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1 Intr oduction

Thistutorialdescribesiumericaimethodghatareknonvn asMonte Carlomethods.
It startswith a basicdescriptionof the principlesof Monte Carlomethods It then
discussefour individual Monte Carlomethodsdescribingeachindividual method
andillustrating their usein calculatinganintegral. Thesefour methodshave been
implementedn my exampleprogram8.2, andthe resultsfrom theseare usedin
my discussioron eachmethod.Thisdiscussioriooksattheprinciplesbehindeach
method. It alsolooks at the approximationerror for eachmethodand compares
eachdifferentmethods approximatioraccurag. After this, the tutorial discusses
hov Monte Carlo methodscanbe usedfor mary differenttypesof problem,that
areoften not so obviously suitableto Monte Carlo methods.We thendiscusshe
reasonsvhy Monte Carlo is used,attemptingto illustrate the advantagef this
groupof methods.Finally, | discusshow Monte Carlo methodselateto thefield
of ComputerVision and give examplesof ComputerVision applicationsthat use
someform of Monte CarlomethodsNotethattheappendixncludesabasicmath-
ematicsoverview, the programcodeandresultsthatarereferedto in section3 and
somefocusquestiongnvolving Monte Carlo methods.This tutorial doescontain
amoderatecontentof mathematicaindstatisticalconceptsandsyntax. The basic
mathematicgverview is anattempto describesomeof themorefamiliar concepts
andsyntaxin relationto this tutorial andthusa quick initial review of this section
mayimprove theunderstandabilitgndclarity of it.

2 BasicDescription

Monte Carlo methodsprovide approximatesolutionsto a variety of mathematical
problemsby performingstatisticalsamplingexperiments.They canbelooselyde-
fined as statisticalsimulationmethods wherestatisticalsimulationis definedin
quite generaltermsto be any methodthat utilizes sequencesf randomnumbers



to performthe simulation. ThusMonte Carlo methodsare a collection of differ-
ent methodsthat all basically perform the sameprocess. This processinvolves
performingmary simulationsusingrandomnumbersandprobabilityto getanap-
proximationof the answerto the problem. The defining characteristiof Monte
Carlomethodss its useof randomnumberdn its simulations.In fact,thesemeth-
ods derwe their collective namefrom the fact that Monte Carlo, the capital of
Monaco,hasmary casinosand casinoroulettewheelsare a good exampleof a
randomnumbergeneratar

The Monte Carlo simulationtechniquehasformally existed sincethe early
1940s,whereit had applicationsin researchinto nuclearfusion. However, only
with the increasein computertechnologyand power hasthe techniquebecome
morewidely used. This is becausecomputersare now ableto performmillions
of simulationsmuchmore efficiently and quickly thanbefore. This is animpor-
tantfactorbecausét meanghatthetechniquecanprovide anapproximateanswer
quickly andto a higherlevel of accuray, becausehe more simulationsthatyou
performthenthe more accuratethe approximationis (This point is illustratedin
the next sectionwhenwe compareapproximationerror for differentnumbersof
simulations).

Note that thesemethodsonly provide a approximationof the answer Thus
the analysisof theapproximatiorerroris amajorfactorto take into accountwhen
evaluatinganswerdrom thesemethods.The attemptto minimisethis erroris the
reasortherearesomary differentMonte Carlomethods.Thevariousmethodsan
have differentlevels of accurag for their answersalthoughoftenthis candepend
on certaincircumstancesf the questionand so somemethods level of accurag
variesdependingnthe problem.Thisis illustratedwell in the next sectionwhere
we investigatdfour differentMonte Carlomethodsandcomparehereanswersand
theaccurayg of their approximations.

3 Monte Carlo Techniques

Oneof the mostimportantusesof Monte Carlo methodss in evaluatingdifficult
integrals. This is especiallytrue of multi-dimensionalintegrals which have few
methodsfor computationandthus are suitedto gettingan approximationdue to
theircompleity. It is in thesesituationghatMonte Carloapproximationdecome
a valuabletool to use,asit may be ableto give a reasonabl@approximationin a
muchquicker time in comparisorto otherformal techniques.

In this section,we look at four different Monte Carlo methodsto approach
the problemof integral calculation. We investigateeachmethodby giving a ba-
sic descriptionof its individual procedureandthenattemptto give a moreformal



mathematicatlescription. We alsodiscussthe exampleprogramthatis included
with this tutorial. It hasimplementedall four methodsthat we discuss,andalso
hasresultsfrom thesedifferentmethoddn integratingan examplefunction.

Before we discussour first methodit mustbe broughtto the readers atten-
tion the reasonsvhy we arediscussingour differentMonte Carlo methods.The
first pointin explainingthis, is to acknavledgethattherearemary considerations
whenusingMonte Carlotechniquego performapproximationsOneof the chief
concerngs to be ableto getasaccuratean approximationaspossible. Thus, for
eachmethodwe discusgheir associate@rrorstatisticSthevarianceis discussed).
Thereis alsothe consideratiorof whattechniqueis mostsuitableto the problem
andsowill getthe bestresults. For example,a curve thathasmary plateaugflat
sectionsmay bevery suitableto a stratifiedsamplingmethodbecauseheflat sec-
tions will have very low variance. Thus, we discussfour different Monte Carlo
methods becausehey all have their individual requirement@and benefits. Prob-
ably the mostimportantconsiderationfor the methodsarethe accurag of their
approximationdecause¢he moreaccuratehe approximationthelesssamplesare
neededo reacha specificlevel of accurag.

3.1 Crude Monte Carlo

The first methodfor discussionis crudeMonte Carlo. We are going to usethis
techniqueo solve theintegral I.

b
I= /a f(x)dx (1)

A basicdescriptionof this methodis that you take a numbey N, of random
sampleswvherea j= s (samplevalue)j= b. For eachrandomsamples, we find the
function valuef(s) for the functionf(x). We sumall of thesevalues,anddivide
by N to getthe meanvaluefrom our samples We thenmultiply this valueby the
intenal (b-a)to gettheintegral. This canberepresenteds-
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Now, the next partto describds theaccurag of this approximatiortechnique,
becausetherwisethe answerwill not be meaningfulwithout a descriptionof its
uncertainty In my implementation| did avery simple,one-dimensionagéxample.
I found the varianceof my sampleby finding the meanof all of my N-groups
of samples.| thensubstitutedhe informationinto the equationto determinethe
variance.The samplevarianceequations -
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Using this information you can determinethe confidenceintervals of your
methodanddeterminehow accurateyour answeris. This informationaboutour
implementatiorexample,is discussedurtheronin thetutorial.

3.2 Acceptance- Rejection Monte Carlo

Thenext methodfor discussions Acceptance RejectionMonte Carlo. Thisis the
easiestechniqueo explain andunderstandHowever, it is alsothe techniquewith
theleastaccurateapproximatiorout of thefour discussed.

A basicdescriptionof the Acceptance-Rejectiomethodis thatyou have your
integral asbefore. In the (a,b) interval for ary givenvalueof x the functionyou
find the upperlimit. You thenenclosethis intenal with a rectanglethatis high
enoughto be abore the upperlimit, sowe canbe surethatthe entirefunctionfor
thisinterval is within therectangle We now begin takingrandompointswithin the
rectangleandevaluatethis pointto seeif it is below thecune or not. If therandom
pointis below the curve thenit is treatedasa successfusample. Thus,you take N
randompointsandperformthis check,rememberingo keepcountof the number
of successfusamplesthere have been. Now, onceyou have finishedsampling,
you canapproximatethe integral for the intenal (a,b) by finding the areaof the
surroundingrectangle. You then multiply this areaby the numberof successful
samplesver thetotal numberof samplesandthiswill give youanapproximation
of theintegral for theinterval (a,b). Thisis illustratedmoreclearlyin thediagram.

Mathematically we cansaythatthe ratio of the areabelov the function f(x)
andthewholeareaof therectanglgMax(f(x)) * (b-a))is approximatelytheratio of
the successfusamplegk) andthewholenumber(N) of sampledaken. Therefore

b k
/a f(@)dz = M(b~ a) )

To find the accurag of the approximation,l have usedthe samevariance
techniqueas for the Crude Monte Carlo method. This analysisshavs that the
Acceptance-Rejectiomethodgivesalessaccurat@pproximatiorthancrudemonte
carlo.

3.3 Stratified Sampling

The basicprinciple of this techniquess to divide the intenal (a,b) up into subin-
tenals. You thenperforma crudemontecarlo approximatioron eachsubinteral.
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Figure 1: Acceptance-RejectioMonte Carlo method. We seethe surrounding
rectanglgredlines)for theintenal (a,b). We would now randomlysamplepoints
within thisrectangleto seeif they areunderneathhefunctionline.



Thisis illustratedin this diagram.

The reasonyou might usethis methodis that now insteadof finding the vari-
ancein onebig go, you canfind the varianceby addingup the variancesof each
subinteral. This may soundlike you arejust doing a long-windedperformance
of the CrudeMonte Carloalgorithmbut if you have a functionthatis step-like or
that hasperiodsof flat, thenthis methodcould be well-suited. This is becausef
you did anintegrationof a sub-interal thatwasvery flat thenyou aregoingto get
a very smallvariancevalue. Thusthis is the advantageof the stratifiedsampling
method,you getto split the curve into partsthat could have certainadwantageous
propertiesvhen evaluatingthemon their own. Mathematicallywe canrepresent
theintegrationas-

[ 1@y = [ @z [ @ (5)

Note that this equationis when the intenal (a,b) hasbeenbroken into two
sub-interals (a,c)and(c,b).

3.4 Importance Sampling

The last methodwe look at is importancesampling. This is the most difficult
techniqueto understanaut of the four techniques.n fact, beforeary attemptto
explain the basicprinciplesbehindthis method we will discussa sortof link from
thelasttechniqudstratifiedsampling)o theconceptdehindimportancesampling.

Now in the figure we seethat the four sub-interals are quite different. 11
seesthe value of f(x) stayingvery constant. However, aswe progressacrossto
B, we seethe value of f(x) becominglarger thanthe fairly steadycurwe of I1.
Now theselargervaluesof f(x) aregoingto have moreimpacton the valueof the
integral. Soshouldwe not do moresamplesn the areawherethereis the highest
values. By doing this, we will geta betterapproximationof a sub-interal that
contributesmoreto the integral thanthe othersub-interals. We won'’t skew the
resultseither becauseyou still have to getthetotal integral by addingevery sub-
intenals together all you have is a more accurateapproximatioof animportant
sub-interal of thecune.

Thisleadsin to themethodof importancesampling.This methodgetsits name
becauseét attemptso do more samplesat the areasof the functionthataremore
important.Theway it doesthisis by bringingin aprobabilitydistribution function
(pdf). All thisis, is afunctionthatattemptgo saywhich areasof the functionin
theinterval shouldgetmoresampleslt doesthis by having a higherprobabilityin
thatarea.This diagramcanbeusedasreferenceduringmy explanation.
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Figure2: StratifiedSamplingMonte Carlomethod.This diagramseeghefunction
intenal (a,b)dividedinto four equalsizedintenvals- (11, 12, 13, 14).
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Figure3: ImportanceSamplingMonte Carlomethod.Noticethatthis graphshawvs
bothf(x) anda probabilitydistribution function (p(x)).



Now first of all, notethatwe candefinethe integral equationasthe following
becausehey areequal-

b P @)
/a f(x)dz = / P (6)

p(x) is the probability distribution function. Note thattheintegral of p(x) over
(a,b)is alwaysequalto 1 andthatfor no value of x within the intenal (a,b) will
p(x) evaluateto 0. The questionis whatdo we do with p(x) now thatwe have put
it into the equation.Well, we canuseit sothatwhenperformour samplesf the
curve f(x) within theintenal (a,b), we canmalke the choicestaking into account
the probability of that particularsamplegettingselected.For example,according
to the examplegraphabouthalf of the probability curve areais in the lastquarter
of theintenval (a,b). Therefore whenwe choosesamplesve shoulddoit in away
sothathalf of the samplegettakenin this areaof theintenal.

Now, you may be wonderingwhy we shoulddo this? andhow we cando it
without jeopardisingheaccurayg of our approximation?Vell, thereasorwhy we
shoulddo this, is thatif we have chosena good probability distribution function,
thenit shouldhave a higherprobabilityfor samplego beselectedat theimportant
partsof theintenal (the partswherethe valuesarehighest). Thus,we will spend
moreeffort gettingan accurateapproximationof theimportantpartsof the curve.
But, thiswill affecttheaccurag of our approximatiorbecausave will hopefully
have a setof sampleghatfocusesn certainpartsof the curve. However, we coun-
teractthis by giving the valueof f(x) / p(x) for every individual sample.This acts
asa counterbalanceé our unbalancedamplingtechnique.Thusthe endresultis
aMonte Carlomethodthateffectively samplegheimportantpartsof thecune (as
long asit is agoodprobability distribution function) andthenscaleghis sampling
to give anapproximatiorof theintegral of f(x). Note againthatthe succes®f this
methodin gettingamoreaccuratepproximatioris entirelydependanbnselecting
agoodp(x). It hasto be onethatmakesit morelikely thata samplewill bein an
areaof theinterval(a,b)wherethe cure f(x) hasa higherthanthe averagevalue
(andis thusmoreimportantto the approximation).

Thismethods effective in reducingerrorwhenit doeshave agoodpdf because
it samplesheimportantpartsof thecurve more(dueto theincreasegbrobability of
asamplebeingselectedn animportantarea).Thusit cangetagoodapproximation
of theseimportantpartswhich lowersvariancebecause¢heseimportantpartsare
definedsobecause¢hey have alarger effect on the overall approximatiorvalue.



3.5 Program Implementation and Discussion

Thesemethodghatarediscussegbreviously areall importantmethodgshatdo have
somekey differences.The lasttwo methodsare ableto improve the accurag of
the approximationgyreatly however they do needto have suitableconditions. In
the caseof importancesampling,it needsa good probability distribution function
to comeup with an effective approximation.In the caseof stratifiedsamplingit
cancomeup with a muchmoreaccurateapproximationif the shapeof the curve
is suitableandcanbe brokenup into sectionswith somebeingrelatively flat thus
allowing a very accurateapproximationfor thatsub-interal. Thefirst two meth-
ods,which arereally the two basicMonte Carlo methodsareimportantto knov
asthey bothareusedasthebasisin morecomple techniques.

The programimplementedall four algorithms,andusedthemon the function
illustratedin thefollowing figure.

Our resultsdid agreewith our predictions. The acceptance-rejectiomethod
wasthe mostinaccurate.CrudeMonte Carlo wasthe next leasteffective approx-
imation model. Thentheimportancesamplingmodelwasnext with the Stratified
Model beingthe mostefficient modelin my program.On reflection,this is a sen-
sibleresult,becausehe StratifiedModel splitstheintenal into four sub-interals
andtwo of thesesub-interals have a constantvalue of 1 (thusa varianceof 0).
Anothercontrituting factoris in the factthatmy probability distribution function
modelsthefunctioneffectively enoughbut a betterpdf would have resultedn more
accurateesults.

Notethatafull print outof theresultsandtheprogramcodeis in the Appendix.
Hereis a summarytable of the varianceresultsfrom the program. Note thatin
my implementation] alsocreateda hybrid methodwhich wasbasedon the one
thatl mentionedasaleadin to the discussioron Importancesampling.However,
the resultsfor this methodwere disappointing,althoughl think it wasa faultin
implementatiorbecaus¢he methodsounddeasible.l have includedin theresults
table,althoughl am sureit shouldbe ableto approximatebetterthanthe standard
stratifiedsamplingmodel.

Implementation Results

Monte Carlo Method Variance
Crude Monte Carlo 0.022391
Acceptance/Rejection 0.046312
Stratified Sampling 0.011871
Hybrid Model 0.018739
Importance Sampling 0.0223
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Figure 4: Programimplementationfunctions. f(x) is on the top. p(x) is on the
bottom.
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4 Other Applications for Monte Carlo Techniques

The previous sectionwentinto detail aboutthe useof variousMonte Carlo meth-
odsto evaluateintegrals. However Monte Carlotechniqueganbeappliedto mary
differentforms of problems. In fact, Monte Carlo techniquesare widely usedin
physicsandchemistryto simulatecomple reactionsandinteractions.This section
is to illustratethe useof the basicMonte Carloalgorithmin anotherform of prob-
lem. It is afairly simplisticexample howeverit illustratesMonte Carlobeingused
from a differentperspecitre. This form of problemcanalsobe seenin thefocus
questionsn theappendix.

In this example,we have to imaginea coconutshy We wantto determinethe
probabilitythatif we take 10 shotsatthe coconutshywe will have anevennumber
of hits. Theonly factthatwe know is thatthereis a 0.2 probability of having a hit
with a singleshot. We canwork outthe answelto this questionusingMonte Carlo
by performinga large numberof simulationsof taking 10 shotsatthe coconutshy,
We canthencountall of the simulationsthathave an even numberof hits andput
thatnumberover the total numberof simulations.This givesusanapproximation
of the probability of gettingan even numberof hits whenwe take 10 shysat the
coconuts.

This exampleillustratesthe useof the Monte Carlo algorithmfor a different
sortof problem. You may wonderwherethe useof randomnumberss involved
in this process. Well, aswe know the probability of gettinga hit with a single
shot,we canusesomerandomprocesgo determingf eachshotin eachsimulation
is successful.For example,we could usea randomnumberbetween0 and 1 to
simulatea shotat the coconuts.If the randomnumberis between0 and0.2 then
we cancall it a hit, otherwisewe cancountit asaloss. (Note thatthe probability
still staysat 0.2 to scorea hit with a singleshot). Thusnow we cando all of the
simulationgustby generatingandomnumbersandusingtheseasour singleshots
atthecoconuts.

Thusthis is a simple illustration of using the principle behindMonte Carlo
methodsandapplyingit to a differentform of problemto comeout with an effec-
tive approximatiornof the answer Note thatthis exampleis so simplethat Monte
Carlotechniquesvould notbeasensiblechoicein this situationbecaus¢heactual
answercan be worked out with muchlesseffort thanperforminga few hundred
thousandsimulations. However Monte Carlo techniquesare morevaluablewhen
the problemis highly complex andwherethe effort requiredto getthe actualan-
sweris largerthantheamountof effort requiredto getareasonabl@pproximation
throughsimulation.
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5 Why useMonte Carlo techniques?

Two of themainreasonsvhy we usemontecarlomethodsarebecaus®f theiranti-
aliasingpropertiesandtheir ability to approximatequickly an answerthatwould
be very time-consumingo find out the answertoo if we were using methodsto
determingheexactanswer

Thislastpointrefersto thefactthatMonte Carlomethodsareusedto simulate
problemsthat aretoo difficult andtime-consumingo useothermethodsfor. An
exampleis in theuseof MonteCarlotechniquesn intergratingvery complex multi-
dimensionaintegrals. This is a taskthat otherprocessesannot handlewell, but
which Monte Carlocan.

Thefirst pointrefersto the factthatsinceMonte Carlo methodsnvolve aran-
domcomponenin thealgorithm,thenthisgoessomewayto avoiding theproblems
of anti-aliasing(only for certainapplications) An examplethatwasbroughtto my
attentionwasthatof finding theareaof theblacksquare®n achesdoard.Now, if
| wasusingan acceptance-rejectianethodto attackthis problem,I shouldcome
outwith afair approximationdueto thefactthatl wouldbegoingto randompoints
onthechessboarddowever whatwould happerif | wastrying to dothesamepro-
cesshut | usedanalgorithmthatmovedto a certainnext point a setdistanceaway
andthencotinuedto dothis, thusnot having any randompoint selection.Well, the
potentialproblemis thatthis personmay have a badstepsizeandmay overevalu-
ateor undergaluatethe numberof successfutrials he has,thusinevitably giving
apoorapproximation.

Theseare two solid reasonsvhy peopleuse Monte Carlo techniques.Other
possiblereasongouldincludeits easen simulatingcomple physicalsystemsn
thefieldsof physics,engineeringandchemistry

6 How doesthis relateto Computer Vision?

Now from the abore descriptionswe canseethe value of Monte Carlo methods
aretheir ability to give reasonabl@approximationgor problemsthat canbe very
complex andtime andresourceconsumingto solve. But how canthis ability be
usedin thefield of Computeision?

Theareaof computewisionthatl firstfoundMonte Carlomethodseingmen-
tionedwasobjecttracking. Thearticlethat! found useda Monte Carlotechnique
discussedn algorithmcalled CONDENSATION - ConditionalDensity Propaga-
tion for Visual Tracking.

This techniquewvasinventedto handlethe problemof trackingcurvesin dense
visual clutter Thusit tracksoutlinesandfeaturesof foregroundobjects,modeled
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ascurves,asthey move in substantiatlutter andin factdoesthis atafairly quick,
efficientrate.

Basically the algorithmhasa cycle in which it is trying to predictthe state
that the objectis in. It modelsthe statean objectis in and then as the picture
movesaheada frame, it trys to guesswhatlikely stateshe objectis now in. The
big advantagewith this techniquds thatit keepsmultiple hypothesif the object
stateopen,thusallowing for a bit moreflexibility with fixing incorrectguessess
to the objectstate.

Now, the computerholdstheseguessesisto whatthe stateis goingto be as
probability distribution functions. In this casethe areasof the curve with higher
probability arethe stateghe computerthinks aregoingto be next. Thelaststepis
whereMonte Carlo Methodscomeinto the procedure Thisis wherethe computer
randomlysampledrom this probability distribution function (which is guessingat
the stateof the object). It thencheckshesesampleswith imagedatato seeif they
supportary of the statesof the objectat all. The moreaccuratehe sample then
themoresuccessfullyweightedthe sampleresponses.

Thusonceyou arefinishedtaking the samplesyou now have the new proba-
bility distribution for the new frame of movementwhich will reflectthe probable
parametestatethatthe objectis in.

Anotherarticlethatl foundusedMonte Carlomethodsnvolved ObjectRecog-
nition. It usedMonte Carlomethodgo solve acomplec integralthatrelatedbackto
dowith the probability thatsomethingvasbeingfalselyrecognisedsthe object.

So,therearetwo examplesof Computeision’s usefor MonteCarlomethods.
I am surethat they have mary applicationsin other areasof ComputerVision.
Especiallywith their ability to give accurateapproximationso comple integrals,
asintegral calculusis usedin mary differentareasof ComputerScience.

7 Conclusion

Monte Carlo methodsarea very broadareaof mathematicsThey allow usto get
reasonable@pproximationsof very difficult problemsthroughsimulationandthe
useof randomnumbers. | discussedour of thesemethodsthat can be usedin
the evaluationof integrals. | thendiscusseany implementation®f thesemethods
anddiscussedny programresults. Finally, | gave two examplesof Monte Carlo
methodseingusedwithin thefield of ComputerScience.
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8 Appendix

8.1 Appendix A - BasicMathematics Overview

8.1.1 SigmaNotation

10
> (7
n=1

TheGreekletter, sigma,is very oftenusedin mathematic$o representhesum
of aseries It is ashorthanchotation.An exampleis -

10
Z 3n (8)
n=1

Thisis shorthandor theseriesstartingwith thefirst termandendingwith thetenth

termof 3n. Thusit equals= 3(1) + 3(2) + 3(3) + 3(4) + 3(5) + 3(6) + 3(7) + 3(8) +

3(9)+ 3(10)= 165

The symbol 3nis calledthe summandthe numbersl and9 arethe limits of
thesummationandthesymboln is theindex.

8.1.2 Variance and Standard Deviation

Thevariances ameasuref how spreadbutadistributionis. It is computedasthe
averagesquaredieviation of eachnumberfrom its mean.
For example,for thenumbersl, 2, and3 themeanis 2 andthevarianceis:

(1-2)2+(2-2)2+(3-2)?
3
Theformulafor the variancein a populationwherem is themeanandN is the
numberof scoress -

— 0.667 9)

N
s = Z(Xi — ) (10)

Whenthevarianceis computedn a sampleyou multiply by 1/(N-1) instead.

8.2 Appendix B - Program Code and Results

I have includedmy codeandoutputfrom my program.lt is attachedo thistutorial.
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8.3 Appendix C - FocusQuestion
8.3.1 Background

A studentexits his COSC453 lecturein a bewildered state. He is at position4

on themap. He hasfour possiblechoicesof directionin which to go but heis so

bewilderedthatheis equallylikely to chooseeachdirection(thusa probability of

0.250f headingn ary particulardirection). Now ateachpositionon the outsideof

themap,thestudentwill find anactiity to dofor theafternoorthuswhenastudent
reache®neof theseboundarypositionshe stops.Thefour pointsin the middle of

themap( 4,5,8,9) the bewilderedstudents still looking for somethingto do for

the afternoonandonceis equallylikely to headin ary oneof the four directions
available(evenbackto the point hejust camefrom).

8.3.2 Question

UsingtheMonte Carlomethod describehow youwouldfind outanapproximation
of the probabilitythata studenteaving his COSC453lecturewill find it to oneof
thetwo pubsonthemap.

8.3.3 Key

1 = Backto theflat
2 = Backto thegraphicdabto do somestudy
3 = Backto the Al labto do somestudy
4 = Startingposition- A junctionwith four possiblenext moves
5 = A junctionwith four possiblenext moves
6 = Poppas Pizzato getsomelunch
7 = Goesto thedentalschoolfor anappointment
8 = A junctionwith four possiblenext moves
9 = A junctionwith four possiblenext moves
10=The GardenSportsTavern(A pub)
11 =TheCaptainCook (Also apub)
12 =TheUnionto participatein astudenfprotest

8.4 Appendix D - Project Sources

| have useda variety of sourcego help develop my knowledgeon Monte Carlo
methods. They could prove to be helpful for anybody looking to do someextra
readingon the topic. Hereis a list of materialthat | have usedbut not directly
referenced.
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Figure5: Map of the statesfor the question. Note that eachoutsidestateis a
destinatiorandis not ableto beleft.
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Internet
-http://wwitch.unl.edu/zegjoy/mclabimcintro.html

-http://stud4.tuwien.aat/
-http://csepl.phgrn.gov/CSEP/MC/MC.html

Books
- Introductionto the Monte-CarloMethod, Author = Istvan Manno, Publisher

= AKADEMIAI KIADO, Budapestyear= 1999
- The Monte Carlo Method, Editor = Yu. A. Shreider Publisher= Pegamon

Press)Year= 1966
-The Monte Carlo Method of Evaluatingintegrals, Author = Daniel T. Gille-

spie,Publisher= Naval Weapon<entey Year= 1975
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