature Detection 25

SIFT Features

COSC450 Feature Detection 26

SIFT Features

COSC450 Feature Detection 27

Matching Features

I The final descriptor is 128 values, usually bytes
I Finding the distance between two descriptors takes 256 operations
I OK to compute squared difference (no square root needed)

I If we find 10,000 features in each image
I Matching one feature takes ∼ 2, 500, 000 operations
I Matching all features takes ∼ 25, 000, 000, 000 operations

I This is often too expensive, so approximate methods are used

COSC450 Feature Detection 28

Space Subdivision and Approximate Neighbours

I Split space into smaller regions

I 2D examples easier to draw. . .
I Uniform subdivision

I Division into regular grid
I Look for neighbours in the same cell

as the point we are matching

I Quadtrees, octrees, etc.
I Recursively split in half
I Stop splitting when only a few

elements in a cell
I 2D gives a quadtree

3D gives an octree

COSC450 Feature Detection 29

Space Subdivision

I This gets difficult in high dimensions
I Consider uniform subdivision with 8 divisions along each axis

I In 2D this is 8× 8 = 64 cells
I In 3D we get 8× 8× 8 = 512 cells
I In nD we get 8n cells, and 8128 ≈ 3.9× 10115

I Even if we just have 2 divisions (such as one layer of a generalised quad-/oct-tree), we
have 2128 ≈ 3.4× 1038 cells

I So we can’t split along all axes

COSC450 Feature Detection 30

k-d Trees

I One solution is the use of k-d trees
I Choose an axis and split data along it

I Axis with the greatest spread?
I The first axis, or a random one?
I Try to split the data roughly in half

I Then take each half and split again
I The axis could be chosen as above
I Try to split each cell’s data in half

I Repeat until cells have only a few items

COSC450 Feature Detection 31

k-d Trees and Feature Matching

I Put all the features in one image into a k-d Tree
I Given a feature from the other image:

I Find which cell in the k-d Tree it lies in
I Compute the distance to all features in that cell
I The nearest one is probably the best match

I For a tree with n layers and 10,000 features this requires:
I n comparisons to find the appropriate cell
I 256 10,000

O(2n) operations in the distance computations

I If n = 10, then 10,000
O(2n) ≈ 10

I This doesn’t always find the best match – why not?

COSC450 Feature Detection 32

Matching SIFT features

I Even if we use brute-force matching most SIFT matches are wrong
I A lot of blob features don’t have much texture detail
I A lot of scenes have repeating features
I This leads to ambiguous matches
I SIFT is often the best we have 2

I With k-d Trees this gets a little worse, but not much
I Solution: Find the two best matches to check for ambiguity

I Can use other methods to reject unreliable matches3

I Only keep matches if the best distance is much lower than the second

I This makes things better, but still some wrong matches

I Need robust methods (RANSAC)

2N. Kahn, B. McCane, S. Mills Better than SIFT?, MVA 26(6), 2015
3S. Mills, Relative Orientation and Scale for Improved Feature Matching, ICIP, 2013

COSC450 Feature Detection 33

http://dl.acm.org/citation.cfm?id=2807892
http://ieeexplore.ieee.org/abstract/document/6738719/

Application – Image Mosaicing

Basic algorithm:

1. Align features between image pairs

2. Compute Homographies

3. These warp the images to line them up

Details

I Corner tracking or blob matching?

I Incorrect matches cause big problems

I Accumulating transforms over time

pk = HkHk−1 . . .H2H1p0

I Blending images together

COSC450 Feature Detection 34

	Corners and Tracking
	Blobs and Matching

