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Local vs Global

• Local Illumination considers light that goes direct-
ly from the light sources to an object and reflected
toward the eye? What terms does this include?

? Shading of a surface is independent from shading
of all other surfaces.

• Global Illumination considers light reflected from
other surfaces.

• Which category is ray tracing in?

• What are the pros and cons of each?
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The illumination model

For an object where does light come from?
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The illumination model

For an object where does light come from?

• From some light source.

• Through the object.

• Reflected from another object.

• Incident illumination (ambient light).
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Incident illumination

Where does this come from?
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Incident illumination

Where does this come from?

• How about light transmitted (refracted) through ano-
ther object.

• How about light bouncing off of a non-reflective sur-
face.

For now we won’t worry about this incident
illumination, it is the subject of other methods
(radiosity, global illumination). We’ll just call it ambient
light.
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Diffuse Reflection

• An ideal diffuse reflector (a Lambertian Reflector,
e.g. chalk) is the simplest to model.

• Incoming light is scattered equally in all directions, so
brightness does not depend on the viewing direction.

• Reflected brightness depends on the direction and
brightness of illumination (cos of light/normal angle)
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Diffuse Reflection

L n
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Diffuse Reflection

L n
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Diffuse Reflection
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Diffuse Reflection

n
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Diffuse Reflection
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Lambertian Illumination

• Use Lambert’s law, which says the Intensity of the
reflected energy (light) depends upon the angle bet-
ween the incoming light and the surface normal.

• The intensity is view independent!

I = IikdN.L

where
Ii is the intensity of the incindent light, and
kd is the diffuse constant of the surface (0-1).
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Illumination Equation

• We have ambient light.

• We have Lambertian reflection.

I = Iaka + IikdN.L

where
Ii – intensity of the incident light,
kd – diffuse constant of the surface (0-1),
Ia – ambient intensity for the object, and
ka – ambient constant of the surface (0-1).
note : These can all be wavelength dependent.
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Specular Reflection
• Shiny surfaces reflect light coherently - the light is re-

flected in a narrow beam around a single direction,
called the specular direction. The specular direction
is the angle of incident light reflected about the sur-
face normal.

• If your eye is in that cone, the surface looks brighter
(a highlight).

• Specular reflection isn’t perfect so the highlight is a
blob with brightness reducing gradually away from
the center.
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A Perfect Reflector

n

i i

• The angle between the normal and incoming ray is
maintained for the outgoing ray.
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Specular Reflection

L n
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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23

Diffuse Vs Specular
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Diffuse Vs Specular



26

Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Diffuse Vs Specular
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Specular Reflection

• The width of the reflective cone depends upon the
smoothness of the surface.

• We can model this behavior using the Phong Illumi-
nation model.

I = kp cosn θ

where θ is the angle between the viewing direction and
the natural angle of light reflection.
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Phong Illumination: Specular

NL R

V

I = kp cosn θ

n denotes the shininess – ↑ n ↓ highlight (cone) size
kp is the Phong (specular) coeffecient (should be
dependent on φ).



36

Diffuse + Specular Reflection

L nL n

I = Iikd cos φ + ks cosn θ
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Phong Illumination

NL R

V

I = Iikd cos φ + ks cosn θ

I = Ii(kd(L.N) + ks(R.V )n)
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Phong Illumination Model

NL R

V

I = Iaka +
∑

j

Ij(kd(L.N) + ks(R.V )n)

Only lights that aren’t in shadow are in summation.
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Phong Illumination Model

• Does glass reflect the same for all viewing angles?
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Phong Illumination Model

• Does glass reflect the same for all viewing angles?

• So why does Phong Illumination look like plastic?
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Phong Illumination Model

• Does glass reflect the same for all viewing angles?

• So why does Phong Illumination look like plastic?

• Because its assumptions (ks constant for all viewing
angles, ks dependent on incoming light and not the
material.)
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Blinn Illumination Model

L
H

E

N

H =
L + E

|L + E|
=

L + E

2
H is the normal to a perfect specular reflector oriented
such that the incident light is reflected to the eye.
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Blinn Illumination Model
L

H

E

N

Comes from Torrance and Sparrow (1967) and
matches experimental data.

Think of the surface as having a lot of micro facets in
all directions. Those that have a normal pointing
towards H, will reflect the light towards E.
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Blinn Illumination Model

Specular =
DGF

N.E

D - distribution function of micro facet directions.
G - amount the facets shadow and mask each other.
F - is the Fresnel reflection law.
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Blinn Illumination Model

Specular =
DGF

N.E
D - distribution function of micro facet directions.
G - amount the facets shadow and mask each other.
F - is the Fresnel reflection law.
D(α) = how many facets are pointing in the direction
of the angle α. Where cosα = N.H, β = α : D(α) = 1

2

D1 = cosc1(α) c1 = ln2
lncosβ Phong

D2 = e−(αc2)2 c2 =
√

ln2
β Torrance-Sparrow

D3 = ( c3
2

cos2α(c32−1)+1)
2 c3 = ( cos2β−1

cos2β−
√

2
)
1
2 Trowbridge-Reitz
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Blinn Illumination Model

Specular =
DGF

N.E
D - distribution function of micro facet directions.
G - amount the facets shadow and mask each other.
F - is the Fresnel reflection law.

N
H

L

E

N
H

E

L
N

H

L

E



45

Geometric Attenuation
No attenuation - Ga = 1.0

N
H

E

L
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Geometric Attenuation
Blocked reflection - Masking Gb = 2(N.H)(N.E)

E.H

N
H

L

E
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Geometric Attenuation
Blocked incoming light - Shadowing Gc = 2(N.H)(N.L)

E.H

N
H

L

E
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Blinn Illumination Model

Specular =
DGF

N.E
D - distribution function of micro facet directions.
G - amount the facets shadow and mask each other.
F - is the Fresnel reflection law.

G = min(Ga,Gb,Gc)
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Blinn Illumination Model

Specular =
DGF

N.E
D - distribution function of micro facet directions.
G - amount the facets shadow and mask each other.
F - is the Fresnel reflection law.

F =
1
2

(
sin2(φ− θ)
sin2(φ + θ)

+
tan2(φ− θ)
tan2(φ + θ)

)
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Blinn Illumination Model
F determines how much light is reflected/absorbed.

F =
1
2

(
sin2(φ− θ)
sin2(φ + θ)

+
tan2(φ− θ)
tan2(φ + θ)

)
sin(θ) = sinφ

n

φ = angle of incidence
n = index of refraction



51

Blinn Illumination Model
By some trig IDs:

F =
(g − c)2

(g + c)2

(
1 +

(c(g + c)− 1)2

(c(g − c) + 1)2

)
c = E.H

g =
√

n2 + c2 − 1
n = index of refraction
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Cook Torrance Illumination Model

Specular =
DGF

π(N.L)(N.E)

D =
1

m2cos4α
e
−tan2α

m2

F =
1
2
(g − c)2

(g + c)2

(
1 +

(c(g + c)− 1)2

(c(g − c) + 1)2

)
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Cook Torrance Illumination Model

The reflectance curve for
copper.
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Types of light in a scene

• Light emittors (light bulb, sun)

• Light reflectors (any surface that reflects light)

• Don’t forget that light also scatters (this is hard to
model.)
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Light Transport Language

• If we denote:
L - Light
E - Eye
D - Diffuse reflection/refraction(translucent)
S - Specular reflection/refraction(transparent)

• We can specify the transport with a regular expressi-
on, i.e. LDDE means light to diffuse to diffuse to eye.
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Light Transport Language

D

D

S

L

S

E

LE

LDE

LSE

LDDE

LSDE

LSDSE

Caustics

Radiosity
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Light Transport Language

D

D

S

L

S

E

LE

LDE

LSE

LDDE

LSDE

LSDSE

Caustics

Radiosity

• What kind of interactions does raytracing do?

• What kind does radiosity do?

• What does photon tracing/light tracing do?
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The Rendering Equation

θ

ϕ

N



θ

ϕ

N
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The Rendering Equation

Ir(x, y, z) =
∞∫

t=−∞

700∫
λ=400

π
2∫

ϕ=0

π∫
θ=0

L(t, x, y, z, ϕ, θ, λ)R(t, ϕ, θ, λ)dθdϕdλdt

where:
(x, y, z) - coords of surface point
t - time
λ - wavelength of light
ϕ - azimuthal angle (from N )
θ - angle about N
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
e(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]
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The Rendering Equation: Kajiya

• Approximation to Maxwell’s Equations.

• A geometrical optics approximation.

• Time-averaged transport intensity.

• Balances the energy flow through scene.
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The Rendering Equation: Kajiya

• Doesn’t deal with time. No phase.

• No diffraction.

• Assumes constant index of refraction between surfa-
ces.
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

g(x, x′) - Geometry term.
ε(x, x′) - Emitted light from x′ to x.
ρ(x, x′, x′′) - Light transported from x′′ to x via x′

Integral taken over S =
⋃

Si, where Si are the
surfaces, with special background surface S0.
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

g(x, x′) - Geometry term.
ε(x, x′) - Emitted light from x′ to x.
ρ(x, x′, x′′) - Light transported from x′′ to x via x′
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

• Unoccluded two point transport intensity.

• Energy of the radiation per unit time per unit area of
source dx′ per unit ared dx of the target.

• Joule
m4s

= watt
m4
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

g(x, x′) - Geometry term.
ε(x, x′) - Emitted light from x′ to x.
ρ(x, x′, x′′) - Light transported from x′′ to x via x′
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

g(x, x′) - Geometry term.

• Encodes inclusion of surface pts by other surface
points.

• 0 if x and x′ are not mutually visible.

• If they are visible then g = 1
r2

where r = |x− x′|
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

g(x, x′) - Geometry term.
ε(x, x′) - Emitted light from x′ to x.
ρ(x, x′, x′′) - Light transported from x′′ to x via x′
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

ε(x, x′) - Emitted light from x′ to x.

• Unoccluded two point transport emittance.

• Energy emitted per unit time per unit area of source
dx′ per unit ared dx of the target.

• Joule
m4s

= watt
m4
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

I(x, x′) - Intensity of light passing from pt. x′ to pt. x

g(x, x′) - Geometry term.
ε(x, x′) - Emitted light from x′ to x.
ρ(x, x′, x′′) - Light transported from x′′ to x via x′
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The Rendering Equation: Kajiya

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′
]

ρ(x, x′, x′′) - Light transported from x′′ to x via x′

• The scattering term.

• Intensity of energy scattered by a surface element

• unoccluded three point transport reflectance from x′′

to x through x′.
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Maxwell’s equations for Electromagnetics

∇× ~H = J +
∂ ~D

∂t
∇ · ~B = 0

∇× ~E = −∂ ~B

∂t
∇ · ~D = ρ

E - electric field ( volts
meter)

D - electric flux density (displacement) (coulombs
meter2

)
D = ε0E + P ε0 - permittivity of free space,
P the polarization.
µ0 - permeability of free space.
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Maxwell’s equations for Electromagnetics

∇× ~H = J +
∂ ~D

∂t
∇ · ~B = 0

∇× ~E = −∂ ~B

∂t
∇ · ~D = ρ

H - magnetic field ( amps
meter

H = B/µ0 −M

B - magnetic flux density (induction) (webers
meter2

)
J - electric conduction current density ( amps

meter2
)

r - volume charge density (coulombs
meter3

).
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Maxwell’s equations for Electromagnetics

∇× ~H = J +
∂ ~D

∂t
∇ · ~B = 0

∇× ~E = −∂ ~B

∂t
∇ · ~D = ρ

∇ · ~D =
∑3

i=1
∂vi

∂xi = ∂Iv
i,

∇ · ~D divergence of ~D indicates the strength.
∇× ~E curl of tensor field ~E

The curl indicates the direction a wind vane would
turn (time derivative of the motion).
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Maxwell’s equations for Electromagnetics

• for example the curl of the velocity is the circulation

• and the divergence is the rate of flow out of a small
volume per unit volume.

• Divergence and curl are local (microscopic) proper-
ties of a vector field (dilation and rotation),

• They corresond to macroscopic properties of the sur-
face integral of the field over a closed surface (flux).
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The Rendering Equation: Kajiya

• Doesn’t deal with time. No phase.

• No diffraction.

• Assumes constant index of refraction between surfa-
ces.
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The Eikonal Equation

z2
x + z2

y = h(x, y)
n∑

i=1

(
∂u

∂xi

)2

= 1

(∇s)2 = n2

s is a scalar function of position,
n is the refractive index.
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The Eikonal Equation
• From greek eikon ı̈mage”.

• The eikonal equation corresponds to a geometric de-
scription of the propagation of light.

• If the phase and amplitude are slowly varying functi-
ons of position.

• Determines the evolution of the phase

• The surfaces of constant phase, the wave fronts, de-
fine the shape of the radiation field.

• The normals to the wavefronts are rays.
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BRDF

ρ(θi, φi, θr, φr) =
dLi(θr, φr)
dEi(θi, φi)

• E - irradiance,

• L - reflected radiance.

• φi, θi, incoming light angles.

• φr, θr, reflected light angles.

• Bidirectional Reflection Distribution Function

http://www1.cs.columbia.edu/CAVE/curet/html/sphere_meas.h tml

http://www.cs.columbia.edu/CAVE/curet/html/sphere_meas.html
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Caustics: Examples
• Concentrated light reflections.

• Light refracted through a transparent surface.

• Light bouncing off of a mirror.

• Light focussed by a lens.

• Light focussed by a liquid.

• A visual effect seen when light is reflected off a spe-
cular or reflective surface, or focused through a re-
fractive surface, so that it indirectly illuminates other
surfaces with focused light patterns.
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Caustics: What are they

• (Mathworld) The curve which is the envelope of re-
flected (catacaustic) or refracted (diacaustic) rays of
a given curve for a light source at a given point
(known as the radiant point).

• The envelope of a family of curves is
a curve which touches every mem-
ber of the family. Actually is tanget
to every member.
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Caustics: What are they

• If light from some source (radiant) reflects off of a
curve, then the envelope of the reflected rays are a
type of caustic known as a catacaustic. (cata - from
the greek to signify down, or opposed to.)

• When light refracts off of a curve, the resulting enve-
lope is a diacaustic (dia - from the greek, through or
across)
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Caustics: What are they

• Caustic is a method of deriving a new curve based
on a given curve and a point. A curve derived this
way may also be called caustic. Note light rays may
also be parallel, as when the light source is at infinity.

• Caustics were first studied by Huygens and Tschirn-
haus around 1678. As well, Johann Bernoulli, Jacob
Bernoulli, de l’Hpital and Lagrange studied caustic
curves.

• http://www.cacr.caltech.edu/ roy/Caustic/

http://www.cacr.caltech.edu/~roy/Caustic/
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Catacaustic of a cardioid
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Catacaustic of a circle is a cardioid
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What is a Cardioid
• heart-shaped.

• a cardioid is the catacaustic of a circle with the light
source on the circle.
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Caustics aren’t always a curve.

Caustics do not always
generate a curve, as
in light rays reflecting
from the focus of a pa-
rabola.
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Caustics aren’t always a curve.

The catacaustic of an
astroid.
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What is an Astroid?
An astroid is the trace of a point on a circle rolling
along the inside of a circle with radius 4r or 4

3r.
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Caustic Properties.
• Catacaustic of a curve C with parallel rays from one

direction generate a curve that is also the diacaustic
of C with parallel rays from the opposite direction. For
example the catacaustic and diacaustic of sinusoid.
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Caustic Properties.
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Caustics
Base Curve Light Source Catacaustic

circle on curve cardioid
circle not on curve limacon of Pascal
circle Infinity nephroid

parabola ⊥ to directrix Tschirnhausen’s cubic
Tschirnhausen’s cubic focus semicubic parabola

cissoid of Diocles focus cardioid
cardioid cusp nephroid

quadrifolium center astroid
deltoid Infinity astroid

equiangular spiral pole equiangular spiral
cycloid ⊥ line thru cusps cycloid 1/2

y == Ex rays ⊥ y-axis catenary
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photon mapping

by Henrik Wann Jensen
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Photon Mapping

by Henrik Wann Jensen
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With Caustics (Path Tracing)

by Henrik Wann Jensen
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Diffraction

• Diffraction - Change in the directions and intensities
of a group of waves after passing by an obstacle or
through an aperture whose size is approximately the
same as the wavelength of the waves.

• Remarked by Grimaldi (1665)

• When the waves go through the object or around an
object the waves scatter.

• When waves scatter, they will get out of phase, they
can then combine constructively or destructively.

by Henrik Wann Jensen
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Diffraction

• This is because the light waves can have different
path lengths due to do the scattering.

• This happens when distance between atoms is com-
parable to the wavelength of the light.

• http://www.journey.sunysb.edu/ProjectJava/Bragg/home.html

by Henrik Wann Jensen

http://www.journey.sunysb.edu/ProjectJava/Bragg/home.html
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Diffraction Experiment

• Hold the two pencils vertically, side by side, the ta-
pe will make a thin slit just below the tape. Hold the
pencils close to an eye and look at the candle.

• Make sure the facets of the pencils line up.

• Squeeze the pencils and release, changing the width
of the slit.

• Rotate the pencils so they are horizontal.

by Henrik Wann Jensen
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Diffraction Experiment

• What is happening?

• What happens as you rotate the pencils?

• What happens as the slit changes width?

• What color are the blobs of light?

• Now use a hair.

• Try a piece of cloth.

by Henrik Wann Jensen
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What does this show?

• The black bands between the blobs of light show that
there is a wave associated with the light. The light
waves that go through the slit spread out, overlap to
cancel or add together.

• The angle at which the light bends is proportional to
the wavelength of the light. Red light, for instance,
has a longer wavelength than blue light, so it bends
more than blue light does, this is why there are diffe-
rent colors on the edges.

by Henrik Wann Jensen
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What does this show?

• The narrower the slit, the more the light spreads out.
In fact, the angle between two adjacent dark bands
in the diffraction pattern is inversely proportional to
the width of the slit.

• Thin objects, such as a strand of hair, also diffract
light. Light that passes around the hair spreads out,
overlaps, and produces a diffraction pattern.

by Henrik Wann Jensen


