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1 Intr oduction

This tutorialdescribesnumericalmethodsthatareknown asMonteCarlomethods.
It startswith a basicdescriptionof theprinciplesof MonteCarlomethods.It then
discussesfour individualMonteCarlomethods,describingeachindividualmethod
andillustratingtheir usein calculatinganintegral. Thesefour methodshave been
implementedin my exampleprogram8.2, andthe resultsfrom theseareusedin
my discussiononeachmethod.Thisdiscussionlooksat theprinciplesbehindeach
method. It also looks at the approximationerror for eachmethodandcompares
eachdifferentmethod’s approximationaccuracy. After this, the tutorial discusses
how MonteCarlo methodscanbeusedfor many differenttypesof problem,that
areoftennot soobviously suitableto MonteCarlomethods.We thendiscussthe
reasonswhy Monte Carlo is used,attemptingto illustrate the advantagesof this
groupof methods.Finally, I discusshow MonteCarlomethodsrelateto thefield
of ComputerVision andgive examplesof ComputerVision applicationsthat use
someform of MonteCarlomethods.Notethattheappendixincludesabasicmath-
ematicsoverview, theprogramcodeandresultsthatarereferedto in section3 and
somefocusquestionsinvolving MonteCarlomethods.This tutorial doescontain
a moderatecontentof mathematicalandstatisticalconceptsandsyntax.Thebasic
mathematicsoverview is anattemptto describesomeof themorefamiliarconcepts
andsyntaxin relationto this tutorial andthusa quick initial review of this section
mayimprove theunderstandabilityandclarity of it.

2 BasicDescription

MonteCarlomethodsprovide approximatesolutionsto a varietyof mathematical
problemsby performingstatisticalsamplingexperiments.They canbelooselyde-
fined asstatisticalsimulationmethods,wherestatisticalsimulationis definedin
quite generaltermsto be any methodthat utilizes sequencesof randomnumbers
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to performthe simulation. ThusMonte Carlo methodsarea collectionof differ-
ent methodsthat all basicallyperform the sameprocess.This processinvolves
performingmany simulationsusingrandomnumbersandprobabilityto getanap-
proximationof the answerto the problem. The definingcharacteristicof Monte
Carlomethodsis its useof randomnumbersin its simulations.In fact,thesemeth-
ods derive their collective namefrom the fact that Monte Carlo, the capital of
Monaco,hasmany casinosandcasinoroulettewheelsarea good exampleof a
randomnumbergenerator.

The Monte Carlo simulation techniquehasformally existed sincethe early
1940s,whereit hadapplicationsin researchinto nuclearfusion. However, only
with the increasein computertechnologyand power hasthe techniquebecome
morewidely used. This is becausecomputersarenow able to performmillions
of simulationsmuchmoreefficiently andquickly thanbefore. This is an impor-
tantfactorbecauseit meansthatthetechniquecanprovideanapproximateanswer
quickly andto a higherlevel of accuracy, becausethe moresimulationsthat you
performthenthe moreaccuratethe approximationis (This point is illustratedin
the next sectionwhenwe compareapproximationerror for differentnumbersof
simulations).

Note that thesemethodsonly provide a approximationof the answer. Thus
theanalysisof theapproximationerroris amajorfactorto take into accountwhen
evaluatinganswersfrom thesemethods.Theattemptto minimisethis error is the
reasontherearesomany differentMonteCarlomethods.Thevariousmethodscan
have differentlevelsof accuracy for their answers,althoughoftenthis candepend
on certaincircumstancesof thequestionandsosomemethod’s level of accuracy
variesdependingon theproblem.This is illustratedwell in thenext sectionwhere
we investigatefour differentMonteCarlomethodsandcomparethereanswersand
theaccuracy of theirapproximations.

3 Monte Carlo Techniques

Oneof themostimportantusesof MonteCarlomethodsis in evaluatingdifficult
integrals. This is especiallytrue of multi-dimensionalintegrals which have few
methodsfor computationandthusaresuitedto gettingan approximationdueto
their complexity. It is in thesesituationsthatMonteCarloapproximationsbecome
a valuabletool to use,asit may be ableto give a reasonableapproximationin a
muchquicker time in comparisonto otherformal techniques.

In this section,we look at four different Monte Carlo methodsto approach
the problemof integral calculation. We investigateeachmethodby giving a ba-
sic descriptionof its individual procedureandthenattemptto give a moreformal
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mathematicaldescription.We alsodiscussthe exampleprogramthat is included
with this tutorial. It hasimplementedall four methodsthat we discuss,andalso
hasresultsfrom thesedifferentmethodsin integratinganexamplefunction.

Beforewe discussour first methodit mustbe broughtto the reader’s atten-
tion the reasonswhy we arediscussingfour differentMonteCarlomethods.The
first point in explainingthis, is to acknowledgethattherearemany considerations
whenusingMonteCarlo techniquesto performapproximations.Oneof thechief
concernsis to be ableto get asaccuratean approximationaspossible.Thus,for
eachmethodwediscusstheirassociatederrorstatistics(thevarianceis discussed).
Thereis alsotheconsiderationof what techniqueis mostsuitableto theproblem
andsowill get thebestresults.For example,a curve thathasmany plateaus(flat
sections)maybeverysuitableto astratifiedsamplingmethodbecausetheflat sec-
tions will have very low variance. Thus,we discussfour differentMonte Carlo
methods,becausethey all have their individual requirementsandbenefits.Prob-
ably the most importantconsideration,for the methodsare the accuracy of their
approximationsbecausethemoreaccuratetheapproximation,thelesssamplesare
neededto reacha specificlevel of accuracy.

3.1 Crude Monte Carlo

The first methodfor discussionis crudeMonte Carlo. We aregoing to usethis
techniqueto solve theintegral I.
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A basicdescriptionof this methodis that you take a number, N, of random
sampleswherea ¡= s (samplevalue)¡= b. For eachrandomsamples, we find the
function valuef(s) for the function f(x). We sumall of thesevalues,anddivide
by N to get themeanvaluefrom our samples.We thenmultiply this valueby the
interval (b-a)to gettheintegral. This canberepresentedas-
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Now, thenext partto describeis theaccuracy of thisapproximationtechnique,
becauseotherwisetheanswerwill not bemeaningfulwithout a descriptionof its
uncertainty. In my implementation,I did avery simple,one-dimensionalexample.
I found the varianceof my sampleby finding the meanof all of my N-groups
of samples.I thensubstitutedthe informationinto the equationto determinethe
variance.Thesamplevarianceequationis -
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Using this information you can determinethe confidenceintervals of your
methodanddeterminehow accurateyour answeris. This informationaboutour
implementationexample,is discussedfurtheron in thetutorial.

3.2 Acceptance- RejectionMonte Carlo

Thenext methodfor discussionis Acceptance- RejectionMonteCarlo.This is the
easiesttechniqueto explainandunderstand.However, it is alsothetechniquewith
theleastaccurateapproximationoutof thefour discussed.

A basicdescriptionof theAcceptance-Rejectionmethodis thatyou have your
integral asbefore. In the (a,b) interval for any given valueof x the function you
find the upperlimit. You thenenclosethis interval with a rectanglethat is high
enoughto beabove theupperlimit, sowe canbesurethat theentirefunction for
this interval is within therectangle.Wenow begin takingrandompointswithin the
rectangleandevaluatethispoint to seeif it is below thecurveor not. If therandom
point is below thecurve thenit is treatedasasuccessfulsample.Thus,you take N
randompointsandperformthis check,rememberingto keepcountof thenumber
of successfulsamplestherehave been. Now, onceyou have finishedsampling,
you canapproximatethe integral for the interval (a,b) by finding the areaof the
surroundingrectangle.You thenmultiply this areaby the numberof successful
samplesover thetotalnumberof samples,andthiswill giveyouanapproximation
of theintegral for theinterval (a,b).This is illustratedmoreclearlyin thediagram.

Mathematically, we cansaythat the ratio of the areabelow the function f(x)
andthewholeareaof therectangle(Max(f(x)) * (b-a))is approximatelytheratioof
thesuccessfulsamples(k) andthewholenumber(N) of samplestaken.Therefore
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To find the accuracy of the approximation,I have usedthe samevariance
techniqueas for the CrudeMonte Carlo method. This analysisshows that the
Acceptance-Rejectionmethodgivesalessaccurateapproximationthancrudemonte
carlo.

3.3 Stratified Sampling

The basicprinciple of this techniqueis to divide the interval (a,b)up into subin-
tervals. You thenperforma crudemontecarloapproximationon eachsubinterval.
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Figure 1: Acceptance-RejectionMonte Carlo method. We seethe surrounding
rectangle(redlines)for theinterval (a,b).Wewould now randomlysamplepoints
within this rectangleto seeif they areunderneaththefunctionline.
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This is illustratedin thisdiagram.
Thereasonyou might usethis methodis thatnow insteadof finding thevari-

ancein onebig go, you canfind thevarianceby addingup thevariancesof each
subinterval. This may soundlike you arejust doing a long-windedperformance
of theCrudeMonteCarloalgorithmbut if you have a functionthat is step-like or
that hasperiodsof flat, thenthis methodcouldbe well-suited. This is becauseif
youdid anintegrationof asub-interval thatwasvery flat thenyouaregoingto get
a very small variancevalue. Thusthis is theadvantageof thestratifiedsampling
method,you get to split thecurve into partsthatcouldhave certainadvantageous
propertieswhenevaluatingthemon their own. Mathematicallywe canrepresent
theintegrationas-
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Note that this equationis when the interval (a,b) hasbeenbroken into two
sub-intervals (a,c)and(c,b).

3.4 Importance Sampling

The last methodwe look at is importancesampling. This is the most difficult
techniqueto understandout of the four techniques.In fact,beforeany attemptto
explain thebasicprinciplesbehindthismethod,wewill discussasortof link from
thelasttechnique(stratifiedsampling)to theconceptsbehindimportancesampling.

Now in the figure we seethat the four sub-intervals are quite different. I1
seesthe valueof f(x) stayingvery constant.However, aswe progressacrossto
B, we seethe value of f(x) becominglarger than the fairly steadycurve of I1.
Now theselargervaluesof f(x) aregoingto have moreimpacton thevalueof the
integral. Soshouldwe not do moresamplesin theareawherethereis thehighest
values. By doing this, we will get a betterapproximationof a sub-interval that
contributesmoreto the integral thanthe othersub-intervals. We won’t skew the
resultseither, becauseyou still have to get thetotal integral by addingevery sub-
intervals together, all you have is a moreaccurateapproximationof an important
sub-interval of thecurve.

This leadsin to themethodof importancesampling.Thismethodgetsits name
becauseit attemptsto do moresamplesat theareasof the function thataremore
important.Theway it doesthis is by bringingin aprobabilitydistribution function
(pdf). All this is, is a function thatattemptsto saywhich areasof the function in
theinterval shouldgetmoresamples.It doesthisby having ahigherprobabilityin
thatarea.Thisdiagramcanbeusedasreferenceduringmy explanation.
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I1 I2 I3 I4

Figure2: StratifiedSamplingMonteCarlomethod.Thisdiagramseesthefunction
interval (a,b)dividedinto four equalsizedintervals- (I1, I2, I3, I4).

7



A B

f(x)

p(x)

Figure3: ImportanceSamplingMonteCarlomethod.Noticethatthisgraphshows
bothf(x) andaprobabilitydistribution function(p(x)).
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Now first of all, notethatwe candefinethe integral equationasthefollowing
becausethey areequal-
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p(x) is theprobabilitydistribution function. Notethat theintegral of p(x) over
(a,b) is alwaysequalto 1 andthat for no valueof x within the interval (a,b)will
p(x) evaluateto 0. Thequestionis whatdo we do with p(x) now thatwe have put
it into theequation.Well, we canuseit so thatwhenperformour samplesof the
curve f(x) within the interval (a,b),we canmake the choicestaking into account
theprobabilityof thatparticularsamplegettingselected.For example,according
to theexamplegraphabouthalf of theprobabilitycurve areais in the lastquarter
of theinterval (a,b).Therefore,whenwe choosesampleswe shoulddo it in a way
sothathalf of thesamplesgettakenin thisareaof theinterval.

Now, you may be wonderingwhy we shoulddo this? andhow we cando it
without jeopardisingtheaccuracy of ourapproximation?Well, thereasonwhy we
shoulddo this, is that if we have chosena goodprobabilitydistribution function,
thenit shouldhave ahigherprobabilityfor samplesto beselectedat theimportant
partsof the interval (thepartswherethevaluesarehighest).Thus,we will spend
moreeffort gettinganaccurateapproximationof the importantpartsof thecurve.
But, this will affect theaccuracy of our approximationbecausewe will hopefully
haveasetof samplesthatfocusesoncertainpartsof thecurve. However, wecoun-
teractthis by giving thevalueof f(x) / p(x) for every individual sample.This acts
asa counterbalanceto our unbalancedsamplingtechnique.Thustheendresultis
aMonteCarlomethodthateffectively samplestheimportantpartsof thecurve (as
long asit is agoodprobabilitydistribution function)andthenscalesthis sampling
to give anapproximationof theintegral of f(x). Noteagainthatthesuccessof this
methodin gettingamoreaccurateapproximationis entirelydependantonselecting
a goodp(x). It hasto beonethatmakesit morelikely thata samplewill be in an
areaof the interval(a,b)wherethe curve f(x) hasa higherthantheaveragevalue
(andis thusmoreimportantto theapproximation).

Thismethodis effective in reducingerrorwhenit doeshaveagoodpdfbecause
it samplestheimportantpartsof thecurvemore(dueto theincreasedprobabilityof
asamplebeingselectedin animportantarea).Thusit cangetagoodapproximation
of theseimportantpartswhich lowersvariancebecausetheseimportantpartsare
definedsobecausethey have a largereffecton theoverall approximationvalue.

9



3.5 Program Implementation and Discussion

Thesemethodsthatarediscussedpreviouslyareall importantmethodsthatdohave
somekey differences.The last two methodsareableto improve the accuracy of
theapproximationsgreatly, however they do needto have suitableconditions. In
thecaseof importancesampling,it needsa goodprobabilitydistribution function
to comeup with an effective approximation.In the caseof stratifiedsamplingit
cancomeup with a muchmoreaccurateapproximationif theshapeof thecurve
is suitableandcanbebrokenup into sections,with somebeingrelatively flat thus
allowing a very accurateapproximationfor that sub-interval. Thefirst two meth-
ods,which arereally the two basicMonteCarlo methods,areimportantto know
asthey bothareusedasthebasisin morecomplex techniques.

Theprogramimplementedall four algorithms,andusedthemon thefunction
illustratedin thefollowing figure.

Our resultsdid agreewith our predictions.The acceptance-rejectionmethod
wasthemostinaccurate.CrudeMonteCarlowasthenext leasteffective approx-
imationmodel. Thentheimportancesamplingmodelwasnext with theStratified
Model beingthemostefficient modelin my program.On reflection,this is a sen-
sible result,becausetheStratifiedModel splits the interval into four sub-intervals
andtwo of thesesub-intervals have a constantvalueof 1 (thusa varianceof 0).
Anothercontributing factoris in thefact thatmy probabilitydistribution function
modelsthefunctioneffectively enoughbut abetterpdf wouldhaveresultedin more
accurateresults.

Notethatafull print outof theresultsandtheprogramcodeis in theAppendix.
Here is a summarytableof the varianceresultsfrom the program. Note that in
my implementation,I alsocreateda hybrid methodwhich wasbasedon the one
that I mentionedasa leadin to thediscussionon Importancesampling.However,
the resultsfor this methodweredisappointing,althoughI think it wasa fault in
implementationbecausethemethodsoundsfeasible.I have includedin theresults
table,althoughI amsureit shouldbeableto approximatebetterthanthestandard
stratifiedsamplingmodel.

Implementation Results

Monte Carlo Method Variance

Crude Monte Carlo 0.022391
Acceptance/Rejection 0.046312
Stratified Sampling 0.011871
Hybrid Model 0.018739
Importance Sampling 0.0223
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Figure4: ProgramImplementationfunctions. f(x) is on the top. p(x) is on the
bottom.
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4 Other Applications for Monte Carlo Techniques

Theprevioussectionwent into detailabouttheuseof variousMonteCarlometh-
odsto evaluateintegrals.HoweverMonteCarlotechniquescanbeappliedto many
different forms of problems. In fact, Monte Carlo techniquesarewidely usedin
physicsandchemistryto simulatecomplex reactionsandinteractions.Thissection
is to illustratetheuseof thebasicMonteCarloalgorithmin anotherform of prob-
lem. It is a fairly simplisticexample,however it illustratesMonteCarlobeingused
from a differentperspecitive. This form of problemcanalsobeseenin the focus
questionsin theappendix.

In this example,we have to imaginea coconutshy. We wantto determinethe
probabilitythatif wetake10shotsat thecoconutshywewill haveanevennumber
of hits. Theonly factthatwe know is thatthereis a 0.2probabilityof having a hit
with asingleshot.Wecanwork out theanswerto thisquestionusingMonteCarlo
by performinga largenumberof simulationsof taking10shotsat thecoconutshy.
We canthencountall of thesimulationsthathave anevennumberof hits andput
thatnumberover thetotal numberof simulations.This givesusanapproximation
of the probabilityof gettingan even numberof hits whenwe take 10 shysat the
coconuts.

This exampleillustratesthe useof the Monte Carlo algorithmfor a different
sort of problem. You may wonderwheretheuseof randomnumbersis involved
in this process.Well, aswe know the probability of getting a hit with a single
shot,wecanusesomerandomprocessto determineif eachshotin eachsimulation
is successful.For example,we could usea randomnumberbetween0 and1 to
simulatea shotat thecoconuts.If the randomnumberis between0 and0.2 then
we cancall it a hit, otherwisewe cancountit asa loss. (Note that theprobability
still staysat 0.2 to scorea hit with a singleshot). Thusnow we cando all of the
simulationsjustby generatingrandomnumbersandusingtheseasoursingleshots
at thecoconuts.

Thus this is a simple illustration of using the principle behindMonte Carlo
methodsandapplyingit to a differentform of problemto comeout with aneffec-
tive approximationof theanswer. Note that this exampleis sosimplethatMonte
Carlotechniqueswouldnotbeasensiblechoicein thissituationbecausetheactual
answercanbe worked out with muchlesseffort thanperforminga few hundred
thousandsimulations.However MonteCarlo techniquesaremorevaluablewhen
theproblemis highly complex andwheretheeffort requiredto get theactualan-
sweris largerthantheamountof effort requiredto geta reasonableapproximation
throughsimulation.
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5 Why useMonte Carlo techniques?

Two of themainreasonswhy weusemontecarlomethodsarebecauseof theiranti-
aliasingpropertiesandtheir ability to approximatequickly an answerthat would
be very time-consumingto find out the answertoo if we wereusingmethodsto
determinetheexactanswer.

This lastpoint refersto thefactthatMonteCarlomethodsareusedto simulate
problemsthat aretoo difficult andtime-consumingto useothermethodsfor. An
exampleis in theuseof MonteCarlotechniquesin intergratingverycomplex multi-
dimensionalintegrals. This is a taskthatotherprocessescannot handlewell, but
whichMonteCarlocan.

Thefirst point refersto thefactthatsinceMonteCarlomethodsinvolve a ran-
domcomponentin thealgorithm,thenthisgoessomewaytoavoidingtheproblems
of anti-aliasing(only for certainapplications).An examplethatwasbroughtto my
attentionwasthatof finding theareaof theblacksquaresonachessboard.Now, if
I wasusinganacceptance-rejection methodto attackthis problem,I shouldcome
outwith afair approximation,dueto thefactthatI wouldbegoingto randompoints
onthechessboard.Howeverwhatwouldhappenif I wastrying to dothesamepro-
cessbut I usedanalgorithmthatmovedto a certainnext point a setdistanceaway
andthencotinuedto do this, thusnothaving any randompointselection.Well, the
potentialproblemis that this personmayhave a badstepsizeandmayoverevalu-
ateor underevaluatethenumberof successfultrials hehas,thusinevitably giving
apoorapproximation.

Theseare two solid reasonswhy peopleuseMonte Carlo techniques.Other
possiblereasonscould includeits easein simulatingcomplex physicalsystemsin
thefieldsof physics,engineeringandchemistry.

6 How doesthis relateto Computer Vision?

Now from theabove descriptions,we canseethe valueof MonteCarlo methods
aretheir ability to give reasonableapproximationsfor problemsthat canbe very
complex andtime andresourceconsumingto solve. But how canthis ability be
usedin thefield of ComputerVision?

Theareaof computervisionthatI first foundMonteCarlomethodsbeingmen-
tionedwasobjecttracking.Thearticlethat I founduseda MonteCarlotechnique
discussedanalgorithmcalledCONDENSATION - ConditionalDensityPropaga-
tion for VisualTracking.

This techniquewasinventedto handletheproblemof trackingcurvesin dense
visualclutter. Thusit tracksoutlinesandfeaturesof foregroundobjects,modeled
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ascurves,asthey move in substantialclutter, andin factdoesthisata fairly quick,
efficient rate.

Basically, the algorithmhasa cycle in which it is trying to predict the state
that the object is in. It modelsthe statean object is in and then as the picture
movesaheada frame,it trys to guesswhat likely statestheobjectis now in. The
big advantagewith this techniqueis thatit keepsmultiple hypothesisof theobject
stateopen,thusallowing for a bit moreflexibility with fixing incorrectguessesas
to theobjectstate.

Now, the computerholdstheseguessesasto what the stateis going to be as
probability distribution functions. In this casethe areasof the curve with higher
probabilityarethestatesthecomputerthinksaregoingto benext. Thelaststepis
whereMonteCarloMethodscomeinto theprocedure.This is wherethecomputer
randomlysamplesfrom thisprobabilitydistribution function(which is guessingat
thestateof theobject).It thenchecksthesesampleswith imagedatato seeif they
supportany of thestatesof theobjectat all. Themoreaccuratethesample,then
themoresuccessfullyweightedthesampleresponseis.

Thusonceyou arefinishedtaking thesamplesyou now have the new proba-
bility distribution for thenew frameof movementwhich will reflecttheprobable
parameterstatethattheobjectis in.

AnotherarticlethatI foundusedMonteCarlomethodsinvolvedObjectRecog-
nition. It usedMonteCarlomethodsto solveacomplex integral thatrelatedbackto
do with theprobabilitythatsomethingwasbeingfalselyrecognisedastheobject.

So,therearetwo examplesof ComputerVision’susefor MonteCarlomethods.
I am surethat they have many applicationsin other areasof ComputerVision.
Especially, with theirability to giveaccurateapproximationsto complex integrals,
asintegral calculusis usedin many differentareasof ComputerScience.

7 Conclusion

MonteCarlomethodsarea very broadareaof mathematics.They allow usto get
reasonableapproximationsof very difficult problemsthroughsimulationandthe
useof randomnumbers. I discussedfour of thesemethodsthat canbe usedin
theevaluationof integrals. I thendiscussedmy implementationsof thesemethods
anddiscussedmy programresults.Finally, I gave two examplesof Monte Carlo
methodsbeingusedwithin thefield of ComputerScience.
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8 Appendix

8.1 Appendix A - BasicMathematicsOverview

8.1.1 SigmaNotation
�	.
/ ��� (7)

TheGreekletter, sigma,is veryoftenusedin mathematicsto representthesum
of aseries.It is ashorthandnotation.An exampleis -

�	.
/ ���

0  (8)

This is shorthandfor theseriesstartingwith thefirst termandendingwith thetenth
termof 3n. Thusit equals= 3(1)+ 3(2)+ 3(3)+ 3(4)+ 3(5)+ 3(6)+ 3(7)+ 3(8)+
3(9)+ 3(10)= 165

The symbol3n is calledthe summand,thenumbers1 and9 arethe limits of
thesummation,andthesymboln is theindex.

8.1.2 Varianceand Standard Deviation

Thevarianceis ameasureof how spreadoutadistribution is. It is computedasthe
averagesquareddeviation of eachnumberfrom its mean.

For example,for thenumbers1, 2, and3 themeanis 2 andthevarianceis:

� � ��12
 � +3�14�312
 � +�� 0 �512
 �0 �7628:9292;
(9)

Theformulafor thevariancein apopulationwherem is themeanandN is the
numberof scoresis -
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Whenthevarianceis computedin asampleyoumultiply by 1/(N-1) instead.

8.2 Appendix B - Program Codeand Results

I haveincludedmy codeandoutputfrom my program.It is attachedto thistutorial.
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8.3 Appendix C - FocusQuestion

8.3.1 Background

A studentexits his COSC453 lecturein a bewilderedstate. He is at position4
on themap. He hasfour possiblechoicesof directionin which to go but he is so
bewilderedthatheis equallylikely to chooseeachdirection(thusa probabilityof
0.25of headingin any particulardirection).Now ateachpositionontheoutsideof
themap,thestudentwill find anactivity to dofor theafternoonthuswhenastudent
reachesoneof theseboundarypositionshestops.Thefour pointsin themiddleof
themap( 4,5,8,9) thebewilderedstudentis still looking for somethingto do for
theafternoonandonceis equallylikely to headin any oneof the four directions
available(evenbackto thepointhejust camefrom).

8.3.2 Question

UsingtheMonteCarlomethod,describehow youwouldfind outanapproximation
of theprobabilitythatastudentleaving hisCOSC453lecturewill find it to oneof
thetwo pubson themap.

8.3.3 Key

1 = Backto theflat
2 = Backto thegraphicslab to do somestudy
3 = Backto theAI lab to do somestudy
4 = Startingposition- A junctionwith four possiblenext moves
5 = A junctionwith four possiblenext moves
6 = Poppa’s Pizzato getsomelunch
7 = Goesto thedentalschoolfor anappointment
8 = A junctionwith four possiblenext moves
9 = A junctionwith four possiblenext moves
10 = TheGardenSportsTavern(A pub)
11 = TheCaptainCook(Also apub)
12 = TheUnion to participatein astudentprotest

8.4 Appendix D - Project Sources

I have useda variety of sourcesto help develop my knowledgeon Monte Carlo
methods.They could prove to be helpful for anybody looking to do someextra
readingon the topic. Here is a list of materialthat I have usedbut not directly
referenced.
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Figure 5: Map of the statesfor the question. Note that eachoutsidestateis a
destinationandis notableto beleft.

17



Internet
-http://wwitch.unl.edu/zeng/joy/mclab/mcintro.html
-http://stud4.tuwien.ac.at/
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Books
- Introductionto theMonte-CarloMethod,Author = IstvanManno,Publisher

= AKADEMIAI KIADO, Budapest,Year= 1999
- TheMonteCarlo Method,Editor = Yu. A. Shreider, Publisher= Pergamon

Press,Year= 1966
-The Monte Carlo Methodof EvaluatingIntegrals,Author = DanielT. Gille-
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