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These notes are, for the most part, a summary of Chapter 3 from the Wallace and Cohen radios-
ity book.

1 The Rendering Equation

So far, we saw two forms to write down the integral equation describing the radianceL(x,ω)
function at every point and every direction in the scene. Thefirst form expresses reflected light
as an integral over all incoming directions:

L(x,ωr) = Le(x,ωr)+
Z

ωi∈Ω
fr(x,ωi → ωr)Li(x,ωi) cosθx dωi

Alternatively, we can write the reflected radiance as an integral over other points in the scene:

L(x,ωr) = Le(x,ωr)+
Z

y∈Γ
fr(x,ωxy → ωr)L(y,ωyx)G(x,y)dy

2 Radiosity

Today we’ll learn one way to solve the rendering equation. This method is called radiosity, and
it is based on a finite-element formulation.

The traditional assumption underlying the radiosity method is that the world is a purely diffuse
place. BTW, this assumption has been relaxed, but it makes life much easier when explaining
the method (and when implementing it for that matter), so we’ll stick with this assumption for
a while.

First, we’ll introduce a new quantity, called “radiosity” (surprise, surprise...), to make our
derivation more consistent with the ones in the literature.
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So (going back to physics for a brief while), let’s define a newquantity that we’ll call radiosity,
which is defined as the total (hemispherical) flux density leaving a differential area on a surface.

There is a simple relationship between radiosity and radiance: in order to obtain the radiosity
at a pointx, we must integrate the radiance leaving the surface in all directions:

B(x) =
Z

Ω
L(x,ω) cosθdω

The units of radiosity are Watts per square meter, same as irradiance.

Note that if the surface is indeed a Lambertian reflector, than the outgoing radiance does not
depend on the direction, so it can be taken outside the integral:

B(x) = L(x)
Z

Ω
cosθdω = πL(x)

Now let’s rewrite the rendering equation in terms of radiosity:

B(x) = E(x)+ρ(x)
Z

y∈S
B(y)G(x,y)dy

whereρ(x) is the ratio of outgoing flux density to incident flux density,which is the same as
the ratio of radiosity to irradiance. This is a number between 0 and 1. It can be shown that

ρ(x) = π fr(x)

It should be easy to convince yourselves that this equation is equivalent to the one in terms of
radiance, except that theG(x,y) term now has aπ in the denominator:

G(x,y) =
cosθx cosθyV (x,y)

π‖x− y‖2

3 Solving the radiosity equation

How do we solve an integral equation like that? There is no closed form solution, except in
some very trivial cases, so we must resort to numerical approximation techniques.

Abstract mathematical explanation: the solution is a function in some infinite-dimensional func-
tion space (for example, the space ofL2 functions over the appropriate domain). We will project
the equation onto a finite-dimensional function space, and we will find a function in that space
that “best” approximates the real solution.

Now, in more down-earth-terms:

1. Subdivide the surfaces inton elements;
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2. Select locations ornodes on the elements;

3. Associate a basis functionNi(x) with each node; Our approximation will be a linear
combination of these basis functions, each weighted by the corresponding nodal value
Bi:

B̂(x) ≈
n

∑
i=1

Bi Ni(x)

How do we know if this approximation is any good? For one thing, we know that if we
have a solution, it must satisfy the equation. So, one thing that we can use to indicate the
accuracy of the approximation is theresidual function:

r(x) = B̂(x)−E(x)−ρ(x)
Z

y∈S
B̂(y)G(x,y)dy

So, we’d like find a set of nodal valuesBi that minimize the residual function. But the
residual is also in a finite-dimensional function space, so it is not clear how to minimize
it. Instead of minimizing the residual, the finite-element approach chooses to minimize
the projection of the residual in some finite dimensional function space.

4. Choosen weighting functionsWi(x), and project the residual onto each of thesen func-
tions. The idea is that each of thesen projections is going to provide us with a linear
equation in then unknownsBi. Using thesen simultaneous linear equations, we can find
the values of the unknowns for which each of the projections is zero (i.e., the residual is
orthogonally projected onto the function space spanned by the weighting functions).

Ok, but how do we project a function? Just like we do with discrete vectors: we compute
the inner product. In the continuous case, the inner product< r,Wi > is an integral instead
of a summation:

< r,Wi >=
Z

r(x)Wi(x)dx

5. Compute the coefficients of the following linear system of equations:

< r,Wi >= 0 for i = 1, . . . ,n

These coefficients are primarily based on the geometric relationships between pairs of
basis functions. These relationships are usually referredto asform factors.

6. Solve resulting linear system of equations.

7. Now we have an approximation to the radiosity at each pointon every surface in the
scene, so we can render shaded images from arbitrary viewpoints with little extra work.

4 Point collocation

Let’s be more specific now, and show what happens for a particular choice of basis and weight-
ing functions.
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The simplest set of weighting functions one can imagine is a set of delta functions: i.e.,Wi(x) =
δ(x− xi), that isWi(x) = 0 unlessx happens to coincide with the nodexi.

This choice of basis functions mean that we want the residualto be zero at the nodes that we’ve
chosen. However, note that we can’t say much about the behaviour of the residual between the
nodes. This technique is referred to aspoint collocation.

In this case,< r,Wi >= r(xi). So, we get the following set of equations:

r(xi) = 0 for i = 1, . . . ,n

B̂(xi)−E(xi)−ρ(xi)
Z

y∈S
B̂(y)G(xi,y)dy = 0

Let’s replace each occurrence ofB̂ with it’s definition:

∑ B̂ jN j(xi)−E(xi)−ρ(xi)
Z

y∈S
∑ B̂ jN j(y)G(xi,y)dy = 0

This can be regrouped as follows:

∑ B̂ j

[

N j(xi)−ρ(xi)
Z

y∈S
N j(y)G(xi,y)dy

]

= E(xi)

To simplify things, let’s introduce a bit of notation:

Ki j =

[

N j(xi)−ρ(xi)
Z

y∈S
N j(y)G(xi,y)dy

]

Using this notation we have:

∑Ki j B j = Ei

which can also be expressed in matrix notation asKB = E.

So far, we haven’t even specified what the basis functions are. Well, again, let’s pick the sim-
plest choice possible: piecewise constant basis functions. We haven elements, a single node
per element (let’s put it in the center). Let’s defineNi to be 1 over the area of thei-th element,
and 0 elsewhere. What are the entries of the matrixK?

They are:

Ki j = δi j −ρ(xi)
Z

y∈A j

G(xi,y)dy

The integral in this expression is the form factor from point(differential area at)xi to the finite
area elementA j, whose physical interpretation is: “what fraction of the projected hemisphere
aroundxi is subtended by the elementA j?”
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5 Galerkin

In the Galerkin formulation of the weighted residuals approach, the weighting functionsWi are
chosen to be equal to the basis functionsNi. Thus,

< r,Wi > = < B̂,Ni > − < E,Ni > −ρ(x)
Z

y∈S
B̂(y) < G,Ni > dy

= < ∑B jN j,Ni > − < E,Ni > −ρ(x)
Z

y∈S
∑B jN j(y) < G,Ni > dy

= ∑B j

[

< N j,Ni > −ρ(x)
Z

y∈S
N j(y) < G,Ni > dy

]

− < E,Ni >

Again, if we define

Ki j =< N j,Ni > −ρ(x)
Z

y∈S
N j(y) < G,Ni > dy

we obtain a linear system of equations

KB = E,

whereEi =< E,Ni >.
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