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These notes are, for the most part, a summary of Chapter 3 freiwallace and Cohen radios-
ity book.

1 TheRendering Equation

So far, we saw two forms to write down the integral equatioscdeing the radiance(x, w)
function at every point and every direction in the scene. filseform expresses reflected light
as an integral over all incoming directions:

L(X,0x) = Le(X, &x) + & fr (X, 0 — oor) Li(X, o) cosBxdoy
Wi

Alternatively, we can write the reflected radiance as argnatieover other points in the scene:

L(X,0r) = Le(X,00r) + e fr (X, oy — @y ) LY, yx) G(x,y) dy

2 Radiosity

Today we’ll learn one way to solve the rendering equations Tiethod is called radiosity, and
it is based on a finite-element formulation.

The traditional assumption underlying the radiosity mdttsathat the world is a purely diffuse
place. BTW, this assumption has been relaxed, but it makesnifch easier when explaining
the method (and when implementing it for that matter), sdlsétk with this assumption for
a while.

First, we’'ll introduce a new quantity, called “radiositysuyrprise, surprise...), to make our
derivation more consistent with the ones in the literature.
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So (going back to physics for a brief while), let’s define a rwantity that we’ll call radiosity,
which is defined as the total (hemispherical) flux densityilega differential area on a surface.

There is a simple relationship between radiosity and radiaim order to obtain the radiosity
at a pointx, we must integrate the radiance leaving the surface inttons:

B(X) = /Q L(x, &) cosde

The units of radiosity are Watts per square meter, sameaaance.

Note that if the surface is indeed a Lambertian reflecton tha outgoing radiance does not
depend on the direction, so it can be taken outside the gitegr

B(x) = L(x)/Qcosedwz T (X)

Now let’s rewrite the rendering equation in terms of radiasi

B(x) = E(X) +p(X) e B Gxy)dy

wherep(x) is the ratio of outgoing flux density to incident flux densitghich is the same as
the ratio of radiosity to irradiance. This is a number betw@end 1. It can be shown that

p(x) = mfr(X)
It should be easy to convince yourselves that this equasi@guivalent to the one in terms of
radiance, except that tl&x, y) term now has arin the denominator:

_ cosBy cosBy V (x,Y)
oY) =y

3 Solving theradiosity equation
How do we solve an integral equation like that? There is neexoform solution, except in
some very trivial cases, so we must resort to numerical apadion techniques.

Abstract mathematical explanation: the solution is a fismdh some infinite-dimensional func-
tion space (for example, the spacd.dffunctions over the appropriate domain). We will project
the equation onto a finite-dimensional function space, amavill find a function in that space
that “best” approximates the real solution.

Now, in more down-earth-terms:

1. Subdivide the surfaces intobelements;



2. Select locations arodes on the elements;

3. Associate a basis functiag (x) with each node; Our approximation will be a linear
combination of these basis functions, each weighted by dineesponding nodal value
Bi:

B(x) ~ _i Bi Ni (x)

How do we know if this approximation is any good? For one thing know that if we
have a solution, it must satisfy the equation. So, one thhagwe can use to indicate the
accuracy of the approximation is thesidual function:

r(x) =B(x) —E(x) —p(X) yesé(y) G(x,y)dy

So, we'd like find a set of nodal valu&s that minimize the residual function. But the
residual is also in a finite-dimensional function spacef $not clear how to minimize
it. Instead of minimizing the residual, the finite-elemeppeach chooses to minimize
the projection of the residual in some finite dimensionattion space.

4. Choosen weighting functiondM(x), and project the residual onto each of thadanc-
tions. The idea is that each of theserojections is going to provide us with a linear
equation in ther unknownsB;. Using thesen simultaneous linear equations, we can find
the values of the unknowns for which each of the projectisreero (i.e., the residual is
orthogonally projected onto the function space spannetéweighting functions).

Ok, but how do we project a function? Just like we do with disevectors: we compute
the inner product. In the continuous case, the inner produdM > is an integral instead
of a summation:

<ILW S= /r(x)vv.(x) dx
5. Compute the coefficients of the following linear systemapfagions:
<rW>=0 fori=1,...,n

These coefficients are primarily based on the geometritioakhips between pairs of
basis functions. These relationships are usually refeaedform factors.

6. Solve resulting linear system of equations.

7. Now we have an approximation to the radiosity at each pmnéevery surface in the
scene, so we can render shaded images from arbitrary vietgpeith little extra work.

4 Point collocation

Let's be more specific now, and show what happens for a p&atichoice of basis and weight-
ing functions.



The simplest set of weighting functions one can imagine &t afsdelta functions: i.e\WW (x) =
O(Xx—X;), that isW(x) = 0 unlessx happens to coincide with the noge

This choice of basis functions mean that we want the restduag zero at the nodes that we've
chosen. However, note that we can’t say much about the balraei the residual between the
nodes. This technique is referred topasnt collocation.

In this case< r,\W >=r(x;). So, we get the following set of equations:

r(x)=0 fori=1,...,n
BOo) —E(x) —p(x) | _B(Y)G(x.y)dy=0
Let's replace each occurrence®fvith it's definition:
3 BiNj (x) /yESZBN G(x,y)dy =0
This can be regrouped as follows:
3 8 [N~ pO) | Ni(9)Glx.y) o] —E)
To simplify things, let’s introduce a bit of notation:

Kij — [Nj<m>—p<m> N,-<y>G<xi,y>dy]

yeS

Using this notation we have:
Z KijBj =E;
which can also be expressed in matrix notatiol8s= E.

So far, we haven't even specified what the basis functionsvsed, again, let's pick the sim-
plest choice possible: piecewise constant basis functMeshaven elements, a single node
per element (let’s put it in the center). Let’s defideto be 1 over the area of theh element,
and O elsewhere. What are the entries of the mtfix

They are:
Kij = 0ij —p(Xi)/ G(xi,y)dy
yeA|

The integral in this expression is the form factor from pdatferential area at); to the finite
area elemenf\j, whose physical interpretation is: “what fraction of th@jected hemisphere
aroundy; is subtended by the elemeht?”



5 Galerkin

In the Galerkin formulation of the weighted residuals ajpeig the weighting functionaf are
chosen to be equal to the basis functidlasThus,

<rW> = <I§,Ni>—<E,Ni>—p(x)/Sé(y)<G,Ni>dy
ye
_ <ZBij,Ni>—<E,Ni>—p(x)/y€SZBij(y)<G,Ni>dy

= ZBj <Nj,Ni >—p(x)/

Nj(y) < G,N; > dy] —<E,N >
yeS

Again, if we define

Kij =< Nj,Ni > —p(x) eij(y) <G,N > dy
y

we obtain a linear system of equations
KB=E

Y

whereE; =< E,N; >.



