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Course Abstract 
 
Image-based modeling, rendering, and lighting differs from traditional graphics in that the geometry, 
appearance, and lighting in a scene can be derived from real photographs. These techniques often allow for 
shorter modeling times, faster rendering speeds, and unprecedented levels of photorealism. In this course 
we will explain and demonstrate a variety of ways of turning images into models and then back into 
renderings, including movie maps, panoramas, image warping, photogrammetry, light fields, and 3D 
scanning. This course overviews the relevant topics in computer vision, and show how these methods relate 
to image-based rendering techniques.  The course shows ways of applying the techniques to animation as 
well as to 3D navigation, and to both real and synthetic scenes. One underlying theme is that the various 
modeling techniques make tradeoffs between navigability, geometric accuracy, manipulability, ease of 
acquisition, and level of photorealism; another theme is the close connection between image-based 
techniques and global illumination. The course shows how image-based lighting techniques allow 
photorealistic additions and modifications to be made to image-based models. The described techniques are  
illustrated with results from recent research, pioneering projects, and creative applications in art and 
cinema. 
 
Note: This course and SIGGRAPH 2000 Course #19, 3D Photography, cover related topics and are 
designed to be complimentary. 
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Course Schedule and Syllabus 
 

Morning 
 

 
1. 08:30 - 08:50, 20 minutes (Debevec) 
 
Introduction and Overview 
   1. What is image-based modeling and rendering (IBMR) 
   2. Differences between image-based modeling and rendering and traditional 3D graphics 
   3. Why this is a promising area 
   4. Some Examples 
   5. Advantages and disadvantages  
   6. The spectrum of IBMR - from image indexing to 3D scanning 
 
2. 08:50 - 10:00, 70 minutes (Sillion) 
 
Image Formation Fundamentals and Using IBMR to Accelerate Rendering 
   1. What is an image? 
   2. Simple projective geometry, and the pin-hole camera model 
   3. How light interacts with matter 
   4. The relationship of global illumination to IBMR 
   5. Challenges posed by non-diffuse reflectance 
   6. Image caching techniques 
   7. Affine sprite warping 
 
Break 
 
3. 10:15 - 11:00, 45 Minutes (Szeliski) 
 
Determining Geometry from Images 
   1. Why geometry is useful for image-based rendering 
   2. Computer Vision as Inverse Computer Graphics 
   3. Notes on camera calibration 
   4. Computing depth maps with stereo and multi-baseline stereo 
   5. Image correspondence techniques 
   6. Structure from Motion 
   7. Overview of other methods: Photogrammetric Modeling, 3D Scanning 
 

Note: Additional material on determining geometry from images is available in the course notes for 
Course #19, 3D Photography.  Topics covered in detail include photogrammetric modeling, silhouette-
based methods, 3D laser scanning, and other active sensing methods. 

 
4. 11:00 - 12:00, 60 Minutes (McMillan) 
 
Image-Based Rendering: With or Without Structure? 
   1. Image mosaicing and cylindrical panoramic viewing 
   2. Explanation of a depth map 
   3. Ways to warp an image based on depth 
   4. Panoramic image warping 
   5. Turning images and depth into a navigable environment 
 
Lunch (12:00 – 01:30) 
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Afternoon 

 
5. 01:30 - 02:20, 50 Minutes (Cohen) 
 
LDI and Lightfield / Lumigraph representations 
   1. What is an image versus what is a model? 
   2. Layered depth images (LDIs) 
   3. The plenoptic function 
   4. Reduction to 4D 
   5. Light field rendering and the Lumigraph 
   6. Combining light fields with geometry 
      - Silhouette models (Lumigraph) 
      - View-dependent texture-mapping (Façade) 
    
6. 02:20 - 03:00, 40 Minutes (Debevec) 
  
Image-Based Lighting 
   1. Recovering lighting information from photographs 
      - High dynamic range photography / light probes / inverse lighting 
   2. Illuminating synthetic objects with real light 
   3. Making additions and modifications to image-based models maintaining correct global illumination 
   4. Inverse global illumination: recovering material properties of real scenes from photographs 
   5. Communicating the sense of brightness using post-processing operations 
   6. The Light Stage: illuminating real objects/people with recorded light for compositing 
 
Break 
 
7. 03:15 - 04:05, 50 Minutes (Bregler) 
 
Applications of IBMR in human animation 
   1. How IBMR generalizes from 3D navigation to kinematic domains 
   2. Facial animation with image-based rendering 
   3. Human figure animation with image-based modeling 
 
8. 04:05 - 04:40, 35 Minutes (Debevec) 
 
Applications of IBMR in Art and Cinema 
   1. Matte paintings vs. 3D Models in Movies (Gone with the Wind / Star Wars) 
   2. The Aspen and San Francisco Movie Map projects (Lippman) 
   3. Naimark's "Displacements" - physically projecting images onto geometry 
   4. Dayton Taylor's Timetrack system & "jump morphing" 
   5. Rouen Revisited (SIGGRAPH 96 art show), Mona Lisa Morph (SIGGRAPH 96) 
        Buf Compagnie's Like a Rolling Stone (SIGGRAPH 96), 
        Tour into the Picture (SIGGRAPH 97); What Dreams May Come (1998), 
        The Matrix (1999); Prince of Egypt  (1999); Fight Club (1999); Mission Impossible II (2000) 
 
9. 04:40 - 05:00, 20 Minutes (Everyone) 
 
Questions and Dialog 
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Introduction 
What is Image-Based Modeling and Rendering? 

And what is Image-Based Lighting? 
 

Paul Debevec 
USC Institute for Creative Technologies 

 
A principal endeavor of computer graphics research has been the pursuit of photorealism. Early two-
dimensional computer graphics gained a sense of depth by combining the simple algorithms for drawing 
lines with the mathematics of perspective projection. The wireframe look of such drawings fed a desire for 
a more solid appearance, which inspired the development of hidden surface removal algorithms. Shading 
algorithms allowed rendering surfaces with varying brightness levels as if they were being illuminated by 
sources of light, and shadow calculation techniques allowed objects to realistically cast shadows on each 
other. Techniques for representing and displaying curved surfaces expanded the variety of shapes that could 
be rendered, and we created modeling tools to help us generate complex models. Renderings that look as 
realistic as photographs have finally been achieved by using ray tracing and radiosity to simulate the 
myriad complex paths that light can take as it travels from its sources to the viewer. 
 
The evolution of tools for modeling and rendering scenes with photorealistic fidelity - much of it 
represented in the twenty-seven years of the SIGGRAPH conference - is a monumental achievement that 
has had a profound influence on the visual medium. Nonetheless, the tools for creating complex models 
require a great deal of effort and skill to use, and the algorithms for rendering such images with accurate 
illumination remain computationally intensive and are still somewhat experimental. To wit: modeling is 
hard, and rendering is slow, which makes achieving truly compelling photorealism extremely difficult. 
 
Suppose, for example, that we wanted to generate a photorealistic image of the cathedral of Notre Dame in 
Paris. We could start by figuring out the dimensions of the cathedral, perhaps by borrowing the 
architectural plans from the most recent restoration project, or by conducting our own surveying. We would 
then build up the towers and the rose window, brick by brick and pane by pane, and assign appropriate 
reflectance properties to each surface. We could use L-systems to generate synthetic trees in the adjacent 
garden, and we could specify an appropriate distribution of incident light from the sky. We could then use a 
global illumination algorithm that, with a great deal of computation, would simulate how light would 
bounce around the scene to generate a rendered image of the cathedral. 
 
Alternately, we could simply visit the cathedral and take a picture of it. Taking the picture would not only 
require far less effort, but the picture would almost certainly be a far more convincing rendition of the 
scene - it is, by definition, photorealistic. But while a single photograph gives us an amazing amount of 
information about the scene's structure and appearance, it is a static frozen image. What we have lost is the 
ability to look in different directions, to move about in the scene, to collide with its surfaces, to change the 
light, to add objects, and to modify the scene itself. If we had constructed the computer model, all of this 
would have been possible, if not realistic. 
 
Image-based modeling and rendering is about leveraging the ease with which photographs can be taken, the 
speed at which they can be displayed, and their amazing power to communicate, while at the same time 
transcending their limitations. The various forms of IBMR transcend the limitations by deriving some sort 
of representation of the scene from the photographs, and then using this representation to create renderings. 
The principal reason that image-based modeling and rendering is interesting is that these representations do 
not need to be as complete as traditional computer graphics models in order to transcend many of the 
limitations of photographs. To remove the restriction that it is impossible to look in different directions, we 
can take photographs of the scene looking in all directions, assemble the photographs into a panorama, and 
then allow the user to look around by displaying different sections of the panorama. To remove the 
restriction that one can't move about the scene, we can take many images of the scene from different 
locations, and then display the various images depending on where the user wants to go. To reduce the 
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number of images necessary, we can derive geometric representations of the scene through image 
correspondence, interactive photogrammetry, or active sensing, and then render this geometry from the 
desired viewpoint with colors projected on from the original photographs. As the techniques for deriving 
representations become more sophisticated, the fewer limitations there are. 
 
Image-Based Modeling and Rendering is a relatively new field, but it has already produced degrees of 
interactivity and levels photorealism previously only dreamed of. With its current level of interest, it 
promises to continue to amaze us in the years to come. Furthermore, IBMR has the potential to 
fundamentally change the way we understand computer graphics. By starting with the answer - 
photorealistic renderings in the form of photographs and video - and discovering what it takes to transform 
them into models and then back into renderings, we have no choice but to gain an understanding of every 
perceptually relevant aspect of image synthesis. 
 
This course again covers Image-Based Lighting, a technique which injects illumination from the real world 
into computer renderings.  As such, it becomes a useful link in understanding the relationship between 
image-based and traditional computer graphics, and shows how the two can be combined while maintaining 
the photorealism we expect from image-based techniques. 
 
This is already an exciting year for computer graphics and for image-based techniques in particular.  
Another excellent offering of innovative papers on image-based techniques is appearing in the papers 
session.  Several new image-based software packages and hardware solutions have become available and 
will show at the exposition.  3D Photography, a continuing SIGGRAPH course offered by Brian Curless 
and Steve Seitz, is a companion to this image-based modeling and rendering course.  And perhaps most 
visibly, advanced image-based techniques continue to be employed in feature films such as What Dreams 
May Come , The Prince of Egypt, and The Matrix, Fight Club, X-Men, and Mission Impossible II, each of 
which offers an entirely different visual aesthetic.  As the film industry helped inspire much of this recent 
image-based research by popularizing matte painting, environment mapping, and morphing (all forms of 
“image-based rendering” developed well before the term was in use), it’s wonderful and fitting to see 
recent results from the research community help out in visual effects as well. 
 
A central goal of this course is to give a basic understanding of the variety of techniques that have been 
developed in image-based modeling, rendering, and lighting. But the more important goal is to present the 
larger picture in which this variety of work can best be understood. To achieve this, an effort has been 
made to cover not just core material such as image warping and light fields, but to also present what lies 
near the frontier, such as movie maps, morphing, image-based human figure animation, and artistic 
applications. The result, I hope, will be a learning experience for all of us. 
 

Paul Debevec 
April 2000 
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Fundamentals of image formation and re-use

François X. Sillion

iMAGIS

INRIA, Laboratoire GRAVIR/IMAG

Grenoble, France.

In this section of the course we consider the basic questions of image content and re-use. In

particular, we describe the physical information content of a typical image, based on the simplest

camera model and the complex behavior of light in a 3D scene. After reviewing the important

effects contributing to the appearance of an image, we focus on the issue of image re-use: when

and how is it possible to re-use image fragments to assemble a plausible new view of a scene?

Several techniques involving the re-use of synthetically generated images to accelerate the

display of a complex synthetic scene are discussed.

What is an image?

The very notion of image is not well defined, especially in the context of computer graphics.

Here we focus on the usual notion of an image, such as a typical photograph of a real scene, or a

synthetic image viewed on a computer screen. Furthermore, we consider only digital images,

composed of a finite set of points. Thus the image is a set of colored points (pixels), usually

arranged on a rectangular grid. More elaborate “images”, containing even more information (such

as depth or multiple samples) and resulting from the application of a computer process will be

considered later in the course.

The image as a set of radiance samples

When the image represents a view of a three-dimensional environment, each pixel can be thought

of as representing the “appearance” of a particular portion of this environment. A typical model

of the image generation process considers a pinhole camera placed in the scene (see Figure 1). In

such a case, each point on the image plane defines, together with the optical center of the camera,

a direction in space. Leaving aside the whole issue of the camera’s radiometric and colorimetric

response, we can consider for now that we record at each pixel the amount of incident light from

the corresponding direction.
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Optical center

Image plane

Optical
axis

FIGURE 1: Pinhole camera model.

In terms of physical units, the relevant quantity to which our eye or photographic sensors are

sensitive is called radiance, with units of W/m2/sr, and measures the radiated power received per

unit area and per unit incident solid angle (Figure 2).

dx

dω

FIGURE 2: Radiance is the power received per unit area (dx) per unit solid angle (dω).
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Finally, we define an image (of a real or synthetic scene) as an array of radiance samples. Of

course this is an ideal view, assuming that we can record or represent radiance directly. This turns

out to be difficult in many cases: for synthetic images where it may seem obvious to just record

the result of a lighting formula, the problem may arise from the lack of well-established data

formats to represent radiance images. For real images, we shall see that measuring radiance is

difficult because of the very high dynamic range present in most images, which is almost always

degraded by the capture processes.

The above definition actually assumes a monochromatic light distribution. Color variations must

be represented by combining multiple radiance samples (for different wavelengths) at each pixel.

Although most popular image formats simply use RGB color representations, more accurate

color models are clearly needed for the most elaborate image-based techniques such as image re-

lighting.

What are wee seeing in an image?

We just decided to consider an image as a set of incident radiance samples. We now need to

further study where this incident radiance came from, in order to understand what we are seeing

in the image. Radiance has a very nice conservation property, namely that

«In the absence of interaction between light and the medium in which it travels, the

radiance incident on a surface from a given direction equals the radiance leaving

the surface which is visible in that direction.”

In other words, radiance is conserved along its path through a non-participating medium.

Examples of participating media include water and other dense fluids, smoke or fog. We can

safely assume for now that we are not concerned with such media. The radiance conservation

property tells us that our image can also be understood as a set of outgoing radiance samples.

Each pixel records the outgoing radiance leaving the surface visible in its associated direction

(towards the direction of the camera).

If we consider again the idealized case of the pinhole camera, the relationship between the three-

dimensional location of a point and the pixel onto which it projects is expressed by a projective

transform. This is best described with matrices, since the relationship between a 3D point

x y zg g g( )  in world coordinates and its corresponding image point x y zi i i( ) is given by
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The 4x4 matrix P describes the mapping using a fourth coordinate wi  to account for perspective

division. P can be further decomposed into a euclidean transformation (defining the camera’s

reference axes with respect to the world), a projection transformation (defining the perspective

parameters), and an affine transformation (defining the actual mapping to pixels, taking into

account image resolution and possible distortions). These are discussed in more detail later.

Note that we associate a depth value zi to a point in the image. This is common practice in

computer graphics, since this “image-space” depth can be use to solve for visibility as in the

depth buffer algorithm. Computer vision practitioners ignore this depth value, since it not readily

available with images, and therefore use only 3x4 matrices.

The implications of this simple camera model are that

•  If the “depth” of the visible surface at a pixel is known, the original 3D point can be

recovered by applying the inverse transform P-1.

•  Otherwise, it is possible in certain cases to reproject the scene onto a different camera,

without explicitly reconstructing the 3D scene, by a combination of projective maps. Depth is

then approximated for instance by assuming the scene lies “close to” a plane in 3D. This is

discussed later in the course.

Interactions of light and matter

We have now established that each pixel in our image records the radiance leaving an associated

surface point, which happens to project onto that particular pixel. Understanding exactly what

this radiance is requires a discussion of light and its interactions with a three-dimensional scene.

This section introduces a number of principles governing the distribution and behavior of light,

and discusses the implications on image-based rendering.

The behavior of light is governed by the following equation, called the rendering equation in the

Computer Graphics field, after Kajiya [2].

L x L x L x x de i( , ) ( , ) ( , )  ( , , )  θ θ φ ρ θ φ ω= + ∫
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This equation states that L x( , )θ , the radiance leaving a point (x) in a direction (θ) is the sum of

•  the radiance L xe( , )θ  intrinsically emitted at this point (for a point on a light source),

•  the radiance reflected at this point. That second term is an integral over all possible incident

directions on x, where the incident radiance is weighted by a reflectance function ρ.

Strictly speaking, this equation is written for a singe wavelength, and involves spectral radiance.

Several of the involved quantities vary with the wavelength λ, producing a particular spectral

distribution for the total radiance field.

Each of the components of the rendering equation is described below in more detail.

Light sources

Light sources in the scene are objects that emit light by themselves, independently of their

environment. Typical light sources include artificial light fixtures (in indoor scenes, or at night)

and natural light sources such as the sun or sky. While computer graphics software often employs

point light sources, almost all real light sources have a non-negligible extent in 3D. This is

important because they create soft shadows or penumbra regions, where the light source is only

partially visible.

Light sources are characterized by their location, size and shape, directional emission patterns,

and spectral properties (in other words, their color). The color of a light source is described by the

spectral variations of L xe( , )θ . As we shall see later in the course, light sources are particularly

difficult to model from images, because of their very large radiance values.

Reflectance properties

The reflective behavior of surfaces is described by their Bi-directional Reflectance Distribution

Function (BRDF), denoted by ρ in the rendering equation. This reflectance function basically

expresses the probability that light arriving from a given direction will be reflected in another

direction. Extreme, idealized cases for the BRDF are

•  Ideal diffuse (Lambertian) reflectors. Light is reflected uniformly in all directions, the BRDF

is constant.

•  Ideal specular  (mirror) reflectors. Light is reflected only in the Descartes-Snell direction, i.e.

with the angle of reflection equal to the angle of incidence. The BRDF is a Dirac distribution.
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However almost all real materials exhibit a more complex behavior, with a directional character

resulting from surface finish and sub-scattering under the surface. The intermediate (directional

but not specular) behavior is sometimes called “glossy”, or directional-diffuse in Computer

Graphics (Figure 3).

Ideal specular

Directional diffuse

Ideal diffuse

incident light

FIGURE 3: Three components of a BRDF.

Each component of a BRDF can have its distinct spectral variations, resulting in a number of

different colors associated to a material: A base color corresponding to the ideal diffuse

component, which will appear identical for all viewing directions, a glossy color (typically less

saturated) for the view-dependent highlights, and an ideal specular color for mirror reflections.

Recovering the material properties from an image is a difficult challenge since these components

are not available separately but only in the combined reflected radiance. Even assuming a

carefully controlled illumination (e.g. from a single, parallel light source of known power and

spectral properties) there are too many remaining unknowns unless the shape of the visible object

is known. This condition is rarely met in practice, although an interesting exception is the image-

based BRDF measuring device currently under development at Cornell University in the U.S.A.

[12].

Image-based rendering, or the idea that radiance samples from an image may be re-used to create

a new view, implicitly assumes an ideal diffuse behavior: only in that case will the radiance

leaving an object be identical for all viewing directions. This assumption often works well for a

wide range of materials and viewing directions. However, it should be explicitly recognized as an

assumption, which is sometimes impossible to meet, as in the case of very glossy or ideal
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specular objects. Highlights and reflections normally appear to move on the surface of the objects

when the viewer moves, an effect that can not be recovered by simply re-using radiance samples

from an original image. Consider for instance the image of a window reflecting a building across

the street: when viewed from a direction other than the original one from which the picture was

taken, the reflection will appear in the wrong place. Even worse, this reflection will not move

properly in a sequence of images, distracting the viewer from the illusion of reality. In such cases,

more elaborate processing is required, involving either some knowledge of the scene geometry or

more radiance samples from nearby views.

Global illumination

The rendering equation shows that the radiance leaving a surface (for instance in the direction of

the camera) is influenced by the radiance leaving other surfaces, creating a very complex set of

inter-dependencies. The illumination of any surface point in the scene is potentially affected by

the illumination of every other point, an effect captured in the name “global illumination.”

Global illumination accounts for all indirect light in a scene, and is responsible for the subtle

exchanges of light and color between surfaces. Unfortunately, it is difficult and costly to simulate

in synthetic images, requiring the use of Monte Carlo simulation or radiosity techniques [10]. On

the other hand, of course, it is included “for free” in any real image acquired by photography!

This is actually one of the major advantages of image-based rendering, as opposed to

conventional model-based rendering; all natural illumination effects are present in the original set

of images.

Taking into account the effects of global illumination amounts to considering each object as a

(secondary) light source, because it reflects some light into the scene. This means that each object

is subjected to a very complicated incident light distribution, coming from all directions with

varying intensity and spectral characteristics.  Therefore, the “advantage” of obtaining global

illumination effects naturally in real images can sometimes be a curse for image-based modeling.

Imagine for instance trying to extract material properties (BRDFs) from images. Even assuming

the geometry of the object is known, the incident light distribution is very difficult to model!

Re-using images

The basic premise of image-based rendering, or “rendering from images”, is that image portions

can be re-used to create new views of a scene. For instance, a projective mapping can be applied

to reposition all pixels into a new image and simulate a new perspective of a nearly planar scene.
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This idea is most often associated with “real” images, as opposed to synthetic ones. After all, if

the original image (or set of images) is obtained with computer graphics techniques from a 3D

model, it should be possible to also generate new views in the same way. However this vision is

too simple, and even synthetic imaging can greatly benefit from image-based techniques.

For instance, it can be prohibitively expensive to synthesize new images for all desired

viewpoints. An example of this case is virtual reality applications in which a sustained frame rate

of more than 30 frames per second according to the tracked location and orientation of the viewer

is a necessity. If images can only be rendered (or acquired from a network connection) at a

slower rate, image-based techniques can be used with profit to fill in the missing frames. Another

potential use of image-based representations is to replace very complex (and costly to render)

models, in a level-of-detail approach.

We review here some of the proposed approaches for image re-use, in the context of synthetic

imaging. This particular context is interesting because it implicitly assumes that all the relevant

information (such as 3D model, material properties, lighting models and simulation) is available

if needed. This makes it easier to understand differences between algorithms, in terms of what

information they actually use, or how often they use it.

Perspective image caching

Let us consider what happens to the view of a user moving about in a scene. The apparent motion

of objects in the image is obviously related to their distance to the viewer. Very distant objects

appear to stay still, distant objects simply move in the image without much change of appearance,

whereas nearby objects undergo the most severe changes, possibly exposing new areas or faces.

Therefore, not all parts of the image need to be refreshed at the same rate, and it is conceivable to

render portions of the image separately for later compositing, and re-use some portions longer

than others.

Regan and Pose [5] introduced this idea in a rendering system where the scene was segmented

according to the distance to the viewer. Partial views of the scene are then rendered at appropriate

rates, and always composited at the display rate.

Schaufler and Stürzlinger [7], and Shade et al [8] improved the idea by using a hierarchical set of

images. In both their systems, the scene is encoded in a hierarchical data structure (BSP tree). For

the first image, each node of the BSP tree is equipped with an image representing a view of the
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corresponding subtree from the original viewpoint. For subsequent frames, rendering proceeds

hierarchically, selecting at each node whether to use the stored image (and terminate the tree

traversal locally) or to recursively draw children nodes. Therefore, the hierarchical tree is only

traversed down to the appropriate representation, necessary to meet a quality criterion. A typical

criterion bounds the disparity error between the re-used image and an image of the true geometry.

When a decision is made to use a pre-stored image, this image is texture-mapped on a billboard

polygon. This explicit positioning in 3D means that the image undergoes the current view

transformation which is a projective map.

Affine warping

Carrying further the idea that image fragments can be independently rendered at different rates

and composited in the final view, the Talisman architecture was proposed in 1996 by Torborg

and Kajiya [11]. The proposed architecture of a graphics subsystem combines a renderer and a

warper/compositer, both operating on image fragments called sprites, representing individual

objects or groups of objects. The compositer combines all sprites in real time at each frame, after

subjecting each sprite to its own affine transformation to obtain the best approximation to the

desired image. When no suitable affine transform can be found to produce correct results, a

request is made to the renderer to produce a new sprite with the associated objects. The renderer

therefore operates on-demand, at a slower rate than the display rate, and a controlling program

makes decisions about which sprites should be updated at each frame, and which affine

transforms should be used.

Lengyel and Snyder [3] studied the suitability of the affine transformation (as opposed to the

more complete projective map) and found that it is sufficient in many cases. It is therefore a

mapping of choice because it is cheaper to compute than a full projective map (no division is

required). The same authors also describe a generic set of criteria to decide on the best affine

warp, and show that shadows and highlights can be treated as independent sprites with their own

refresh rate and transforms.

The resulting architecture is very flexible and appears quite promising. Until dedicated graphics

hardware becomes available, however, its systematic use of compositing operations makes it

quite expensive if run on conventional graphics cards. Note that in this organization of rendering,

no explicit depth information is carried with, or extracted from, the image fragments. Instead, a

high-level warping function is used for each sprite.



2-10

3D warping with points

When more information is available with the image, in the form of depth values for some or all

the pixels, direct warping becomes possible. As we shall see later, pixels with depths can either

be reprojected back in the 3D world or warped to the new image directly. In both cases, the new

image can be reconstructed either by rendering points, splats, or polygons based on these pixels.

If many pixels have depth information, a dense mesh can be built from them, and simplified as

desired according to any user-defined criteria. Note that this mesh can either be built in 3D space,

a strategy used to construct impostors [9], or in the new image space to aid in the image

reconstruction.

Layered warping

A clever warping technique has recently been proposed, which combines the simplicity of planar

textured billboards (as in image caches) with the greater accuracy of full 3D warping. Schaufler

[6] renders objects from a single source image using multiple stacked polygons at different

locations in 3D. Using the available opacity test to perform a simple depth test at display time,

the appropriate set of pixels is automatically selected for each layer, corresponding to a range of

depth values in the input image. The number of layers can be dynamically adjusted to optimize

the cost/quality tradeoff (Figure 4). Meyer and Neyret used a similar idea to render complex

procedural 3D textures along the surface of objects [4].
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FIGURE 4: Layered rendering of a depth image (© Schaufler, 1998).

Developing a complete strategy for image re-use

Each of the above approaches has been shown to provide a substantial benefit in some practical

situations. Yet it remains difficult to propose a general-purpose strategy for optimal image re-use

in computer graphics applications. The Talisman approach is clearly well thought-out, but

assumes all components of the suggested architecture are present. Algorithms running on today’s

hardware are also needed for current and upcoming applications.

We outline here a possible architecture for a display system, which is currently under

development in a joint research project between MIT and iMAGIS. The proposed system

employs a number of image-based acceleration techniques to dynamically optimize image quality

and display speed.

First, a set of images of the model is created, most probably off-line in a pre-processing step.

These images, representing well-chosen portions of the model, can then be used to generate

meshed impostors, which will replace the underlying geometry whenever possible. The use of

images to create impostors has two favorable properties: first, it automatically selects visible

geometry with respect to a given viewpoint. Second, it samples the model at a chosen resolution,

which can be adapted to the viewing conditions.
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At display time, a segmenting process selects a set of 3D models and impostors to draw, based on

a frame drawing time budget and a set of error estimates associated with impostors. Finally, a

fraction of the frame drawing time is reserved for dynamic updates to the approximate impostor

representation. Such updates can be performed on one or several impostors, using for instance the

layered billboard approach mentioned above.

While this architecture is only one of many possible, it appears to offer a number of benefits:

•  it uses image-based impostors to select potentially visible elements from specified scene

locations.

•  it uses meshed impostors to simplify the information visible on the reference images

according to user-specified criteria. These criteria can involve bounds on de-occlusion error

[1] or any application-specific information such as points of interest, etc.

•  it is not limited to the accuracy of the pre-computed image-based impostors, thanks to the

dynamic update capability. In fact, the segmentation in impostors also serves as a selection

mechanism for the portions of the scene whose image-based representation can be

dynamically updated: selected impostor layers can be individually tagged for update,

concentrating resources on the most important areas.

Summary
In this section we have discussed the formation of real and synthetic images: we saw that images

can be thought of as sets of radiance samples, taken for a number of directions arriving at the

camera. Alternatively, these samples represent the radiance leaving the visible objects in these

directions. Radiance obeys the “rendering equation”, mixing the properties of the light sources,

the reflective behavior of surfaces, and the global illumination exchanges of light. Therefore, the

radiance leaving a surface in a given direction is potentially influenced by the entire scene, and

varies (sometimes dramatically) with direction. This places strong constraints on the possibility

of image re-use or image re-lighting.

We reviewed a number of techniques based on image re-use for the creation of new images, in an

image synthesis application. All of these techniques create images of portions of the scene, and

attempt to control their re-use either by adjusting their refresh rate or by modifying the mapping

to screen from frame to frame.

Finally we outlined a possible strategy for image-based acceleration of a visualization

application, combining the simplification power of image representations with the quality

obtained by selective image re-generation.
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iMAGIS

What is an image?

Digital image (point samples)

Ideal observation mechanism, captures
radiance (W/m2/sr)

Simple capture geometry

Goal: find out what can be done with an image.
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iMAGIS

Pinhole camera model

Optical center

Image plane

Optical
axis

iMAGIS

Light and matter

Light captured by the camera tells us
about the object we see…

… and a lot more!

The rendering equation

+L(x,θ) = Le(x,θ) Li (x,φ)∫ dωρ(x,θ,φ)
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iMAGIS

Light sources

Extended shape (light fixtures, sky)

Complex near-field emission patterns

Difficult to model from images
–Dynamic range

–Visibility

+L(x,θ) = Le(x,θ) Li (x,φ)∫ dωρ(x,θ,φ)

iMAGIS

Material properties

BRDF = Bidirectional Reflectance
Distribution Function

Characteristic response of each material

Spectral distribution defines object
color(s)

Bi-directional nature of reflectance

+L(x,θ) = Le(x,θ) Li (x,φ)∫ dωρ(x,θ,φ)
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iMAGIS

Components of a BRDF model

Ideal diffuse

Directional diffuse

Ideal specular

Incident light

iMAGIS

Global illumination

Visible objects are illuminated from all
directions

Simulation is costly

Makes reflectance recovery difficult

+L(x,θ) = Le(x,θ) Li (x,φ)∫ dωρ(x,θ,φ)
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iMAGIS

IBR and specular reflections

iMAGIS

IBR and non-diffuse reflections
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iMAGIS

Image-based relighting

3D approach, requires
–Depth information

–Reflectance parameters

–Light source description

Radiance images are needed

What can we do without 3D lighting?

iMAGIS

Image-based relighting (3D)

Loscos and Drettakis, 1999
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iMAGIS

Image-based relighting

3D approach, requires
–Depth information

–Reflectance parameters

–Light source description

Radiance images are needed

What can we do without 3D lighting?

iMAGIS

Image-based relighting (2D)

Linear combination of basis images

Use for lighting design: synthesize
appropriate basis images using SVD.

Will work with radiance images

Dorsey et al. IEEE CG & A, 1995
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iMAGIS

Image-based relighting (2D)

iMAGIS

Adding more variables to images

Add light source direction/position to the
sampled variables

Wong et al 1997, EG rendering workshop
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iMAGIS

Re-using images

Move in a captured scene

Special effects and compositing

Synthetic images
–Simplification, L.O.D.

–Latency compensation (network, rendering
power)

iMAGIS

Techniques for image re-use

Image caching
–Generate image fragments at their own

refresh rate

–Composite on the fly at user display rate

Warping pixels
–Render points

–Interpolate (mesh)

Layered warping
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iMAGIS

Perspective image caching

Use 3D billboard
and perspective
mapping

iMAGIS

Hierarchical image caching

Arrange scene in BSP

Render minimal subtree

Create images from subimages

No update

Move up in hierarchy

Re-generate image
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iMAGIS

Hierarchical image caching



Abstract
For decades, animated cartoons and movie special effects have factored
the rendering of a scene into layers that are updated independently and
composed in the final display. We apply layer factorization to real-time
computer graphics. The layers allow targeting of resources, whether the
ink and paint artists of cartoons or the graphics pipeline as described here,
to those parts of the scene that are most important.

To take advantage of frame-to-frame coherence, we generalize layer
factorization to apply to both dynamic geometric objects and terms of the
shading model, introduce new ways to trade off fidelity for resource use in
individual layers, and show how to compute warps that reuse renderings
for multiple frames.  We describe quantities, called fiducials, that measure
the fidelity of approximations to the original image. Layer update rates,
spatial resolution, and other quality parameters are determined by geomet-
ric, photometric, visibility, and sampling fiducials weighted by the con-
tent author’s preferences. We also compare the fidelity of various types of
reuse warps and demonstrate the suitability of the affine warp.

Using Talisman, a hardware architecture with an efficient layer
primitive, the work presented here dramatically improves the geometric
complexity and shading quality of scenes rendered in real-time.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]:
Picture/Image Generation; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism.

Additional Keywords: sprite, affine transformation, image compo-
siting, image-based rendering, Talisman

1 Introduction
The layered pipeline separates or factors the scene into layers that
represent the appearance of an object (e.g., a space ship separate from
the star field background) or a special lighting effect (e.g., a shadow,
reflection, highlight, explosion, or lens flare.)  Each layer produces a
2D-image stream as well as a stream of 2D transformations that place
the image on the display. We use sprite to refer to a layer’s image
(with alpha channel) and transformation together.

The layered pipeline decouples rendering of layers from their dis-
play. Specifically, the sprite transformation may be updated more
frequently than the sprite image. Rendering (using 3D CG) updates
the sprite image only when needed. Sprite transforming and compo-
siting [Porter84] occur at display rates. The sprite transformation
scales low-resolution sprites up to the display resolution, and trans-
forms sprites rendered earlier to approximate their later appearance.
In other words, the sprite transformation interpolates rendered image
streams to display resolution in both space and time.

Layered rendering has several advantages for real-time CG.  First,
layered rendering better exploits coherence by separating fast-moving
foreground objects from slowly changing background layers.  Second,
layered rendering more optimally targets rendering resources by al-
lowing less important layers to be degraded to conserve resources for
more important layers.  Finally, layered rendering naturally integrates
2D elements such as overlaid video, offline rendered sprites, or hand-
animated characters into 3D scenes.

As an architectural feature, decoupling rendering from compo-
siting is advantageous.  Compositing is 2D rather than 3D, requires no

z-buffer, no lighting computations, no polygon edge antialiasing, and
must handle few sprites (which are analogous to texture-mapped
polygons) relative to the number of polygons in the rendered geome-
try.  This simplicity allows compositing hardware to be made with
pixel fill rates much higher than 3D rendering hardware.  Our investi-
gation demonstrates that the saving in 3D rendering justifies the extra
hardware expense of a compositor.

The layered pipeline augments the set of traditional rendering
quality parameters such as geometric level-of-detail and shading
model (e.g., flat-, Gouraud-, or Phong-shaded), with the temporal and
spatial resolution parameters of each layer. The regulator adjusts the
quality parameters in order to achieve optimal quality within fixed
rendering resources.  The regulator dynamically measures both the
costs of changing the quality parameters – how much more or less of
the rendering budget they will consume – and the benefits – how
much improvement or loss in fidelity will occur.

The specific contributions of this paper include extending the
generality of factoring.  While some authors have considered factor-
ing over static geometric objects [Regan94, Maciel95, Shade96,
Schaufler96ab], we consider dynamic situations and factoring over
shading expressions (Section 2).  We describe how to render using the
layered pipeline (Section 3).  We investigate different types of sprite
transformations and show why an affine transformation is a good
choice (Section 4).  We discuss low-computation measures of image
fidelity, which we call fiducials, and identify several classes of fidu-
cials (Section 5).  We add the spatial and temporal resolution of layers
as regulation parameters and propose a simple regulator that balances
them to optimize image fidelity (Section 6).  Finally, we demonstrate
that the ideas presented here enhance performance of the Talisman
architecture by factors of 3-10, by using interpolated triple-framing or
by regulating the heterogeneous update of sprite images (Section 7).
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Figure 1: TRADITIONAL PIPELINE processes the entire scene
database to produce each output image.  The quality parameters for
texture and geometry (such as level-of-detail) may be set independ-
ently for each object in the scene.  However, the sampling resolutions
in time (frame rate) and space (image resolution and compression)
are the same for all objects in the scene.
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Figure 2: LAYERED PIPELINE partitions the scene into independ-
ent layers.  A single layer’s pipeline (highlighted at top) is similar to
the traditional pipeline.  By adjusting each layer’s quality controls,
the content author targets rendering resources to perceptually impor-
tant parts of the scene.  Slowly changing or unimportant layers are
updated at lower frame rates, at lower resolution, and with higher
compression.
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1.1 The Layered Pipeline and Talisman
The Talisman reference hardware architecture was designed to sup-
port the layered pipeline (see [Torborg96] for details.)  Rendering
occurs within one 32×32 chunk at a time, so that z-buffer and frag-
ment information for antialiasing can be stored on-chip.  The resulting
sprites with alpha channel are compressed and written to sprite mem-
ory.  In parallel with 3D rendering, for every frame, the compositor
applies an affine warp to each of an ordered set of sprites uncom-
pressed from sprite memory and composites the sprites just ahead of
the video refresh, eliminating the need for a frame buffer.  Sprite
composition is limited to the “over” operator [Porter84].

Although our experiments assume the Talisman reference archi-
tecture, the ideas can be usefully applied to traditional architectures.
Layer composition can be emulated with rendering hardware that
supports texture mapping with transparency by dedicating some of the
pixel-fill rate of the renderer for sprite composition.  This may be a
good sacrifice if sprite rendering is polygon limited rather than pixel
fill limited.  Clearly though, Talisman is a superior layered pipeline in
that sprite composition is “for free” (i.e., sacrifices few rendering
resources) and very high speed (because of sprite compression and the
simplicity of sprite composition in relation to rendering).1

1.2 Previous Work
To avoid visibility sorting of layers, alternative architectures use what
are essentially sprites with z information per pixel [Molnar92, Re-
gan94, Mark97].  Such systems are more costly in computation,
bandwidth, and storage requirements since z must be stored and
transmitted to a more complicated compositor.  Z information is also
difficult to interpolate and compress. We observe that z information
per pixel is greatly redundant when used solely to determine a layer-
ing order.  But such an ordering is necessary to ensure an antialiased
result.2  Our approach of factoring into layers allows warping per
coherent object.  It also avoids problems with uncovering of depth-
shadowed information.  Of course, sprites could store multiple z lay-
ers per pixel, a prohibitively costly approach for hardware, but one
near to ours in spirit.  Such a scheme stores all the layers within each
pixel, rather than all the pixels for each layer.3

[Funkhouser93] adjusts rendering parameters to extract the best
quality. We add sprite resolution and update rate to the set of regu-
lated parameters and make photometric measurements rather than
relying on a priori assignment of benefit to sampling rate. [Maciel95]
takes a similar approach but use fiducials and impostor representa-
tions optimized for walkthroughs of static scenes.

Taking advantage of temporal coherence has been an ongoing
theme in computer graphics [Hubschman81, Shelley82].  [Hofmann89]
presents techniques for measuring how much camera movement is

                                                                   
1 In a prototype implementation of Talisman, the compositor is planned to
run at 320M pixels/second compared to 40Mps for the renderer.
2 Penetrating z-sprites will have a point-sampled and thus aliased bound-
ary where visibility switches.
3 Post-warping of unfactored z-images also fails to address the case of
independently moving objects.

allowed before changes in the projected
geometry exceed a given tolerance.
[Chen93, Chen95] show how to take ad-
vantage of coherence between viewpoints
to produce nearly constant cost per frame
walkthroughs of static environments.
[McMillan95] re-projects images to pro-
duce an arbitrary view.

Our use of temporal coherence is most
similar to [Regan94], who observed that
not all objects need updating at the display
rate.  Rather than factoring globally across

object sets requiring a common update rate, our scheme factors over
geometric objects and shading model terms, and accounts for relative
motion between dynamic objects.

[Shade96] and [Schaufler96ab] use image caches and texture-
mapped quadrilaterals to warp the image.  This is conceptually similar
to our work, but does not include the factoring across shading or the
idea of real-time regulation of quality parameters.  We harness sim-
pler image transformations (affine rather than perspective) to achieve
greater fidelity (Section 4.2).  Our work also treats dynamic geometry.

Shading expressions [Cook84, Hanrahan90] have been studied
extensively.  [Dorsey95] factors shading expressions by light source
and linearly combines the resulting images in the final display.
[Guenter95] caches intermediate results.  [Meier96] uses image proc-
essing techniques to factor shadow and highlight regions into separate
layers which are then re-rendered using painterly techniques and fi-
nally composited.  The novel aspects of our technique are the inde-
pendent quality parameters for each layer and warp of cached terms.

2 Factoring
The guiding principle of our approach is to factor into separate layers
elements that require different spatial or temporal sampling rates.
This section discusses guidelines for manually factoring across ge-
ometry and shading, visibility sorting of layers, and annotating models
with layer information.

2.1 Factoring Geometry
Geometry factoring should consider the following properties of ob-
jects and their motions:
1. Relative velocity – A sprite that contains two objects moving

away from each other must be updated more frequently than two
sprites each containing a single object (Figure 3).  Relative ve-
locity also applies to shading.

2. Perceptual distinctness – Background elements require fewer
samples in space and time than foreground elements, and so
must be separated into layers to allow independent control of the
quality parameters.

3. Ratio of clear to “touched” pixels – Aggregating many objects
into a single layer typically wastes sprite area where no geome-
try projects.  Finer decompositions are often tighter.  Reducing
wasted sprite space saves rendering resources especially in a
chunked architecture where some chunks can be eliminated, and
makes better use of the compositor, whose maximum speed lim-
its the average depth complexity of sprites over the display.

2.2 Visibility Sorting
Visibility sorting of dynamic layer geometry can be automated. We
have implemented a preliminary algorithm for which we provide a
sketch here.  A full discussion along with experimental results is in
progress [Snyder97].

To determine visibility order for layers containing moving ge-
ometry, we construct an incrementally changing kd-tree based on a set
of constant directions. A convex polyhedron bounds each layer’s
geometry, for which we can incrementally compute bounding extents

Figure 3: INDEPENDENT UPDATE depends on choice of factoring.  The left and middle figures
show how factoring the geometry into two separate layers allows each layer to be reused.  The
right figure shows a less effective partition.



in each direction.  The kd-tree quickly determines the set of objects
that can possibly occlude a given object, based on these extents. Us-
ing this query, the visibility sort computes an incremental topological
sort on the strongly connected components (which represent occlusion
cycles) of the occlusion graph.  Strongly connected components must
be temporarily aggregated in the same layer, since a priority ordering
does not exist.4

2.3 Factoring Shading
Shading may also be factored into separate layers.  Figure 4 shows a
typical multipass example, in which a shadow layer modulates the
fully illuminated scene, and a reflection layer adds a reflection (in this
case the reflection is the specular reflection from a light.)  Figure 5
shows a schematic view of the steps needed to create the multipass
image.  The shadow layer is generated from a depth map rendered
from the point of view of a light.  The reflection layer is generated
from a texture map produced by a separate rendering with a reflected
camera.  The layers shown in the figure represent post-modulation
images using the same camera.  With traditional architectures, the
three layers are combined in the frame buffer using pixel blend op-
erations supported by the 3D hardware, as described in [Segal92].

 Shadows and reflections may instead be separated into layers as
shown in Figure 6, so that the blend takes place in the compositor
rather than the renderer.  We call these shade sprites in reference to
shade trees [Cook84].  To take advantage of temporal coherence,
highlights from fast moving lights, reflections of fast moving reflected
geometry, and animated texture maps should be in separate layers and
rendered at higher frame rates than the receiving geometry. To take
advantage of spatial coherence, blurry highlights, reflections, or shad-
ows should be in separate layers and given fewer pixel samples.

For reflections, the correctness of using the compositor is evident
because the reflection term is simply added to the rest of the shading.
More generally, any terms of the shading expression that are com-
bined with ‘+’ or ‘over’ may be split into separate layers. ‘A + B’ can
be computed using ‘A over B’ and setting A’s alpha channel to zero.

The separation of shadows is slightly more difficult.  The shad-
owing term multiplies each part of the shading expression that de-
pends on a given light source.  Many such terms can be added for

                                                                   
4 At least, an ordering does not exist with respect to hulls formed by the
set of bounding directions, which is a more conservative test than with the
original bounding polyhedra.  Note that visibility order for aggregated
layers is computed simply by rendering into the same hardware z-buffer.

multiple shadowing light sources.  We describe an approximation to
multiplicative blending using the ‘over’ composition operator in an
appendix.

Consider a simple example of a shading model with two textures
and a shadow, S N L T T( )( )⋅ +1 2 , where S is the shadowing term, N is

the normal to the light, L is the light direction, and T1 and T2 are tex-
ture lookups.  This shading model can be factored into three layers: S,
( )N L T⋅ 1 , and( )N L T⋅ 2 , which are composited to produce the final

image. The fact that this expression can be reordered and partial re-
sults cached is well known [Guenter95]. What we observe here is that
each of these factors may be given different sampling resolutions in
space and time, and interpolated to display resolutions.

As an aside, we believe shade sprites will be useful in authoring.
When modifying the geometry and animation of a single primitive, the
artist would like to see the current object in the context of the fully
rendered and animated scene.  By pre-rendering the layers that are not
currently being manipulated, the bulk of the rendering resources may
be applied to the current layer.  The layers in front of the current layer
may be made partially transparent (using a per-sprite alpha multiplier)
to allow better manipulation in occluded environments.  By using
separate layers for each texture shading term, the artist can manipu-
late the texture-blending factors interactively at the full frame rate.

2.4 Model Annotation
The first step of model annotation is to break the scene into “parts”
such as the base level joints in a hierarchical animated figure.  The
parts are containers for all of the standard CG elements such as poly-
gon meshes, textures, materials, etc., required to render an image of
the part. A part is the smallest renderable unit.

The second step is to group the parts into layers according to the
guidelines described above.  The distinction is made between parts
and layers to allow for reuse of the parts, for example in both a
shadow map layer and a shadow receiver layer.

The final step is to tag the layers with resource-use preferences
relative to other layers in the scene.  The preferences are relative so
that total resource consumption can change when, for example, other
applications are started (as discussed in Section 6).

Figure 4: FACTORED SHADING EXPRESSION separates
shadow, diffuse, and specular terms.  In this example, the shadow
and specular sprites are both computed at 25% (50% in x and y) of
the display resolution.  The shadow sprite modulates the color.  The
specular sprite adds to the output without changing alpha.
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Figure 5: MULTIPASS RENDERING combines the results of several
rendering passes to produce effects such as shadows and reflections.
With a traditional architecture, the rendering passes are combined
using blending operations in the 3D renderer (multiplication for
shadow modulation and addition for adding reflections.)
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Figure 6: SHADE SPRITES are combined in the final composition
phase to produce the multipass rendering.  Each shading term may
have different resolutions in space and time.



3 Image Rendering
This section discusses how a layer’s sprite image is created (i.e., ren-
dered).  Once created, the image can be warped in subsequent frames
to approximate its underlying motion, until the approximation error
grows too large.  Although the discussion refers to the Talisman refer-
ence architecture with its 2D affine image warp, the ideas work for
other warps as well.

3.1 Characteristic Bounding Polyhedron
The motion of the original geometry is tracked using a characteristic
bounding polyhedron, usually containing a small number of vertices

(Figure 7).  For rigidly
moving objects, the
vertices of the charac-
teristic polyhedron,
called characteristic
points, are transformed
using the original ge-
ometry’s time-varying
transform.  Nonrigidly
deforming geometry can
be tracked similarly by

defining trajectories for each of the characteristic points. To group
rigid bodies, we combine the characteristic bounding polyhedra, or
calculate a single bounding polyhedron for the whole.

3.2 Sprite Extents
For a particular frame, there is no
reason to render off-screen parts of
the image.  But in order to increase
sprite reuse, it is often advantageous
to expand the sprite image to include
some off-screen area.

Figure 8a shows how clipping a
sprite to the screen (solid box) pre-
vents its later reuse because parts of
the clipped image later become
visible.  In Figure 8b, the sprite
extent (dashed box) has been en-
larged to include regions that later
become visible.  The extra area to
include depends on such factors as
the screen velocity of the sprite
(which suggests both where and how much the extents should be
enlarged) and its expected duration of reuse.

3.3 Sprite Rendering Transformation
When creating a sprite image, we must consider a new transform in
the pipeline in addition to the modeling, viewing, and projection
transforms: a 2D affine transform that maps the sprite to the screen.

If T is the concatenation of the modeling, viewing, and projection
matrices, a screen point p’ is obtained from a modeling point p, by p’ =
T p.  For the sprite transformation, p’ = A q, where A is an affine trans-
form and q is a point in sprite coordinates.  To get the proper mapping
of geometry to the display, the inverse 2D affine transform is ap-
pended to the projection matrix, so that q = A-1 T p results in the same
screen point p’ = A q = A A-1 T p = T p (Figure 9).  The choice of matrix
A determines how tightly the sprite fits the projected object.  A tighter
fit wastes fewer samples as discussed in Section 2.

To choose the affine transform that gives the tightest fit, we first
project the vertices of the characteristic bounding polyhedron to the
screen, clipping to the expanded sprite extent.  Then, using discrete
directions (from 2-30, depending on the desired tightness), we calcu-
late 2D bounding slabs [Kay86].  Alternately, the slab directions may

be chosen by embedding preferred axes in the original model, and
transforming the axes to screen space.

Using the bounding slabs, we find the bounding rectangle with
the smallest area (Figure 10).  The origin and edges of the rectangle
determine the affine matrix.  Initially, we searched for the smallest
area parallelogram, but found the resulting affine transformation had
too much anisotropy.

Figure 10: BOUNDING SLABS are obtained by taking the extremal
values of the dot product of each slab direction with the characteris-
tic points.  A tight-fitting initial affine transform can be calculated by
taking the minimum area rectangle or parallelogram that uses the
slab directions.

3.4 Spatial Resolution
The choice of affine matrix A also determines how much the sprite is
magnified on the display.  Rendering using a sampling density less
than the display’s is useful for less important objects or for intentional
blurring (Figure 11).  The default is to use the same sampling density
as the screen, by using the length in pixels of each side of the paral-
lelogram from Section 3.3.  See Figure 24 for an example of different
sampling resolutions per sprite.

For a linear motion blur effect, the sprite sampling along one of
the axes may be reduced to blur along that axis.  The sprite rendering
transformation should align one of the coordinate axes to the object’s
velocity vector by setting the bounding slab directions to the velocity
vector and its perpendicular.

Figure 11: SPATIAL RESOLUTION is independent of the display
resolution.  The sampling density of the top sprite is the same as the
screen.  The middle sprite uses fewer samples than the screen, trading
off pixel fill for blur.  The bottom sprite aligns to the velocity vector
and uses fewer samples along one dimension for a motion blur effect.
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Figure 7: CHARACTERISTIC BOUND-
ING POLYHEDRON matches the shape
of the geometry but has fewer vertices.

Figure 8: SPRITE EXTENTS
enlarge the display extent to
reuse sprites whose geometry
lies partially off-screen.
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Figure 9: SPRITE RENDERING TRANSFORMATION maps the 3D
shape into the sprite image. Affine transform B does not make the
best use of image samples, while A fits the projected shape tightly.



4 Image Warps
To reuse a rendered sprite image in subsequent frames, an image warp
is used to approximate the actual motion of the object.  We use the
projected vertices of
the bounding polyhe-
dron (the characteris-
tic points) to track the
object’s motion, as
shown in Figure 12.

To reuse images
where objects are in
transition from off-
screen to on-screen,
and to prevent large
distortions (i.e., ill-
conditioning of the
resulting systems of
equations), the char-
acteristic bounding
polyhedron is clipped
to the viewing frus-
tum, which may be enlarged from the display’s as discussed in Sec-
tion 3.2.  The clipped points are added to the set of characteristic
points (Figure 13) and used to determine an approximating sprite
transformation as described below.

4.1 Affine Warp
A 2D affine transform is
represented by a 2x3
matrix, where the right
column is translation and
the left 2x2 is the rota-
tion, scale, and skew.
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where n is the number of points (at least 3 for the affine transform).

Let $P  be the matrix of characteristic points at the initial time and P be
the matrix at the desired time t.  We solve for the best least-squares
transform that matches the two sets of image-space points [Xie95].

In an affine transform, the x and y dimensions are decoupled and

so may be solved independently.  To solve AP P$ =  at time t for the
best A, in the least-squares sense, we use normal equations:

APP PPT T$ $ $=
A PP PPT T=

−
$ $ $3 8 1

The normal-equations technique works well in practice, as long as the
projected points are reasonably distributed.  Adding the clipped char-

acteristic points ensures that $ $PPT is not rank deficient.  Much of the
right hand side may be collected into a single vector K that may be re-
used for subsequent frames.

K P PPT T=
−

$ $ $3 8 1

A PK=
To calculate K requires the accumulation and inverse of a symmetric
3 3×  matrix.

4.2 Comparison of Warps
Clearly, other types of image warps can be used in place of the affine
described above.  In order to compare alternative image warps, we ran
a series of experiments to

1. measure update rate as a function of maximum geometric
error for various warps, and

2. measure perceptual quality as a function of update rate for
various warps.

Each series involved the animation of a moving rigid body and/or
moving camera to see how well image warping approximates 3D
motion.  We tried several types of rigid bodies, including nearly pla-
nar and non-planar examples.  We also tried many animated trajecto-
ries for each body including translations with fixed camera, transla-
tions accompanied by rotation of the body along various axes with
various rotation rates, and head turning animations with fixed objects.

The types of 2D image warps considered were
1. pure translation,
2. translation with isotropic scale,
3. translation with independent scale in x and y,
4. general affine, and
5. general perspective.

The fundamental simulation routine computes an animation given a
geometric error threshold, attempting to minimize the number of ren-
derings by approximating with an image warp of a particular type.  A
pseudo-code version is shown in Figure 14.

Ideally, we would like to compute approximations of each type
that minimize the maximum error over all characteristic points, since
this is the regulation metric. This is a difficult problem computation-
ally, especially since the warping transformation happens at display
rates for every layer in the animation.  Minimizing the sum of squares
of the error is much more tractable, yielding a simple linear system as
we have already discussed.  As a compromise, we simulated both
kinds of error minimization: sum-of-squares and maximum error
using an optimization method for L∞ norms that iteratively applies the
sum-of-square minimization, as described in [Gill81, pp. 96-98].

Further complicating matters, minimizing the error for perspec-
tive transformations is easier when done in homogeneous space rather
than 2D space, again since the latter yields an 8×8 linear system
rather than a difficult nonlinear optimization problem.  We therefore
included sum-of-square and maximum error methods for the first four
(non-perspective) transformation types.

For perspective, we included sum-of-square minimization in ho-
mogeneous space (yielding a linear system as described above),
maximum error in homogeneous space (using the technique of
[Gill81]), and sum-of-square minimization in nonhomogeneous space
(post-perspective divide), using gradient descent.5   The starting point

                                                                   
5 Minimization of the maximum nonhomogeneous error seemed wholly
impractical for real-time implementation.
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Figure 12: MATCHING CHARACTERIS-
TIC POINTS on the 3D shape are projected
to the screen to find a transform A that best
matches the original points (white) to the
points in the new frame (black).

Figure 13: CLIPPED CHARACTERIS-
TIC POLYHEDRON adds corresponding
points introduced by clipping the charac-
teristic polyhedron at the last-rendered
and current frames.

  simulate(error-threshold, warp-type, animation)
  {
       for each frame in animation
          compute screen position of characteristic points at current time
          compute transform (of warp-type) which best maps old
            cached positions to new positions
          compute maximum error for any characteristic point
          if error exceeds threshold
              re-render and cache current positions of characteristic points
          else
              display sprite with computed transformation
          endif
      endfor
      return total number of re-renderings
  }

Figure 14: EXPERIMENT PSEUDOCODE shows steps used to com-
pute update rates of various warps.



for the gradient descent was the sum-of-squares-error-minimizing
affine transformation.

We also included a perspective transformation derived using the
method of [Shade96], in which objects are replaced by a quadrilateral
placed perpendicular to the view direction and through the center of
the object’s bounding box.  Our derivation projects the characteristic
points onto this quadrilateral, bounds the projected points with a rec-
tangle, and projects the corners of the rectangle to the screen.  The
perspective transformation that maps the old corners of the rectangle
to their current locations is selected as the approximation.  In yet
another version, Shade’s method is used as a starting point and then
refined using gradient descent in nonhomogeneous space with the
sum-of-square error metric.

Representative results of the first series of experiments are shown
in Figure 15 and Figure 16.  In both figures, the experiment involved a
rotating and translating teapot which is scaled nearly flat6 in Figure 15
and unscaled in Figure 16.  Error thresholds ranging from 1/8 pixel to
64 pixels were used for each warp type/error minimization method,
assuming an image size of 1024×1024, and the resulting rate of re-
rendering measured via the simulation process described above. The
meanings of the curve name keywords are as follows:

keyword Warp type and minimization method
trn translation, sum-of-square
trni translation, max
so translation with xy scale, sum-of-square
soi translation with xy scale, max
aff affine, sum-of-square
affi affine, max
per perspective, homogeneous, sum-of-square
peri perspective, homogeneous, max
per2 perspective, nonhomogeneous, sum-of-square
pers perspective, method of Shade
pers2 pers, followed by gradient descent

In the case of the flat teapot (Figure 15), note that the error/update
curves cluster into groups – translation, translation with separate
scale, Shade, affine, and perspective, in order of merit.  Shade’s
method is significantly outperformed by affine.  Note also that the

                                                                   
6 The teapot, a roughly spherical object, was scaled along its axis of bilat-
eral symmetry to 5% of its previous size.

sum-of-square error minimization is not much different than maxi-
mum error minimization for any of the warp types.  The difference
between perspective and affine is much less than one might expect in
this case, given that perspective exactly matches motions of a per-
fectly flat object.  Figure 16 (regular teapot) is similar, except that the
clusters are translation, translation with separate scale, and all other
warp types.  In this case, perspective yields virtually no advantage
over affine, and in fact is slightly worse towards the high-error/low
update rate end of the curves for the homogeneous space metrics
(per and peri).7  This is because the homogeneous metric weights
the errors unevenly over the set of characteristic points.  The method
of Shade is slightly worse than affine in this case.

Since geometric error is a rather indirect measure of the percep-
tual quality of the warp types, the second series of experiments at-
tempted to compare the perceptual quality of the set of warps given an
update rate (i.e., an equal consumption of rendering resources).  We
used binary search to invert the relation between error threshold and
update rate for each warp type, and then recorded the same animation,
at the same update rate8, for various image warp approximations.
Although subjective, the results confirm the merit of the affine trans-
formation over less general transformations and the lack of improve-
ment with the more general perspective transformation in typical
scenarios.

4.3 Color Warp
Images can be “warped” to match photometry changes as well as
geometry changes.  For example, Talisman provides a per-sprite color
multiplier that can be used to match photometry changes.  To solve
for this multiplier, we augment each characteristic point with a nor-
mal so that shading results can be computed (see Section 5.2).  The
color multiplier is selected using a simple least-squares technique that
best matches the original color values of the shaded characteristic
points to the new color values.

                                                                   
7 In the second series of experiments, the animations that used the homo-
geneous-weighted metric to determine an approximating perspective
transformation looked visibly worse than those that used the simple affine
transformation.
8 The update rate is the fraction of frames re-rendered; this balances the
total consumption of rendering resources over the whole animation.
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Figure 15: FLAT TEAPOT update-rate/error relations for the vari-
ous warps show a surprisingly small difference between the affine
and the perspective for a nearly flat object .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1

up
da

te
 r

at
e

error (screen fraction)

[exp02] teapot

trn
trni
so
soi
aff
affi
per
peri

per2
pers

pers2

Figure 16: REGULAR TEAPOT update-rate/error relations show
that affine and perspective are nearly indistinguishable.



5 Fiducials
Fiducials measure the fidelity of the approximation techniques. Our
fiducials are of four types.  Geometric fiducials measure error in the
screen-projected positions of the geometry.  Photometric fiducials
measure error in lighting and shading.  Sampling fiducials measure
the degree of distortion of the image samples.  Visibility fiducials
measure potential visibility artifacts.

We use conservative measurements where possible, but are will-
ing to use heuristic measurements if efficient and effective. Any com-
putation expended on warping or measuring approximation quality
can always be redirected to improve 3D renderings, so the cost of
computing warps and fiducials must be kept small relative to the cost
of rendering.

5.1 Geometric Fiducials

Let $P  be a set of characteristic
points from an initial rendering, let
P be the set of points at the current
time, and let W be the warp com-
puted to best match $P  to P.  The
geometric fiducial is defined as

F P WPgeom
i

i i= −max $

5.2 Photometric Fiducials
We use two approaches to approximately measure photometric errors.
The first uses characteristic points augmented with normals as de-
scribed in Section 4.3 to point sample the lighting.  Let $C  be the col-
ors that result from sampling the lighting at the characteristic points at
the initial time, and C  be
the sampled colors at the
current time.  Let WC be
the color warp used to best
match $C  to C 9. Then the
shading photometric fidu-
cial is defined to be the
maximum pointwise dis-
tance from the matched
color to the current color.

F C W Cphoto
i

i C i= −max $

Another approach is to abandon color warping and simply meas-
ure the change in photometry from the initial time to the current.
Many measures of photometric change can be devised. Ours measures
the change in the apparent position of the light.  Let $L  be the position
of the light at the initial time and L  be its position at the current time
(accounting for relative motion of the object and light).  For light
sources far away from the illuminated object, we can measure the
angular change from $L  to L  with respect to the object, and the change
in distance to a representative object “center”.  For diffuse shading,
the angular change essentially
measures how much the object’s
terminator moves around the object,
and the change in distance measures
the increase or decrease in bright-
ness.  Light sources close to the
object are best handled with a sim-
ple Euclidean norm.  For specular
shading, changes in the eye point
can also be measured.

                                                                   
9 Note that in architectures without color warping capability, WC  is the
identity transform and we simply measure the maximum shading differ-
ence over all the characteristic points.

5.3 Sampling Fiducials
Sampling fiducials measure distortion of the samples in the image
approximation.  In Figure 20, both the geometric and photometric
fiducials indicate high fidelity, but the image is blurry.  The magni-
tudes of the singular val-
ues of the Jacobian of the
image mapping function
measure the greatest mag-
nification and minification
and the ratio measures the
maximum anisotropy10.
The affine warp has a
spatially invariant Jaco-
bian given by the left 2×2
part of the 2×3 matrix, for
which the two singular values are easily calculated [Blinn96].  For
transforms with spatially varying Jacobians, such as the perspective
warp, the singular values vary over the image. In this case, bounds on
the singular values over the input domain can be computed.

5.4 Visibility Fiducials
Visibility fiducials measure potential visibility artifacts by tracking
back-facing to front-facing transitions in the characteristic geometry
(the simplified geometry makes these calculations tractable), and
testing if the edges of clipped sprites become visible.

6 Regulation
A more complete treatment of regulation issues and directions may be
found in [Horvitz96]. Our prototype regulator uses a simple cost-
benefit scheduler and fiducial thresholds. The fiducial threshold pro-
vides a cutoff below which no attempt to re-render the layer is made
(i.e., the image warp approximation is used).  The regulator considers
each frame separately, and performs the following steps:

1. Compute warp from previous rendering.
2. Use fiducials to estimate benefit of each warped layer.
3. Estimate rendering cost of each layer.
4. Sort layers according to benefit/cost.
5. Use fiducial thresholds to choose which layers to re-render.
6. Adjust parameters of chosen layers to fit within budget.
7. Render layers in order, stopping when all resources are used.
For a “budget-filling” r egulator, the fiducial threshold is set to be

small, on the order of a 1/1000 of the typical maximum error.  All of
the rendering resources are used in the attempt to make the scene as
good as possible.  For a “threshold” regulator, the threshold is raised
to the maximum error that the user is willing to tolerate. This allows
rendering resources to be used for other tasks.

Cost estimation [step 3] is based on a polygon budget, and meas-
ures the fraction of this budget consumed by the number of polygons
in the layer’s geometry.  Parameter adjustments [step 6] are made to
the sprite’s spatial resolution using a budgeted total sprite size.  This
accounts for the rate at which the 3D rendering hardware can rasterize
pixels.11  Sprites that have been selected for re-rendering [step 5] are
allocated part of this total budget in proportion to their desired area
divided by the total desired area of the selected set.  To dampen fluc-
tuations in the regulation parameters which are perceptible when
large, parameter changes are clamped to be no more than ±10% of
their previous value at the time of last re-rendering.  Note that factor-
ing into many low-cost sprites allows smoother regulation.

                                                                   
10 The filtering capabilities of the hardware limit the amount of minifica-
tion and anisotropy that can be handled before perceptible artifacts arise.
11 A global average depth-complexity estimate is used to reduce the
budget to account for rasterization of hidden geometry.  Note that the
depth complexity of factored geometry in a single layer is lower than
would be the case for frame-buffer renderings of the entire scene.

Figure 17: GEOMETRIC
FIDUCIAL measures maxi-
mum pointwise distance be-
tween the warped original and
current characteristic points.

Frame 0 Frame 1

Figure 18: POINT-SAMPLED PHO-
TOMETRIC FIDUCIAL samples the
shading at the initial and current
characteristic points with normals.

Figure 19: LIGHT SOURCE
PHOTOMETRIC FIDUCIAL
measures lighting change by
the relative motion of light.

A0

Ai

Figure 20: SAMPLING FIDUCIAL
measures how the samples of a sprite are
stretched or compressed.



7 Results
For the results presented here, we assume we have an engine that will
composite all of the sprite layers with minimal impact on the render-
ing resources (as in the Talisman architecture.)  We track the number
of polygons and the amount of pixel fill used for rendering, but disre-
gard compositing.

Both of the sequences described below are intended to represent
typical content.  For scenes with a moving camera, the typical
speedup is 3-5 times what the standard graphics pipeline is capable of
producing.

7.1 Canyon Flyby
This 250-frame sequence (Figure 25) used 10 sprite layers.  We inter-
polated using affine warps and regulated the update rate with a geo-
metric fiducial threshold of 4 pixels.  Each sprite layer was re-
rendered only when the geometric threshold was exceeded.  The fidu-
cial threshold of 4 pixels may seem large, but is acceptable for this
sequence since the ships are well separated from the rest of the world.

The average update rate was 19%, and the cost-weighted average
(based on polygon
count) was 32%.
About a third of the
total polygons were
rendered per frame.

 In the canyon
flyby scene, the entire
background was
placed in one sprite.
Parallax effects from
the rapidly moving
camera make this a
poor layering deci-
sion that yields a high
update rate for the
landscape sprite.  In
contrast, the sky is
rendered just once
and then positioned with a new affine transformation each frame, and
parts of the ships are updated relatively infrequently (5-30%).

7.2 Barnyard
The barnyard sequence (Figure 26) was chosen as an example in
which a camera moves through a static scene12.  This is a difficult
case, because the eye is sensitive to relative motion between static
objects.  Approximation errors in sequences in which objects already
have relative motion are far less perceptible (e.g., the ships in the
canyon flyby above.)  Even with this difficult case, our interpolation
technique is dramatically better than triple framing.

The scene is factored into 119 standard layers, 2 shadow map
layers, and 2 shadow modulation layers.  The contiguous landscape
geometry was split into separate sprites.  As an authoring pre-process,
the geometry along the split boundaries was expanded to allow for
small separation of the warped sprites (the “seam” artifact.)  This is
similar to the expansion of the geometry along the split used by
[Shade96].  More work is needed for automatic determination of the
geometric expansion and better blending along the split boundaries.

The resource-use graph in Figure 22 shows three types of regula-
tion.  Simple triple framing, in which a frame is rendered and then
                                                                   
12 In the longer film from which the barnyard sequence is taken, many of
the shots have fixed cameras.  In these shots, only the main characters
need to be updated, so the performance gain is extremely high.  This is
similar to the time-honored technique of saving the z-buffer for fixed
camera shots.

held for three frames, requires the most resources.  Interpolated triple-
framing requires the same amount of rendering resources, but inter-
polates through time using the warp described in Section 4.1 – the
sprites are still rendered in lock-step but track the underlying charac-
teristic geometry between renderings.  The rest of the curves show
threshold regulation with increasing geometric error threshold, from
0.1-0.8 pixels – the sprites are updated heterogeneously when the
geometric error threshold is exceeded.  The graph is normalized to the
resource use of triple-framing.
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Figure 22: BARNYARD RESOURCE USE shows polygon counts as a
15-frame moving average.  Pixel fill resource use is analogous. The
top line is the triple-frame rendering.  The lines below use threshold-
regulation with increasing geometric threshold.  As expected, as the
pixel error tolerance goes up, the resource use goes down.

In the resulting animations, the most dramatic improvement in
quality comes when the interpolation is turned on.  The rest of the
animations are nearly indistinguishable and use a fraction of the re-
sources by rendering only those sprites whose geometric error exceeds
the threshold.

Figure 23 shows the average pixel error for the same sequences
shown in Figure 22.  Each of the threshold-regulation sequences uses
an error threshold smaller than the maximum error observed when
triple-framing.  Note that threshold-regulation is not the typical case
and is shown here simply to demonstrate the performance advantage
over the traditional graphics pipeline.  Typically, all of the rendering
resources are used to make the picture as good as possible.
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Figure 23: BARNYARD PIXEL ERROR shows average sprite pixel
error per frame.  Note that the triple-frame error is a saw-tooth that
starts at 0, jumps to ½, and then jumps to full error value.  The other
curves oscillate below the given geometric threshold value.
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Figure 21: CANYON FLYBY AVERAGE
UPDATE RATE for each sprite is the
number of times each sprite was rendered
divided by the number of frames in the se-
quence, 250



8 Conclusions and Future Work
3D scenes should be factored into layers, with each layer having the
proper sampling rates in both space and time to exploit the coherence
of its underlying geometry and shading.  By regulating rendering
parameters using feedback from geometric, photometric, visibility,
and sampling fiducials, rendering resources are applied where most
beneficial.  When not re-rendered, image warping suffices to ap-
proximate 3D motion of coherently factored layers.  An affine warp
provides a simple but effective interpolation primitive.  These ideas
yield 3-10 times improvement in rendering performance with the
Talisman architecture with minor artifacts; greater performance can
be controllably obtained with further sacrifices in fidelity.

Perceptual discontinuities may occur when a sprite’s image is up-
dated.  Approximation with image warps captures the in-plane rota-
tion, scale, and translation of an object, but not the out-of-plane rota-
tion.  The sprite image updates are sometimes perceived as a “click-
ing” or “popping” discontinuity.  As the demand for higher quality 3D
graphics increases display refresh rates, such artifacts will wane even
at large factors of rendering amplification.  More work is needed on
the “seam” artifact (handling the boundaries of contiguous geometry
placed in separate sprites.)  Better modeling of the perceptual effects
of regulation parameters is another area of future work [Horvitz97].

Factoring of shading terms is currently done using a fixed shading
model that targets only the addition and over operations provided by
hardware.  Compilation of programmable shaders into layerable terms
is an important extension.  Many shading expressions, such as the
shadow multiplication described in the appendix, can only be ap-
proximated with the over operator.  We are interested in extending the
system to target a fuller set of the image compositing operations.
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Appendix: Shadow Sprites
For a fast-moving shadow on a slow-moving receiver, we update only the
fast-moving shadow and use the compositor to compute the shadow
modulation.  Since the compositor supports only ‘over’, we use the fol-
lowing approximation.

Let B= β βB,   be the receiver, where B is the color and β  is the cov-

erage.  Let A= α αA,   be the desired shadow sprite, where A is the color

and α  is the coverage.  The compositor computes
A Bover = α α β α α βA B+( - ) , +( - )  1 1 .

Let s be the shadow modulation obtained by scan-converting the ge-
ometry of the background while looking up values in the shadow map of
the fast moving object, where 0 means fully in shadow and 1 means fully
illuminated.

The desired result is C’= , s Bβ β .  By letting A= −[ ,( ) ]0 1 s β , we

get C A B’ over= , or C’= +( - )( - ) , +( - )( - )  s B s B sβ β β β β β1 1 1 1  which is

close to the correct answer.  Where there is no shadow, s is 1 and we get
the correct answer of β βB,  .  Where coverage is complete, β  is 1 and

we get the correct answer of sB,1 .  The problem lies in regions of
shadow and partial coverage.

Ideally, the shadow modulation needs a color multiply operator ‘*’
defined by s B s B∗ =[ , ] [ , ]β β β β .  This is a per-pixel version of the Porter-
Duff ‘darken’ operator.  Note that this operator is not associative, and so
requires the saving of partial results when used in a nested expression.
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Figure 24: CHICKEN CROSSING sequence used 80 layers, some of which are shown separately (left
and bottom) and displayed in the final frame with colored boundaries (middle).  The sprite sizes reflect
their actual rendered resolutions relative to the final frame.  The rest of the sprites (not shown sepa-
rately) were rendered at 40-50% of their display resolution.  Since the chicken wing forms an occlusion
cycle with the tailgate, the two were placed in a single sprite (bottom).

Figure 25: CANYON FLYBY used 10 layers with a geometric
fiducial threshold of 4 pixels.  The average sprite update rate
was 19% with little loss of fidelity.

Figure 26: BARNYARD was factored into 119 geometry layers,
2 shadow map layers, and 2 shadow modulation layers.  Thresh-
old regulation for various geometric fiducial thresholds is com-
pared in Figures 22 and 23.
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Abstract

This paper describes the successful combination of pre-generated and dynamically updated image-based repre-
sentations to accelerate the visualization of complex virtual environments. We introduce a new type of impostor,
which has the desirable property of limiting de-occlusion errors to a user-specified amount. This impostor, com-
posed of multiple layers of textured meshes, replaces the distant geometry and is much faster to draw. It captures
the relevant depth complexity in the model without resorting to a complete sampling of the scene. We show that
layers can be dynamically updated during visualization. This guarantees bounded scene complexity in each frame
and also exploits temporal coherence to improve image quality when possible. We demonstrate the strengths of
this approach in the context of city walkthroughs.

1. Introduction

The interactive visualization of extremely complex geo-
metric datasets is becoming an increasingly important ap-
plication of computer graphics. Although the performance
of graphics hardware has improved dramatically in recent
years, the demand for performance continues to grow, as en-
vironments containing many millions of polygons become
commonplace. In order to visualize such scenes at interac-
tive rates, it is necessary to limit the number of geometric
primitives rendered in each frame.

Recently, image-based rendering (IBR) techniques have
emerged as an attractive alternative to geometry-based sys-
tems for interactive scene display. With IBR methods, the
three dimensional scene is replaced by a set of images, and
traversing the scene is therefore independent of object space
complexity.

To date, two distinct approaches have been explored in the
construction of image impostors or caches1; 2; 3; 4 for the in-
teractive navigation of complex scenes. The first approach
involves the pre-generation of an image-based representa-
tion for a collection of viewpoints. The advantage of this
scheme is that it is possible to deal with excessive and po-
tentially unbounded geometric complexity in a preprocess-
ing step. The disadvantage is that the representation is fixed,
so it must be used whenever the point of view is within the
associated region of space for which this representation has

been generated. Hence, artifacts that are introduced cannot
be corrected, even if there is sufficient time and additional
information about the viewer’s position and viewing direc-
tion available during runtime.

In the second approach, impostors are updated dynami-
cally. With this strategy, if the user moves slowly or comes
to a complete halt, the image can be progressively refined
to the correct image — that is, the one that would have been
obtained by rendering the original geometry. A disadvantage
of dynamically generated impostors arises from from the po-
tentially unbounded complexity of the geometry that needs
to be converted into the image-based representation. As the
updates are done on the fly, they must fit into the frame-time
budget allocated for generating the final images.

This paper introduces a novel impostor3 representation
that combines pre-generated and dynamically updated im-
postors into a single framework. We call this new represen-
tation themulti-mesh impostor(MMI). An advantage of the
MMI is that does not enforce a single choice of how to incor-
porate its contents into the final image. Hence, it allows for a
pre-calculated representation where necessary, but also sup-
ports a gradual transition to dynamic updates for better qual-
ity when feasible within the given frame-time constraints. In
addition, the MMI improves on previous image-based scene
representations by allowing the user to control the number
of occlusion artifacts. By choosing a single quality parame-
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ter, the occurrence of typical image-based rendering artifacts
such as “rubber sheets” or cracks due to de-occlusion events
can be restricted to a given size.

The remainder of the paper is organized as follows.
The next section surveys previous work and discusses the
strengths and weaknesses of pre-generated and dynamically
updated impostors. Section 3 presents a taxonomy of the
most common artifacts that occur with existing imposter
techniques. Section 4 introduces the multi-meshed impos-
tor (MMI). Section 5 presents an application of the MMI
— combined with dynamically updated impostors — to the
interactive visualization of large models. Section 6 reports
results of the combination of MMIs and pre-generated im-
postors relative to previous approaches. Section 7 concludes
with a discussion of the tradeoffs that have been made in the
implementation.

2. Previous work

In this section, we review previous work on pre-generated
and dynamically updated image-based representations

2.1. Pre-generated image-based representations

Pre-generated image-based representations make use of off-
line resources to deal with the potentially unbounded geo-
metric complexity of a given scene. Researchers have gen-
erated planar or omni-directional images to represent dis-
tant geometry. Such images must be available for sufficiently
close viewpoints so that switching from one image to the
next during a walkthrough is seamless. Using image warp-
ing usually reduces popping artifacts, although many warp-
ing methods introduce problems of their own, such as cracks
or rubber-sheet triangles.

In order to cope with these artifacts, the number of
viewpoints from which a representation is valid can be in-
creased, but this adds to the considerable storage overhead
of image-based methods (consider the memory requirements
of one full-screen sized image in true-color of almost three
megabytes). These representations must be paged from sec-
ondary storage during runtime, as this image data will gen-
erally not fit into main memory.

In order of ascending complexity of the sample organiza-
tion, Grossman et al.24 and Dally et al.5 use individual points
or small groups of points as samples in the image-based rep-
resentation. Maciel et al.3 and Aliaga6 use planar projections
to sample large portions of a model and texture-map them
onto polygons for the final image. Chen7, McMillan et al.8

and Xiong28 use environment maps to represent the distant
portion of the scene that is surrounding the user. Sillion et
al.2, Darsa et al.9 and Pulli et al.10 use meshes to approximate
a 3D image warp. Finally, Laveau et al.11, Max et al.12; 13 and
Rafferty et al.26 use 3D image warping of the samples.

An alternative approach extends the notion of an image to

layered depth images14 (LDIs) where each pixel contains all
the intersections of the ray with the scene. Consequently, any
portion of the object’s surface is available for exposure, at
the added cost of storage and processing of samples that will
not become visible under the set of relevant viewing condi-
tions. This representation must be generated during prepro-
cessing, as current graphics hardware does not support the
maintainence of multiple samples along the viewing ray per
pixel.

2.2. Dynamically updated image-based representations

With dynamically updated image-based representations,
there is little time to convert an image into a more elabo-
rate representation. Instead, the data produced in the frame
buffer by the graphics hardware must be reused largely in its
current state. Special hardware15 has been proposed to do
this, and on some computers, a unified memory architecture
25 helps in reusing image data for rendering.

When flat image data is not augmented by depth infor-
mation, one cannot deviate much from the point of view for
which the image was generated without noticing the substi-
tution. Warping a depth-image can help increase the lifetime
of the image-based representation. However, as long as only
one image is warped, occlusion artifacts will appear as sur-
face sections hidden in the reference image become exposed.

In the work of Kajiya et al.15 and Lengyel et al.16, the fi-
nal image is composited from individually updated image
layers. The layers each contain a set of non-penetrating ob-
jects and are composited back to front by novel video hard-
ware that removes the traditional frame buffer and decou-
ples video refresh from object image refreshes. Shade et al.1

and Schaufler et al.4 use polygons with textures depicting
portions of the scene. If the viewpoint moves too much, the
textures are updated. Regan and Pose17 use shells of envi-
ronment maps around the user as the projection of distant
objects changes slower under motion of the viewpoint. Each
environment map is updated at a rate corresponding to the
distance from the map to the user.

Schaufler27 has presented a warping technique that is
compatible with current graphics hardware architectures.
Mark et al.18 maintain the user’s current view along with a
depth map of this image as a representation of the complete
scene. By warping this view, they can generate fast inter-
mediate frames at low cost between full renderings of the
scene’s geometry. They also demonstrate this approach in
a remote server-client setting. A related strategy was devel-
oped by Mann et al.19 in the context of remote navigation of
virtual environments.

Taken individually, the above approaches offer advan-
tages, however, as explained in the introduction, a combi-
nation of these approaches would be desirable.
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3. Limitations of existing impostor techniques

All of the image-based impostor techniques reviewed above
perform some simplification of the underlying 3D model, re-
placing it with a meshed or point sampled representation.
This simplification typically results in a number of potential
image artifacts in the final application. The following table
presents a taxonomy of the most common of such artifacts.
In each case, the left-hand image is created from the geome-
try and the right-hand image from an impostor for the same
viewpoint. The first two problems (A and B) are due to a
poor representation of the model, while the last three (C-E)
are linked to the dynamic behavior of the representation as
the viewer moves.

� (A) Deformation by the impostor representation: When
the geometry of the underlying model is not properly sam-
pled, the resulting imposter representation often appears
deformed. To alleviate this problem, it is necessary to per-
form some analysis of the images to establish a precise
correlation between the features of the geometry and the
resulting mesh on the imposter2.

� (B) Resolution mismatch:
Since impostors are created from a sampled representa-
tion, they have a “built-in” resolution, which does not
necessarily correspond to the image resolution at view-
ing time. This fixed resolution is usually determined by a
predefined viewing distance and is associated with some
region of the geometric model. If the viewer deters from
these predefined viewing conditions, aliasing artifacts will
occur. Appropriate filtering can of course reduce the res-
olution mismatch, but also creates unwanted blurring of
image features and model textures.

� (C) Incomplete representation: Building impostors from
images limits the amount of information about the geome-
try that is visible in the reference images. Hence, innapro-
priate selection of the reference images (or of the set of
potentially visible objects) results in objects not appear-
ing when they should be uncovered.

� (D) Rubber sheet effect:
Meshed impostors implicitly force the representation of
the model to be continuous in space, as if a sheet of
stretchable material is wrapped onto the sampled mesh
points. When the viewer moves in such a way that he
looks in-between disjoint objects of the model, the view
is blocked by this “rubber sheet” connecting foreground
and background.

� (E) Image cracks:
Point sampled impostors, on the other hand, suffer from
the “cracking” problem, which occurs when no informa-
tion is present for certain directions from a new viewpoint.
This effect can be reduced by splatting or by using multi-
ple depth samples14.

A: Deformation by the impostor representation. A meshed impostor
is created without including in the mesh the top-left corner of the
front building. This region appears very deformed in the impostor.

B: Resolution mismatch. Aliasing artifacts occur as the user moves
too close to an imposter with a fixed texture resolution.

C: Incomplete representation. As we move past the building on the
left, new objects should be uncovered. However, some objects do
not appear because they are not represented in the impostor.

D: Rubber sheet effect. In this example, the view to the building in
the center is blocked due to a “rubber sheet” that sits in the fore-
ground.

E: Image cracks. “Cracks” appear in this view, especially around
the church and tower.
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In the next section, we describe a new type of pre-
generated meshed impostor that addresses the artifacts
caused by the movement of the viewer (itemsC-E above).
In Sections 5 and 6, we show how this impostor can be com-
bined with dynamic updates to refine the image quality on
the fly and address itemsA andB.

4. Reducing visibility artifacts using multiple meshes

In order to improve meshed impostors2; 9 by using multiple
meshes, we assume that the environment is divided into a set
of viewing cells. Given such a cell and three-dimensional ge-
ometry representing the model portion visible from that cell,
we compute a suitable impostor that will (a) be fast to draw,
and (b) correctly represent the geometry for all viewpoints
within the viewing cell.

A correct visual representation requires that at least all
visibility changes up to a certain magnitude are captured by
our impostors. We measure the size ofvisibility eventsby
the change of the angle under which two points on two dif-
ferent objects can be seen from within the viewing cell. This
angular variation increases as the points become more sep-
arated in depth. Putting them into the same impostor will
limit their relative positions in the final image substantially;
putting them into different impostors will capture the paral-
lax effects between them.

Considering a pointA on an objectO1 and another point
B on an objectO2 we need an upper bound for howA andB
can move relative to each other in the image (see Figure 1).

A B
A B

Figure 1: Two cubes seen from two different points of view.
Due to parallax, points A and B have different relative loca-
tions.

4.1. Quantifying the importance of visibility events

Visibility events between two objects can only occur if the
two objects overlap in image space as seen from somewhere
within the viewing cell. Otherwise, the mesh of the impostor
will sufficiently approximate the object’s surfaces in 3D.

We define thecritical zone Sof an object as the convex
hull of the object and the viewing cell (see Figure 2). IfO1

does not intersect the critical zone ofO2, there can be no
overlap in image space. Hence, the importancewi; j of visi-
bility events betweenO1 andO2 is zero. Otherwise,O1 may
cover and uncover parts ofO2, andwi; j must be set to quan-
tify the amount of overlap.

In the general 3D case and with viewing cells of arbitrary
shape, this is a difficult problem. We propose a solution for
the restricted case where:

� objects have the shape of buildings that are extruded from
their footprint on the ground plane,

� viewing cells are line segments (e.g. as streets, paths, etc.),
� the user moves at “ground level,” that is mostly horizon-

tally or on a designated terrain.

Under such assumptions, we can computewi; j for two ob-
jects from their orthogonal projections onto a ground plane.
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critical zone

QP edge

Figure 2: Critical zone for the objectO2 and the viewing
cell [PQ]

To obtainwi; j , we derive a formula for the maximum and
minimum angles under which a pointM 2 [PQ] can see the
two pointsA andB onO1 andO2. We setwi; j to the differ-
ence between these two extremal angles.

In the coordinate system indicated in Figure 3,(xA;yA) is
defined to be at(0;1).

There are two configurations:

� yB = 1, that is(AB) k (PQ) as on the left of Figure 3.
Let H be the intersection of[AB]’s medianwith (PQ).
dAMB is increasing forxM 2 (�1;xH ] and decreasing for

xM 2 [xH ;+1). Therefore, the maximum angle occurs
for P;Q or H if H 2 [PQ], and the minimum is inP or
Q.

� yB 6= 1 as on the right of Figure 3.
In this case, we have:

cos(dAMB) =

�!

AM �
�!

BM
jAMj � jBMj

(1)
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Figure 3: The two cases for calculating the extremal viewing
anglesdAMB.

=
x(x�xb)+ybq

(x2+1)((x�xb)2+y2
B)

(2)

Since the angle of interest lies in[0;π], it is extremal when
its cosine is extremal. We found these extrema to be:

xM1 =
xB

1�yB
(3)

xM2 =
xB+
q

yB� ((yB�1)2+x2
B)

1�yB
(4)

xM3 =
xB�
q

yB� ((yB�1)2+x2
B)

1�yB
(5)

If those points lie on[PQ] then one of them maximizes
and one of them minimizes the angledAMB. Otherwise,
we know that these extrema occur either atP or atQ.

4.2. A grouping criterion based on visibility events

To partition the objects into layers we construct a graphG
of weighted relations between the objects in the following
manner:

� G has a node per object,
� an edge is created between each pair of nodes with an

associated weightwi; j ,
� the weightwi; j of the edge connecting nodesi and j is set

to reflect the importance of visibility events between the
two objects as described above.

wi; j = dAMBmax� dAMBmin

� edge weights can be artificially increased to enforce rel-
ative importance of some objects such as landmarks or
objects of particular interest.

We then partitionG into subgraphsfG1 : : :Glg such that:

8Bi ;Bj 2 Gk wi; j � T; whereT is a given threshold.

In other words, we place those objects into the same layer
among which only negligible visibility events can occur. As
shown in Figure 4 this decomposition is not unique.

We can express the graph partitioning problem as ann-
color problem. If we represent each layer as a color, we
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Figure 4: The decomposition into layers is not unique: (a)
represents 5 blocks that have relations as indicated by ar-
rows. We do not consider any weight here. (b) and (c) show
two ways of grouping blocks respecting the relations con-
straints, with 2 and 3 layers, respectively.

want to attribute a color to each node of a graph such that
connected nodes have different colors. This problem always
has a solution: by allowing as many colors as the num-
ber of nodes, each node can be assigned a different color.
However, finding the smallest number of colors required to
color a non-planar graph is known to be NP-complete20. We
will apply a heuristic to solve for our particular objective in
tractable time.

Our incremental algorithm considers one object at a time.
It tries to place the object into an existing layer, ensuring
that the weight of edges connecting it to objects already in
this layer does not exceed a given threshold. If no such layer
exists, we create a new layer for this object. When several
layers could accept the object, we choose one such that the
bounding box of objects in this layer (including the one we
want to add) has minimal area. The rationale for this decision
is that the closer objects are in the image, the smaller the
texture size can be for a desired sampling rate.

4.3. Results of the layer organization

We implemented the described criterion in a city visualiza-
tion software described further in this paper. For the mo-
ment, we just illustrate how our criterion behaves. Figure
5 (see also the color section) shows bird’s eye views of the
MMIs computed for four different viewing cells. Each view-
ing cell is a street segment (indicated by the small car in
the street, positioned at the segment’s starting point). The
objects we consider are city blocks. The application of the
selection criterion produces variable groupings of the blocks
and different numbers of layers. The same 3D geometry set
is processed for all four viewing cells. Each layer is used
to build a meshed impostor, shown on the images. As the
viewing cell gets closer to the sets of objects, the number of
requested layers increases, which is the behavior we would
expect.

5. Application to the interactive visualization of large
models

Making the best use of the capabilities of rendering hard-
ware in the visualization of large models enables a number
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2 layers 3 layers 3 layers 4 layers

Figure 5: MMIs with different numbers of layers are computed for different viewing cells

of possibilities for how to combine off-line computation, the
results of which need to be stored and loaded at runtime; on-
line computation and its distribution among the host CPU;
and the graphics subsystem.

5.1. Estimating storage requirements

On the storage-intensive end of the spectrum, MMIs are pre-
calculated for every viewing cell, and several textures, sev-
eral meshes, and a list of objects in the near geometry need
to be stored with every viewing cell. During runtime, the
images and meshes of viewing cells adjacent to the current
viewing cell are fetched into main memory while the user is
moving in the vicinity. Once the user enters the viewing cell,
the local geometry together with the image-based represen-
tation for the distant geometry is rendered.

Let us illustrate the orders of magnitude of storage re-
quired for a sample application. We chose the example of
an urban visualization application.

Our city model consists of 572 street segments. In order to
represent the distant geometry for each segment with MMIs,
we need to store a mesh and a texture for each layer. Expect-
ing an average number of two to three layers per MMI, in the
worst case this will result in 572� 18 images to store, if we
represent the 360o around the viewing cell with six MMIs.
Using images of 256 by 256 resolution, each image requires
about 197kB of memory, resulting in a total of image storage
of 2.02GB.

The resolution of the meshes of each MMI layer is much
less of an issue. As texture coordinates need not be kept for
projective texture mapping, a 30 by 30 regular grid of tri-
angle pairs only requires 10.8kB of storage (assuming float
coordinates with four bytes per coordinate). This is a very
conservative estimate, as many of these triangles will lie out-
side the silhouettes of the geometric objects, and thus will
not make it into the representation. Hence, for 572� 18
MMIs, the storage for the mesh vertices would not exceed
111.2MB. With a total of 2.1GB of uncompressed storage,
we can apply JPEG compression to the images and geometry

compression to the meshes, which should realistically result
in a 1:10 compression ratio.

Consequently, our model would fit into less than one third
of the space available on a common CDROM, leaving ample
space for other data and software.

5.2. Steering online computation from stored data

As the image data obviously requires the vast majority of the
storage, we are investigating the tradeoff in terms of storage
requirements vs. online generation of the images. Whenever
an image is required of a certain model portion, it is only
in the case of excessive complexity of this portion that we
cannot afford to generate the image at runtime. However,
we might want to generate the image off-line, analyze it,
and build a very efficient mesh for it — an approach that
is clearly too expensive at runtime. Therefore, the mesh and
the camera settings are determined and stored for fast re-
trieval at runtime, but the image is generated online using
the camera parameters to be textured onto the mesh.

Even greater flexibility is feasible when the combined ren-
dering of the local geometry and the representation of the
distant geometry does not completely consume the frame-
time budget. The local geometry’s complexity could be cho-
sen to be low enough so that time remains to improve on
imperfections that rendering pre-generated representations
might exhibit. In particular, the pre-generation has no ac-
curate information about from where the representation will
be viewed. Only approximate information in the form of the
shape and size of the viewing cell is available off-line.

In contrast, during the walkthrough phase, the precise po-
sition and viewing direction are known to the system and
should be used to generate the most accurate image under
the given time and resource constraints. The improvement
will involve the accurate geometric positioning of all image
elements, but also any view-dependent effects such as spec-
ular reflection effects, lighting modifications (if the virtual
viewer carries a light source), or view-dependent selection
of better textures. Image-based techniques allow to amor-
tize the cost of more accurate rendering over several frames,
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Figure 6: The pipeline of geometry extractors.

thereby exploiting the coherence in the frames to be gener-
ated. Off-line computations produce a single representation
for a given viewing cell and only online techniques can im-
prove this representation with the knowledge of the current
viewing conditions.

In order to facilitate easy experimentation with such trade
offs, our software architecture models the transformation of
geometry from the full scene to the efficient representation
to be generated per viewing cell as a processing pipeline.
The geometry travels down this pipeline to be transformed
into (approximatively) equivalent, more efficient representa-
tions. We refer to each stage in this pipeline as a geometry
extractor. Our current pipeline of extractors is depicted in
Figure 6.

First, we determine the potentially visible portion of the
geometry by conservative visibility culling; next, we parti-
tion the model into near and far geometry. Finally, we ex-
tract an image-based representation for the distant part of
the geometry. This arrangement also allows flexibility as to
where to divide this pipeline into preprocessing and online
computation. Currently, we support one pipeline stage of on-
line computation, namely dynamic updates of image-based
representations.

5.3. Visibility culling

A number of efficient techniques have been presented re-
cently that facilitate the quick and accurate determination of
a tight superset of the visible geometry as seen from a cer-
tain region of space (its PVS). We can pre-process our scene
to find the PVS for all the viewing cells of our model.

viewpoint

local
model

distant
model

Figure 8: Schematic overview of the scene partitioning en-
forced by our system. A zone of near geometry rendered as
polygons surrounds the user. More distant sections are re-
placed by image-based representations.

In our current implementation, we use a sampling algo-
rithm to estimate the PVS for viewing cells. It operates
by taking full 360o views of the environment from closely
spaced points inside the viewing cell and recording the visi-
ble objects into an item buffer. This can be implemented effi-
ciently in graphics hardware by assigning unique identifiers
to objects coded into the RGB color channels and reading
back the images. Any identifier found in the images denotes
an element of the PVS. An example of the model portion
identified by this approach is given in Figure 7. Note that in
order to provide a frame of reference, the terrain geometry is
not culled in these images.

We could easily plug in other algorithms by implementing
them as geometry extractors. Interesting algorithms include
those of Cohen-Or. et al.21 and Coorg and Teller22.

5.4. Model segmentation

Our approach is to partition the scene into two sections, the
near geometry (the portion of the scene close to the view-
point — this part will be rendered as geometry) and the far
geometry (everything else — this part will be rendered with
image-based representations)2. This partitioning, in partic-
ular the allowable complexity of the near geometry, depends
on the rendering capabilities of the target system. In any
case, the near geometry should be chosen in such a way that
it can be rendered together with a suitable representation of
the far geometry in less than the time available for a single
frame. Figure 8 shows an example of this segmentation.
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Figure 7: From left to right: a view from the street, the set of potentially visible city blocks for the current viewing cells, and the
entire model. Terrain geometry is not culled in order to maintain a frame of reference.

5.5. Selective dynamic updates of impostors

An analysis of the primitive count in the near geometry to-
gether with its associated MMIs allows us to predict an ac-
curate expected frame time for each viewing cell. We do not
choose the near geometry’s and the MMIs’ combined com-
plexity to deplete the whole frame time, but instead we strive
to reduce both complexities as much as possible through vis-
ibility calculations and calculating efficient meshes for the
MMIs in order to free frame time for dynamic updates. From
the desired and the predicted frame times we can determine
how much time we have to accomplish such updates.

Whenever free frame time remains in a viewing cell, we
start to select the front-most meshes from the viewing cell’s
associated MMIs and convert them to dynamically updat-
able impostors. We store the textures of our meshes with
a limited depth information of eight bits. For regular-grid
impostors, this depth information is sub-sampled and con-
verted into an efficient mesh of triangle strips. The resulting
meshed impostor therefore makes no attempt to capture im-
portant depth disparities2, under the assumption that it will
be short-lived. Additional images are then rendered when
needed to update the new representation in response to user
movement within the viewing cell.

We borrow a criterion from the layered impostor approach
to do the updates in such an order, that the gain in image fi-
delity is maximized. Schaufler27 proposes to calculate an
error angle as a measure of screen space deviation from the
accurate image. MMI layers are considered for dynamic up-
date in the order of decreasing error angle. Due to the in-
herent image warping of regular grid impostors, the images
generated will be valid for some time, so more meshes can
be switched to dynamic update as the images just generated
can be reused.

This strategy continues as long as the coherence in the im-
age sequence is sufficiently high and will eventually replace
all the meshes of the current MMIs with a new texture. Sud-

Figure 9: View of a landmark in our model ("Sacre Cœur"
church).

den fast motion of the viewpoint will force us to switch back
to MMIs only.

6. Results

We have implemented the described walkthrough system in
C++ using the OpenGL graphics API. The city model shown
in the figures throughout this paper represents a section of
the city of Paris in France known as Montmartre (see Fig-
ure 9). It consists of 143,500 polygons which have been tex-
tured using 34 texture maps. There are 146 blocks of houses
and a street graph of 572 street segments connected by 427
junctions in the model.
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6.1. Using MMIs

Figure 11 (see color section) shows the improvement in
image quality obtained when pre-generating and rendering
MMIs instead of SMIs. Note how the rubber skin triangles
have disappeared from the houses toward the end of the se-
quence.

In order to document the performance of our approach we
have recorded a walkthrough across the city model and cal-
culated the average frame rate along this path. In our com-
parison, we have used the following rendering options:

� Full Model: In this rendering mode, the hardware renders
the complete scene model without further optimization.
This rendering mode gives an idea of the raw rendering
performance of the platform.

� Local Model:Rendering just the local model sets an upper
bound of the frame rate achievable. This geometry needs
to be rendered as polygons since it is very close to the
viewer and any simplification would be too obvious.

� Visible Model:The visible model is the output of our vis-
ibility culling extractor (described in Section 5.3). This is
the model part, which is found to be visible from the cur-
rent viewing cell. Its frame rate needs to be achieved by
any alternative rendering method in order to be competi-
tive with brute-force hardware rendering.

� Single Mesh Impostors:We include the performance of
single mesh impostors2 for comparison.

� Multi Mesh Impostors:Multiple meshes are used to cap-
ture visibility events amongst objects. Our error criterion
was set to a maximum error of 10 pixels in the final frames
of a resolution of 512 by 512 pixels, although visually the
error is much less due to the image warping done by the
meshes.

� Multi Mesh Impostors with Dynamic Updates:In order
to overcome any artifacts introduced by the pre-generated
representations, textures are updated online. Currently,
our implementation is not fully optimized for the two ren-
dering platforms used. (They offer different optimized ap-
proaches to improve speed by rendering directly into tex-
tures on the O2 platform or copying images directly from
frame buffer to texture memory on the IR.)

The following table summarizes the frame rates obtained
on a SGI O2 workstation, with one R10k processor running
at 200 Mhz, and a SGI InfiniteReality workstation with one
R10k processor running at 250 Mhz. We have used a single-
buffer window configuration to eliminate the effects of syn-
chronizing buffer switching with vertical retraces.

6.2. Dynamic impostor updates

Figure 10 shows examples of how image quality is im-
proved when applying dynamic updates in addition to pre-
generation of MMIs. Each row gives the MMI on the left,
an image with dynamic updates in the middle, and an image
rendered using geometry on the right.

Frame Rate (Hz) O2 IR

Full Model 1.0 3.3
Local Model 14.5 118.4
Visible Model 4.3 18.4
Single Mesh Impostors 15.9 103.3
Multi Mesh Impostors 10.9 85.0
MMI with Dynamic Updates 6.5 33.1

Table 1: Frame rates achieved with the discussed rendering
methods on two workstations with widely varying graphics
performance.

In row one, dynamic updates are used to improve the
polygonal silhouette of the meshes. Note that on the left, the
silhouette of the towers in the background is of a triangular
shape because of the mesh structure.

For the second row of images, we have selected an exces-
sively large viewing cell to show how pre-calculated meshes
cannot maintain a good look over all possible viewing di-
rections of arbitrary geometry. In our model, the cathedral
is a single object, and therefore, can only be assigned to a
layer as a whole. Consequently, as the cathedral’s tower in
the front hides the rest of the cathedral, meshing artifacts oc-
cur under extreme viewing conditions. Again the middle im-
age shows how this situation can be overcome with dynamic
updates.

In the third row, an insufficient texture resolution stored
in the MMI database is removed by a dynamic update.

7. Conclusions and Discussion

This paper has presented a new type of impostor, the multi-
meshed impostor or MMI, which allows us to control the
size of the visibility errors in the final image. We hope that
this approach to image-based scene simplification will have
a major impact on the general acceptance of image-based
techniques in real world applications where uncontrolled ar-
tifacts are unacceptable.

The control over the visibility errors is obtained by gen-
erating MMIs for viewing cells of known size and analyz-
ing the geometry to be replaced by the impostor. As a con-
sequence of the depth differences between various parts of
geometry, appropriate representation fidelity is selected. Ge-
ometry with too large an extent in depth is placed onto dif-
ferent impostor meshes in order to capture their perspective
parallax effects.

Since purely pre-generated image-based representations
often do not allow us to obtain images identical to the ones
obtained from geometry, we have combined MMIs with dy-
namic updates. Whenever frame time is available, our sys-
tem strives to make the textures used in the image-based
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Dynamic updates improve the silhouettes of the meshes.

Mesh distortions are removed from the final image.

Dynamic updates improve insufficient texture resolution.

Figure 10: Improvement of image quality using dynamic updates. left: rendered using MMIs, center: rendered with dynamically
updated mesh, right: rendered with geometry.

c The Eurographics Association and Blackwell Publishers 1999.
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representation converge towards the accurate image of the
objects. Switching to dynamic updates or going back to pre-
generated representations is especially easy in our system,
as both representations build on the same image format.

The result of this combination is that the images generated
by our system more closely resemble the images generated
from geometry, and in the case of slow motion of the view-
point, converge to the accurate image.

We still see potential to improve our approach in the way
that we partition the model into different regions most suited
for a particular type of image-based representation. In partic-
ular, we hope to decrease the size of the near model, where
currently we are required to render the full geometric com-
plexity. Level of detail approaches cannot help here either,
as this part of the model dominates the user’s field of view.
Also, a more gradual transition from the near geometry to
the distant representation would be desirable.
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Figure 5: MMIs with different numbers of layers are computed for different viewing cells

Figure 11: Comparison of single-mesh impostors2 and MMI impostors computed for a given distant model and the various
viewing cells along a road. Left: Single-mesh impostors Middle: Multi-mesh impostor. Right: Actual geometry.
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Abstract
Despite recent advances in rendering hardware, large and complex virtual environments cannot be displayed
with a sufficiently high frame rate, because of limitations in the available rendering performance.
This paper presents a new approach of software accelerated rendering which draws from the concepts of
impostors, hierarchical scene subdivision and levels of detail. So far software optimization in real-time ren-
dering has merely considered individual objects. This work is actually optimizing the rendering of the whole
virtual environment by implementing a three dimensional image cache. It speeds up rendering for large por-
tions of the scene by exploiting the coherence inherent in any smooth frame sequence.
The implementation of the three dimensional image cache is discussed and the savings in rendering load
achievable on a suitable hardware platform are presented.

Keywords: viewing algorithms, geometric algorithms, object hierarchies, virtual reality.

1 Introduction
The basic capability of any virtual reality system is to provide the user with a view of the environment. As the
user navigates within the environment this view must be updated at least several times per second and recent
user movements must be reflected in the view with minimal latency [6]. Usually high-end graphics worksta-
tions are used to meet these performance requirements. The environment is modelled with textured polygons
which can be rendered with hardware support on these workstations. Typically the number of potentially visi-
ble polygons must not exceed several thousands if frame rates of 20 Hz or more should be achieved. A lot of
work has been published how to determine the potentially visible polygons for each frame and how to make
best use of the available rendering performance in order to generate images of good quality with an acceptable
frame rate.
The severe limitation in the number of polygons is due to the fact that every frame is rendered from scratch:
from the current point of view the set of potentially visible objects is determined and the images of these
objects must be rendered within the available frame time. It would be desirable to reuse most of the image data
generated during previous frames if the changes to these images can be neglected in the current frame. So far
two systems have been presented which are capable of reusing previously generated images - a hardware solu-
tion called the virtual reality address recalculation pipeline [8] and a software approach called dynamically
generated impostors [9].
This paper presents a new approach to software accelerated rendering which improves and generalizes the
concept of impostors. Unlike dynamically generated impostors the new method can handle intersecting
objects and indoor as well as outdoor scenes. It does not rely on the scene to be actually organized into objects
but groups together spatially close primitives automatically. A hierarchical three-dimensional image cache
stores and allows to reuse image data of parts of the scene, which was generated during previous frames. An
update algorithm ensures that images are replaced with new ones if necessary. As a result, those parts of the
scene for which images are already available from previous frames need not be rendered from scratch in the



current frame. This paper’s examples are based on polygonal rendering. However, the 3d image cache can
accelerate any kind of rendering such as free-form surface rendering or ray tracing as well.
The two sections to follow familiarize the reader with previous work in the field of real-time rendering and
with the concept of dynamically generated impostors. In section 4 the hierarchical image cache is introduced.
The idea is to store the scene in a hierarchical space partitioning data structure, e.g. a k-d-tree, in which images
generated for any subtree can be cached and reused if appropriate. The error introduced by this caching can be
limited to pixel resolution as will be shown in section 5. Conclusions are drawn in section 6 which will lead on
to some possible future work.

2 Previous Work
When generating images of polygonal scenes performance can be improved if only those parts of the scene are
sent to the rendering hardware which are visible in the final image. Finding the visible parts can be efficiently
implemented as a traversal of a hierarchical space partitioning data structure [3].
If a uniform frame rate is desired, an appropriate level of detail can be chosen for every visible object thereby
trading rendering speed for image quality [4]. Automatic algorithms exist to generate such levels of detail
from polygonal objects [5][10].
Multiple frame buffer hardware can be used to overcome the drawback of having to render every visible
object for every frame [8]. Observing that the images of distant objects move slower on screen than the images
of close objects, the objects are rendered into different frame buffers based on their distance from the viewer.
The frame buffers containing distant objects can be updated less frequently. The final image is obtained by
overlapping the buffers front to back.
Object images are generated as a preprocessing step and are used during rendering as appropriate [7]. For
every object images from any viewing direction must be stored in the scene database so that images from any
point of view can be rendered (at the cost of high memory requirements).
Such object images can also be generated on the fly for individual objects in sparse outdoor scenes [9]. Instead
of the original object model a transparent polygon is rendered with an opaque image of the object mapped
onto it (an impostor). However, errors occur in the final images if objects are too close together so that visibil-
ity is not resolved correctly by rendering impostors (see figure 10 upper right). The correct image without
impostors is shown in the upper left and a difference image in the lower left of figure 10.
Rendering based entirely on images was proposed for walkthroughs of static scenes [2]. The correct view can
be extracted from a number of environment maps by real-time image processing. Intermediate frames can also
be interpolated from available keyframes [1] and an appropriate image is shown to the user when he moves
between the points for which environment maps are available.
As the image caching proposed in this paper is based upon impostors a short introduction to them follows.

3 Dynamically Generated Impostors
The concept of dynamically generated impostors is depicted in figure 1 (for a more in depth discussion of
dynamically generated impostors refer to [9]):
A complex object is replaced by a textured polygon facing the viewer (see figure 1) which cannot be distin-
guished from the original object from the proper point of view. The texture on the polygon is generated by
finding a rectangle surrounding the object (or the object’s bounding box for convenience) and rendering the
object into this rectangle using the graphics hardware. The resulting image is read from the frame buffer and
used to define the texture on the impostor rectangle.



An impostor can be used as soon as the texels of the texture map are not visible in the final image. This fact
can be expressed using angles under which the user sees one texel (αtex), one pixel on screen (αscreen) and the
whole screen (fov):

As long as the user only changes his direction of view the images on the impostors need not be changed. This
observation allows fast display updates during user head rotations which keeps the display lag short.
When moving sideways in front of an object the image on the impostor and the object’s actual image will
eventually become different. As soon as the differences would be visible in the final image a new impostor
must be generated.
The need for an update can be determined by comparing the angleαtrans to αscreen(see figure 2).αtrans is the
angle under which extreme points on the object’s bounding box (B1 andB2) and their image on the impostor
(B’ ) are observed by the user.

Figure 1. Original Object and Impostor

Figure 2. Error angleαtrans due to translation Figure 3. Error angleαtrans due to move-in
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A similar situation occurs when moving towards an object. In this caseαsize must be compared toαscreen as
shown in figure 3.
From those two orthogonal cases one can see that it is necessary to generate a new impostor every time either
αsize or αtrans becomes larger thanαscreen (see equation (1)).
Problems occur when objects in a cluster or intersecting objects are replaced individually by impostors. For
such objects impostors cannot resolve the visibility correctly and the object on the closer impostor will errone-
ously occlude the other object. These problems are especially annoying in indoor scenes. Examples are books
in a shelf or chairs put in under a table (see figure 10 upper right for an extreme case).
Another problem occurs in scenes with large numbers of objects which all must be checked for a necessary
impostor refresh. Considerable overhead results especially if the objects do not consist of many polygons. In
addition some scenes are given as unstructured polygon lists which makes the use of dynamically generated
impostors impossible.

4 A Three Dimensional Image Cache
In order to maintain a three dimensional image cache methods are needed to generate and store image data for
parts of a scene. The current implementation of the 3d image cache generates and stores impostors for the con-
tents of axially aligned bounding boxes (bboxes). In a hierarchy of bboxes image data in lower layers can be
used in a bottom up fashion to generate images of the contents of higher nodes (considering several impostors
as the contents of a bbox).
This hierarchy of bboxes is stored in a hierarchical space partitioning data structure. A k-d-tree is preferable to
an octree, because it offers more flexibility: for the 3d image cache this flexibility is used to obtain approxi-
mately cubic bboxes. Such bboxes are desirable because they let scene subdivision adapt to overall scene
shape and local scene complexity. Moreover the k-d-tree allows to tune the number of sub-boxes contained in
one bbox to the overhead involved when generating an impostor from several impostors. Texture maps must
be quadratic in this implementation which also makes approximately cubic boxes desirable as impostors then
tend to be quadratic as well.
First a bbox for the whole scene is calculated. This bbox is recursively subdivided by the k-d-tree along it’s
longest side. Primitives (or object models) are partitioned into sub-boxes. If more than one sub-box is inter-
sected, the primitive is stored in all the intersected sub-boxes.
Subdivision terminates if the number of primitives in a bbox falls below a given threshold or if the maximum
subdivision level is reached. The number of primitives per bbox must compensate for the overhead in generat-
ing an impostor (which depends on the hardware).

4.1 Generating Impostors for BBox Contents
An impostor for the contents of a bbox can be generated in almost the same way as an impostor for an object.
In a preprocessing step the part of the scene lying within the bbox is identified and stored with the bbox.
Instead of clipping the primitives (lines, polygons, ...) to the bbox boundaries during preprocessing, hardware
clipping planes can be used during creating the impostor. Such clipping planes are available on current graph-
ics workstations. Cracks in objects crossing bbox boundaries can be avoided by using a slightly bigger bbox
for clipping.
The generated impostor stores an image of the bbox’s contents when viewed from the point of view for which
the impostor was generated. Rendering the impostors for the bboxes of the k-d-tree correctly resolves visibil-
ity for all the primitives as the bboxes in the tree are disjoint.

4.2 Generating Impostors from Impostors
When the impostor of a bbox is invalid for the new point of view, it must be regenerated. If the bbox is not a
leaf of the hierarchy, then a new impostor can be generated from the impostors of it’s sub-boxes. As for an
object a rectangle enclosing the bbox is determined and the sub-boxes’ impostors are rendered into it. No clip-
ping needs to be done in this case, as the bboxes form a hierarchy. Rendering the few impostors for the sub-



boxes is much cheaper than rendering all the primitives contained in the bbox. Re-rendering primitives is
avoided until impostors in the leaves of the hierarchy become invalid. However, leaf-boxes are small which
makes their error angles small as well and therefore their impostors are valid for more frames in general.

4.3 Using the 3d Image Cache
Rendering the impostors of the 3d image cache for the living room scene gives the image shown in figure 11
upper left. Compared to an image obtained by pure polygonal rendering (figure 10 upper left) any differences
are due to resampling and are limited to an extent of one pixel as can be seen in the difference image (figure 11
upper right).
The contents of the 3d image cache are visualized in a bird’s eye view for two different viewpoints (bottom
row of figure 11). The k-d-tree used has a branching factor of eight and a depth of three. Impostors which were
generated in the current frame are shown with a red border, impostors which were generated from the node’s
children are shown with a green border. In the right view parts of the floor and the ceiling close to the view-
point could not be replaced by impostors due to the texture resolution limit.
For every frame to be rendered the k-d-tree is traversed to determine for which nodes an impostor can be used
because the maximum texture resolution will be invisible in the final image and it is also determined which
impostors need to be regenerated. Subtree traversal can be pruned if a valid impostor is encountered (as
impostors of sub-boxes are always valid for more frames because their images and corresponding error angles
are smaller). Pseudocode is shown in figure 4:

To render the final image the k-d-tree is traversed a second time and impostors are drawn when encountered in
the tree which prunes subtree traversal. For bboxes close to the user (which cannot be replaced by an impos-
tor), the contained primitives are drawn and clipped to the bbox boundaries (see figure 5 for the pseudo code).
Limiting the cache updates to the visible portions of the k-d-tree is also a possible variation. If the viewing
direction is rotated, the impostors for previously invisible bboxes must then be generated during the rotation.
This option was turned off during the tests in section 5.

UpdateCache(Cache *c)
if(IsLeaf(c)) {

if(ImpostorPossible(c) and ImpostorInvalid(c)) {
GenerateImpostorFromPrimitives(c)

}
} else {

if(ImpostorPossible(c)) {
if(ImpostorInvalid(c)) {

forAll(c->child) {
UpdateCache(c->child)

}
GenerateImpostorFromChildren(c)

}
} else {

forAll(c->child) {
UpdateCache(c->child)

}
}

}
Figure 4. Pseudo Code to Update the Image Cache



If the primitives in the scene are organized into objects and multiple levels of detail are available for each
object, then the objects could be drawn with an appropriate level of detail based on their size on the screen.
Such a selection scheme would guarantee that the same level of detail is selected for one object in each bbox it
intersects and would adapt the work for drawing a bbox’s contents to the distance from the viewer. Moreover
rendering an impostor for a node in the tree implies a certain distance to the user. Therefore, only one level of
detail per object must be stored per node and this level of detail is always used for regenerating the impostor
for this node. With levels of detail the caching of images can be limited to one layer in the k-d-tree, namely the
first layer of nodes for which impostors are useful. The texture memory necessary to store impostors of lower
levels can then be saved.

5 Results
The department of computer graphics at the local university does not own a graphics workstation which sup-
ports texture mapping in hardware. Therefore, no measurements of execution times on a suitable hardware
platform can be presented. However three different kinds of investigations have been carried out: first, a visu-
alization of the 3d image cache updates was done for a flat environment so that the update events in the cache
can be shown in two dimensions. Second, a frame sequence was rendered on a graphics workstation having
support for gouraud shaded polygons (an INDIGO R3000 capable of 39k triangles/second) at a small screen
resolution to minimize the effects of the software implementation of textured polygons (where the pixel fill
rate is the bottleneck for triangles covering more than a few pixels). Third, the performance of the 3d image
cache on a suitable hardware platform was simulated by replacing the operations not available on the R3000
system by other operations which were selected to match the execution speed of the desired operations on the
required high-end graphics workstation. The statistics for all three test are shown in figures 6 to 8.

5.1 Visualization of cache behaviour
In the following investigation a very large and complex scene is assumed to be stored in the k-d-tree of the 3d
image cache. For illustration purposes the scene is assumed to be flat enough so that no subdivision occurs
along the projecting z-axis. As a worst case the scene is of homogenous complexity and the k-d-tree is always
subdivided to the predetermined maximum. (In a typical walkthrough scenario some of the bboxes will be
empty and therefore will not be present in the k-d-tree.) The diagram of figure 6 and the images of figure 9
address the question: which impostors need to be regenerated during a diagonal walkthrough of the scene.

DrawCache(Cache *c)
if(Visible(c->bbox)) { /* clip to frustum */

if(ImpostorPossible(c)) {
DrawImpostor(c)

} else {
if(IsLeaf(c)) {

ClipTo(c);
DrawPrimitives(c);
ClipOff();

} else {
ForAll(c->child) {

DrawCache(c->child)
}

}
}

}
Figure 5. Pseudo Code to Draw the Image Cache



Views from above show the necessary impostor updates for every 6th frame of a total of 120 frames. A red
square indicates a leaf bbox in the k-d-tree for which a new impostor was generated in the current frame. A
green square indicates an intermediate bbox for which the impostor could be updated by reusing the impostors
of it’s sub-boxes. White squares indicate bboxes for which an available impostor was used. In the black area
impostors cannot be used because the maximum texture resolution of 256 by 256 pixels would have been
exceeded. Note how the used level of the k-d-tree adapts to the viewer position and accounts for the lower
amount of coherence near the user. This pattern is entirely due to the chosen maximum texture resolution and
the decision whether a bbox can be replaced by an impostor or not.
Some green squares in figure 9 contain smaller squares signifying that the corresponding impostor was gener-
ated by combining impostors of subnodes. The black bordered squares indicate the level of nodes in the k-d-
tree used to generate the final image.
For each of the 120 frames the number of reused impostors, the number of impostors which could be gener-
ated from sub-box impostors (combined impostors in figure 6) and the number of impostors which needed to
be regenerated (new impostors) is shown and should be compared to the total number of 341 bboxes in the k-
d-tree. The total amount of memory required for the texture maps of the impostors is given in 100k bytes.
As can be seen a small fraction of impostors in the k-d-tree actually needs regeneration. Only those objects or
parts of the scene, which lie inside such a bbox need to be rendered for the current frame. Combining impos-
tors from impostors one level down the k-d-tree is a cheap operation and saves drawing the whole bbox con-
tents.
In all simulations no clipping to the viewing frustum was assumed. If the 3d image cache is held up to date
without considering viewing direction or clipping to the viewing frustum, rapid rotation of the viewing direc-
tion can be performed efficiently because most of the needed image data is already in the cache - only the
scene portion around the user needs to be drawn as well as the impostors.

5.2 Simulation of cache behaviour
The next two tests were run for a scene of a procedurally generated forest consisting of 100 trees (approx.
105000 polygons, see figure 10 lower right). The first frame sequence generated depicts a sideward translation
in front of the forest with 100 generated frames. The k-d-tree of the 3d image cache had a maximum depth of
four with a total of 585 bboxes. The left graph of figure 7 compares new impostors, combined impostors and
reused impostors. The amount of bboxes which could not be replaced by an impostor is shown in blue. The
right graph of figure 7 shows new impostors, combined impostors and reused impostors of a total of 585 for a
zoom from one corner of the forest towards its centre. The amount of bboxes which could not be replaced by
an impostor is also given. Although it seems that the number of used impostors is comparable to the number of
bboxes drawn using the primitives it will be obvious from the drawing times that a far larger part of the scene
is covered by these impostors.
To approximate the performance of the 3d image cache on a suitable graphics workstation as close as possible
the functionality not supported in hardware on the available R3000 workstation were replaced by operations
which are equivalent in execution time to the required operations on texturing hardware. From data sheets of
high end graphics workstations it can be seen that textured polygons are about twice as costly to draw as gour-
aud shaded polygons because of the additional access to texture memory for every pixel. Therefore textured
polygons were replaced by drawing a gouraud shaded polygon with the same vertices twice. The texture defi-
nition operation used for an impostor update was replaced by two read operations of the image data from the
frame buffer - the second transfer accounts for the copying of the image to the texture memory.
Although this test was run on a machine with no hardware support for texture mapping the frame times for the
proposed rendering method were only longer a few times than without caching. Moreover, changes of the
viewing direction would have been possible at almost no cost, as the necessary image data is in the cache and
is valid. The left graph of figure 8 compares the times to render the frames for both rendering without caching
and rendering using the 3d image cache (in 1/10 of a second) for the translation sequence, the right graph for
the zoom in sequence. Drawing times (shown in figure 8) using the 3d image cache stay below the frame times



of usual polygonal rendering even though the impostors were also updated for the part of the scene not cur-
rently in the user’s field of view.

6 Conclusions and future work
This paper presented the three dimensional image cache, a hierarchical data structure to speed up any kind of
rasterized rendering on a graphics workstation which supports texture mapping in hardware. The 3d image
cache uses dynamically generated impostors to store image data for the primitives contained in the nodes of a
k-d-tree. During rendering these impostors are reused for several frames and are updated only if the differ-
ences to the image of the original primitives would exceed a pre-specified threshold (i.e. one pixel).
Impostor updates for leaves of the k-d-tree involve drawing the primitives. The impostors for intermediate
nodes are refreshed from the image data stored in their subnodes.
If levels of details are available for the objects in the scene, a static level of detail selection algorithm can be
employed to bound the amount of rendering load per node content. In this case the hierarchical caching of
image data need not be used resulting in less texture memory requirements.
As the system has been implemented using the portable graphics library OpenGL future work will be to tune
the system to a graphics platform supporting the required operations in hardware. Such platforms include the
Pixel Flow system developed at the University of North Carolina and the SGI Reality Engine system.
In the future the system will be employed in a large environment navigation tool which pages in the environ-
ment portions around the user from secondary storage automatically.
Moreover the 3d image cache will be incorporated into an existing animation system based on ray tracing as
the presented algorithm is independent of the method used to render primitives. Considerable speed up should
be possible for this kind of rendering as well.
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Figure 6. Statistics to Simulation of Frame Sequence in Section 5.1

Figure 7. Statistics to Simulation of Frame Sequence in Section 5.2

Figure 8. Comparison of Drawing Times in Section 5.2
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Figure 9. Selected Frames of Simulation Sequence Described in Section 5.1

Figure 10. upper left: Original Living Room Scene; upper right: Problems with Object Impostors;
lower left: Difference Image; lower right: Tree Scene



Figure 11. upper left: Result Generated with 3d Image Cache; upper right: Difference Image;
lower row: Sample Bird’s Eye Views of Cache Contents
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Computer Vision

Computer Vision is the Computer Vision is the inverseinverse of Computer of Computer 
Graphics:Graphics:

uucomputer graphics:computer graphics:
–– given a 3D model, render itgiven a 3D model, render it

uucomputer visioncomputer vision
–– given some images, create a 3D modelgiven some images, create a 3D model

This talk describes some techniques for This talk describes some techniques for 
recovering 3D geometry from images.recovering 3D geometry from images.
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Motivation

uumodel building for virtual reality, model building for virtual reality, 
animation, and CAD is slow and tediousanimation, and CAD is slow and tedious

uuanimators and designers want photoanimators and designers want photo--
realistic (texturerealistic (texture--mapped) modelsmapped) models

uuvideo input, display, and processing video input, display, and processing 
hardware becoming ubiquitous(multimedia)hardware becoming ubiquitous(multimedia)

uucomputer vision algorithms becoming more computer vision algorithms becoming more 
mature and reliablemature and reliable

SIGGRAPH'2000 Course on Image-Based Modeling, Rendering, and Lighting 4

Applications

uu recover camera location to superimpose recover camera location to superimpose 
graphics on image graphics on image [[Gleicher Gleicher 92]92]

uuextract texture maps from real world extract texture maps from real world 
[Beardsley96, Debevec96][Beardsley96, Debevec96]

uucreate a 3create a 3--D model object or world model, D model object or world model, 
without extensive interactive modelingwithout extensive interactive modeling
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Applications (example)

uu3D model building example3D model building example

octreeoctree 3D curves3D curves texturetexture--mappedmapped

SIGGRAPH'2000 Course on Image-Based Modeling, Rendering, and Lighting 6

Outline
uucamera calibrationcamera calibration
uupose estimation (view correlation)pose estimation (view correlation)
uu triangulationtriangulation
uustructure from motionstructure from motion
uu feature matching (correlation)feature matching (correlation)
uustereo matching (dense shape estimates)stereo matching (dense shape estimates)
uuvolumes (volumes (octreesoctrees) from silhouettes) from silhouettes
uusurface curves from profilessurface curves from profiles
uu inverse texture mappinginverse texture mapping
uuapplicationsapplications
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Camera calibration

uudetermine camera determine camera internalinternal (focal length) (focal length) 
and and externalexternal (pose) parameters from known (pose) parameters from known 
3D points3D points

uu forward projection equationsforward projection equations
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Camera matrix calibration

uudirectly estimate 11 unknowns in 3directly estimate 11 unknowns in 3××4 4 
matrix projecting 3D matrix projecting 3D ⇒⇒ 2D2D

uubring denominator over, solve set of linear bring denominator over, solve set of linear 
equationsequations
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Camera matrix calibration

uuAdvantages:Advantages:
–– very simple to formulate and solvevery simple to formulate and solve

uuDisadvantages:Disadvantages:
–– doesn't compute internal parametersdoesn't compute internal parameters
–– more unknowns than true degrees of freedommore unknowns than true degrees of freedom
–– need a separate camera matrix for each new need a separate camera matrix for each new 

viewview

SIGGRAPH'2000 Course on Image-Based Modeling, Rendering, and Lighting 10

Pose estimation

uuonce the internal camera parameters are once the internal camera parameters are 
known, can compute camera poseknown, can compute camera pose

uuapplication: superimpose 3D graphics onto application: superimpose 3D graphics onto 
videovideo

uupossible solution techniques:possible solution techniques:
–– use standard calibration code [Tsai87]use standard calibration code [Tsai87]
–– use use view correlationview correlation [Bogart91][Bogart91]
–– use use through the lens camera controlthrough the lens camera control [Gleicher92][Gleicher92]

–– other techniques from computer visionother techniques from computer vision
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Triangulation (Stereo)

uuProblem:  Given some points in Problem:  Given some points in 
correspondencecorrespondence across two or more images across two or more images 
(taken from calibrated cameras), {((taken from calibrated cameras), {(uu jj,,vvjj)}, )}, 
compute the 3D location compute the 3D location XX

SIGGRAPH'2000 Course on Image-Based Modeling, Rendering, and Lighting 12

Triangulation (Stereo)

uuMethod IMethod I: intersect viewing rays in 3D, : intersect viewing rays in 3D, 
minimize:minimize:

–– XX is the unknown 3D pointis the unknown 3D point
–– CCjj is the optical center of camera is the optical center of camera jj
–– VVjj is the is the viewing rayviewing ray for pixel (for pixel (uujj,,vvjj))
–– ssjj is unknown distance along is unknown distance along VVjj

uuadvantage: geometrically intuitiveadvantage: geometrically intuitive

arg min min|| ||
X

C V X
s j j j

j j

s+ −∑ 2
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Triangulation (con't)

uuMethod IIMethod II: solve linear equations in : solve linear equations in XX
–– advantage: very simpleadvantage: very simple

uuMethod III: nonMethod III: non--linear minimizationlinear minimization

–– advantage: most accurate (image plane error)advantage: most accurate (image plane error)
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Structure from motion
uuGiven many points in Given many points in correspondencecorrespondence across across 

several images, {(several images, {(uuijij,,vvijij)}, simultaneously )}, simultaneously 
compute the 3D location compute the 3D location XXii and camera (or and camera (or 
motionmotion) parameters ) parameters MMjj

uu two main variants: calibrated, andtwo main variants: calibrated, and
uncalibrateduncalibrated (sometimes associated with (sometimes associated with 
Euclidean and projective reconstructions)Euclidean and projective reconstructions)

uu long history of research algorithmslong history of research algorithms
[Longuet81,Tomasi92,Weng93a,Szeliski94e,Beardsley96a][Longuet81,Tomasi92,Weng93a,Szeliski94e,Beardsley96a]
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Structure from motion (con't)
uuSimple iterative algorithm used for face Simple iterative algorithm used for face 

reconstruction[Pighin98] assuming roughly reconstruction[Pighin98] assuming roughly 
known geometry and poseknown geometry and pose
–– assume (assume (uucc,,vvcc) = (0,0), but ) = (0,0), but ff is unknownis unknown

where where ηηjj = 1= 1//ttjj
zz is the inverse distance to object, is the inverse distance to object, 

and and ssjj = = ffjj//ttjj
zz is a worldis a world--pixel scale factorpixel scale factor

uuadvantageadvantage: works well for narrow fields of : works well for narrow fields of 
view when view when ff and and ttjj

zz are hard to estimateare hard to estimate
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Structure from motion (con't)

uubring denominator over to l.h.s.bring denominator over to l.h.s.
uu iteratively solve for: iteratively solve for: ssjj, , XXii, , RRjj, , ttjj

xx and and ttjj
yy, , ηηjj

uuall equations are linear, except forall equations are linear, except for RRjj, which , which 
is is linearizedlinearized by using a small angle by using a small angle 
(instantaneous velocity) approximation(instantaneous velocity) approximation
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Structure from motion: 
limitations

uuvery difficult to reliably estimate structure very difficult to reliably estimate structure 
and motion unless:and motion unless:
–– large (large (xx or or yy) rotation) rotation oror
–– large field of view and depth variationlarge field of view and depth variation

uucamera calibration important for Euclidean camera calibration important for Euclidean 
reconstructionsreconstructions

uuneed good feature trackersneed good feature trackers
uupostprocessingpostprocessing of the resulting 3of the resulting 3--D points?D points?
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Feature matching (correlation)
uuFind corresponding points in image video Find corresponding points in image video 

sequencesequence
–– one simple technique: find two patches with one simple technique: find two patches with 

minimal summed squared error[Anandan89]minimal summed squared error[Anandan89]

E u v I k u l v I k lxy
l y w

y w
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Feature matching (optic flow)

uuneed need subsub--pixelpixel precision to get best precision to get best 
registrationregistration

uusolution: Taylor series expansion of image solution: Taylor series expansion of image 
function [Lucas81a]function [Lucas81a]

where where xx' = ' = xx++uu, , eeii = = II11((xx') ') -- II00((xx), ), ggii = = 
∇∇II11((xx')')

E e gi i
i

( )u u u+ = + ⋅∑δ δb g2
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Feature matching (optic flow)

uusolve 2solve 2××22 systemsystem

uuuse a use a coarsecoarse--toto--finefine pyramid to speed up pyramid to speed up 
search search [Bergen92a][Bergen92a]

uu related to related to Brightness Constancy EquationBrightness Constancy Equation
[Horn81][Horn81]

IIxxuu + + IIyyvv -- IItt = 0= 0
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Stereo: epipolar geometry

uuMatch features along epipolar linesMatch features along epipolar lines

viewing rayviewing rayepipolar planeepipolar plane

epipolar lineepipolar line
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Stereo: epipolar geometry

uu for for twotwo images (or images with collinear images (or images with collinear 
camera centers), can findcamera centers), can find epipolarepipolar lineslines

uuepipolar lines are the projection of the epipolar lines are the projection of the 
pencilpencil of planes passing through the centersof planes passing through the centers

uurectification:rectification: warping the input images warping the input images 
(perspective transformation) so that(perspective transformation) so that epipolarepipolar
lines are horizontal lines are horizontal [[FaugerasFaugeras ‘93; Loop & Zhang ‘99]‘93; Loop & Zhang ‘99]
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Stereo: dense depth
uuapply feature matching criterion at apply feature matching criterion at allall pixels pixels 

simultaneouslysimultaneously
uusearch only oversearch only over epipolarepipolar lines (many fewer lines (many fewer 

candidate positions)candidate positions)

uucan also match features such as linescan also match features such as lines
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Stereo: hierarchical matching

uuUse coarseUse coarse--toto--fine search in an image fine search in an image 
pyramidpyramid to handle larger displacements to handle larger displacements 
[Bergen [Bergen et al.et al.'92] '92] 

coarse

medium

fine
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Stereo: certainty modeling

uuCompute certainty map from correlationsCompute certainty map from correlations

inputinput depth map       certainty mapdepth map       certainty map
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Stereo: dense depth
uu recovered depth map can be used for recovered depth map can be used for view view 

interpolationinterpolation [Chen93,Szeliski95,Seitz96][Chen93,Szeliski95,Seitz96]

inputinput depth imagedepth image novel viewnovel view
[[MatthiesMatthies,Szeliski,Kanade’88],Szeliski,Kanade’88]
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Dense Stereo Matching

uuAdvantages:Advantages:
–– gives detailed surface estimatesgives detailed surface estimates
–– multimulti--view aggregation improves accuracyview aggregation improves accuracy

uuLimitations:Limitations:
–– narrow baseline narrow baseline ⇒⇒ noisy estimatesnoisy estimates
–– fails infails in texturelesstextureless areasareas
–– sparse, incomplete surfacesparse, incomplete surface
–– sensitive to nonsensitive to non--LambertianLambertian effectseffects
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Stereo matching: limitations
uuproblems at and near occlusionsproblems at and near occlusions
uu incorrect color extraction, no partial incorrect color extraction, no partial 

occupancy in (mixed) border pixelsoccupancy in (mixed) border pixels

uusolution: simultaneously recover solution: simultaneously recover disparitiesdisparities, , 
colorscolors, and , and opacitiesopacities
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Multi-Image Scene Recovery

uuGoals of new stereo algorithmGoals of new stereo algorithm

–– simultaneously recover simultaneously recover disparitiesdisparities, , colorscolors, and , and 

opacitiesopacities (c.f. blue screen matting)(c.f. blue screen matting)

–– explicitly handle occlusionsexplicitly handle occlusions

–– true multitrue multi--frame setting frame setting [Collins, CVPR’96][Collins, CVPR’96]

–– details in details in [Szeliski & [Szeliski & GollandGolland, ICCV’98], ICCV’98]
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Plane Sweep Stereo
uuSweep family of planes through volumeSweep family of planes through volume

–– each plane defines an image each plane defines an image ⇒⇒ composite composite homographyhomography

virtual cameravirtual camera

compositecomposite
input imageinput image

← projectiveprojective rere--sampling of (sampling of (X,Y,ZX,Y,Z))
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Plane Sweep Stereo

uuFor each depth planeFor each depth plane
–– compute composite (mosaic) image compute composite (mosaic) image —— meanmean

–– compute error image compute error image —— variancevariance
–– convert to confidence and aggregate spatiallyconvert to confidence and aggregate spatially

uuSelect winning depth at each pixelSelect winning depth at each pixel
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Plane Sweep Stereo

uu“Stack of acetates” model (related to LDI)“Stack of acetates” model (related to LDI)

–– warp and composite (warp and composite (overover) back) back--toto--frontfront

layers (“sprites”)layers (“sprites”)

synthesizedsynthesized imageimage
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Plane Sweep Stereo

uuCompute Compute visibilityvisibility each input/layer paireach input/layer pair

uuRecomputeRecompute means, confidences, and opacitiesmeans, confidences, and opacities

input imageinput image

layer compositelayer composite
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Voxel Coloring

uuGeneralizes plane sweep camera geometryGeneralizes plane sweep camera geometry
–– replace plane sweep with surface sweepreplace plane sweep with surface sweep

[Seitz & Dyer, CVPR’97][[Seitz & Dyer, CVPR’97][Kutalakos Kutalakos & Seitz]& Seitz]
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Voxel Coloring

uuResults for dinosaur and roseResults for dinosaur and rose
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Stereo with Matting

uuEstimate fractional opacities for pixelsEstimate fractional opacities for pixels
–– adjust layer “sprites” (colors and opacities) to adjust layer “sprites” (colors and opacities) to 

best match input imagesbest match input images
–– optimization criteria:optimization criteria:

FF rere--synthesis errorsynthesis error
FF color and opacity smoothnesscolor and opacity smoothness
FF prior distribution on opacitiesprior distribution on opacities

–– corresponds to MAP Bayesian estimatorcorresponds to MAP Bayesian estimator
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Stereo with Matting

uuSRI Trees sequence exampleSRI Trees sequence example

input imagesinput images stereo layersstereo layers
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Stereo with Matting

uuAdvantages:Advantages:
–– true multitrue multi--image matchingimage matching
–– deals with occlusions and mixed pixelsdeals with occlusions and mixed pixels

uuLimitations:Limitations:
–– too many degrees of freedom (volume)too many degrees of freedom (volume)
–– breaks up surfaces into “breaks up surfaces into “voxelsvoxels””
–– no “subno “sub--pixel” depthspixel” depths
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Layered Stereo

uuUse arbitrarily oriented sprites Use arbitrarily oriented sprites 
[Baker,Szeliski,Anandan’98][Baker,Szeliski,Anandan’98]

uuEstimate 3D plane equation for each spriteEstimate 3D plane equation for each sprite

layers (“sprites”)layers (“sprites”)
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Layered Stereo

uuAssign pixel to different “layers” (objects, Assign pixel to different “layers” (objects, 
sprites)sprites)
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Layered Stereo
uuTrack each layer from frame to frame, Track each layer from frame to frame, 

compute plane compute plane eqneqn. and composite mosaic. and composite mosaic

uuReRe--compute pixel assignment by comparing compute pixel assignment by comparing 
original images to spritesoriginal images to sprites
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Layered Stereo

uuResulting sprite collectionResulting sprite collection
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Layered Stereo

uuReRe--synthesize original or novel images from synthesize original or novel images from 
collection of spritescollection of sprites
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Layered Stereo Demo

uuSpriteViewerSpriteViewer: renders sprites with depth: renders sprites with depth
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Layered Stereo
uuPerPer--pixel residual depth estimationpixel residual depth estimation

–– plane plus parallaxplane plus parallax [[AnandanAnandan et al.et al.]]
–– modelmodel--based stereobased stereo [Debevec [Debevec et al.et al.]]

–– better accuracy / fidelitybetter accuracy / fidelity
–– makes makes forward warpingforward warping more difficultmore difficult
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Layered Stereo

uuAdvantages:Advantages:
–– can represent occluded regionscan represent occluded regions
–– can represent transparent and border (mixed) can represent transparent and border (mixed) 

pixels (sprites have pixels (sprites have alphaalpha value per pixel)value per pixel)
–– works on textureworks on texture--less interior regionsless interior regions

uuLimitations:Limitations:
–– fails for high depthfails for high depth--complexity scenescomplexity scenes
–– may need manual initialization / controlmay need manual initialization / control
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Multi-view Representation

uuassociate a depth (or motion) map with associate a depth (or motion) map with eacheach
input image (or some subset)input image (or some subset)

→→
→→
→→
→→

uuenforce motion/depth enforce motion/depth compatibilitycompatibility across across 
framesframes [Szeliski, CVPR[Szeliski, CVPR’’99]99]

EPI EPI 
imageimage
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Multi-view Representation

uuno need tono need to discretizediscretize space or determine the space or determine the 
number of number of layerslayers

uu take take occlusionsocclusions into accountinto account
uucapture natural capture natural variationvariation in appearancein appearance
uubetter suited for view or frame better suited for view or frame interpolationinterpolation
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Multi-view matching 
framework

uuminimize sum of interminimize sum of inter--pair matching errorspair matching errors
∑∑ss ∑∑tt∈∈N(s)N(s) wwstst ∑∑xx ρρ((IIss((xxss) ) -- IItt((xxtt))))

wherewhere
–– ss are the are the keykey--framesframes (or (or keykey--viewsviews))
–– tt are the are the neighboring framesneighboring frames
–– xxss and and xxtt are corresponding pixelsare corresponding pixels
–– ρρ is a robust penalty functionis a robust penalty function
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Experiments

1st1st 2nd2nd 4th frames 4th frames warped (no occlusions)warped (no occlusions)

initial depth mapsinitial depth maps warped (w/ occlusions)warped (w/ occlusions)

finial depth mapsfinial depth maps warped (w/ occlusions)warped (w/ occlusions)
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Experiments

1st1st 3rd3rd 5th frames 5th frames warped (no occlusions)warped (no occlusions)

initial depth mapsinitial depth maps warped (w/ occlusions)warped (w/ occlusions)

finial depth mapsfinial depth maps warped (w/ occlusions)warped (w/ occlusions)
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Volumes from silhouettes

uuextract binary extract binary silhouettesilhouette of object of object 
photographed against known backgroundphotographed against known background

uueach silhouette + camera center defines each silhouette + camera center defines 
enclosing conic region of spaceenclosing conic region of space

uu intersection of cones intersection of cones ⇒⇒ bounding volumebounding volume
uuuse use octreeoctree representation of volume for representation of volume for 

efficiency [Szeliski93h]efficiency [Szeliski93h]
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Volumes from silhouettes

Cup on turntable exampleCup on turntable example
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Volumes from silhouettes

uuAdvantages:Advantages:
–– simple to implement, fairly robustsimple to implement, fairly robust
–– fast executionfast execution
–– complete (closed) surfacecomplete (closed) surface

uuDisadvantages:Disadvantages:
–– only produces only produces line hullline hull
–– limited resolutionlimited resolution
–– sensitive to classification (sensitive to classification (thresholdingthresholding))
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Surface curves from profiles

uuextract and link edges in each imageextract and link edges in each image
uumatch edges across image sequencematch edges across image sequence
uu infer 3infer 3--D location from 2 or more matched D location from 2 or more matched 

edges:edges:
–– for for stationary edgestationary edge (surface marking, sharp (surface marking, sharp 

crease), use regular triangulationcrease), use regular triangulation
–– for smooth selffor smooth self--occluding occluding profileprofile (limb), use 3 (limb), use 3 

or more edges, fit circular arc [Szeliski94]or more edges, fit circular arc [Szeliski94]
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Surface curves from profiles

Coffee jar exampleCoffee jar example
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Surface curves from profiles

uuAdvantages:Advantages:
–– correct estimates at occluding contourscorrect estimates at occluding contours
–– good for smoothly curved objectsgood for smoothly curved objects
–– provides intrinsic surface estimates, piecewise provides intrinsic surface estimates, piecewise 

continuous surface meshcontinuous surface mesh
–– works on interior surface markingsworks on interior surface markings

uuDisadvantages:Disadvantages:
–– fails infails in texturelesstextureless interiorinterior areasareas
–– incomplete surface (not closed)incomplete surface (not closed)
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Inverse texture mapping 
(photometry)

uu recover color distribution over shaperecover color distribution over shape
uuundo shading effects:undo shading effects:

–– diffuse illuminationdiffuse illumination
–– single sourcesingle source LambertianLambertian

uuweight contribution by surface normalweight contribution by surface normal
uusmooth (and sharpen) resultssmooth (and sharpen) results

[Yu & [Yu & MalikMalik; Debevec]; Debevec]
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Application: 3D face model 
building [Pighin98a]

uu take several photos of a face from different take several photos of a face from different 
viewsviews

uu identify key points (eye and mouth corners, identify key points (eye and mouth corners, 
nose tip, ...) in each imagenose tip, ...) in each image

uu recover camera position and coarse recover camera position and coarse 
geometry using structure from motiongeometry using structure from motion

uuadd more correspondences, refine geometry, add more correspondences, refine geometry, 
and interpolate to the rest of the meshand interpolate to the rest of the mesh
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Application: 3D face model 
building [Pighin98a]

uu recover cylindrical texture maprecover cylindrical texture map
uu refine shape estimates using stereorefine shape estimates using stereo
uuanimate by morphing between expressionsanimate by morphing between expressions
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“neutral” “joy”
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3D face model-based tracking

uuUse “analysis by synthesis” to match 3D Use “analysis by synthesis” to match 3D 
face model parameters to input videoface model parameters to input video
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3D model-based effects

uuChange viewpoint, identity, illumination, or Change viewpoint, identity, illumination, or 
add special effects (scars, add special effects (scars, tatoostatoos, …), …)
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Beyond IBMR

uuWhat’s next?What’s next?

–– VideoVideo--Based RenderingBased Rendering

FFWhat if you could generate What if you could generate computer videocomputer video instead instead 

of of computer graphicscomputer graphics ??

FF analyze video and analyze video and synthsize synthsize new new framesframes

FFVideo Rewrite Video Rewrite [[Bregler Bregler et al.et al.]]

FFVideo TexturesVideo Textures [SIGGRAPH’2000][SIGGRAPH’2000]
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Video Textures
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Video Textures

uuTake a short Take a short video clipvideo clip and turn it into an and turn it into an ∞∞
amount of continuous amount of continuous video texturevideo texture
–– replace clips in Web pages and presentationsreplace clips in Web pages and presentations
–– screen saversscreen savers
–– alternative to 3D graphics animation?alternative to 3D graphics animation?
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Video Textures

1.1. find cyclic structure in the videofind cyclic structure in the video

2.2. (optional) region(optional) region--based analysisbased analysis
3.3. play frames with random shuffleplay frames with random shuffle
4.4. smooth over discontinuities (morph)smooth over discontinuities (morph)
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Applications

uu industrial applicationsindustrial applications
–– CAD/CAMCAD/CAM
–– “3D Fax”: collaborative design“3D Fax”: collaborative design
–– architecturearchitecture
–– biomedical (surgery, prostheses)biomedical (surgery, prostheses)
–– special effects (FX), virtual studiospecial effects (FX), virtual studio
–– fashion & clothingfashion & clothing
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Applications

uuconsumer applications:consumer applications:
–– 3D world building (travel, home sales, home 3D world building (travel, home sales, home 

page, ...)page, ...)
–– 3D model construction (art, hobby, ..)3D model construction (art, hobby, ..)
–– 3D avatar construction (heads)3D avatar construction (heads)
–– “3D videophone”“3D videophone”
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Summary

uuconstruct 3construct 3--D models from regular imagesD models from regular images
uuprocessing steps:processing steps:

–– calibrate cameras, determine posecalibrate cameras, determine pose
–– match features, build 3D geometrymatch features, build 3D geometry
–– extract appearance (texture maps)extract appearance (texture maps)

uu large variety of representations and large variety of representations and algsalgs..
uuexciting new applicationsexciting new applications
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To find out more

uugeneral references on computer vision: general references on computer vision: 
[Ballard82,Horn86,Faugeras93,Nalwa93][Ballard82,Horn86,Faugeras93,Nalwa93]

uu recent survey of (some) 3D modeling recent survey of (some) 3D modeling 
techniques techniques [Szeliski97][Szeliski97]

uuComputer Vision Home Page: Computer Vision Home Page: 
http://www.http://www.cscs..cmucmu..eduedu//afsafs//cscs/ project// project/cilcil/ftp/html/vision.html/ftp/html/vision.html

uuWorkshop on ImageWorkshop on Image--Based Modeling and Based Modeling and 
Rendering: Rendering: http://graphics.http://graphics.stanfordstanford..eduedu/workshops/ibr98//workshops/ibr98/
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Abstract
This paper surveys a number of techniques for extract-
ing 3D geometry and photometry from multiple images.
The paper describes the recovery of volumetric mod-
els from silhouettes, the extraction of 3D surface curves
from profiles, the extraction and integration of 3D sur-
face points from stereo, and a dynamic physically-based
surface model for integrating the outputs of these proce-
dures. It also presents recent work in image-based ren-
dering, i.e., the representation of objects and scenes us-
ing collections of images which are warped and blended
to create novel views.

1 Introduction
The reconstruction of 3D models from imagery has
long been one of the central topics in computer vision
[6, 5, 19]. Initially, it was believed that high-level 3D
models were a prerequisite for image and scene under-
standing, as well as for robotics tasks such as navigation
and manipulation. Today, it is widely accepted that vi-
sual information can be extracted and used at many lev-
els. For instance, recognition tasks can often be solved
using a collection of 2D views or features.

The last few years have seen a renewed interest in the
acquisition of photorealistic 3D models for applications
such as computer graphics, special effects, and the cre-
ation of virtual environments. Active range sensors such
as laser scanners provide one way of acquiring such data
[10, 43]. Passive image-based reconstruction techniques
provide a potentially lower-cost alternative which can be
applied to any sized object. These techniques, which re-
construct 3D shape from a number of views of an object
or scene, also have the potential to capture the full vi-
sual richness of a complex object or scene through the use
of view interpolation and view-dependent texture maps
[24, 17].

This paper surveys a number of 3D reconstruction
techniques which I have developed over the last ten years.
My interest in 3D modeling began with an investigation
of multiframe stereo algorithms [37]. I then developed a
number of full 3D reconstruction algorithms using both
surface [54, 65] and volumetric [55] models. I also be-
came interested in the problem of surface reconstruction

from sparse data [62, 64], and structure from motion
techniques for recovering camera motion [59]. More re-
cently, I have been investigating techniques for building
large panoramic scene descriptions [56, 60, 57, 30] using
a combination of projective structure from motion and
multiframe stereo techniques. Most recently, I have been
involved in research into image-based rendering [24].

This paper parallels the chronology of my research into
these topics. Section 2 presents a technique for building
volumetric models from binary foreground/background
silhouettes. Section 3 describes our algorithm for es-
timating surface shape from tracked contours. Section
4 describes our method for integrating narrow-baseline
stereo estimates using a cloud of 3D points with associ-
ated uncertainties. Section 5 discusses our technique for
extracting and modeling 3D surfaces of arbitrary topol-
ogy using collections of oriented surface elements. Sec-
tion 6 discusses some approaches and recent results in
extracting 3D surface color distributions (i.e., texture
maps) from multiple images. Section 7 presents some re-
cent results on image-based rendering. Section 8 briefly
mentions issues related to camera calibration and struc-
ture from motion. We close with a discussion of potential
applications and topics for future research.

2 Volumes from silhouettes

The first three reconstruction algorithms described in
this paper use a controlled motion platform and a sta-
tionary video camera connected to a frame grabber.
The motion platform is an inexpensive spring-loaded mi-
crowave turntable, to which we affixed a paper strip with
an 8-bit pattern which encodes the turntable’s angular
position (Figure 1a) [54]. As the object spins on the
turntable, video images are captured, the turntable an-
gle is computed, and selected images (typically at 3◦ to
10◦ spacing) are retained for further processing. The
relative position of the video camera and the turntable,
and also the internal calibration parameters of the cam-
era, must be known in order to recover 3D shape. We
perform this calibration prior to model acquisition by
placing a simple hexagonal pattern on the top of the
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(a) (b) (c) (d)

Figure 1: Shape from silhouettes example: (a) input image, (b) silhouette image (non-white areas are considered
part of the object), (c) lower-resolution octree model (5 levels), (d) higher-resolution octree model (6 levels).

turntable.1 See Section 8 for alternative techniques for
calibrating the camera and estimating its pose.

The first algorithm we developed for extracting 3D
shape from multiple views constructs a volumetric rep-
resentation of the object from the binary silhouettes of
the object (Figure 1b). These silhouettes can easily be
extracted from imagery by first acquiring an image of a
blank turntable, and then doing simple pixel differenc-
ing.2 This approach requires the colors of the object
and background to be different, but this is not difficult
to ensure in practice.

Each silhouette, together with the corresponding cen-
ter of projection for the camera, defines a generalized
cone in space within which the object must lie. The
intersection of these cones in 3D defines a bounding vol-
ume for the object, which under many conditions is a
reasonable approximation to the object’s shape. Sev-
eral different techniques have been developed in the past
for computing this volume, including techniques which
represent the volume as a polyhedron [53] and as an oc-
tree [42]. Our algorithm uses the octree representation,
combined with the multi-resolution refinement algorithm
described below, to minimize the overall amount of com-
putation [55].

Octrees are tree-structured volumetric representations
constructed by recursively subdividing cubes into eight
equal sub-cubes [45]. Leaf nodes in the tree can be ei-
ther white (empty) or black (occupied), while interior
nodes are called gray and have children of different col-
ors. Figure 2a shows a graphical view of a small octree,
and Figure 2b shows its associated colored tree repre-
sentation. The octree is usually more efficient than a
pure voxel representation since the interior of the object
is typically described by large cubes. For reasonably
smooth objects, the total number of nodes in the tree

1The use of a planar calibration pattern requires that the aspect
ratio of the camera be known. We have verified empirically that
this ratio is close to 1 for our cameras.

2To close up small holes in the silhouette, we use a combination
of morphological operations and connected components [44].
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Figure 2: A simple two-level octree and its tree repre-
sentation

is proportional to the object’s surface area instead of its
volume.

To construct the bounding volume from a sequence of
silhouettes, we perform a series of forward projections
from the 3D octree model to the 2D image plane us-
ing the known camera model (calibrated camera matrix
plus turntable angle). Cubes in the octree which fall
completely into the background can immediately be re-
moved from the object model. Cubes which are partially
inside the silhouette may be partially occupied, and must
be subdivided to a finer resolution.

Our algorithm therefore constructs the octree in a hi-
erarchical coarse-to-fine fashion. For a series of increas-
ing octree resolutions, the inner loop of the algorithm
refines the 3D volume by testing projected octree cubes
against the sequence of silhouettes. After one complete
revolution of the object, those cubes whose occupancy
is uncertain are subdivided. Because the octree is com-
pletely constructed at one resolution before refining the
next one, we perform fewer total computations than a
non-hierarchical algorithm.

To rapidly compute whether a projected cube is in-
side the background or silhouette, we first compute a
bounding box for the eight projected corners. A dis-
tance map, which is computed in time proportional to
the image size, provides the minimum distance from any
image point to the silhouette. This distance map applied
to the bounding box gives a silhouette test that is O(1)
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Figure 3: Shape from contours example: (a) input image, (b) extracted edges, (c) reconstructed 3D edges (side view),
(d) a portion of the surface mesh.

instead of O(s) for each cube, where s is the number
of pixels in the projected cube [55]. This optimization,
combined with the efficiency of the hierarchical octree
construction, results in an algorithm which can process
several frames per second.

While our algorithm for recovering volumetric models
from silhouettes can very quickly provide an approxi-
mate model of an object’s shape, it suffers from a num-
ber of limitations. The greatest of these is the inability
to sense certain kinds of cavities (such as the inside of
the coffee cup). More precisely, our technique can re-
cover the visual hull of an object, i.e., the complement
to the space swept out by all lines that do not penetrate
the object [32]. Other limitations include the suscep-
tibility to misclassification errors which may be caused
by specularities and accidental matches between object
and background colors, as well as the limited precision
available with volumetric representations.

3 Surface curves from profiles
The shape from silhouette method provides a bound-
ing volume for a surface, but as described above it has
limitations. To overcome some of these limitations, we
developed an algorithm to directly compute 3D surface
patches and curves from a sequence of image contours
[65] (see [15, 71, 74, 12] for related techniques). Image
contours come from surface markings, surface tangent
discontinuities, and occluding contours. Surface mark-
ings and tangent discontinuities are viewpoint invariant,
whereas occluding contours are not, and so cannot be
used directly in two-frame stereo reconstruction algo-
rithms.

Given a sequence of images of an object, we extract
edges and link them into contours (Figure 3b). The con-
tours are tracked over the sequence of images, and 3D
contours are estimated (Figure 3c). The 3D contours
are linked by the trajectories of the tracks of the edge
points in the images (Figure 3d). The known motion of
the camera is used in two ways: it constrains the search
for corresponding points during tracking, and it is used

in the computation of the 3D points.
Edge detection is done using first order steerable filters

[21], since they provide good angular resolution. Once
discrete edgels have been detected, we use local search
(based on proximity and continuity of orientation) to link
the edgels into contours. Note that in contrast to some
of the previous work in reconstruction from occluding
contours [15], we do not fit a smooth parametric curve to
the contour since we wish to directly use all of the edgels
in the shape reconstruction, without losing detail.3

The pointwise correspondence between contours is
based on the epipolar constraint. For two images, i.e.,
classical binocular stereo, this epipolar constraint is a
set of straight lines which are the intersection of epipolar
planes with the image plane [19]. For more than two im-
ages, the epipolar plane through a point is determined by
the view direction at that point and the instantaneous
camera velocity. The projection of the epipolar plane
into the next frame, i.e., the epipolar line, is used to find
the best matching edgel in the next frame. Our tech-
nique compares all candidate edgels within the epipo-
lar line search range (defined by the expected minimum
and maximum depths), and selects the one that matches
most closely in orientation, contrast, and intensity. Once
an initial estimate for the 3D location of an edgel has
been computed, the search range can be dramatically
reduced.

Given three or more edgels tracked with our technique,
we compute the location of the surface and its curvature
by fitting a circular arc to the lines defined by the view
directions at those edgels. This curve fitting problem
is linear, which allows us to use recursive least squares
techniques [65]. To further improve the quality and re-
liability of our estimates, we apply robust statistics to
reduce the effects of outliers which are due to grossly
erroneous measurements as well as large changes in the
surface curvature [28].

3However, we do perform a small amount of curvature-
dependent smoothing along the curves to reduce noise. This can
be viewed as part of the edge extraction stage.
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Figure 4: 3D depth map computed from assam image sequence: (a) first image in sequence, (b) depth map from
flow (darker is nearer), (c) certainty in depth estimates (darker is higher certainty), (d) top view of 3D point cloud.

Once the circular arc is fitted, a point on the surface
is computed which corresponds to the middle view direc-
tion. The topology of the surface in the form of a mesh
is captured by maintaining the epipolar curves, which
are given by the edge point trajectories, and the 3D con-
tours. Figure 3c shows the complete set of 3D contours
reconstructed from a 360◦ view of a cup, while Figure 3d
shows a portion of the 3D mesh (contour curves plus
epipolar curves).

Occluding contours sweep out surface patches on the
visible region of the surface, which is the union of all
critical sets that are not occluded. In general, these
curves and patches will provide information in many
places where the line hull differs from the original sur-
face. The limitations of reconstruction from contours
is that it may not produce a closed surface and the re-
construction degrades as the contours become parallel
to the epipolar constraints. The technique may also fail
in highly textured regions where it is difficult to consis-
tently extract edges.

4 3D points from stereo
An alternative to extracting surface shape by matching
2D edges is to use dense (correlation-based) stereo, and
then integrating the resulting depth maps into a com-
plete 3D model [54].

Our algorithm first computes dense disparity maps
from successive pairs of images in the input image
stream. The images are re-sampled (orthorectified) so
that corresponding epipolar lines are horizontal [19], and
each image is interpolated horizontally by a factor of 4.
Disparities are estimated using a Sum of Squared Dif-
ferences (SSD) algorithm [3], since it provides not only
sub-pixel disparity estimates, but also uncertainty esti-
mates for each pixel. The sub-pixel disparity estimate
at each pixel is computed by fitting a parabola to the
minimum SSD value; the analytic minimum is used to
compute the disparity, while the variance in this estimate
is computed using the second derivative of the parabola
and a local noise estimate [37].

Figure 4b shows the depth map computed from two
frames of the video sequence, after thresholding out low-
certainty pixels. Figure 4c shows the certainty (inverse
variance). Notice how the estimates are more certain in
highly textured regions.

For each disparity estimate d we compute the corre-
sponding 3-D object space location using triangulation.4
We also compute a 3 × 3 covariance matrix for each
point which characterizes the shape and magnitude of
the point’s positional uncertainty. The component of
this covariance along the viewing ray is computed using
the disparity estimate variance and the Jacobian of the
inverse projection (triangulation) operator. The other
two axes of the covariance ellipsoid can be chosen ar-
bitrarily and their length (standard deviation) set to a
suitably chosen constant.

The result of our two-frame stereo matching and
backprojection into object space gives us a “cloud” of
uncertainty-tagged points lying on the surface of the ob-
ject (Figure 4d). As the object continues to rotate and
more points are acquired, point collections from succes-
sive frames are merged in order to reduce the noise in
point location estimates.

To merge neighboring 3D points from different frames,
we start by computing an uncertainty-weighted distance
measure. If this distance is sufficiently small, we merge
the two points and replace them with a single measure-
ment with a reduced uncertainty.

The problem with this simple approach is that there
may be many candidate matches for a given point, es-
pecially if one elongated uncertainty ellipsoid overlaps
several other points. To reduce this problem, we limit
merges to points whose uncertainty ellipsoid major axes
are nearly parallel and which also meet the previous dis-
tance criteria. In practice, we make the merging step
simpler by re-projecting the 3D locations and their un-
certainties into the camera image plane. Two points are

4Our object-centered coordinate reference frame is fixed to the
top of the turntable and rotates with it.
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Figure 5: Final merged data from assam sequence: (a) top view, (b) oblique view, (c) front view, (d) side view. The
wireframe bounding box is just a 3” reference cube aligned with the turntable top.

merged if their image plane centers lie within a small dis-
tance of each other (say, 1/2 pixel) and their depths over-
lap sufficiently (using a 1-D version of the uncertainty-
weighted distance). The thresholds for merging points
are set high enough so that neighboring measurements
from the same frame are not merged (we want our fi-
nal model to be at least as accurate as the input image)
but low enough so that oversampling (the density of 3D
points per image pixel) is not too great.

Figure 5 shows the results of processing a complete
250 image sequence. The data is shown as isolated
points from 4 different views. As you can see, the over-
all shape of the tea tin is recovered well, although the
surface is not very smooth. In general, these results
are not as accurate as those obtained with our edge-
based surface reconstruction technique, due mainly to
the narrower baselines involved (the contour-based algo-
rithm typically uses 5–7 frames for each reconstructed
contour, whereas two-frame stereo was used for these re-
sults). However, the algorithm works better in highly
textured areas where reliable edge extraction is difficult.

The algorithm we use for merging 3D points is re-
lated to other recent range-data merging algorithms
[52, 70, 26, 16]. Unlike these algorithms, it explicitly
models the 3D uncertainty associated with range mea-
surements (as does [29]), which produces estimates which
are more statistically optimal. Unlike these algorithms,
however, it does not produce a single coherent surface.
To produce such an estimate, we developed a novel topo-
logically flexible surface interpolation algorithm, which
we present next.

5 Oriented particle-based
surface modeling

The problem of fitting 3D models to sparse range data
has been extensively studied in computer vision. Popu-
lar models include include generalized cylinders [1], su-
perquadrics [41], and triangular meshes [11]. Physically-
based models, which have internal deformation energies
and can be fitted through external forces to 2D im-
ages and 3D range data have also been widely studied

[67, 18, 66, 38].
Unfortunately, all of these models require the user to

specify the topology (and often the rough shape) of the
object ahead of time. To overcome this limitation, we
have developed a surface modeling and fitting system
based on the concept of oriented particles (also known
as surface elements, or surfels) [62, 64, 63].

Our surface modeling and reconstruction method has
two components. The first is a dynamic particle system
which discovers topological and geometric surface struc-
ture implicit in the data. The second component is an
efficient triangulation scheme which connects the parti-
cles into a continuous global surface model that is con-
sistent with the particle structure. The evolving global
model supports the automatic extension of existing sur-
faces with few restrictions on connectivity, the joining of
surfaces to form larger continuous surfaces, and the split-
ting of surfaces along arbitrary discontinuities as they are
detected.

The most novel feature of our approach to surface re-
construction is the use of a molecular dynamics simula-
tion in which particles interact through long-range at-
traction forces and short-range repulsion forces. In our
system, each particle has an associated surface normal.
To control the behavior of these particles, we designed
new interaction potentials which favor locally planar or
locally spherical arrangements of particles [62]. Thus,
the oriented particles support smoothness constraints
similar to those inherent in the deformation energies
of physically-based surface models. When reconstruct-
ing an object of arbitrary topology, the particles can be
made to “flow” over the data, extracting and conforming
to meaningful surfaces.

Our oriented particles were used as the basis for an
interactive surface modeling system [62]. With this sys-
tem, users can spray collections of points into space to
form elastic sheets, shape them using deformation tools,
and then freeze the surfaces into the desired final shape.
They can create any desired topology with this tech-
nique. For example, they can deform a flat sheet into an
object with a protrusion and then change the topology
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Figure 6: Forming a complex object. The initial surface is deformed upwards and then looped around. The new
topology (a handle) is created automatically.

to create a looped handle (Figure 6). Forming such sur-
faces with traditional spline patches is a difficult problem
that requires careful attention to patch continuities [36].
Other examples of modeling operations in this system
include “cold welding” two surfaces together by abut-
ting their edges, “cutting” surfaces with a knife-like con-
straint tool, and “creasing” surfaces by designating cer-
tain particles to be unoriented [62].

Another important application of our oriented par-
ticle systems is the interpolation and extrapolation of
sparse 3-D data. This is a particularly difficult prob-
lem when the topology of the surface to be fitted is
unknown. Oriented particles provide a solution to this
problem by extending the surface out from known data
points. This technique is particularly useful for interpo-
lating the sparse position measurements obtained using
the techniques described in this paper.

The basic components of our particle-based surface
extension algorithm are two heuristic rules controlling
the addition of new particles. These rules are based on
the assumption that the particles on the surface are in a
near-equilibrium configuration with respect to the flat-
ness, bending, and inter-particle spacing potentials.

The first (stretching) rule checks to see if two neigh-
boring particles have a large enough separation between
them to add a new particle. If two particles are separated
by an appropriate distance, we create a candidate parti-
cle at the midpoint. The second (growing) rule allows
particles to be added in all directions with respect to
a particle’s local tangent plane. The rule is generalized
to allow a minimum and maximum number of neighbors
and to limit growth in regions of few neighboring parti-
cles, such as at the edge of a surface.

With these two rules, we can automatically build a
surface from collections of 3-D points. We create parti-
cles at each sample location and fix their positions and
orientations. We then start filling in gaps by growing
particles away from isolated points and edges. After
completing a rough surface approximation, we can re-
lease the original sampled particles to smooth the final
surface, thereby eliminating excessive noise. If the set of
data points is reasonably distributed, this approach will

result in a smooth continuous closed surface.
In conjunction with fitting the surface, we can esti-

mate local differential geometric quantities such as the
principal directions and minimum and maximum curva-
tures. This can be achieved by simply adding an extra
potential function that induces a torque around the lo-
cal z axis and which forces the x and y axes to align
themselves in the directions of minimum and maximum
curvature [63]. The resulting system of oriented particles
resembles the collection of interacting Darboux frames
used by Sander and Zucker [46].

To summarize, oriented particles (surfels) allow us to
interpolate and smooth both sparse and dense 3D data,
without the need for any prior shape specification or user
intervention (see [27, 23] for alternative approaches).
Our system is flexible and general enough to model elas-
tic surfaces of arbitrary topology with creases and dis-
continuities, and has also been extended to produce lo-
cal measures of intrinsic geometry such as principal cur-
vatures. Limitations of our approach include the large
amounts of computation required to simulate the particle
dynamics, the difficulty of tuning these dynamics, and
occasional undesirable side-effects, such as the tendency
of neighboring of surfaces to stick together.

6 Inverse texture mapping
The final step in creating a photorealistic model from
imagery is to recover the color distribution over the sur-
face of the object. In computer graphics, this is often
called texture map recovery or extraction. A more gen-
eral problem is to estimate the bidirectional reflectance
distribution function (BRDF) at each pixel [47, 48].

A simple way to obtain such distributions is to first
segment the object or scene into piecewise planar re-
gions, and to then project the input images onto these
planar regions [13, 4, 17]. Another possibility is to use
a triangulated surface model, and to project the images
onto the triangles [7], or to just estimate the colors at
the vertices (Figures 7–8).

Regardless of the approach used, the visibility of sur-
faces in each image must first be computed. The most
convenient way to do this is to use a z-buffer or item
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(a) (b) (c) (d)

Figure 7: Photometric recovery example (duck sequence): (a) input image from duck sequence, (b) octree model, (c)
3-D edges, (d) inverse texture-mapped model.

(a) (b) (c) (d)

Figure 8: Photometric recovery example (tug sequence): (a) input image from duck sequence, (b) octree model, (c)
3-D edges, (d) inverse texture-mapped model.

(a) (b) (c)

Figure 9: Projective depth recovery example—table with stacks of papers: (a) input image, (b) intensity-coded depth
map (dark is farther back) (c) texture-mapped surface seen from novel viewpoint.
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Figure 10: The Lumigraph: (a) the cube surface captures all light rays emanating from the object; (b) the 4D
(s, t, u, v) parameterization of the rays; (c) computing the 4D coordinate of a pixel seen from a novel view.

buffer [72]. Furthermore, the contribution of each input
pixel to the final color or texture map should be weighted
so that pixels viewed at oblique angles contribute less.
A convenient way to do this is to use the dot product
between the camera viewing direction (or the ray cor-
responding to a pixel) and the surface normal. Finally,
shading effects should be compensated for.

In the examples shown in Figures 7–8, we use a simple
Lambertian shading model, with the light source placed
directly behind the camera. While the recovered texture
maps look plausible, they still suffer from visible arti-
facts. The first of these is a general darkening of colors
near the edges of the objects’ visible regions (e.g., the
back of the duck, the top of the tugboat). This could be
due to a failure of the Lambertian model, non-linearities
in the image acquisition process, or simply a lack of in-
formation in highly compressed and poorly lit areas.

The second major problem is that the recovered color
distributions (textures) are much blurrier than the orig-
inal images. This is mostly due to residual inaccura-
cies in the recovered object’s shape and possible mis-
calibrations in the acquisition system. Two approaches
could be used to solve this problem. The first is to per-
turb the shape model in order to better align all of the
input images [22]. A second approach is to simply deform
each input image to better match the current re-rendered
model, which should also compensate for other unmod-
eled sources of mis-registration errors. We are currently
investigating these possibilities.

7 Beyond 3D models:
image-based rendering

The techniques and algorithms presented thus far all
have one goal in common: the reconstruction of de-
tailed, photorealistic 3D models of arbitrary topology.
My interest in this area was first stimulated while I was

working on the recovery of accurate depth maps from
multiframe stereo [37]. While we were able to obtain
good depth maps and use these to re-project the scene
into novel views, it quickly became apparent that only
a very limited range of novel viewpoints could be sup-
ported with this representation.

Ironically, there has been a resurgence of interest in
both the computer graphics and computer vision com-
munities in such 2-1/2 D representations. In computer
graphics, this idea is called image-based rendering or
view interpolation [14, 39]. The basic idea is to pre-
render (or alternatively, to capture with photographic
means) a number of views of a complex scene. At ren-
dering time, these images (views) are then combined us-
ing morphing techniques [9, 50], i.e., by warping and
blending images. The advantage of this approach is
that complex lighting simulations are eliminated (or pre-
computed), thus speeding up the rendering.

In computer vision, these representations are some-
times called visual scene representations [2]. The ideas
here are similar, but with an emphasis on computing
the necessary correspondences between input images to
create large mosaics of scenes and to extract the re-
quired depth maps, often without any explicit knowl-
edge of camera calibration or pose [31, 60]. One way
to address this latter problem is to reconstruct a pro-
jective representation of the scene, i.e., one which is re-
lated to the true Euclidean structure through an un-
known collineation [20, 25, 40, 59].

When combined with visual scene reconstruction, this
often results in estimators based on first computing a
planar homography, and then a residual parallax motion
[31, 49, 58]. Figure 9 shows the depth map recovered
using our plane + parallax technique, and also a novel
view rendered by mapping one image onto the depth
map. Note that the depth map is only known up to an
arbitrary scale and planar offset. To generate the novel
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Figure 11: Lumigraph example: (a) input image showing lion and calibration stage; (b) crude volumetric reconstruc-
tion of lion’s shape; (c) novel image rendered from the Lumigraph.

view in Figure 9, we simply set the scale by hand to
a reasonable value. Techniques for automatically deriv-
ing the proper mapping to novel views from additional
correspondences have been developed [33].

The most recent work in image-based rendering sug-
gests that correspondence between views may not be nec-
essary if the spatial sampling of views is sufficiently high
[34, 24]. The fundamental observation is that a set of im-
ages sampled on a surface enclosing any object (or con-
versely, surrounding some convex region of free-space) is
sufficient to re-synthesize the appearance of the object
or scene from any novel view in the free-space (Figure
10a). A convenient parametrization for the rays ema-
nating from this volume uses two planes (Figure 10b).
To compute the appearance of the object from a novel
view, it then suffices to compute the 4D (s, t, u, v) index
of each new pixel, and to look up the appropriate color
in the 4D data set (Figure 10c).

Unfortunately, while this works perfectly well in the-
ory, in practice the 4D light field must be sampled dis-
cretely, resulting in a finite number of images (say a
32 × 32 array of 256 × 256 images). When looking up a
new ray value, we must interpolate this value from the
neighboring discrete samples. If the neighboring samples
are too far apart, then the blending of adjacent images
will result in ghosting or double images, even if multi-
dimensional (quadralinear) interpolation is used. This
can be mitigated somewhat by pre-blurring the images
(low-pass filtering in 4D space to remove aliasing), but
results in blurry output images.

A sensible way to overcome this problem is to re-
introduce some notion of depth or disparity into the 4D
representation. Fortunately, we do not need to have a re-
liable depth estimate for each sample. A low-resolution
geometric model is sufficient to remove most of the vis-
ible artifacts, and efficient rendering algorithms have
been developed to exploit such models within a tradi-
tional graphics pipeline [24].

Figure 11 shows an input image from our Lumigraph
system, a coarse geometric model computed using the
volumetric technique described in Section 2, and a final
re-synthesized image. Notice how this scene would be
very difficult to model using a traditional 3D model be-
cause of the extremely fine detail in the lion’s hair. The
Lumigraph has similar advantages with respect to 3D
models when it comes to capturing subtle photometric
effects such as specularities and interreflections [24].

Our work on the Lumigraph suggests that there is a
continuum of models and representations available for
photorealistically representing the 3D world. At one
end is the pure light field representation, which is sim-
ply a large collection of images taken from known van-
tage points. The rendering of such representations re-
quires no correspondences, but does require very high
sampling rates, and hence large storage costs (but see
[34] on how these data sets may be compressed). At the
other end are traditional texture-mapped 3D models. If
appropriate reflectance models can also be estimated,
then a standard graphics pipeline can be used to obtain
photorealistic renderings (ignoring issues such as inter-
reflections).

In between are the more interesting hybrid models.
The Lumigraph uses a low-resolution representation of
shape to perform a warping of the light field images in or-
der to obtain better renderings at lower sampling rates.
Visual scene representations and view interpolation tech-
niques associate a depth value with each pixel in order
to support re-projection through warping and blending.
The rendering of such models on current graphics archi-
tectures (or in software) may be slow unless simplifying
assumptions are made [14, 39]. Finally, view-dependent
texture maps offer the possibility of increased realism
when combined with traditional 3D models [17]. An al-
ternative to view-dependent texture maps are full per-
pixel BRDF models, but this research is still in its in-
fancy [47, 48].
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8 Camera pose recovery
Throughout our presentation, we have sidestepped two
important issues which must be addressed before 3D
models can be extracted from images, namely camera
calibration and pose estimation. Camera calibration is a
well-established discipline originating in photogramme-
try [51]. Reg Willson’s public implementation of Tsai’s
calibration algorithm [69] is freely available and widely
used (see the Computer Vision Home Page at Carnegie
Mellon University). Camera pose (location and orienta-
tion) estimation is intimately tied to camera calibration,
and the same code is often used to accomplish both. The
distinction is that it is sometimes preferable to calibrate
the intrinsic camera parameters first using a more com-
plex calibration setup , and to then use a simpler set of
markers for determining the extrinsic (pose) parameters
[19].

The most interesting design decision with respect to
calibration and pose estimation is often the choice of
stage and markers. For my research on shape from ro-
tation, I used a simple hexagonal pattern affixed to the
top of the turntable shown in Figure 4a [54]. For our Lu-
migraph project, we used a three-walled stage painted in
blue (to support blue-screen matte extraction) with cir-
cular calibration targets (Figure 11a) [24]. In outdoor
scenarios such as special effects for the film industry, it
is common to place golf ball at known locations in the
scene which are later manually removed from the live
footage.

An alternative to marker-based pose estimation is to
use structure from motion, i.e., to track a collection of
features through several frames, and to then simultane-
ously reconstruct the point and camera positions. Many
different structure from motion algorithms have been de-
veloped [35, 68, 73, 59]. Two of the more recent algo-
rithms, which have been incorporated into full texture-
mapped 3D model extraction systems are [4, 7]. The
latter work is particularly interesting since it uses cur-
rent structure and motion estimates to validate tracking
hypotheses, and a robust (RANSAC) technique to throw
out outliers.

Unfortunately, structure from motion algorithm are
notoriously bad at estimating the true pose and struc-
ture unless a very wide range of views or baseline is used
[61]. In some applications, however, such as the merg-
ing of live video and graphics, it may not be important
to get a fully Euclidean reconstruction (unlike, say, for
3D model construction). Techniques which use stronger
prior models of structure, e.g., building or room models,
do not suffer from this problem as much, but can only
be applied in restricted situations [8, 17].

9 Discussion
In this paper, we have surveyed a number of tech-
niques for reconstructing and rendering photorealistic

3D models from multiple images. These techniques
include both volume and surface reconstruction algo-
rithms, physically-based surface models, and image-
based rendering techniques. Each technique has its ad-
vantages and disadvantages. The selection of tools ap-
propriate to the job will depend on the characteristics of
the scene or object being imaged, the amount of compu-
tation time available, and the desired quality and flexi-
bility at the output (rendering) stage.

Integrating all of these techniques into a coherent
modeling system would be very interesting and useful,
but would also require a careful design of the underlying
representations. Such a task would go beyond a mere
agglomeration of vision algorithms. It would imply in-
teresting research problems in computer aided geometric
design and multi-sensor fusion. Of course, each individ-
ual component (e.g., stereo matching) still has a lot of
room for improvement, and we expect to see interesting
future contributions in all of these areas.

Envisioning useful and exciting application of image-
based modeling is another interesting way to predict
their eventual deployment and to select research prob-
lems. Some possibilities include:

• CAD/CAM : the acquisition of shape and color
models for design refinement and manufacturing

• 3D fax : displaying the acquired models at a re-
mote location or reconstructing them using stereo-
lithography or other means

• architecture: constructing building and site models
from photographs, with applications to design and
remodeling, and even home sales

• biomedical : acquiring anatomical models (e.g.,
faces) for surgical planning and visualization

• special effects (FX) and virtual studios: merging live
video or film with 3D graphics

• 3D world building : for virtual environments (3D
chat systems and games) and virtual travel

• 3D avatar construction: head and body models to
populate virtual environments, or to support a “3D
videophone”

As these applications suggest, image-based 3D modeling
is likely to be widely used in the future, and is bound to
remain a fascinating area for future research.

Acknowledgements
It has been my honor to have worked over the last ten
years with an outstanding collection of colleagues and
collaborators, including Larry Matthies, Takeo Kanade,
Demetri Terzopoulos, David Tonnesen, Richard Weiss,
Sing Bing Kang, James Coughlan, Heung-Yeung Shum,
Steven Gortler, Radek Grzeszczuk, and Michael Cohen,
among others. The research described in this paper is a
testament to their creativity, insight, and hard work.



To appear in Vision Interface 97, May 21, 1997, Kelowna, B.C. 11

References
[1] G. J. Agin and T. O. Binford. Computer description of
curved objects. IEEE Trans. Computers, C-25(4):439–449,
April 1976.
[2] IEEE Work. Representations of Visual Scenes, Cam-
bridge, MA, June 1995.
[3] P. Anandan. A computational framework and an algo-
rithm for the measurement of visual motion. Int’l J. Com-
puter Vision, 2(3):283–310, January 1989.
[4] A. Azarbayejani and A. P. Pentland. Recursive estima-
tion of motion, structure, and focal length. IEEE Trans.
Pattern Analysis Machine Intelligence, 17(6):562–575, June
1995.
[5] H. H. Baker. Three-dimensional modeling. In Int’l Joint
Conf. Artificial Intelligence, pages 649–655, 1977.
[6] B. G. Baumgart. Geometric modeling for computer vi-
sion. Technical Report AIM-249, Artificial Intelligence Lab-
oratory, Stanford University, October 1974.
[7] P. Beardsley, P. Torr, and A. Zisserman. 3D model ac-
quisition from extended image sequences. In European Conf.
Computer Vision, volume 2, pages 683–695, Cambridge, Eng-
land, April 1996. Springer-Verlag.
[8] S. Becker and V. M. Bove. Semiautomatic 3-D model
extraction from uncalibrated 2-d camera views. In SPIE
Vol. 2410, Visual Data Exploration and Analysis II, pages
447–461, San Jose, CA, February 1995.
[9] T. Beier and S. Neely. Feature-based image metamorpho-
sis. Computer Graphics (SIGGRAPH’92), 26(2):35–42, July
1992.

[10] P. J. Besl and R. C.. Jain. Three-dimensional object
recognition. Computing Surveys, 17(1):75–145, March 1985.

[11] J.-D. Boissonat. Representing 2D and 3D shapes with
the Delaunay triangulation. In Seventh Int’l Conf. Pattern
Recognition, pages 745–748, Montreal, July 1984.

[12] E. Boyer and M. O. Berger. 3D surface reconstruction
using occluding countours. Int’l J. Computer Vision, 1997.

[13] I. Carlbom et al. Modeling and analysis of empirical data
in collaborative environments. Communications of the ACM,
35(6):74–84, April 1992.

[14] S. Chen and L. Williams. View interpolation for image
synthesis. Computer Graphics (SIGGRAPH’93), pages 279–
288, August 1993.

[15] R. Cipolla and A. Blake. Surface shape from the de-
formation of apparent contours. Int’l J. Computer Vision,
9(2):83–112, November 1992.

[16] B. Curless and M. Levoy. A volumetric method for build-
ing complex models from range images. Proc. SIGGRAPH’96
(New Orleans), pages 303–312, August 1996.

[17] P. E. Debevec, C. J. Taylor, and J. Malik. Model-
ing and rendering architecture from photographs: A hybrid
geometry- and image-based approach. Proc. SIGGRAPH’96
(New Orleans), pages 11–20, August 1996.

[18] H. Delingette, M. Hebert, and K. Ikeuichi. Shape repre-
sentation and image segmentation using deformable surfaces.
In IEEE Conf. Computer Vision and Pattern Recognition,
pages 467–472, Maui, Hawaii, June 1991.

[19] O. Faugeras. Three-dimensional computer vision: A ge-
ometric viewpoint. MIT Press, Cambridge, MA, 1993.

[20] O. D. Faugeras. What can be seen in three dimensions
with an uncalibrated stereo rig? In European Conf. Com-

puter Vision, pages 563–578, Santa Margherita Liguere, Italy,
May 1992. Springer-Verlag.

[21] W. T. Freeman and E. H. Adelson. The design and use
of steerable filters. IEEE Trans. Pattern Analysis Machine
Intelligence, 13(9):891–906, September 1991.

[22] P. Fua and Y. G. Leclerc. Using 3–dimensional meshes
to combine image-based and geometry-based constraints. In
European Conf. Computer Vision, volume 2, pages 281–291,
Stockholm, Sweden, May 1994. Springer-Verlag.

[23] P. Fua and P. Sander. Segmenting unstructured 3d
points into surfaces. In European Conf. Computer Vision,
pages 676–680, Santa Margherita Liguere, Italy, May 1992.
Springer-Verlag.

[24] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The Lumigraph. Proc. SIGGRAPH’96, pages 43–54,
August 1996.

[25] R. Hartley, R. Gupta, and T. Chang. Estimation of rela-
tive camera positions for uncalibrated cameras. In European
Conf. Computer Vision, pages 579–587, Santa Margherita
Liguere, Italy, May 1992. Springer-Verlag.

[26] A. Hilton, A. J. Stoddart, J. Illingworth, and
T. Windeatt. Reliable surface reconstruction from multiple
range images. In European Conf. Computer Vision, volume 1,
pages 117–126, Cambridge, England, April 1996. Springer-
Verlag.

[27] W. Hoppe et al. Surface reconstruction from unorganized
points. Computer Graphics (SIGGRAPH’92), 26(2):71–78,
July 1992.

[28] P. J. Huber. Robust Statistics. John Wiley & Sons, New
York, 1981.

[29] A. E. Johnson and S. B. Kang. Registration and integra-
tion of textured 3-d data. In Int’l Conf. Recent Advances in
3-D Digital Imaging and Modeling, Ottawa, May 1997.

[30] S. B. Kang and R. Szeliski. 3-D scene data recovery using
omnidirectional multibaseline stereo. In IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 364–370, San
Francisco, June 1996.

[31] R. Kumar, P. Anandan, and K. Hanna. Shape recovery
from multiple views: a parallax based approach. In Image
Understanding Work., pages 947–955, Monterey, CA, Novem-
ber 1994.

[32] A. Laurentini. The visual hull concept for silhouette-
based image understanding. IEEE Trans. Pattern Analysis
Machine Intelligence, 16(2):150–162, February 1994.

[33] S. Laveau and O. D. Faugeras. 3-d scene representation
as a collection of images. In Int’l Conf. Pattern Recognition,
volume A, pages 689–691, Jerusalem, Israel, October 1994.

[34] M. Levoy and P. Hanrahan. Light field rendering. Proc.
SIGGRAPH’96 (New Orleans), pages 31–42, August 1996.

[35] H. C. Longuet-Higgins. A computer algorithm for recon-
structing a scene from two projections. Nature, 293:133–135,
1981.

[36] Charles Loop and Tony DeRose. Generalized B-spline
surfaces of arbitrary topology. Computer Graphics (SIG-
GRAPH’90), 24(4):347–356, August 1990.

[37] L. H. Matthies, R. Szeliski, and T. Kanade. Kalman
filter-based algorithms for estimating depth from image se-
quences. Int’l J. Computer Vision, 3:209–236, 1989.

[38] T. McInerney and D. Terzopoulos. A finite element model
for 3D shape reconstruction and nonrigid motion tracking.



To appear in Vision Interface 97, May 21, 1997, Kelowna, B.C. 12

In Int’l Conf. Computer Vision, pages 518–523, Berlin, May
1993.

[39] L. McMillan and G. Bishop. Plenoptic modeling: An
image-based rendering system. Computer Graphics (SIG-
GRAPH’95), pages 39–46, August 1995.

[40] R. Mohr, L. Veillon, and L. Quan. Relative 3D recon-
struction using multiple uncalibrated images. In IEEE Conf.
Computer Vision and Pattern Recognition, pages 543–548,
New York, June 1993.

[41] A. P. Pentland. Perceptual organization and the represen-
tation of natural form. Artificial Intelligence, 28(3):293–331,
May 1986.

[42] M. Potmesil. Generating octree models of 3D objects
from their silhouettes in a sequence of images. Computer
Vision, Graphics, and Image Processing, 40:1–29, 1987.

[43] M. Rioux and T. Bird. White laser, synced scan.
IEEE Computer Graphics and Applications, 13(3):15–17,
May 1993.

[44] A. Rosenfeld and A. C. Kak. Digital Picture Processing.
Academic Press, New York, 1976.

[45] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1989.

[46] P. T. Sander and S. W. Zucker. Inferring surface trace
and differential structure from 3-D images. IEEE Trans. Pat-
tern Analysis Machine Intelligence, 12(9):833–854, Septem-
ber 1990.

[47] Y. Sato and K. Ikeuchi. Reflectance analysis for 3d com-
puter graphics model generation. Graphical Models and Im-
age Processing, 58(5):437–451, September 1996.

[48] Y. Sato and K. Ikeuchi. Object shape and reflectance
modeling from observation. Proc. SIGGRAPH’97 (Los An-
geles), August 1997.

[49] H. S. Sawhney. Simplifying motion and structure analy-
sis using planar parallax and image warping. In Int’l Conf.
Pattern Recognition, volume A, pages 403–408, Jerusalem,
Israel, October 1994.

[50] S. M. Seitz and C. M. Dyer. View morphing. Proc. SIG-
GRAPH’96 (New Orleans), pages 21–30, August 1996.

[51] Chester C. Slama, editor. Manual of Photogrammetry.
American Society of Photogrammetry, Falls Church, Vir-
ginia, Fourth Edition, 1980.

[52] M. Soucy and D. Laurendeau. Multi-resolution surface
modeling from multiple range views. In IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 348–353, Cham-
paign, Ill., June 1992.

[53] P. Srivasan, P. Liang, and S. Hackwood. Computational
geometric methods in volumetric intersections for 3D recon-
struction. Pattern Recognition, 23(8):843–857, 1990.

[54] R. Szeliski. Shape from rotation. In IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 625–630, Maui,
Hawaii, June 1991.

[55] R. Szeliski. Rapid octree construction from image se-
quences. CVGIP: Image Understanding, 58(1):23–32, July
1993.

[56] R. Szeliski. Image mosaicing for tele-reality applications.
In IEEE Work. Applications of Computer Vision, pages 44–
53, Sarasota, Florida, December 1994.

[57] R. Szeliski. Video mosaics for virtual environments. IEEE
Computer Graphics and Applications, pages 22–30, March
1996.

[58] R. Szeliski and J. Coughlan. Hierarchical spline-based
image registration. In IEEE Conf. Computer Vision and Pat-
tern Recognition, pages 194–201, Seattle, Washington, June
1994.

[59] R. Szeliski and S. B. Kang. Recovering 3D shape and
motion from image streams using nonlinear least squares. J.
Visual Communication and Image Representation, 5(1):10–
28, March 1994.

[60] R. Szeliski and S. B. Kang. Direct methods for visual
scene reconstruction. In IEEE Work. Representations of Vi-
sual Scenes, pages 26–33, Cambridge, MA, June 1995.

[61] R. Szeliski and S. B. Kang. Shape ambiguities in struc-
ture from motion. In European Conf. Computer Vision,
volume 1, pages 709–721, Cambridge, England, April 1996.
Springer-Verlag.

[62] R. Szeliski and D. Tonnesen. Surface modeling with
oriented particle systems. Computer Graphics (SIG-
GRAPH’92), 26(2):185–194, July 1992.

[63] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Curvature
and continuity control in particle-based surface models. In
SPIE Vol. 2031 Geometric Methods in Computer Vision II,
pages 172–181, San Diego, July 1993.

[64] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Modeling
surfaces of arbitrary topology with dynamic particles. In
IEEE Conf. Computer Vision and Pattern Recognition, pages
82–87, New York, New York, June 1993.

[65] R. Szeliski and R. Weiss. Robust shape recovery from
occluding contours using a linear smoother. In IEEE Conf.
Computer Vision and Pattern Recognition, pages 666–667,
New York, June 1993.

[66] D. Terzopoulos and D. Metaxas. Dynamic 3D mod-
els with local and global deformations: Deformable su-
perquadrics. IEEE Trans. Pattern Analysis Machine Intelli-
gence, 13(7):703–714, July 1991.

[67] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on
deformable models: Rcovering 3D shape and nonrigid mo-
tion. Artificial Intelligence, 36(1):91–123, August 1988.

[68] C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: A factorization method. Int’l J.
Computer Vision, 9(2):137–154, November 1992.

[69] R. Y. Tsai. A versatile camera calibration technique
for high-accuracy 3D machine vision metrology using off-the-
shelf TV cameras and lenses. IEEE J. Robotics and Automa-
tion, RA-3(4):323–344, August 1987.

[70] G. Turk and M. Levoy. Zippered polygonal meshes from
range images. Computer Graphics (SIGGRAPH’94), pages
311–318, July 1994.

[71] R. Vaillant and O. D.. Faugeras. Using extremal bound-
aries for 3-D object modeling. IEEE Trans. Pattern Analysis
Machine Intelligence, 14(2):157–173, February 1992.

[72] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved
computational methods for ray tracing. ACM Trans. Graph-
ics, 3(1):52069, January 1984.

[73] J. Weng, T. S. Huang, and N. Ahuja. Motion and Struc-
ture from Image Sequences. Springer-Verlag, Berlin, 1993.

[74] J. Y. Zheng. Acquiring 3-D models from sequences of con-
tours. IEEE Trans. Pattern Analysis Machine Intelligence,
16(2):163–178, February 1994.



10th British Machine Vision Conference (BMVC’99)

Stereo Algorithms and Representations for
Image-Based Rendering

Richard Szeliski
Vision Technology Group

Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399

Abstract

This paper reviews a number of recently developed stereo matching algorithms
and representations. It focuses on techniques that are especially well suited
for image-based rendering applications such as novel view generation and the
mixing of live imagery with synthetic computer graphics. The paper begins
by reviewing some recent approaches to the classic problem of recovering a
depth map from two or more images. It then describes a number of newer
representations (and their associated reconstruction algorithms), including
volumetric representations, layered plane-plus-parallax representations, and
multiple depth maps. Each of these techniques has its own strengths and
weaknesses, which are discussed.

1 Introduction

Stereo matching, which is one of the oldest problems in computer vision, now appears to
be a maturing research area. Real-time stereo matching, which a few years ago required
special-purpose hardware [16, 20], is now implementable on regular personal computers
(see [20] for some references). Depth maps computed with such systems can now be used
as basic building blocks for higher level processes such as background subtraction and
tracking.

But is stereo really a solved problem? Consider, for example, one of the more recent
applications of real-time stereo matching: the ability to composite live video with synthetic
computer graphics using the process of z-keying [16]. Or, consider the ability to film or
photograph a scene or activity from multiple views, and to then look at the same scene
from novel viewpoints, i.e., virtualized reality [18]. These applications are certainly very
exciting, but is the quality of existing algorithms adequate for their use in real production
environments?

Judging from the results in recent papers, it appears that we are not there yet. The
reconstructions produced by today’s algorithms still often leave a “halo” of background
pixels clinging to the foreground object. Furthermore, even if a stereo algorithm were to
assign a correct depth to each pixel in an image, it would still fail to correctly handle mixed
pixels, i.e., pixels whose color is a combination of foreground and background colors
(which occur at nearly all pixels along a depth discontinuity). What we really need are
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algorithms where a foreground layer can be pulled or matted from the background, based
on the results of a stereo reconstruction algorithm.

Applications such as z-keying and virtualized reality are related to a recent trend in
computer graphics, which is called image-based rendering [19]. While some of image-
based rendering is concerned with re-using synthetically generated images to accelerate
rendering speeds, a lot of recent work has focused on acquiring scene or object models from
multiple images and re-synthesizing novel views from the original images [23, 14]. When
stereo matching is used in such applications, there are several demanding requirements
that are not present in more traditional robotics applications of stereo.

First of all, the stereo algorithm must be able to assign correct (or at least reasonable)
depths at all pixels, especially those near depth discontinuities. In Section 2, I discuss
how some recent stereo algorithms are able to avoid the systematic “fattening” of layers
associated with traditional area-based methods. A second requirement is the ability to pull
mattes, i.e., to separate foreground and background elements while correctly describing
the true colors of individual pixels. A third requirement is to generate novel views with as
few gaps (missing pixels) as possible, and to also account for partially occluded regions
during the matching process. The single depth map representation used in Section 2 is
inadequate on all of these counts.

Section 3 describes how a volumetric representation of space, combined with real-
valued opacities, can be used to overcome most of these problems. Section 4 describes
a different, more compact, representation based on arrangements of colored quasi-planar
cutouts, which can also overcome these problems. Section 5 describes how to use multiple
depth maps (and associated images) to solve the problem of partially occluded areas, and
how this representation can also serve as a preliminary step towards a more complete
reconstruction of the scene. I conclude this paper with a comparison of the approaches
presented and some prospects for further progress in this field.

2 Depth maps

The classical problem of computing a dense depth map from two or more images has been
extensively studied. Some good (although slightly dated) surveys of the field can be found
in [3, 11, 8]. In this section, we first present a formulation for this problem, and then
discuss several recently developed algorithm that attempt to accurately solve for depth
near discontinuities.

2.1 Generalized disparity space

Assume we are given as input a collection of K images, I1(x, y), I2(x, y), . . . , IK(x, y),
captured by K cameras with known projection (camera) matrices, P1,P2, . . . ,PK . To
formulate the multiframe stereo problem, we use a generalized disparity space, which can
be any projective sampling (collineation) of 3-D space [9, 34]. This space is a generalization
of the notion of disparity space [41, 15, 28], i.e., the enumeration of all possible disparities
at every pixel. The goal of stereo matching is then to find the elements in disparity space
which lie on the surfaces of the objects in the scene. The benefits of such an approach
include the equal and efficient treatment of a large number of images [9] and the possibility
of modeling occlusions [15].
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To formulate the generalized disparity space, we first choose a virtual camera position
and orientation. This virtual camera may be coincident with one of the input images, or it
can be chosen based on the application demands and the desired accuracy of the results. For
instance, if we wish to regularly sample a volume of 3-D space, we can make the camera
orthographic, with the camera’s (x, y, d) axes being orthogonal and evenly sampled (as in
[29]).

Having chosen a virtual camera position, we then choose the orientation and spacing of
the disparity planes, i.e., the constant d planes. The relationship between d and 3-D space
can be projective. For example, we can choose d to be inversely proportional to depth,
which is the usual meaning of disparity [24]. The information about the virtual camera’s
position and disparity plane orientation and spacing can be captured in a single 4×4 matrix
M̂0, which represents a collineation of 3-D space, w(x y d 1)T = M̂0(X Y Z 1)T .

2.2 Area-based approaches

Having presented the representation used for describing the output of the matching al-
gorithm, we can now state its goal: For each (x, y) location in disparity space, find the
disparity d that aligns corresponding locations in the input images (ignoring, for now, the
possibility that pixels may be occluded). In traditional area-based correlation, the quality
of a match is measured by comparing windows centered at corresponding locations, for
example, using the sum of squared intensity differences (SSD) [17].

A more general way of characterizing area-based algorithms is the following [28]:

1. For each disparity under consideration, compute a per-pixel matching cost, e.g.,
squared intensity difference or variance of colors across the k input images.

2. Aggregate support spatially (e.g., by summing over a window, or by diffusion).

3. At each pixel (x, y), find the best matching disparity d based on the aggregated
support.

4. Compute a sub-pixel disparity estimate (optional).

Let us look at the components in this framework in more detail.
At the base of any matching algorithm is a matching cost that measures the similarity

of corresponding locations. Matching costs can be defined locally (at pixel level), or over a
certain area of support. Examples of local costs are absolute intensity differences, squared
intensity differences, binary pixel matches, edges, filtered images, and measures based on
gradient direction or gradient vectors. Matching costs that are defined over a certain area
of support include correlation and non-parametric measures. These can be viewed as a
combination of the matching cost and aggregation stages. More than two images are used
in multiframe stereo to increase stability of the algorithm [24].

Aggregating support is necessary for stable matching. A support region can ei-
ther be two-dimensional at a fixed disparity (favoring fronto-parallel surfaces), or three-
dimensional in x-y-d space (supporting slanted surfaces). Two-dimensional evidence
aggregation has been done using square windows (traditional), Gaussian convolution,
multiple windows anchored at different points [15], and windows with adaptive sizes [17].
Three-dimensional support functions that have been proposed include limited disparity
difference, limited disparity gradient [25], and Prazdny’s coherence principle [26].
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Sub-pixel disparity estimates can be computed by fitting a curve to the matching costs at
the discrete disparity levels [22, 17]. This provides an easy way to increase the resolution
of a stereo algorithm with little additional computation. However, to work well, the
intensities being matched must vary smoothly. A related refinement is to compensate for
discrete sampling of disparity space by linearly interpolating errors computed at adjacent
disparity levels, and analytically finding the minimum matching error in this interval [4].

2.3 Global optimization approaches

Optimization (regularization) approaches start with the same computation of matching
costs as area-based techniques, but then add a controlled smoothness penalty (prior) on
the disparity field d(x, y). A variety of optimization algorithms can then be used to find a
good solution to this problem [2, 28, 7].

An elegant mathematical approach to formulating these energy function and finding
their minimum is to use a Bayesian (probabilistic) estimation framework. The Bayesian
model of stereo image formation consists of two parts. The first part, a prior model for the
disparity surface, uses a traditional Markov Random Field (MRF) to encode preferences for
smooth surfaces [13]. This model is specified as a Gibbs distribution pP , the exponential
of a potential function EP :

pP (d) =
1

ZP
exp (−EP (d)) , (1)

where d is the vector of all disparities d(x, y) and ZP is a normalizing factor. The potential
function itself is the sum of clique potentials that only involve neighboring sites in the field.
The simplest such field is a first order field, where

EP (d) =
∑

i,j

ρP (d(x + 1, y) − d(x, y)) + ρP (d(x, y + 1) − d(x, y)) (2)

(see [38, 31] for generalizations to higher order fields).
When ρ(x) is a quadratic, ρ(x) = x2, the field is a Gauss-MRF, and corresponds in a

probabilistic sense to a first order regularized (membrane) surface model [38, 31]. When
ρ(x) is a unit impulse, ρ(x) = 1−δ(x), it corresponds to a MRF that favors fronto-parallel
surfaces [13]. In between these two extremes are functions derived from robust statistics,
which behave much like surface models with discontinuities [5].

The second part of a Bayesian model is the data or measurement model which accounts
for differences in intensities between corresponding image locations. This model assumes
independent, identically distributed measurement errors,

pM (I1, . . . , IK |d) =
∏

i,j

pM (x, y, d)), (3)

where log pM (x, y, d) = ρM (x, y, d) is the initial, unaggregated, matching cost. Tradi-
tional stereo matching methods use either a squared intensity error metric (Gaussian noise),
or an exact binary matching criterion (e.g., for random-dot stereograms or binary features
such as edges or the sign of the Laplacian). A more general model is a contaminated
Gaussian model, which models both Gaussian noise and allows possible outliers due to
occlusions or non-modeled photometric effects such as specularities.
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The posterior distribution, p(d|I1, . . . , IK) can be derived from the prior and measure-
ment models using Bayes’ rule,

p(d|I1, . . . , IK) ∝ pP (d)pM (I1, . . . , IK |d). (4)

As is often the case, it is more convenient to study the negative log probability distribution

E(d) = − log p(d|I1, . . . , IK) (5)

=
∑

i,j

ρP (di+1,j − di,j) + ρP (di,j+1 − di,j) +
∑

i,j

ρM (xi, yj , di,j).

While p(d|I1, . . . , IK) specifies a complete distribution, usually only a single optimal
estimate of d(x, y) is desired ([31] explains why modeling of uncertainties may be use-
ful). The most commonly studied estimate is the peak of the distribution, or Maximum A
Posteriori (MAP) estimate, which is equivalent to minimizing the energy given in (5).

A variety of techniques have been developed for minimizing equations like (5). Two
of the most popular are the Gibbs Sampler [13] and mean field theory [12]. The Gibbs
Sampler randomly chooses values for each di,j site according to the local distribution
determined by the current guesses for a site’s neighbors [13, 2]. This process will in
theory converge to a statistically optimal sample, given enough time. Mean field theory
updates an estimate of the mean value of di,j at each site using a deterministic update rule
derived from the original probability distribution [13].

The Gibbs Sampler and its variants can produce good solutions, but at the cost of
long computation times. Mean field techniques, on the other hand, are not very good at
modeling ambiguous estimates, such as multiple potential matches at each pixel. Instead of
using either of these two traditional approaches, we developed a novel estimation algorithm
based on modeling the probability distribution of d(x, y) at each site [28] . To do this, we
associate a scalar value between 0 and 1 with each possible discrete value of d at each pixel
(x, y), and require that the probabilities sum up to 1. This representation is therefore the
same as that used by aggregation-based algorithms, i.e., it explicitly models all possible
disparities at each pixel, rather than modeling a single estimated disparity as in traditional
Gibbs Sampler or mean-field approaches [2].

The algorithm is initialized by calculating the probability distribution for each pixel
(x, y) based on the intensity errors between matching pixels, i.e., using the measurement
model (3). To derive the update formula, we approximate the true Markov Random Field
distribution with a factored approximation, i.e., we assume that the neighboring disparity
columns have independent distributions. Minimizing the Kullback-Leibler divergence
between the true posterior Gibbs distribution and its factored (mean-field) approximation
leads to a set of update formulas on the probability distributions that use non-linear diffusion
(see [28] for details).

The results of running this algorithm on difficult stereo pairs are quite promising.
The algorithm is particularly good at correctly matching pixels near depth discontinuities,
since the robust smoothness constraint can be violated at the appropriate places, and also
at stereograms that have a lot of potential matches, such as random-dot stereograms.

Another recent development in optimization-based stereo matching is the use of graph
algorithms [27, 7]. Here, techniques from discrete optimization are used to find good
minima (in some cases, even global minima) of the global energy function (5). These algo-
rithms have both good discontinuity localization, since they are based on robust smoothness
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Input image Graph cuts Bayesian diffusion SAD (13 × 13)

Figure 1: Results for several stereo algorithms on the University of Tsukuba imagery.

models, and also excel at filling in good disparities inside uniform color/intensity regions
(since they take large steps in state space).

Figure 1 shows the results of applying three different matching algorithms on a multi-
camera stereo data set provided by the University of Tsukuba. You can readily see that the
two energy minimization-based approaches (Graph cuts and Bayesian) have much crisper
depth discontinuities, compared with the sum of absolute differences (SAD) technique.
The graph-cut approach also does an excellent job of filling in uniform intensity areas.
These results are part of a larger evaluation of two-frame stereo matching algorithms that
we are currently undertaking [37].

The original color image can be texture-mapped onto the surface defined by the depth
map to produce novel views [22]. Unfortunately, the depth map behaves as a “rubber
sheet”, i.e., background regions that are not visible in the reference image are not correctly
synthesized. As more and more images are used in stereo matching, this effect become even
more pronounced. For this reason, we now turn our attention to algorithm that explicitly
represent and reason about partially occluded regions.

3 Volumetric representations

The depth map representation presented in the previous section is unable to represent and
hence render partially occluded background regions. This is due to our insistence (enforced
during the winner-take-all stage) that only a single depth value be assigned to each pixel
in the reference image.

What if we were to relax this assumption? What if in addition to being able to have
several depth along each ray in the reference image, we also represented the colors of these
pixels and their (potentially partial) opacities? In principle, we should be able to represent
and reason about partially occluded pixels, and to correctly estimate the color values of
mixed pixels. These are the intuitions that led to the development of the volumetric stereo
reconstruction algorithm presented in [34]. (Simultaneously with our work, Seitz and Dyer
[29] developed a volumetric stereo algorithm that uses binary (filled/empty) opacities and
a front-to-back plane sweep (voxel coloring) algorithm. DeBonet and Viola also have a
volumetric reconstruction technique that estimates partial opacities [10].)

The algorithm starts by performing the same matching cost computation, aggregation,
and winning depth value selection as described in the previous section. However, instead of
insisting that every pixel in the reference image pick a winning depth, we only select depth
values that have a good match (good aggregated evidence), using a threshold to mark other
pixels as currently “unassigned”. These pixels will typically not have correspondences
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either because they are partially occluded, or because they are mixed pixels with different
backgrounds in different images. A new (x, y, d) volume can now be created, where each
cell now contains a color value, initially set to the mean color computed in the first stage,
and the opacity is set to 1 for cells which are winners, and 0 otherwise.

Once we have an initial (x, y, d) volume containing estimated RGBA (color and 0/1
opacity) values, we can re-project this volume into each of the input cameras using the
known transformation

xk = PkM̂−1
0 x̂0 (6)

where x̂0 is a (homogeneous) coordinate in (x, y, d) space, M̂0 is the complete camera
matrix corresponding to the virtual camera, Pk is the kth camera matrix, and xk are the
image coordinates in the kth image. In our approach, we interpret the (x, y, d) volume
as a set of (potentially) transparent acetates stacked at different d levels. Each acetate is
first warped into a given input camera’s frame using the known homography Hk. Once
the layers have been resampled, they are then composited using the standard over operator
[6].

After the re-projection step, we refine the disparity estimates by preventing visible
surface pixels from voting for potential disparities in the regions they occlude. More
precisely, we build an (x, y, d, k) visibility map, which indicates whether a given camera
k can see a voxel at location (x, y, d) [34].

Once we have computed the visibility volumes for each input camera, we can update
the list of color samples we originally used to get our initial disparity estimates to obtain
a distribution of colors in (x, y, d, k) where each color has an associated visibility value.
Voxels that are occluded by surfaces lying in front in a given view k will now have fewer (or
potentially no) votes in their local color distributions. We can therefore recompute the local
mean and variance estimates using weighted statistics, where the visibilities V (x, y, d, k)
provide the weights.

With these new statistics, we are now in position to refine the disparity map. In
particular, voxels in disparity space that previously had an inconsistent set of color votes
(large variance) may now have a consistent set of votes, because voxels in (partially
occluded) regions will now only receive votes from input pixels that are not already assigned
to nearer surfaces.

While the above process of computing visibilities and refining disparity estimates will
in general lead to a higher quality disparity map (and better quality mean colors, i.e.,
texture maps), it will not recover the true colors and transparencies in mixed pixels, e.g.,
near depth discontinuities, which is one of the main goals of this research.

In the second phase of our algorithm, we adjust the opacity and color values ĉ(x, y, d)
to match the input images (after re-projection), while favoring continuity in the color and
opacity values. This can be formulated as a non-linear minimization problem, where the
cost function has three parts: a weighted error norm on the difference between the re-
projected images c̃k(u, v) and the original input images ck(u, v); a (weak) smoothness
constraint on the colors and opacities; and a prior distribution on the opacities [34]. To
minimize the total cost function, we use a preconditioned gradient descent algorithm. A
complete description of this procedure is given in [34].

Figure 2 shows the results of this algorithm when run on a cropped portion of the SRI
Trees multibaseline stereo dataset. A small region (64 × 64 pixels) was selected in order
to better visualize pixel-level errors. While the overall reconstruction is somewhat noisy,
the final reconstruction with a synthetic blue layer inserted shows that the algorithm has
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Volumetric reconstruction example: (a) cropped subimage from SRI Trees data
set, (b–k) disparity layers d = 0 . . . 9, (l) re-synthesized input image with inserted d = 4
blue layer.

done a reasonable job of assigning pixel depths and computing partial transparencies near
the tree boundaries.

From this example, we see that the volumetric approach is a much more powerful
representation for dealing with partially occluded regions and mixed pixels. Unfortunately,
this power comes at the expense of two problems: the depth are quantized, which can lead
to aliasing effects, and the representation has a very large number of degrees of freedom,
which makes it difficult to find the optimal solution. The first problem could be fixed, in
principle, by using fractional disparities (although these would have to be relative to one
preferred camera). The second problem we address in the next section, where a much
more parsimonious description is used.

4 Layered representations

To overcome the problem with the volumetric representation, we draw some inspiration
from recent work in layered motion estimation [40]. Here, the goal is to decompose the
images into sub-images, commonly referred to as layers, such that the pixels within each
layer move in a manner consistent with a parametric transformation. The motion of each
layer is determined by the values of the parameters. An important transformation is the
8–parameter homography (collineation), because it describes the motion of a rigid planar
patch as either it or the camera moves.

While existing techniques have been successful in detecting multiple independent mo-
tions, layer extraction for scene modeling has not been fully developed. One fact that has
not been exploited is that, when simultaneously imaged by several cameras, each of the
layers implicitly lies on a fixed plane in the 3D world. Another omission is the proper
treatment of transparency. With a few exceptions, the decomposition of an image into
layers that are partially transparent has not been attempted. In contrast, scene modeling
using multiple partially transparent layers is common in the graphics community [6].

In our own work [1], we have developed a framework for reconstructing a scene
as a collection of approximately planar layers. Each of the layers has an explicit 3D
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plane equation and is recovered as a sprite, i.e. a colored image with per-pixel opacity
(transparency) [6]. To model a wider range of scenes, a per-pixel depth offset relative to
the plane is also added.

Our layered approach to stereo shares many of the advantages of the volumetric ap-
proach. In addition, it offers a number of other advantages:

• The combination of the global model (the plane) with the local correction to it
(the per-pixel depth offset) results in very robust performance. In this respect, the
framework is similar to the plane + parallax work of [21].

• The output (a collection of approximately planar regions) is more suitable than a
discrete collection of voxels for many applications, including, rendering [30] and
video parsing.

Our representation consists of a collection of L approximately planar layers, each of which
is an alpha-matted color image (layer sprite) Ll(x, y) with pre-multiplied opacities [6]. We
also associate a homogeneous vector nl with each layer (which defines the plane equation
of the layer via nT

l x = 0) and a per-pixel residual depth offset Zl(x, y).
The goal of our layer decomposition algorithm is to estimate these quantities. To do

so, we wish to use techniques for parametric motion estimation. Unfortunately, most
such techniques assume boolean-valued opacities αl (i.e., unique layer assignments). We
therefore split our framework into two parts. In the first part, we assume boolean opacities
to get a first approximation to the structure of the scene. If the opacities are boolean, each
point in each image Ik is only the image of a point on one of the layers Ll. We therefore
introduce boolean masks Bkl which denote the pixels in image Ik that are images of points
on layer Ll. So, in addition to Ll, nl, and Zl, we also need to estimate the masks Bkl.
Once we have estimates of the masks, we immediately compute masked input images
Mkl = Bkl · Ik. In the second part of our framework, we use the initial estimates of the
layers made by the first part as input into a re-synthesis algorithm which refines the layer
sprites Ll, including the opacities αl. This second step requires a generative or forward
model of the image formation process.

Before we can compute the layer sprites Ll, we need to choose 2D coordinate systems
for the sprite images. Such coordinate systems can be specified by a collection of arbitrary
(rank 3) camera matrices Ql. In [1] we show that the image coordinates xk of the pixel in
image Mkl that is projected onto the pixel xl on the plane nT

l x = 0 is given by

xk = Pk

(
(nT

l ql)I − qlnT
l

)
Q∗

l xl ≡ Hl
kxl, (7)

where Q∗
l is the pseudo-inverse of Ql, and ql is a vector in the null space of Ql. The

homography Hl
k can be used to warp the image Mkl forward onto the coordinate frame

of the plane nT
l x = 0, the result of which is denoted Hl

k ◦ Mkl. Then, we can estimate
the layer sprite (with boolean opacities) by blending the warped images [35].

To compute the homographies Hl
k that align all masked image pieces Mkl into a

consistent coordinate frame, we use a previously developed parametric motion (mosaicing)
technique [35]. Once we have an initial estimate for the Hl

k, we use a structure-from-
motion algorithm to compute the plane equations (and, in the case where the original
camera matrices Pk are unknown, to estimate them as well) [36]. A better approach might
be to directly optimize over the plane normal nl used in (7).

Since in general, the scene will not be piecewise planar, we allow the point xl on the
plane nT

l x = 0 to be displaced slightly. We assume it is displaced in the direction of the
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ray through xl defined by the camera matrix Ql. The distance it is displaced is denoted by
Zl(xl), as measured in the direction normal to the plane. In this case, the homographic
warps used in the previous section are not applicable, but using a similar argument, it is
possible to show that

xk = Hl
kxl + w(xl)Zl(xl)tkl, (8)

where tkl = Pkql is the epipole and it is assumed that the vector nl = (nx, ny, nz, nd)T

has been normalized such that n2
x + n2

y + n2
z = 1. The term w(xl) is a projective scaling

factor which equals the reciprocal of Q3
l x, where Q3

l is the third row of Ql and x is
the world coordinate of the point. Equation (8) can be used to map plane coordinates xl

backwards to image coordinates xk, or to map the image Mkl forwards onto the plane.
We denote the result of this warp by (Hl

k, tkl, Zl) ◦ Mkl, or more concisely Wl
k ◦ Mkl.

Almost any stereo algorithm can be used to compute Zl(xl), although it is preferable
to use one favoring small disparities. Currently, we use a simple plane-sweep algorithm,
a simplified version of the algorithm described in [28]. Once the residual depth offsets
have been estimated, the layer sprite images can be re-estimated by blending the warped
images Wl

k ◦ Mkl.
To re-compute the pixel assignments, we compare the warped images Wl

k ◦ Mkl with
the layer sprites Ll. If the pixel assignment was correct (and neglecting resampling issues)
these images should be identical where they overlap. Details of the heuristics used in
re-computing the layer assignments are given in [1].

In [1], we also describe how the estimates of the layer sprites can be refined, now
assuming that their opacities αl are real-valued. We begin by formulating a generative
model of the image formation process. Afterwards, we propose a measure of how well
the layers re-synthesize the input images, and show how the re-synthesis error can be
minimized to refine the estimates of the layer sprites. This approach is similar to the one
we developed for the volumetric model with transparent voxels [34]. We are currently
implementing this portion of our algorithm. Once it is complete, we are hoping to have
layer descriptions that will correctly account for mixed pixels, and may even be able to
reconstruct scenes with translucent surfaces such as dirty windows or scenes with additive
phenomena such as reflections.

Figure 3 shows some results of applying our algorithm to five images from a 40-image
stereo data set taken at a graphics symposium. Figure 3(a) shows the middle input image,
Figure 3(b) shows the initial pixel assignment to layers, Figure 3(c) shows the recovered
planar depth map, and Figure 3(f) shows the residual depth map for one of the layers.
Figures 3(d) and (e) show the recovered sprites. Figure 3(g) shows the middle image
re-synthesized from these sprites. Finally, Figures 3(h–i) show the same sprite collection
seen from a novel viewpoint (well outside the range of the original views), first with and
then without residual depth correction. The gaps in Figure 3 correspond to parts of the
scene that were not visible in any of the five input images.

To summarize, the layered approach to 3D reconstruction represents the scene as a
collection of approximately planar layers. Each layer consists of a plane equation, a layer
sprite image, and a residual depth map. The framework exploits the fact that each layer
implicitly lies on a fixed plane in the 3D world. This is both the algorithm’s strength (using
a compact description) and its weakness (it is limited to scenes where objects are “cutouts
with relief”). The layered approach also requires solving a combinatorial optimization
problem, since the number of layers needs to be determined, as well as figuring out the
assignment of pixels to layers [39].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Layered stereo results: (a) third of five images; (b) initial segmentation into six
layers; (c) recovered depth map (darker denotes closer); (d) and (e) the five layer sprites;
(f) residual depth image for fifth layer. (g) re-synthesized third image (note extended field
of view). (h) novel view without residual depth; (i) novel view with residual depth (note
the “rounding” of the people).

5 Multiple depth maps

In our most recent work, we have been investigating an alternative to volumetric and
layered representations that can also represent and reason about semi-occluded regions.
Rather than estimating a single depth map, we associate a depth map with each input image
(or some subset of them) [32]. Furthermore, we try to ensure consistency between these
different estimates using a depth compatibility constraint, and reason about occlusion
relationships by computing pixel visibilities. Our representation can be used as is for
image-based rendering (view interpolation) applications, or it can be used as a low-level
representation from which segmentation and layer extraction (or 3D model construction)
can take place.

To formulate the multi-view stereo problem, we take the matching costs for all reference
images and sum them together. This brightness compatibility term, which measures the
degree of agreement in brightness or color between corresponding pixels, can be written
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(a) (b) (c)

Figure 4: Results of multi-view stereo algorithm: (a) depth estimate for first frame; (b)
warped (resampled) images without visibilities; (c) with visibility computation.

as
C({xs}) =

∑

s∈S

∑

t∈N (s)

wst

∑

xs

vst(xs)ρ (Is(xs) − It(xt)) . (9)

The images Is form the set S of keyframes (or key-views) for which we will estimate a depth
estimate ds(xs). The decision as to which images are keyframes is problem-dependent,
much like the selection of I and P frames in video compression. For 3D view interpolation,
one possible choice of keyframes would be a collection of characteristic views.

Images It, t ∈ N (s) are neighboring frames (or views), for which we require that
corresponding pixel brightnesses (or colors) agree. The pixel coordinate xt correspond-
ing to a given keyframe pixel xs with depth ds can be computed according to the rigid
motion model (6). The constants wst are the inter-frame weights which dictate how much
neighboring frame t will contribute to the estimate of ds. Corresponding pixel brightness
or color differences are passed through a robust penalty function ρ. The visibility fac-
tor vst(xs), which encodes whether pixel xs is visible in image It, can be computed by
comparing corresponding depth values, i.e., checking whether dt(xt) ≤ ds(xs).

The cost function used in [32] consists of two additional terms. The controlled depth
compatibility constraint, enforces mutual consistency between depth estimates at different
neighboring keyframes. The controlled depth smoothness constraint, encourages the depth
maps to be piecewise smooth. The shape of this robust penalty function is affected by the
brightness/color difference between neighboring pixels (see [32] for details).

Our algorithm operates in two phases. During an initialization phase, we estimate
the depths independently for each keyframe. Since we do not yet have any good motion
estimates for other frames, the depth compatibility term CT is ignored, and no visibilities
are computed (i.e., vst = 1). In the second phase, we enforce depth compatibility and
compute visibilities based on the current collection of depth estimates {ds}. Details on
the optimization algorithm can be found in [32].

Figure 4 shows some representative results from running our algorithm. The depth
map estimated by the algorithm is shown in Figure 4a. Figure 4b shows the results of
warping the last image to the first image, based on the depth computed in the first image.
Displaying these warped images as the algorithm progresses is a very useful way to debug
the algorithm and to assess the quality of the motion estimates. Figure 4c shows the same
warped image with invisible pixels flagged as black. Notice how the algorithm correctly
labels most of the occluded pixels to the right of the two people’s heads.

The experimental results we have obtained so far are encouraging, but still leave room
for improvement. In particular, the smoothness of the final estimates and the sharpness of
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the motion discontinuities is not as high as that obtainable with layered models [1]. This
is particularly true in occluded regions: layered models will apply the layer’s motion to
the occluded regions, while we use a weak smoothness constraint.

The multi-view stereo matching framework described in this section produces estimates
for a subset of the input images, thereby representing depth in partially occluded regions
and explicitly modeling the variation in appearance between different views. Compared
with the volumetric and layered representations, the multiple depth map representation
is potentially not as compact (although it can be more compact than the search space of
the volumetric technique), nor does it correctly model mixed pixels (because the concept
of opacity is not built in). It also does not ensure that corresponding surface elements in
different views have the same 3D location, although it attempts to ensure this with the
weak compatibility constraint. The representation does, however, capture the variation in
appearance between different view, for example, when there are strong illumination effects.
The representation is useful for performing image-based rendering tasks such as novel view
generation, and can also be used to bootstrap a more parsimonious representation such as
3D layers.

6 Discussion and Conclusions

In this paper, I have presented a number of representation and algorithms for reconstructing
3D scenes and objects using stereo matching techniques. My emphasis has been on
techniques that are well suited to image-based rendering, i.e., approaches that can re-
synthesize observed and novel views with a high degree of realism.

The desire to predict the performance of these approaches in image-based rendering
applications has led me to propose a new quality metric for stereo matching. Instead of
measuring deviations from ground truth depth maps (which are generally hard to come
by), I suggest measuring how well the representation predicts novel views, i.e., images
in a calibrated multi-image stereo data set that have intentionally been held back from
the matcher [33] (this is similar to the statistical method of cross-validation). Such data
sets are relatively easy to acquire, e.g., by taking a video of a rigid scene and applying a
tracking and structure from motion algorithm to recover the camera positions.

Ramin Zabih and I are also currently performing a comparative evaluation of two-
frame stereo matching algorithms [37]. While this study excludes some of the novel
representations presented in this paper, we hope that it will shed light on underlying
principles that make stereo matching work better.

To summarize, I have presented four different representations for stereo matching. A
single depth map, the traditional representation used for matching, is a very compact and
useful representation that can yield good results when the amount of occlusion is not large,
i.e., when the surface is smoothly varying (e.g., a human face) and the range of viewpoints
is limited. The volumetric representation (with partial opacities) can be used to represent
and reason about partially occluded regions and mixed pixels. Unfortunately, it also has
many degrees of freedom, which makes it tricky to find the best reconstruction. Layered
representations have the same advantages as volumetric ones, and are potentially more
compact, and hence easier to recover. However, determining the best number of planes
and the correct pixel assignment is a tricky problem, which we are currently trying to solve.
These representations are also inherently limited to scenes that are well approximated by a
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collection of embossed cutouts. Finally, multiple depth maps can be used to obtain some
of the same advantages with respect to partially occluded regions, and also to model the
variation in appearance between viewpoints. Unfortunately, they are not guaranteed to have
consistent representations of 3D shape, and also do not correctly predict the appearance
of mixed pixels.

Thus, we see that all of the representations suggested so far have their limitations.
Still, a tremendous amount of progress has been made in recent years in obtaining better
and better stereo reconstructions, especially for image-based rendering applications where
recovering the true shape of a scene is not paramount. I expect that by re-visiting issues
in representation, e.g., by more closely studying the role of discontinuities in shape and
depth representations, we will be able to make even further progress, and thereby expand
the utility and applicability of stereo-based reconstruction techniques.
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Modeling and Rendering Architecture from Photographs:
A hybrid geometry- and image-based approach

Paul E. Debevec Camillo J. Taylor Jitendra Malik

University of California at Berkeley1

ABSTRACT
We present a new approach for modeling and rendering existing ar-
chitectural scenes from a sparse set of still photographs. Our mod-
eling approach, which combines both geometry-based and image-
based techniques, has two components. The first component is a
photogrammetricmodeling method which facilitates the recovery of
the basic geometry of the photographed scene. Our photogrammet-
ric modeling approach is effective, convenient, and robust because
it exploits the constraints that are characteristic of architectural
scenes. The second component is a model-based stereo algorithm,
which recovers how the real scene deviates from the basic model.
By making use of the model, our stereo technique robustly recovers
accurate depth from widely-spaced image pairs. Consequently, our
approach can model large architectural environments with far fewer
photographs than current image-based modeling approaches. For
producing renderings, we present view-dependent texture mapping,
a method of compositing multiple views of a scene that better sim-
ulates geometric detail on basic models. Our approach can be used
to recover models for use in either geometry-based or image-based
rendering systems. We present results that demonstrate our ap-
proach’s ability to create realistic renderings of architectural scenes
from viewpoints far from the original photographs.

CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Modeling and recovery of physical at-
tributes; I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism - Color, shading, shadowing, and texture I.4.8 [Im-
age Processing]: Scene Analysis - Stereo; J.6 [Computer-Aided
Engineering]: Computer-aided design (CAD).

1 INTRODUCTION
Efforts to model the appearance and dynamics of the real world
have produced some of the most compelling imagery in computer
graphics. In particular, efforts to model architectural scenes, from
the Amiens Cathedral to the Giza Pyramids to Berkeley’s Soda
Hall, have produced impressive walk-throughs and inspiring fly-
bys. Clearly, it is an attractive application to be able to explore the
world’s architecture unencumbered by fences, gravity, customs, or
jetlag.

1Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720-1776. fdebevec,camillo,malikg@cs.berkeley.edu. See
also http://www.cs.berkeley.edu/˜debevec/Research

Unfortunately, current geometry-based methods (Fig. 1a) of
modeling existing architecture, in which a modeling program is
used to manually position the elements of the scene, have several
drawbacks. First, the process is extremely labor-intensive, typically
involving surveying the site, locating and digitizing architectural
plans (if available), or converting existing CAD data (again, if avail-
able). Second, it is difficult to verify whether the resulting model is
accurate. Most disappointing, though, is that the renderings of the
resulting models are noticeably computer-generated; even those that
employ liberal texture-mapping generally fail to resemble real pho-
tographs.
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user input texture maps
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Figure 1: Schematic of how our hybrid approach combines
geometry-based and image-based approaches to modeling and ren-
dering architecture from photographs.

Recently, creating models directly from photographs has re-
ceived increased interest in computer graphics. Since real images
are used as input, such an image-based system (Fig. 1c) has an ad-
vantage in producing photorealistic renderings as output. Some of
the most promising of these systems [16, 13] rely on the computer
vision technique of computational stereopsis to automatically deter-
mine the structure of the scene from the multiple photographs avail-
able. As a consequence, however, these systems are only as strong
as the underlying stereo algorithms. This has caused problems be-
cause state-of-the-art stereo algorithms have a number of signifi-
cant weaknesses; in particular, the photographs need to appear very
similar for reliable results to be obtained. Because of this, current
image-based techniques must use many closely spaced images, and
in some cases employ significant amounts of user input for each im-
age pair to supervise the stereo algorithm. In this framework, cap-
turing the data for a realistically renderable model would require an
impractical number of closely spaced photographs, and deriving the
depth from the photographs could require an impractical amount of
user input. These concessions to the weakness of stereo algorithms
bode poorly for creating large-scale, freely navigable virtual envi-
ronments from photographs.

Our research aims to make the process of modeling architectural

http://www.cs.berkeley.edu/~debevec/Research
http://www.cs.berkeley.edu/~debevec
http://www.cs.berkeley.edu/~camillo
http://www.cs.berkeley.edu/~malik
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scenes more convenient, more accurate, and more photorealistic
than the methods currently available. To do this, we have developed
a new approach that draws on the strengths of both geometry-based
and image-basedmethods, as illustrated in Fig. 1b. The result is that
our approach to modeling and rendering architecture requires only a
sparse set of photographs and can produce realistic renderings from
arbitrary viewpoints. In our approach, a basic geometric model of
the architecture is recovered interactively with an easy-to-use pho-
togrammetric modeling system, novel views are created using view-
dependent texture mapping, and additional geometric detail can be
recovered automatically through stereo correspondence. The final
images can be rendered with current image-based rendering tech-
niques. Because only photographs are required, our approach to
modeling architecture is neither invasive nor does it require archi-
tectural plans, CAD models, or specialized instrumentation such as
surveying equipment, GPS sensors or range scanners.

1.1 Background and Related Work
The process of recovering 3D structure from 2D images has been
a central endeavor within computer vision, and the process of ren-
dering such recovered structures is a subject receiving increased
interest in computer graphics. Although no general technique ex-
ists to derive models from images, four particular areas of research
have provided results that are applicable to the problem of modeling
and rendering architectural scenes. They are: Camera Calibration,
Structure from Motion, Stereo Correspondence, and Image-Based
Rendering.

1.1.1 Camera Calibration

Recovering 3D structure from images becomes a simpler problem
when the cameras used are calibrated, that is, the mapping between
image coordinates and directions relative to each camera is known.
This mapping is determined by, among other parameters, the cam-
era’s focal length and its pattern of radial distortion. Camera cali-
bration is a well-studied problem both in photogrammetry and com-
puter vision; some successful methods include [20] and [5]. While
there has been recent progress in the use of uncalibrated views for
3D reconstruction [7], we have found camera calibration to be a
straightforward process that considerably simplifies the problem.

1.1.2 Structure from Motion

Given the 2D projection of a point in the world, its position in 3D
space could be anywhere on a ray extending out in a particular di-
rection from the camera’s optical center. However, when the pro-
jections of a sufficient number of points in the world are observed
in multiple images from different positions, it is theoretically possi-
ble to deduce the 3D locations of the points as well as the positions
of the original cameras, up to an unknown factor of scale.

This problem has been studied in the area of photogrammetry
for the principal purpose of producing topographic maps. In 1913,
Kruppa [10] proved the fundamental result that given two views of
five distinct points, one could recover the rotation and translation
between the two camera positions as well as the 3D locations of the
points (up to a scale factor). Since then, the problem’s mathematical
and algorithmic aspects have been explored starting from the funda-
mental work of Ullman [21] and Longuet-Higgins [11], in the early
1980s. Faugeras’s book [6] overviews the state of the art as of 1992.
So far, a key realization has been that the recovery of structure is
very sensitive to noise in image measurements when the translation
between the available camera positions is small.

Attention has turned to using more than two views with image
stream methods such as [19] or recursive approaches (e.g. [1]). [19]
shows excellent results for the case of orthographic cameras, but di-
rect solutions for the perspective case remain elusive. In general,
linear algorithms for the problem fail to make use of all available

information while nonlinear minimization methods are prone to dif-
ficulties arising from local minima in the parameter space. An alter-
native formulation of the problem [17] uses lines rather than points
as image measurements, but the previously stated concerns were
shown to remain largely valid. For purposes of computer graph-
ics, there is yet another problem: the models recovered by these al-
gorithms consist of sparse point fields or individual line segments,
which are not directly renderable as solid 3D models.

In our approach, we exploit the fact that we are trying to re-
cover geometric models of architectural scenes, not arbitrary three-
dimensional point sets. This enables us to include additional con-
straints not typically available to structure from motion algorithms
and to overcome the problems of numerical instability that plague
such approaches. Our approach is demonstrated in a useful interac-
tive system for building architectural models from photographs.

1.1.3 Stereo Correspondence

The geometrical theory of structure from motion assumes that one
is able to solve the correspondenceproblem, which is to identify the
points in two or more images that are projections of the same point
in the world. In humans, corresponding points in the two slightly
differing images on the retinas are determined by the visual cortex
in the process called binocular stereopsis.

Years of research (e.g. [2, 4, 8, 9, 12, 15]) have shown that de-
termining stereo correspondences by computer is difficult problem.
In general, current methods are successfulonly when the images are
similar in appearance, as in the case of human vision, which is usu-
ally obtained by using cameras that are closely spaced relative to the
objects in the scene. When the distance between the cameras (often
called the baseline) becomes large, surfaces in the images exhibit
different degrees of foreshortening, different patterns of occlusion,
and large disparities in their locations in the two images, all of which
makes it much more difficult for the computer to determine correct
stereo correspondences. Unfortunately, the alternative of improving
stereo correspondenceby using images taken from nearby locations
has the disadvantage that computing depth becomes very sensitive
to noise in image measurements.

In this paper, we show that having an approximate model of the
photographed scene makes it possible to robustly determine stereo
correspondences from images taken from widely varying view-
points. Specifically, the model enables us to warp the images to
eliminate unequal foreshortening and to predict major instances of
occlusion before trying to find correspondences.

1.1.4 Image-Based Rendering

In an image-based rendering system, the model consists of a set of
images of a scene and their corresponding depth maps. When the
depth of every point in an image is known, the image can be re-
rendered from any nearby point of view by projecting the pixels of
the image to their proper 3D locations and reprojecting them onto
a new image plane. Thus, a new image of the scene is created by
warping the images according to their depth maps. A principal at-
traction of image-based rendering is that it offers a method of ren-
dering arbitrarily complex scenes with a constant amount of com-
putation required per pixel. Using this property, [23] demonstrated
how regularly spaced synthetic images (with their computed depth
maps) could be warped and composited in real time to produce a vir-
tual environment.

More recently, [13] presented a real-time image-based rendering
system that used panoramic photographs with depth computed, in
part, from stereo correspondence. One finding of the paper was that
extracting reliable depth estimates from stereo is “very difficult”.
The method was nonetheless able to obtain acceptable results for
nearby views using user input to aid the stereo depth recovery: the
correspondencemap for each image pair was seeded with 100 to 500
user-supplied point correspondences and also post-processed. Even
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with user assistance, the images used still had to be closely spaced;
the largest baseline described in the paper was five feet.

The requirement that samples be close together is a serious lim-
itation to generating a freely navigable virtual environment. Cov-
ering the size of just one city block would require thousands of
panoramic images spaced five feet apart. Clearly, acquiring so
many photographs is impractical. Moreover, even a dense lattice of
ground-basedphotographswould only allow renderings to be gener-
ated from within a few feet of the original camera level, precluding
any virtual fly-bys of the scene. Extending the dense lattice of pho-
tographs into three dimensions would clearly make the acquisition
process even more difficult. The approach described in this paper
takes advantage of the structure in architectural scenes so that it re-
quires only a sparse set of photographs. For example, our approach
has yielded a virtual fly-around of a building from just twelve stan-
dard photographs.

1.2 Overview
In this paper we present three new modeling and rendering tech-
niques: photogrammetric modeling, view-dependent texture map-
ping, and model-based stereo. We show how these techniques can
be used in conjunction to yield a convenient, accurate, and photo-
realistic method of modeling and rendering architecture from pho-
tographs. In our approach, the photogrammetric modeling program
is used to create a basic volumetric model of the scene, which is then
used to constrain stereo matching. Our rendering method compos-
ites information from multiple images with view-dependenttexture-
mapping. Our approach is successful because it splits the task of
modeling from images into tasks which are easily accomplished by
a person (but not a computer algorithm), and tasks which are easily
performed by a computer algorithm (but not a person).

In Section 2, we present our photogrammetric modeling
method. In essence, we have recast the structure from motion prob-
lem not as the recovery of individual point coordinates, but as the
recovery of the parameters of a constrained hierarchy of parametric
primitives. The result is that accurate architectural models can be
recovered robustly from just a few photographs and with a minimal
number of user-supplied correspondences.

In Section 3, we present view-dependent texture mapping, and
show how it can be used to realistically render the recovered model.
Unlike traditional texture-mapping, in which a single static image
is used to color in each face of the model, view-dependent tex-
ture mapping interpolates between the available photographs of the
scene depending on the user’s point of view. This results in more
lifelike animations that better capture surface specularities and un-
modeled geometric detail.

Lastly, in Section 4, we present model-based stereo, which is
used to automatically refine a basic model of a photographed scene.
This technique can be used to recover the structure of architectural
ornamentation that would be difficult to recover with photogram-
metric modeling. In particular, we show that projecting pairs of im-
ages onto an initial approximate model allows conventional stereo
techniques to robustly recover very accurate depth measurements
from images with widely varying viewpoints.

2 Photogrammetric Modeling
In this section we present our method for photogrammetric model-
ing, in which the computer determines the parameters of a hierar-
chical model of parametric polyhedral primitives to reconstruct the
architectural scene. We have implemented this method in Façade,
an easy-to-use interactive modeling program that allows the user to
construct a geometric model of a scene from digitized photographs.
We first overview Façade from the point of view of the user, then we
describe our model representation, and then we explain our recon-
struction algorithm. Lastly, we present results from using Façade to
reconstruct several architectural scenes.

2.1 The User’s View
Constructing a geometric model of an architectural scene using
Façade is an incremental and straightforward process. Typically, the
user selects a small number of photographs to begin with, and mod-
els the scene one piece at a time. The user may refine the model and
include more images in the project until the model meets the desired
level of detail.

Fig. 2(a) and (b) shows the two types of windows used in Façade:
image viewers and model viewers. The user instantiates the com-
ponents of the model, marks edges in the images, and corresponds
the edges in the images to the edges in the model. When instructed,
Façade computes the sizes and relative positions of the model com-
ponents that best fit the edges marked in the photographs.

Components of the model, called blocks, are parameterized ge-
ometric primitives such as boxes, prisms, and surfaces of revolu-
tion. A box, for example, is parameterized by its length, width, and
height. The user models the scene as a collection of such blocks,
creating new block classes as desired. Of course, the user does not
need to specify numerical values for the blocks’ parameters, since
these are recovered by the program.

The user may choose to constrain the sizes and positions of any
of the blocks. In Fig. 2(b), most of the blocks have been constrained
to have equal length and width. Additionally, the four pinnacles
have been constrained to have the same shape. Blocks may also be
placed in constrained relations to one other. For example, many of
the blocks in Fig. 2(b) have been constrained to sit centered and on
top of the block below. Such constraints are specified using a graph-
ical 3D interface. When such constraints are provided, they are used
to simplify the reconstruction problem.

The user marks edge features in the images using a point-and-
click interface; a gradient-based technique as in [14] can be used to
align the edges with sub-pixel accuracy. We use edge rather than
point features since they are easier to localize and less likely to
be completely obscured. Only a section of each edge needs to be
marked, making it possible to use partially visible edges. For each
marked edge, the user also indicates the corresponding edge in the
model. Generally, accurate reconstructions are obtained if there are
as many correspondences in the images as there are free camera
and model parameters. Thus, Façade reconstructs scenes accurately
even when just a portion of the visible edges and marked in the im-
ages, and when just a portion of the model edges are given corre-
spondences.

At any time, the user may instruct the computer to reconstruct the
scene. The computer then solves for the parameters of the model
that cause it to align with the marked features in the images. Dur-
ing the reconstruction, the computer computes and displays the lo-
cations from which the photographs were taken. For simple models
consisting of just a few blocks, a full reconstruction takes only a few
seconds; for more complex models, it can take a few minutes. For
this reason, the user can instruct the computer to employ faster but
less precise reconstruction algorithms (see Sec. 2.4) during the in-
termediate stages of modeling.

To verify the the accuracy of the recovered model and camera po-
sitions, Façade can project the model into the original photographs.
Typically, the projected model deviates from the photographs by
less than a pixel. Fig. 2(c) shows the results of projecting the edges
of the model in Fig. 2(b) into the original photograph.

Lastly, the user may generate novel views of the model by posi-
tioning a virtual camera at any desired location. Façade will then use
the view-dependent texture-mapping method of Section 3 to render
a novel view of the scene from the desired location. Fig. 2(d) shows
an aerial rendering of the tower model.

2.2 Model Representation
The purposeof our choice of model representation is to represent the
scene as a surface model with as few parameters as possible: when
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(a) (b) (c) (d)
Figure 2: (a) A photograph of the Campanile, Berkeley’s clock tower, with marked edges shown in green. (b) The model recovered by our
photogrammetricmodeling method. Although only the left pinnacle was marked, the remaining three (including one not visible) wererecovered
from symmetrical constraints in the model. Our method allows any number of images to be used, but in this case constraints of symmetry
made it possible to recover an accurate 3D model from a single photograph. (c) The accuracy of the model is verified by reprojecting it into
the original photograph through the recovered camera position. (d) A synthetic view of the Campanile generated using the view-dependent
texture-mapping method described in Section 3. A real photograph from this position would be difficult to take since the camera position is
250 feet above the ground.

the model has fewer parameters, the user needs to specify fewer cor-
respondences, and the computer can reconstruct the model more ef-
ficiently. In Façade, the scene is represented as a constrained hier-
archical model of parametric polyhedral primitives, called blocks.
Each block has a small set of parameters which serve to define
its size and shape. Each coordinate of each vertex of the block is
then expressed as linear combination of the block’s parameters, rel-
ative to an internal coordinate frame. For example, for the wedge
block in Fig. 3, the coordinates of the vertex Po are written in
terms of the block parameters width, height, and length as Po =
(�width;�height;length )T . Each block is also given an associ-
ated bounding box.
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Figure 3: A wedge block with its parameters and bounding box.
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Figure 4: (a) A geometric model of a simple building. (b) The
model’s hierarchical representation. The nodes in the tree repre-
sent parametric primitives (called blocks) while the links contain
the spatial relationships between the blocks.

The blocks in Façade are organized in a hierarchical tree structure

as shown in Fig. 4(b). Each node of the tree represents an individual
block, while the links in the tree contain the spatial relationships be-
tween blocks, called relations. Such hierarchical structures are also
used in traditional modeling systems.

The relation between a block and its parent is most generally rep-
resented as a rotation matrix R and a translation vector t. This rep-
resentation requires six parameters: three each forR and t. In archi-
tectural scenes, however, the relationship between two blocks usu-
ally has a simple form that can be represented with fewer parame-
ters, and Façade allows the user to build such constraints on R and
t into the model. The rotation R between a block and its parent can
be specified in one of three ways: first, as an unconstrained rotation,
requiring three parameters; second, as a rotation about a particular
coordinate axis, requiring just one parameter; or third, as a fixed or
null rotation, requiring no parameters.

Likewise, Façade allows for constraints to be placed on each
component of the translation vector t. Specifically, the user can
constrain the bounding boxes of two blocks to align themselves in
some manner along each dimension. For example, in order to en-
sure that the roof block in Fig. 4 lies on top of the first story block,
the user can require that the maximum y extent of the first story
block be equal to the minimum y extent of the roof block. With
this constraint, the translation along the y axis is computed (ty =
(fi r s tstoryMAX

y � roofMIN
y )) rather than represented as a pa-

rameter of the model.
Each parameter of each instantiated block is actually a reference

to a named symbolic variable, as illustrated in Fig. 5. As a result,
two parameters of different blocks (or of the same block) can be
equated by having each parameter reference the same symbol. This
facility allows the user to equate two or more of the dimensions in
a model, which makes modeling symmetrical blocks and repeated
structure more convenient. Importantly, these constraints reduce the
number of degrees of freedom in the model, which, as we will show,
simplifies the structure recovery problem.

Once the blocks and their relations have been parameterized, it
is straightforward to derive expressions for the world coordinates
of the block vertices. Consider the set of edges which link a spe-
cific block in the model to the ground plane as shown in Fig. 4.
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A single variable can be referenced by the model in multiple places,
allowing constraints of symmetry to be embedded in the model.

Let g1(X);:::;g n(X) represent the rigid transformations associated
with each of these links, where X represents the vector of all the
model parameters. The world coordinates Pw(X) of a particular
block vertex P (X) is then:

Pw(X) = g1(X):::gn(X)P (X) (1)

Similarly, the world orientation vw(X) of a particular line seg-
ment v(X) is:

vw(X) = g1(X):::gn(X)v(X) (2)

In these equations, the point vectorsP andPw and the orientation
vectors v and vw are represented in homogeneous coordinates.

Modeling the scene with polyhedral blocks, as opposed to points,
line segments, surface patches, or polygons, is advantageous for a
number of reasons:

� Most architectural scenes are well modeled by an arrangement
of geometric primitives.

� Blocks implicitly contain common architectural elements such
as parallel lines and right angles.

� Manipulating block primitives is convenient since they are at
a suitably high level of abstraction; individual features such as
points and lines are less manageable.

� A surface model of the scene is readily obtained from the
blocks, so there is no need to infer surfaces from discrete fea-
tures.

� Modeling in terms of blocks and relationships greatly reduces
the number of parameters that the reconstruction algorithm
needs to recover.

The last point is crucial to the robustness of our reconstruction al-
gorithm and the viability of our modeling system, and is illustrated
best with an example. The model in Fig. 2 is parameterized by just
33 variables (the unknown camera position adds six more). If each
block in the scene were unconstrained (in its dimensions and posi-
tion), the model would have 240 parameters; if each line segment in
the scene were treated independently, the model would have 2,896
parameters. This reduction in the number of parameters greatly en-
hances the robustness and efficiency of the method as compared to
traditional structure from motion algorithms. Lastly, since the num-
ber of correspondences needed to suitably overconstrain the mini-
mization is roughly proportional to the number of parameters in the
model, this reduction means that the number of correspondences re-
quired of the user is manageable.

2.3 Reconstruction Algorithm
Our reconstruction algorithm works by minimizing an objective
function O that sums the disparity between the projected edges of
the model and the edges marked in the images, i.e. O =

P
Err i

where Err i represents the disparity computed for edge feature i.

Thus, the unknown model parameters and camera positions are
computed by minimizingO with respect to these variables. Our sys-
tem uses the the error function Err i from [17], described below.
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Figure 6: (a) Projection of a straight line onto a camera’s image
plane. (b) The error function used in the reconstruction algorithm.
The heavy line represents the observededge segment (marked by the
user) and the lighter line represents the model edge predicted by the
current camera and model parameters.

Fig. 6(a) shows how a straight line in the model projects onto
the image plane of a camera. The straight line can be defined by
a pair of vectors hv;d i where v represents the direction of the line
and d represents a point on the line. These vectors can be computed
from equations 2 and 1 respectively. The position of the camera with
respect to world coordinates is given in terms of a rotation matrixRj

and a translation vector tj . The normal vector denoted bym in the
figure is computed from the following expression:

m = Rj(v � (d� tj)) (3)

The projection of the line onto the image plane is simply the in-
tersection of the plane defined bymwith the image plane, located at
z = �f where f is the focal length of the camera. Thus, the image
edge is defined by the equation mxx+myy�mzf = 0.

Fig. 6(b) shows how the error between the observed image edge
f(x1; y1); (x2; y2)g and the predicted image line is calculated for
each correspondence. Points on the observed edge segment can be
parameterized by a single scalar variable s 2 [0; l] where l is the
length of the edge. We leth(s) be the function that returns the short-
est distance from a point on the segment,p(s), to the predicted edge.

With these definitions, the total error between the observed edge
segment and the predicted edge is calculated as:

Erri =

Z l

0

h
2(s)ds =

l

3
(h21+h1h2+h

2

2) = m
T (AT

BA)m

(4)
where:

m =( mx;my;mz)
T

A =

�
x1 y1 1
x2 y2 1

�

B =
l

3(m2
x +m2

y)

�
10 :5

0:51

�

The final objective functionO is the sum of the error terms result-
ing from each correspondence. We minimize O using a variant of
the Newton-Raphson method, which involves calculating the gradi-
ent and Hessian of O with respect to the parameters of the camera
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and the model. As we have shown, it is simple to construct sym-
bolic expressions form in terms of the unknown model parameters.
The minimization algorithm differentiates these expressions sym-
bolically to evaluate the gradient and Hessian after each iteration.
The procedure is inexpensive since the expressions for d and v in
Equations 2 and 1 have a particularly simple form.

2.4 Computing an Initial Estimate
The objective function described in Section 2.3 section is non-linear
with respect to the model and camera parameters and consequently
can have local minima. If the algorithm begins at a random loca-
tion in the parameter space, it stands little chance of converging to
the correct solution. To overcome this problem we have developed
a method to directly compute a good initial estimate for the model
parameters and camera positions that is near the correct solution. In
practice, our initial estimate method consistently enables the non-
linear minimization algorithm to converge to the correct solution.

Our initial estimate method consists of two procedures performed
in sequence. The first procedure estimates the camera rotations
while the second estimates the camera translations and the parame-
ters of the model. Both initial estimate procedures are based upon an
examination of Equation 3. From this equation the following con-
straints can be deduced:

m
T
Rjv = 0 (5)

m
T
Rj(d� tj) = 0 (6)

Given an observed edgeuij the measured normalm0 to the plane
passing through the camera center is:

m
0 =

 
x1
y1
�f

!
�

 
x2
y2
�f

!
(7)

From these equations, we see that any model edges of known ori-
entation constrain the possible values for Rj . Since most architec-
tural models contain many such edges (e.g. horizontal and vertical
lines), each camera rotation can be usually be estimated from the
model independent of the model parameters and independent of the
camera’s location in space. Our method does this by minimizing the
following objective function O1 that sums the extents to which the
rotations Rj violate the constraints arising from Equation 5:

O1 =
X
i

(mT
Rjvi)

2
; vi 2 fx̂; ŷ; ẑg (8)

Once initial estimates for the camera rotations are computed,
Equation 6 is used to obtain initial estimates of the model param-
eters and camera locations. Equation 6 reflects the constraint that
all of the points on the line defined by the tuple hv;di should lie on
the plane with normal vectorm passing through the camera center.
This constraint is expressed in the following objective function O2

wherePi(X) andQi(X) are expressions for the vertices of an edge
of the model.

O2 =
X
i

(mT
Rj(Pi(X)� tj))

2 +(mT
Rj(Qi(X)� tj))

2 (9)

In the special case where all of the block relations in the model
have a known rotation, this objective function becomes a simple
quadratic form which is easily minimized by solving a set of linear
equations.

Once the initial estimate is obtained, the non-linear minimization
over the entire parameter space is applied to produce the best possi-
ble reconstruction. Typically, the minimization requires fewer than
ten iterations and adjusts the parameters of the model by at most a
few percent from the initial estimates. The edges of the recovered
models typically conform to the original photographs to within a
pixel.

Figure 7: Three of twelve photographsused to reconstructthe entire
exterior of University High School in Urbana, Illinois. The super-
imposed lines indicate the edges the user has marked.

(a) (b)

(c)
Figure 8: The high school model, reconstructed from twelve pho-
tographs. (a) Overhead view. (b) Rear view. (c) Aerial view show-
ing the recoveredcamera positions. Two nearly coincident cameras
can be observed in front of the building; their photographs were
taken from the second story of a building across the street.

Figure 9: A synthetic view of University High School. This is a
frame from an animation of flying around the entire building.
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(a) (b) (c)
Figure 10: Reconstructionof Hoover Tower, Stanford, CA (a) Origi-
nal photograph, with marked edges indicated. (b) Model recovered
from the single photograph shown in (a). (c) Texture-mappedaerial
view from the virtual camera position indicated in (b). Regions not
seen in (a) are indicated in blue.

2.5 Results
Fig. 2 showed the results of using Façade to reconstruct a clock
tower from a single image. Figs. 7 and 8 show the results of us-
ing Façade to reconstruct a high school building from twelve pho-
tographs. (The model was originally constructed from just five im-
ages; the remaining images were added to the project for purposesof
generating renderings using the techniques of Section 3.) The pho-
tographs were taken with a calibrated 35mm still camera with a stan-
dard 50mm lens and digitized with the PhotoCD process. Images at
the 1536� 1024 pixel resolution were processed to correct for lens
distortion, then filtered down to 768�512 pixels for use in the mod-
eling system. Fig. 8 shows some views of the recovered model and
camera positions, and Fig. 9 shows a synthetic view of the building
generated by the technique in Sec. 3.

Fig. 10 shows the reconstruction of another tower from a sin-
gle photograph. The dome was modeled specially since the recon-
struction algorithm does not recover curved surfaces. The user con-
strained a two-parameter hemisphere block to sit centered on top of
the tower, and manually adjusted its height and width to align with
the photograph. Each of the models presented took approximately
four hours to create.

3 View-Dependent Texture-Mapping
In this section we present view-dependent texture-mapping, an ef-
fective method of rendering the scene that involves projecting the
original photographs onto the model. This form of texture-mapping
is most effective when the model conforms closely to the actual
structure of the scene, and when the original photographs show the
scene in similar lighting conditions. In Section 4 we will show how
view-dependent texture-mapping can be used in conjunction with
model-based stereo to produce realistic renderings when the recov-
ered model only approximately models the structure of the scene.

Since the camera positions of the original photographs are re-
covered during the modeling phase, projecting the images onto the
model is straightforward. In this section we first describe how we
project a single image onto the model, and then how we merge sev-
eral image projections to render the entire model. Unlike tradi-
tional texture-mapping, our method projects different images onto
the model depending on the user’s viewpoint. As a result, our view-
dependent texture mapping can give a better illusion of additional
geometric detail in the model.

3.1 Projecting a Single Image
The process of texture-mapping a single image onto the model can
be thought of as replacing each camera with a slide projector that
projects the original image onto the model. When the model is not

convex, it is possible that some parts of the model will shadow oth-
ers with respect to the camera. While such shadowed regions could
be determined using an object-space visible surface algorithm, or an
image-space ray casting algorithm, we use an image-space shadow
map algorithm based on [22] since it is efficiently implemented us-
ing z-buffer hardware.

Fig. 11, upper left, shows the results of mapping a single image
onto the high school building model. The recovered camera posi-
tion for the projected image is indicated in the lower left corner of
the image. Because of self-shadowing, not every point on the model
within the camera’s viewing frustum is mapped.

3.2 Compositing Multiple Images
In general, each photograph will view only a piece of the model.
Thus, it is usually necessary to use multiple images in order to ren-
der the entire model from a novel point of view. The top images of
Fig. 11 show two different images mapped onto the model and ren-
dered from a novel viewpoint. Some pixels are colored in just one of
the renderings, while some are colored in both. These two render-
ings can be merged into a composite rendering by considering the
corresponding pixels in the rendered views. If a pixel is mapped in
only one rendering, its value from that rendering is used in the com-
posite. If it is mapped in more than one rendering, the renderer has
to decide which image (or combination of images) to use.

It would be convenient, of course, if the projected images would
agree perfectly where they overlap. However, the images will not
necessarily agree if there is unmodeled geometric detail in the build-
ing, or if the surfaces of the building exhibit non-Lambertian reflec-
tion. In this case, the best image to use is clearly the one with the
viewing angle closest to that of the rendered view. However, using
the image closest in angle at every pixel means that neighboring ren-
dered pixels may be sampled from different original images. When
this happens, specularity and unmodeled geometric detail can cause
visible seams in the rendering. To avoid this problem, we smooth
these transitions through weighted averaging as in Fig. 12.

Figure 11: The process of assembling projected images to form a
composite rendering. The top two pictures show two images pro-
jected onto the model from their respective recovered camera posi-
tions. The lower left picture shows the results of compositing these
two renderings using our view-dependent weighting function. The
lower right picture shows the results of compositing renderings of
all twelve original images. Some pixels near the front edge of the
roof not seen in any image have been filled in with the hole-filling
algorithm from [23].

Even with this weighting, neighboring pixels can still be sam-
pled from different views at the boundary of a projected image, since
the contribution of an image must be zero outside its boundary. To
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a2

a1

virtual view

view 1

view 2

model

Figure 12: The weighting function used in view-dependent texture
mapping. The pixel in the virtual view corresponding to the point
on the model is assigned a weighted average of the corresponding
pixels in actual views 1 and 2. The weightsw1 andw2 are inversely
inversely proportional to the magnitude of angles a1 and a2. Al-
ternately, more sophisticated weighting functions based on expected
foreshortening and image resampling can be used.

address this, the pixel weights are ramped down near the boundary
of the projected images. Although this method does not guarantee
smooth transitions in all cases, we have found that it eliminates most
artifacts in renderings and animations arising from such seams.

If an original photograph features an unwanted car, tourist, or
other object in front of the architecture of interest, the unwanted ob-
ject will be projected onto the surface of the model. To prevent this
from happening, the user may mask out the object by painting over
the obstruction with a reserved color. The rendering algorithm will
then set the weights for any pixels corresponding to the masked re-
gions to zero, and decrease the weights of the pixels near the bound-
ary as before to minimize seams. Any regions in the composite im-
age which are occluded in every projected image are filled in using
the hole-filling method from [23].

In the discussion so far, projected image weights are computed at
every pixel of every projected rendering. Since the weighting func-
tion is smooth (though not constant) across flat surfaces, it is not
generally not necessary to compute it for every pixel of every face
of the model. For example, using a single weight for each face of
the model, computed at the face’s center, produces acceptable re-
sults. By coarsely subdividing large faces, the results are visually
indistinguishable from the case where a unique weight is computed
for every pixel. Importantly, this technique suggests a real-time im-
plementation of view-dependent texture mapping using a texture-
mapping graphics pipeline to render the projected views, and �-
channel blending to composite them.

For complex models where most images are entirely occluded for
the typical view, it can be very inefficient to project every original
photograph to the novel viewpoint. Some efficient techniques to de-
termine such visibility a priori in architectural scenes through spa-
tial partitioning are presented in [18].

4 Model-Based Stereopsis
The modeling system described in Section 2 allows the user to cre-
ate a basic model of a scene, but in general the scene will have ad-
ditional geometric detail (such as friezes and cornices) not captured
in the model. In this section we present a new method of recov-
ering such additional geometric detail automatically through stereo
correspondence, which we call model-based stereo. Model-based
stereo differs from traditional stereo in that it measures how the ac-
tual scene deviates from the approximate model, rather than trying
to measure the structure of the scene without any prior information.
The model serves to place the images into a common frame of ref-
erence that makes the stereo correspondence possible even for im-

(a) (b)

(c) (d)
Figure 13: View-dependent texture mapping. (a) A detail view of the
high school model. (b) A renderingof the model from the same posi-
tion using view-dependent texture mapping. Note that although the
model does not capture the slightly recessed windows, the windows
appear properly recessed because the texture map is sampled pri-
marily from a photograph which viewed the windows from approx-
imately the same direction. (c) The same piece of the model viewed
from a different angle, using the same texture map as in (b). Since
the texture is not selected from an image that viewed the model from
approximately the same angle, the recessed windows appear unnat-
ural. (d) A more natural result obtained by using view-dependent
texture mapping. Since the angle of view in (d) is different than in
(b), a different composition of original images is used to texture-map
the model.

ages taken from relatively far apart. The stereo correspondence in-
formation can then be used to render novel views of the scene using
image-based rendering techniques.

As in traditional stereo, given two images (which we call the
key and offset), model-based stereo computes the associated depth
map for the key image by determining corresponding points in the
key and offset images. Like many stereo algorithms, our method is
correlation-based, in that it attempts to determine the corresponding
point in the offset image by comparing small pixel neighborhoods
around the points. As such, correlation-based stereo algorithms gen-
erally require the neighborhood of each point in the key image to
resemble the neighborhood of its corresponding point in the offset
image.

The problem we face is that when the key and offset images
are taken from relatively far apart, as is the case for our modeling
method, corresponding pixel neighborhoods can be foreshortened
very differently. In Figs. 14(a) and (c), pixel neighborhoods toward
the right of the key image are foreshortened horizontally by nearly
a factor of four in the offset image.

The key observation in model-based stereo is that even though
two images of the same scene may appear very different, they ap-
pear similar after being projected onto an approximate model of the
scene. In particular, projecting the offset image onto the model and
viewing it from the position of the key image produces what we call
the warped offset image, which appears very similar to the key im-
age. The geometrically detailed scene in Fig. 14 was modeled as
two flat surfaces with our modeling program, which also determined
the relative camera positions. As expected, the warped offset image
(Fig. 14(b)) exhibits the same pattern of foreshortening as the key
image.

In model-based stereo, pixel neighborhoods are compared be-
tween the key and warped offset images rather than the key and off-
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(a) Key Image (b) Warped Offset Image (c) Offset Image (d) Computed Disparity Map
Figure 14: (a) and (c) Two images of the entrance to Peterhouse chapel in Cambridge, UK. The Façade program was used to model the
façade and ground as a flat surfaces and to recover the relative camera positions. (b) The warped offset image, produced by projecting the
offset image onto the approximate model and viewing it from the position of the key camera. This projection eliminates most of the disparity
and foreshortening with respect to the key image, greatly simplifying stereo correspondence. (d) An unedited disparity map produced by our
model-based stereo algorithm.

set images. When a correspondence is found, it is simple to convert
its disparity to the corresponding disparity between the key and off-
set images, from which the point’s depth is easily calculated. Fig.
14(d) shows a disparity map computed for the key image in (a).

The reduction of differences in foreshortening is just one of sev-
eral ways that the warped offset image simplifies stereo correspon-
dence. Some other desirable properties of the warped offset image
are:

� Any point in the scene which lies on the approximate model
will have zero disparity between the key image and the warped
offset image.

� Disparities between the key and warped offset images are eas-
ily converted to a depth map for the key image.

� Depth estimates are far less sensitive to noise in image mea-
surements since images taken from relatively far apart can be
compared.

� Places where the model occludes itself relative to the key im-
age can be detected and indicated in the warped offset image.

� A linear epipolar geometry (Sec. 4.1) exists between the key
and warped offset images, despite the warping. In fact, the
epipolar lines of the warped offset image coincide with the
epipolar lines of the key image.

4.1 Model-Based Epipolar Geometry
In traditional stereo, the epipolar constraint (see [6]) is often used
to constrain the search for corresponding points in the offset im-
age to searching along an epipolar line. This constraint simplifies
stereo not only by reducing the search for each correspondence to
one dimension, but also by reducing the chance of selecting a false
matches. In this section we show that taking advantage of the epipo-
lar constraint is no more difficult in model-basedstereo case, despite
the fact that the offset image is non-uniformly warped.

Fig. 15 shows the epipolar geometry for model-based stereo. If
we consider a pointP in the scene, there is a unique epipolar plane
which passes through P and the centers of the key and offset cam-
eras. This epipolar plane intersects the key and offset image planes
in epipolar lines ek and eo . If we consider the projection pk of P
onto the key image plane, the epipolar constraint states that the cor-
responding point in the offset image must lie somewhere along the
offset image’s epipolar line.

In model-based stereo, neighborhoods in the key image are com-
pared to the warped offset image rather than the offset image. Thus,
to make use of the epipolar constraint, it is necessary to determine
where the pixels on the offset image’s epipolar line project to in the
warped offset image. The warped offset image is formed by project-
ing the offset image onto the model, and then reprojecting the model
onto the image plane of the key camera. Thus, the projection po of
P in the offset image projects onto the model at Q, and then repro-
jects to qk in the warped offset image. Since each of these projec-
tions occurs within the epipolar plane, any possible correspondence

P
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Key
Camera

Offset
Camera

approximate
model

ek

actual
structure

offset
image

key /
warped offset

image

epipolar plane
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Figure 15: Epipolar geometry for model-based stereo.

for pk in the key image must lie on the key image’s epipolar line in
the warped offset image. In the case where the actual structure and
the model coincide at P , po is projected to P and then reprojected
to pk , yielding a correspondence with zero disparity.

The fact that the epipolar geometry remains linear after the warp-
ing step also facilitates the use of the ordering constraint [2, 6]
through a dynamic programming technique.

4.2 Stereo Results and Rerendering
While the warping step makes it dramatically easier to determine
stereo correspondences, a stereo algorithm is still necessary to ac-
tually determine them. The algorithm we developed to produce the
images in this paper is described in [3].

Once a depth map has been computed for a particular image, we
can rerender the scene from novel viewpoints using the methods
described in [23, 16, 13]. Furthermore, when several images and
their corresponding depth maps are available, we can use the view-
dependent texture-mapping method of Section 3 to composite the
multiple renderings. The novel views of the chapel façade in Fig.
16 were produced through such compositing of four images.

5 Conclusion and Future Work
To conclude, we have presented a new, photograph-based approach
to modeling and rendering architectural scenes. Our modeling
approach, which combines both geometry-based and image-based
modeling techniques, is built from two components that we have
developed. The first component is an easy-to-use photogrammet-
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Figure 16: Novel views of the scene generated from four original photographs. These are frames from an animated movie in which the façade
rotates continuously. The depth is computed from model-based stereo and the frames are made by compositing image-based renderings with
view-dependent texture-mapping.

ric modeling system which facilitates the recovery of a basic geo-
metric model of the photographed scene. The second component is
a model-based stereo algorithm, which recovers precisely how the
real scene differs from the basic model. For rendering, we have pre-
sented view-dependenttexture-mapping, which produces images by
warping and compositing multiple views of the scene. Through ju-
dicious use of images, models, and human assistance, our approach
is more convenient, more accurate, and more photorealistic than
current geometry-based or image-based approaches for modeling
and rendering real-world architectural scenes.

There are several improvements and extensions that can be made
to our approach. First, surfaces of revolution represent an important
component of architecture (e.g. domes, columns, and minarets) that
are not recovered in our photogrammetric modeling approach. (As
noted, the dome in Fig. 10 was manually sized by the user.) Fortu-
nately, there has been much work (e.g. [24]) that presents methods
of recovering such structures from image contours. Curved model
geometry is also entirely consistent with our approach to recovering
additional detail with model-based stereo.

Second, our techniques should be extended to recognize and
model the photometric properties of the materials in the scene. The
system should be able to make better use of photographs taken in
varying lighting conditions, and it should be able to render images
of the scene as it would appear at any time of day, in any weather,
and with any configuration of artificial light. Already, the recovered
model can be used to predict shadowing in the scene with respect to
an arbitrary light source. However, a full treatment of the problem
will require estimating the photometric properties (i.e. the bidirec-
tional reflectance distribution functions) of the surfaces in the scene.

Third, it is clear that further investigation should be made into the
problem of selecting which original images to use when rendering
a novel view of the scene. This problem is especially difficult when
the available images are taken at arbitrary locations. Our current so-
lution to this problem, the weighting function presented in Section
3, still allows seams to appear in renderings and does not consider
issues arising from image resampling. Another form of view selec-
tion is required to choose which pairs of images should be matched
to recover depth in the model-based stereo algorithm.

Lastly, it will clearly be an attractive application to integrate
the models created with the techniques presented in this paper into
forthcoming real-time image-based rendering systems.
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The field of three-dimensional computer graphics has long focused on the problem
of synthesizing images from geometric models. These geometric models, in combination with
surface descriptions characterizing the reflective properties of each element, represent the
scene that is to be rendered. Computationally, the classical computer-graphics image synthesis
process is a simulation problem in which light’s interactions with the supplied scene
description are computed.

Conventional computer vision considers the opposite problem of generating
geometric models from images. In addition to images, computer-vision systems depend on
accurate camera models and estimates of a camera’s position and orientation in order to
synthesize the desired geometric models. Often a simplified surface reflectance model is
assumed as part of the computer vision algorithm.

The efforts of computer graphics and computer vision are generally perceived as
complementary because the results of one field can frequently serve as an input to the other.
Computer graphics often looks to the field of computer vision for the generation of complex
geometric models, whereas computer vision relies on computer graphics for viewing results.
Three-dimensional geometry has been the fundamental interface between the fields of
computer vision and computer graphics since their inception. Only recently has this interface
come under question. To a large extent the field of image-based rendering suggests an
alternative interface between the image analysis of computer vision and the image synthesis
of computer graphics. In this course I will describe one class of methods for synthesizing
images, comparable to those produced by conventional three-dimensional computer graphics
methods, directly from other images without an explicit three-dimensional geometric
representation.

Another motivation for the development of image-based rendering techniques is that,
while geometry-based rendering technology has made significant strides towards achieving
photorealism, the process of creating accurate models is still nearly as difficult today as it was
twenty-five years ago. Technological advances in three-dimensional scanning methods
provide some promise for simplifying the process of model building. However, these
automated model acquisition methods also verify our worst suspicions—the geometry of the
real world is exceedingly complex. Ironically, one of the primary subjective measures of
image quality used in geometry-based computer graphics is the degree to which a rendered
image is indistinguishable from a photograph. Consider, though, the advantages of using
photographs (images) as the underlying scene representation. Photographs, unlike geometric
models, are both plentiful and easily acquired, and, needless to say photorealistic. Images are
capable of representing both the geometric complexity and photometric realism of a scene in a
way that is currently beyond our modeling capabilities.

Throughout the three-dimensional computer graphics community, researchers, users,
and hardware developers alike, have realized the significant advantages of incorporating



images, in the form of texture maps, into traditional three-dimensional models. Texture maps
are commonly used to add fine surface property variations as well as to substitute for small-
scale geometric details. Texture mapping can rightfully be viewed as the precursor to image-
based computer graphics methods. In fact, the image-based approach that I present can be
viewed as an extension of texture-mapping algorithms commonly used today. However,
unlike a purely image-based approach, an underlying three-dimensional model still plays a
crucial role with traditional texture maps.

In order to define an image-based computer graphics method, we need a principled
process for transforming a finite set of known images, which I will henceforth refer to as
reference images, into new images as they would be seen from arbitrary viewpoints. I will call
these synthesized images, desired images. Techniques for deriving new images based on a
series of reference images or drawings are not new. A skilled architect, artist, draftsman, or
illustrator can, with relative ease, generate accurate new renderings of an object based on
surprisingly few reference images. These reference images are frequently illustrations made
from certain cardinal views, but it is not uncommon for them to be actual photographs of the
desired scene taken from a different viewpoint. One characterization of image-based
rendering is to emulate the finely honed skills of these artisans by using computational
powers.

While image-based computer graphics has come many centuries after the discovery
of perspective illustration techniques by artists, its history is still nearly as long as that of
geometry-based computer graphics. Progress in the field of image-based computer graphics
can be traced through at least three different scientific disciplines. In photogrammetry the
problems of distortion correction, image registration, and photometrics have progressed
toward the synthesis of desired images through the composition of reference images.
Likewise, in computer vision, problems such as navigation, discrimination, and image
understanding have naturally led in the same direction. In computer graphics, as discussed
previously, the progression toward image-based rendering systems was initially motivated by
the desire to increase the visual realism of the approximate geometric descriptions. Most
recently, methods have been introduced in which the images alone constitute the overall scene
description. The remainder of this introduction discusses previous works in image-based
computer graphics and their relationship to the image-warping approach that I will present.

In recent years, images have supplemented the image generation process in several
different capacities. Images have been used to represent approximations of the geometric
contents of a scene. Collections of images have been employed as databases from which
views of a desired environment are queried. And, most recently, images have been employed
as full-fledged scene models from which desired views are synthesized. In this section, I will
give an overview of the previous work in image-based computer graphics partitioned along
these three lines.

Images, mapped onto simplified geometry, are often used as an approximate
representation of visual environments. Texture mapping is perhaps the most obvious example
of this use. Another more subtle approximation involves the assumption that all, or most, of
the geometric content of a scene is located so far away from the viewer that its actual shape is
inconsequential. Much of the pioneering work in texture mapping is attributable to the classic
work of Catmull, Blinn, and Newell. The flexibility of image textures as three-dimensional
computer graphics primitives has since been extended to include small perturbations in
surface orientation (bump maps) [Blinn76] and approximations to global illumination
(environment and shadow mapping) [Blinn76] [Greene86] [Segal92]. Recent developments in
texture mapping have concentrated on the use of visually rich textures mapped onto very
approximate geometric descriptions [Shade96] [Aliaga96][Schaufler96].

Texture mapping techniques rely on mapping functions to specify the relationship of
the texture’s image-space coordinates to their corresponding position on a three-dimensional



model. A comprehensive discussion of these mapping techniques was undertaken in
[Heckbert86]. In practice the specification of this mapping is both difficult and time
consuming, and often requires considerable human intervention. As a result, the most
commonly used mapping methods are restricted to very simple geometric descriptions, such
as polygonal facets, spheres and cylinders.

During the rendering process, these texture-to-model mapping functions undergo
another mapping associated with the perspective-projection process. This second mapping is
from the three-dimensional space of the scene’s representation to the coordinate space of the
desired image. In actual rendering systems, one or both of these mapping processes occurs in
the opposite or inverse order. For instance, when ray tracing, the mapping of the desired
image’s coordinates to the three-dimensional coordinates in the space of the visible object
occurs first. Then, the mapping from the three-dimensional object’s coordinates to the
texture’s image-space coordinates is found. Likewise, in z-buffering based methods, the
mapping from the image-space coordinate to texture’s image-space occurs during the
rasterization process. These inverse methods are known to be subject to aliasing and
reconstruction artifacts. Many techniques, including mip-maps [Williams83] and summed-
area tables [Crow84] [Glassner86], have been suggested to address these problems.

Another fundamental limitation of texture maps is that they rely solely on the
geometry of the underlying three-dimensional model to specify the object’s shape. The
precise representation of three-dimensional shape using primitives suitable for the traditional
approach to computer graphics is, in itself, a difficult problem that has long been an active
topic in computer graphics research. When the difficulties of representing three-dimensional
shape are combined with the issues of associating a texture coordinate to each point on the
surface (not to mention the difficulties of acquiring suitable textures in the first place), the
problem becomes even more difficult. It is conceivable that, given a series of photographs, a
three-dimensional computer model could be assembled. And, from those same photographs,
various figures might be identified, cropped, and the perspective distortions removed so that a
texture might be extracted. Then, using traditional three-dimensional computer graphics
methods, renderings of any desired image could be computed. While the process outlined is
credible, it is both tedious and prone to errors. The image-based approach to computer
graphics described in this thesis attempts to sidestep many of these intermediate steps by
defining mapping functions from the image-space of one or more reference images directly to
the image-space of a desired image.

A new class of scene approximation results when an image is mapped onto the set of
points at infinity. The mapping is accomplished in exactly the same way that texture maps are
applied to spheres, since each point on a sphere can be directly associated with another point
located an infinite distance from the sphere’s center. This observation is also the basis of
environment maps. However, environment maps are observed indirectly as either reflections
within other objects or as representations of a scene’s illumination environment. When such
an image mapping is intended for direct viewing, a new type of scene representation results.
An image-based computer graphics system of this type, called QuickTimeVR [Chen95], has
been developed by Apple Computer. In QuickTimeVR, the underlying scene is represented by
a set of cylindrical images. The system is able to synthesize new planar views in response to a
user’s input by warping one of these cylindrical images. This is accomplished at highly
interactive rates (greater than 20 frames per second) and is done entirely in software. The
system adapts both the resolution and reconstruction filter quality based on the rate of the
interaction. QuickTimeVR must be credited with exposing to a wide audience the vast
potential of image-based computer graphics. The QuickTimeVR system is a reprojection
method. It is only capable of describing image variations due to changes in viewing
orientation. Translations of the viewing position can only be approximated by selecting the
cylindrical image whose center-of-projection is closest to the current viewing position.



The panoramic representation afforded by the cylindrical image description provides
many practical advantages. It immerses the user within the visual environment, and it
eliminates the need to consider the viewing angle when determining which reference image is
closest to a desired view. However, several normal photographs are required to create a single
cylindrical projection. These images must be properly registered and then reprojected to
construct the cylindrical reference image. QuickTimeVR’s image-based approach has
significant similarity to the approach described here. Its rendering process is a special case of
the cylinder-to-plane warping equation in the case where all image points are computed as if
they were an infinite distance from the observer.

The movie-map system by Lippman [Lippman80] was one of the earliest attempts at
constructing a purely image-based computer graphics system. In a movie-map, many
thousands of reference images were stored on interactive video laser disks. These images
could be accessed randomly, according to the current viewpoint of the user. The system could
also accommodate simple panning, tilting, or zooming about these fixed viewing positions.
The movie-map approach to image-based computer graphics can also be interpreted as a
table-based approach, where the rendering process is replaced by a database query into a vast
set of reference images. This database-like structure is common to other image-based
computer graphics systems. Movie-maps were unable to reconstruct all possible desired
views. Even with the vast storage capacities currently available on media such as laser disks,
and the rapid development of even higher capacity storage media, the space of all possible
desired images appears so large that any purely database-oriented approach will continue to
be impractical in the near future. Also, the very subtle differences between images observed
from nearby points under similar viewing conditions bring into question the overall efficiency
of this approach. The image-based rendering approach described here could be viewed as a
reasonable compression method for movie maps.

Levoy and Hanrahan [Levoy96] have developed another database approach to
image-based computer graphics in which the underlying modeling primitives are rays rather
than images. A key innovation of this technique, called light-field rendering, is the
recognition that all of the rays that pass through a slab of empty space enclosed between two
planes can be described using only four parameters rather than the five dimensions required
for the typical specifications of a ray. They also describe an efficient technique for generating
the ray parameters needed to construct any arbitrary view. The subset of rays originating from
a single point on a light field’s entrance plane can be considered as an image corresponding to
what would have been seen at that point. The entire two-parameter family of images
originating from points on the entrance plane can be considered as a set of reference images.
During the rendering process, the three-dimensional entrance and exit planes are projected
onto the desired viewing plane. The final image is constructed by determining the image-
space coordinates of the two points visible at a specified pixel coordinate one coordinate from
the projected image of the entrance plane and the second from the image of the exiting plane).
The desired ray can be looked up in the light field’s database of rays using these four
parameter values. Image generation using light fields is inherently a database query process,
much like the movie map image-based process. The storage requirements for a lightfield’s
database of rays can be very large. Levoy and Hanrahan discuss a lossy method for
compressing light fields that attempts to minimize some of the redundancy in the light-field
representation.

The lumigraph [Gortler96] is another ray-database query algorithm closely related to
the light-field. It also uses a four-dimensional parameterization of the rays passing through a
pair of planes with fixed orientations. The primary differences in the two algorithms are the
acquisition methods used and the final reconstruction process. The lumigraph, unlike the light
field, considers the geometry of the underlying models when reconstructing desired views.
This geometric information is derived from image segmentations based on the silhouettes of
image features. The preparation of the ray database represented in a lumigraph requires
considerable preprocessing when compared to the light field. This is a result of the arbitrary



camera poses that are used to construct the database of visible rays. In a lightfield, though, the
reference images are acquired by scanning a camera along a plane using a motion platform.
The lumigraph reconstruction process involves projecting each of the reference images as
they would have appeared when mapped onto the exit plane. The exit plane is then viewed
through an aperture on the entrance plane surrounding the center-of-projection of the
reference image. When both the image of the aperture on the entrance plane and the reference
image on the exit plane are projected as they would be seen from the desired view, the region
of the reference image visible through the aperture can be drawn into the desired image. The
process is repeated for each reference image. The lumigraph’s approach to image-based three-
dimensional graphics uses geometric information to control the blending of the image
fragments visible through these apertures. Like the lightfield, the lumigraph is a data intensive
rendering process.

The image-warping approach to IBR discussed here attempts to reconstruct desired
views based on far less information. First, the reference image nearest the desired view is used
to compute as much of the desired view as possible. Regions of the desired image that cannot
be reconstructed based on the original reference image are subsequently filled in from other
reference images. The warping approach to IBR can also be considered as a compression
method for both light fields and lumigraphs. Considering the projective constraints induced by
small variations in the viewing configuration reduces redundancy of the database
representation. Thus, an image point, along with its associated mapping function, can be used
to represent rays in many different images from which the same point is visible.

Many other computer graphics methods have been developed where images serve as
the underlying representation. These methods handle the geometric relationships between
image points very differently. In the case of image morphing, the appearance of a dynamic
geometry is often a desired effect. Another method, known as view interpolation relies on an
approximation to a true projective treatment in order to compute the mapping from reference
images to desired images. Also, additional geometric information is required to determine
correct visibility. A third method, proposed by Laveau and Faugeras, is based on an entirely
projective approach to image synthesis. However, they have chosen to make a far more
restrictive set of assumptions in their model, which allows for an ambiguous Euclidean
interpretation.

Image morphing is a popular image-based computer graphics technique [Beier92],
[Sietz96], [Wolberg90]. Generally, morphing describes a series of images representing a
transition between two reference images. These reference images can be considered as
endpoints along some path through time and/or space. An interpolation process is used to
reconstruct intermediate images along the path’s trajectory. Image morphing techniques have
been used to approximate dynamic changes in camera pose [Sietz96], dynamic changes in
scene geometry [Wolberg90], and combinations of these effects. In addition to reference
images, the morphing process requires that some number of points in each reference be
associated with corresponding points in the other. This association of points between images
is called a correspondence. This extra information is usually hand crafted by an animator.

Most image-morphing techniques make the assumption that the transition between
these corresponding points occurs at a constant rate along the entire path, thus amounting to a
linear approximation. Also, a graduated blending function is often used to combine the
reference images after they are mapped from their initial configuration to the desired point on
the path. This blending function is usually some linear combination of the two images based
on what percentage of the path's length has been traversed. The flexibility of image-morphing
methods, combined with the fluidity and realism of the image transitions generated, have
made a dramatic impact on the field of computer graphics, especially when considering how
recently they have been developed. A subset of image morphing, called view morphing, is a
special case of image-based computer graphics. In view morphing the scene geometry is
fixed, and the pose of the desired views lies on a locus connecting the centers-of-projection of



the reference images. With the notable exception of the work done by Seitz, general image
morphing makes no attempt to constrain the trajectory of this locus, the characteristics of the
viewing configurations, or the shapes of the objects represented in the reference images. In
this thesis, I will propose image-mapping functions that will allow desired images to be
specified from any viewing point, including those off the locus. Furthermore, these mapping
functions, like those of Sietz, are subject to constraints that are consistent with prescribed
viewing conditions and the static Euclidean shape of the objects represented in the reference
images.

Chen and Williams [Chen93] have presented a view interpolation method for three-
dimensional computer graphics. It uses several reference images along with image
correspondence information to reconstruct desired views. Dense correspondence between the
pixels in reference images is established by a geometry-based rendering preprocess. During
the reconstruction process, linear interpolation between corresponding points is used to map
the reference images to the desired viewpoints, as in image morphing. In general, this
interpolation scheme gives a reasonable approximation to an exact reprojection as long as the
change in viewing position is slight. Indeed, as the authors point out, in some viewing
configurations this interpolation is exact. Chen and Williams acknowledge, and provide a
solution for, one of the key problems of image-based rendering—visible surface
determination. Chen and Williams presort a quadtree-compressed flow-field in a back-to-front
order according to the scene’s depth values. This approach works only when all of the partial
sample images share a common gaze direction and the synthesized viewpoints are restricted to
stay within 90 degrees of this gaze angle. The underlying problem is that correspondence
information alone (i.e., without depth values) still allows for many ambiguous visibility
solutions unless we restrict ourselves to special flow fields that cannot fold (such as rubber-
sheet local spline warps or thin-plate global spline warps).

Establishing the dense correspondence information required for a view interpolation
system can also be problematic. Using pre-rendered synthetic images, Chen and Williams
were able to determine the association of points by using the depth values stored in a z-buffer.
In the absence of a geometric model, they suggest that approximate correspondence
information can be established for all points using correlation methods. The image-based
approach to three-dimensional computer graphics described in this research has a great deal in
common with the view interpolation method. For instance, both methods require dense
correspondence information in order to generate the desired image, and both methods define
image-space to image-space mapping functions. In the case of view interpolation, the
correspondence information is established on a pairwise basis between reference images. As a
result the storage requirements for the correspondence data associating N reference images is
O(N). My approach is able to decouple the correspondence information from the difference in
viewing geometries. This allows a single flow field to be associated with each image,
requiring only O(N) storage. Furthermore, the approach to visibility used in my method does
not rely on any auxiliary geometric information, such as the presorted image regions based on
the z-values, used in view interpolation.

Laveau’s and Faugeras’ [Laveau94] image-based computer-graphics system takes
advantage of many recent results from computer vision. They consider how a particular
projective geometric structure called epipolar geometry can be used to constrain the potential
reprojections of a reference image. They explain how a fundamental matrix can describe the
projective shape of a scene with scalar values defined at each image point. They also provide
a two-dimensional ray-tracing-like solution to the visibility problem that does not require an
underlying geometric description. Yet, it might require several images to assure an
unambiguous visibility solution. Laveau and Faugeras also discuss combining information
from several views, though primarily for the purpose of resolving visibility as mentioned
before. By relating the reference views and the desired views by the homogenous
transformations between their projections, Laveau and Faugeras can compute exact
perspective depth solutions. However, the solutions generated using Laveau and Faugeras’



techniques do not reflect an unambiguous Euclidean environment. Their solution is consistent
with an entire family of affine coordinate frames. They have pointed out elsewhere
[Faugeraus92b] that when additional constraints are applied, such as the addition of more
reference images and the requirement that a fixed camera model be used for all references
images, then a unique Euclidean solution can be assured.

The methods described by Laveau and Faugeras are very similar to the image-based
approach to computer graphics described here. The major difference in my approach is that I
assume that more information is available than simply the epipolar geometries between
reference images. Other significant differences are that the forward-mapping approach
described here has fewer restrictions on the desired viewing position, and I provide a simpler
solution to the visibility problem.

The delineation between computer graphics and computer vision has always been at
the point of a geometric description. In IBR we tend to draw the lines somewhat differently.
Rather than beginning the image synthesis task with a geometric description, we begin with
images. In this overview I presented a summary of the various image-based rendering
methods frequently used today.

Images have already begun to take on increasingly significant roles in the field of
computer graphics. They have been successfully used to enhance the apparent visual
complexity of relatively simple geometric screen descriptions. The discussion of previous
work showed how the role of images has progressed from approximations, to databases, to
actual scene descriptions.

In this course I will present an approach to three-dimensional computer graphics in
which the underlying scene representation is composed of a set of reference images. I will
present algorithms that describe the mapping of image-space points in these reference images
to their image-space coordinates in any desired image. All information concerning the three-
dimensional shape of the objects seen in the reference images will be represented implicitly
using a scalar value that is defined for each point on the reference image plane. This value can
be established using point correspondences between reference images. I will also present an
approach for computing this mapping from image-space to image-space with correct
visibility, independent of the scene’s geometry.
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In this report, I present a complete image-based rendering system.  This includes the derivation of

a mapping function from first principles, an algorithm for determining the visibility of these mapped points

in the resulting image, and a method for reconstructing a continuous image from these mapped points. I

refer to this type of mapping function as image warping, because it processes the elements of an image

according to their image coordinates and produces outputs that are image coordinates in the resulting image.

In addition to the coordinates of the reference image additional information is required for each

pixel. This information is related to the distance of the object seen at a particular pixel from the image

plane. There are many different measures that can be used to describe this distance. Distance can be

specified as range values describing the Euclidean distance from the visible object to image’s center-of-

projection. If the viewing or image plane is known and the coordinate system is chosen so that the normal of

this plane lies a unit distance along the z-axis, then this distance information is called depth or the pixel’s z-

value. However, there are many other reasonable choices for representing this same distance. For instance

distance values can be described indirectly by to the relative motion of image points induced by a change in

the camera’s position, this distance representation is frequently called optical flow, and it is inversely

related to the point’s range. Disparity and projective-depth are two more representations of distance for

which a warping equation can be developed. The choice of a distance metric often depends on knowing

some additional information about how the image was formed (ex. knowledge of the image plane), but in

some applications knowledge of this relationship will be unnecessary to perform the desired image warp.

Rather than selecting a particular distance measure, and deriving the warping function based on it, I will

instead develop a notion of depth that leads to the simplest expression for the desired warping function.

The warping function developed here will not be a one-to-one mapping.  In those places where

multiple points map to the same result a method to resolve which of the candidate points is visible is

required.  I will describe a simple method for determining these visible regions.  This method will not rely

on any geometric information from the scene, but only on the change in pose between the reference and

viewing positions.

Finally, since an image will usually be represented as two-dimensional array of discrete samples,

reconstruction methods are developed so that the transformed discrete points of the reference image can be

used to estimate the appearance of the desired continuous image.  I will suggest two methods for this

reconstruction.

1. From Images to Rays

A perspective image describes a collection of rays from a given viewing position. Relative to this

position any particular ray is uniquely determined by two angles.  While the use of two angles sufficiently



describes the full range and dimension of the set of rays, it is not a very convenient representation for

analysis or computation.  Here I will consider an alternative parameterization of rays based on a general

planar-pinhole camera model.  This is the same planar-pinhole camera model that is commonly used in

traditional three-dimensional computer graphics and computer vision.

The planar-pinhole camera is an idealized device for describing the rays that pass through a single

point in space, called the center-of-projection, and are contained within some solid angle defined by a

bounded planar section, called the image plane.  This solid angle is well defined as long as the center-of-

projection does not lie on the extended image plane.  As the bounds of the image plane are extended

indefinitely, the solid angle approaches 2π steradians, exactly half of the visual sphere.

 Consider the rays emanating from the origin of a three-dimensional system with basis vectors

($, $, $)i j k .  Suppose also, that a second two-dimensional coordinate system is defined in the image plane,

allowing each point on it to be identified by an image coordinate, ( , )u v , where u and v are scalar multiples

of the two basis vectors, ( $, $)s t , defined in the image plane.  Points on this image-plane can be given

coordinates that are specified relative to this coordinate system.  These points, along with their assigned

coordinates, are referred to as image-space points.  Without loss of generality, we can assume that the

origin of image space lies at one of the corners of the bounded image plane. The following figure depicts

these coordinate systems:

Figure 1: Mapping image-space point to rays

Each image-space point can be placed into one-to-one correspondence with a ray that originates

from the Euclidean-space origin.  This mapping function from image-space coordinates to rays can be

described with a linear system:
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Equation 1: Mapping from image coordinates to coordinates in three-space

where the coordinate of the image-space point is specified by the coordinate ( , )u v , and the resulting

vector d represents the corresponding ray’s direction.  The entries of the mapping matrix,P , can be easily

understood by considering each column as a vector, a , b , and c  in the same coordinate system as d .

This relationship is shown in Figure 2, where a  and b are images of the $s  and $t basis vectors in the

($, $, $)i j k  coordinate system, and c  is a vector from the ray origin to the origin of the image plane.  Thus,

while this parameterization is general, it still has a reasonable physical interpretation.

Figure 2: Relationship of the image-space basis vectors to the ray origin

The mapping function from image coordinates to rays is not uniquely defined. Any scalar multiple

of the P matrix will also yield an equivalent set of image-space point-to-ray correspondences.  This

independence of scale is a consequence of the fact that the space of possible directions from any point in a

three-dimensional space can be described using only two parameters (i.e., two angles).  Thus, any

representation of rays that uses unconstrained three-dimensional vectors will allow for multiple

representations of the same ray.

2. A Warping Equation for Synthesizing Projections of a Scene

Equipped with only the simple planar-pinhole-camera model described in the previous section, an

image-warping equation, which remaps those rays visible from a given viewpoint to any arbitrary viewing

position, can be derived.  As before, I will refer to the source image, or domain, of the warp as the reference

image, and the resulting image, after the mapping is applied, as the desired image.  For the moment, I will

assume that both the pinhole-camera parameters of the desired and reference views are known.  In addition,

I will also assume that a single scalar value, called generalized disparity or projective depth, is known for



all points of the reference image.  The precise nature of this quantity will be discussed in more detail later in

this section.  For the moment it is sufficient to say that this quantity can be determined from a set of

correspondences specified between images.

Consider the implications of the same point, &X , being sighted along rays from two different

centers-of-projection, &C1 and &C2 , specified relative to their pinhole camera models.  The following

diagram illustrates this configuration.

Figure 3: A point in three-dimensional space as seen from two pinhole cameras

The image coordinate, x1 , in the first image determines a ray via the pinhole camera mapping

d P x1 1 1=  with an origin of &C1 .  Likewise, the image coordinate, x2 , in the second image determines a

ray, d P x2 2 2= , with origin &C2 .  The coordinate of the point &X can, therefore, be expressed using either

of the following:

& & &X C t x C t x= + = +1 1 1 1 2 2 2 2P P

Equation 2: Specification of a 3D point in terms of pinhole-camera parameters

where t1 and t2 are the unknown scaling factors for the vector from the origin to the viewing plane which

make it coincident with the point &X .  This expression can be reorganized to give

( )t
t tx C C x2

1 12 2
1

1 2 1 1P P= − +& &

Equation 3: Transformation of a ray in one camera to its corresponding ray in another

The left-hand side of this expression is now a ray, as is the second term on the right hand side.  If

we relax our definition of equivalence to mean “equal down to some non-zero scale factor” (which is

consistent with the notion that rays having the same direction are equivalent regardless of the length of the

three-space vector specifying this direction), then the 
t

t
2

1
 factor can be eliminated.  I will use the symbol,



&= , to represent this equivalence relationship.  Alternatively, we could take advantage of the property that

both P1 and P2 are defined independent of scale, to absorb the scalar quantity, 
t

t
2

1
, into the matrix P2 .

Substituting the generalized disparity term  ( )δ x for  1
1t

 gives

( )P P2 2 1 1 2 1 1x x C C x& ( ) & &= − +δ

Equation 4: Simplified planar ray-to-ray mapping

The name, generalized disparity, comes from the notion of stereo disparity.  In the normal depth-

from-stereo case, the cameras are assumed to have a particular geometric configuration.  Both image planes

are required to have the same pinhole-camera model. The vector connecting the centers-of-projection must

be parallel to both image planes.  And, the coordinate system is selected so that the $i basis vector of the

camera space is parallel to the $s basis vector of the image planes, as shown below.

Figure 4: The depth-from-stereo camera configuration

This configuration can be accomplished either by accurate alignments of the cameras or by a post-

processing rectification (using re-projection see Equation 13) of the acquired data.  Under these conditions

the planar ray-to-ray mapping equation simplifies to
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Equation 5: 

Multiplying both sides by the inverse of the pixel-to-ray mapping gives
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Equation 6: 

The alignment constraint on the camera-space and image-space basis vectors (that the $i basis

vector of the camera space is parallel to the $s basis vector) implies that a unit step in image space produces

a unit step in camera space.  This is equivalent to
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Equation 7: 

After multiplying through and reorganizing terms we get the following:
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Equation 8: 

Thus, when camera geometries satisfy the depth-from-stereo requirement, the image-space

coordinates of corresponding points differ only along a single dimension in the images.  The size of this

change is proportional to both the distance between the centers-of-projection, which is often called the

stereo baseline, and the generalized disparity quantity, which has units of pixels per unit length.  Therefore,

generalized disparity, δ( )x , is equivalent to stereo disparity, u u2 1− , when normalized by dividing

through by the length of the baseline.

δ stereo
x x

x
u u

C C
( ) =

−
−

2 1

1 2

Equation 9: 

The term, projective depth, is sometimes used instead of generalized disparity. This name is

somewhat misleading since it increases in value for points closer to the center-of-projection. Generalized

disparity, δ( )x1 , is inversely related to depth by a constant scale factor, and to range by a scale factor that

varies from point to point on the viewing plane.

Let us consider further the generalized-disparity term, δ( )x1 .  We can construct the following

diagram of Equation 4 in the plane containing the three points &C1 , &C2 , and a visible point &X .



Figure 5: A point as seen from two images

Using similar triangles it can be shown that
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Solving for generalized disparity gives the following expression:

δ ( )x
x

r1
1 1=

P

Thus, the generalized disparity depends only on the distance from the center-of-projection to the position on

the image plane where the point is observed and the range value of the actual point.  The image-space

coordinate in the second image of the actual point can be found using the following transformation:

( )x x C C x2 1 2
1

1 2 2
1

1 1& ( ) & &= − +− −δ P P P

Equation 10: Planar image-warping equation
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Since the generalized-disparity term, δ( )x1 , is independent of both the desired center-of-projection, &C2 ,

and the desired pinhole viewing parameters, P2 , Equation 10 can also be used to determine the image-

space coordinate of the observed point on any other viewing plane.  This is accomplished by simply

substituting the desired center-of-projection and pinhole-camera model into Equation 10.

Figure 6: A third view of the point &X

Figure 6 illustrates how the planar warping equation (Equation 10) can be used to synthesize

arbitrary views. The third viewing position, &C3 , need not be in the same plane as &C1 , &C2  and &X .  Figure

6 also depicts how generalized disparity is an invariant fraction of the baseline vector.  This fraction of the

baseline vector applies to all potential views, and therefore, it can be used to align corresponding rays of a

given reference image to their direction in any desired image.  In addition, the resulting projection will be

consistent to a fixed three-dimensional point.  Generalized disparity is a scalar quantity that determines how

a translation of the center-of-projection affects the coordinates of points in image space.  The remaining

matrix quantity, P P2
1

1
− , determines how changes in the pinhole-camera model, independent of translation,

affect the coordinates of points in image space.  A further explanation of this last claim will be presented in

the next section.

The warping equation can be used to synthesize arbitrary views of a given reference image via the

following procedure.  Given a reference image, the matrix describing its planar-pinhole projection model,

P1 , its center-of-projection, &C1 , a generalized-disparity value, δ( )x1 , for each pixel, and the center-of-

projection of the desired image, &C2 , and its projection model, the mapping of the reference image to a

desired image can be computed.  Using the vectors described in the generalized pinhole-camera model, the

warping equation can be rewritten as
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where α is an arbitrary scale factor.  This matrix sum can be rewritten as shown below:
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Multiplying both sides by the determinant of P2  and substituting for its inverse gives the following 4 × 3

matrix equation:
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Equation 11: 4 × 3 matrix formulation of warping equation

This results in the following rational expressions for computing the reprojection of pixel coordinates from a

reference image to the coordinates of a desired image:
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Since the centers-of-projection and the planar-pinhole camera models for the reference and desired

images are fixed for a given mapping, the warping equation simplifies to a pair of constant-coefficient linear

rational expressions of the form
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Equation 12: Warping equation as rational expressions



The mapping of a point in the reference image to its corresponding point in the desired image can

be computed using nine adds, eleven multiplies, and one inverse calculation.  When points of the reference

image are processed sequentially, the number of adds is reduced to six, and the number of multiplies is

reduced to five.  Additional tests for a positive denominator, t u v u v( , , ( , ))1 1 1 1δ , and a valid range of the

numerator can avoid two multiplies and the inverse calculation.  This operation is the equivalent of screen-

space clipping in traditional three-dimensional computer graphics.

3. Relation to Previous Results

Many other researchers [Szeliski96] [Faugeras92] have described similar warping equations.  In

most of these applications the image-space coordinates of the points x1 and x2 were given, and the

projective depth, δ( )x , was the quantity to be solved for.  When this equation is used for image warping,

coordinates of image points in the desired view, x2 , are computed from points in the reference image, x1 ,

and their projective depths.

This warping equation is also closely related to several other well-known results from computer

graphics, image-warping, and projective geometry.  Consider the situation where the reference image and

the desired view share a common center-of-projection.  In this case the planar-warping equation simplifies

to

x x2 2
1

1 1&= −P P

Equation 13: Image reprojection

This illustrates the well known result that images defined on planar viewing surfaces sharing a common

center-of-projection are related by a projective transformation or planar homography.

Figure 7: Reprojection of an image with the same center-of-projection



This projective transformation is merely the composition of the reference image’s viewing matrix

with the inverse of the desired image’s viewing matrix, H P Preproject = −
2

1
1 .  This is indicative of the fact

that, ignoring the clipping that occurs at the boundaries of the view plane, a change of viewing surface does

not change the set of rays visible from the center-of-projection.  It only changes their spatial distribution on

the viewing surface.  I will refer to mappings of this sort as reprojections.

A second well known result from the fields of computer graphics and projective geometry is that

all images of a common planar surface seen in planar projection are also related by a projective transform as

long as the plane does not project to a line.  This result is the underlying basis for the texture mapping of

images onto planar surfaces.  It allows for the rasterization of textured planar primitives in screen space

using a rational linear expression (an alternate formulation for a projective transform).  The figure below

illustrates the projection of a planar region onto several viewing planes and the resulting image.

Figure 8: A planar region seen from multiple viewpoints

The mapping function that describes the possible views of a three-dimensional planar surface can be

derived as a special case of Equation 10 by the following progression.  The equation of a plane in the

coordinate system having the reference image’s center-of-projection as its origin is given by
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Equation 14: Equation of a plane

where the scalars A, B, C, and D are four parameters defining the plane, and x, y, and z are the coordinates

of a point in space.  These three-space coordinates can be re-expressed in terms of image coordinates by

using a planar-pinhole model image-to-ray mapping function as follows:



[ ] ( )A B C t u v

u

v D, P1

1

















=

where t u v( , ) is a multiple of the distance from the center-of-projection to the viewing plane for the ray.

Dividing both sides by the scalar quantities appearing on opposite sides gives
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The inverse of t u v( , )  is equivalent to the generalized-disparity term discussed in Equation 3.  When the

generalized-disparity value from above is substituted into the warping equation (Equation 10), the following

expression results:
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Equation 15: Mapping of a common plane seen at two centers-of-projection

The planar homography, ( )[ ]( )H P Pplane
A
D

B
D

C
DC C I= − +−

2
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1 2 1 , is a projective mapping

of the reference-image points on the plane to their coordinates in the desired image.  When the reference

and desired images share a common center-of-projection, the projective mapping reduces to the

reprojection given in Equation 13 as expected.

The image plane of a reference image is but a plane in three-dimensional space.  Therefore, its

image in any reprojection is related by a projective mapping.  The equation of the three-dimensional image

plane of a given pinhole-camera model is given by
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Substitution into Equation 15, gives
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which simplifies to
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Equation 16: Projection of the reference image plane in the desired image



Notice that the projective mapping, ( )[ ] 1
1

221
1

200 PPP −− +−= CCH viewplane , describes the

projection of the reference image’s viewing plane in the desired image.

4. Resolving visibility

The mapping function described by the planar image warping equation (Equation 10) is not one-to-

one.  The locus of potential points in three-space, ( )&X t , that project to the same image coordinate,

x u v= ( , ) , is described by the center-of-projection and a planar pinhole-camera model using the

following equation:

( )& &X t C t x= + P

Equation 17: 

The parameter t identifies specific three-dimensional points that project to a given image-space

coordinate.  A policy of selecting the smallest of all positive t values for a given screen-space point can be

used to determine visibility for opaque objects.  This candidate t value is analogous to the z values stored in

a z-buffer [Catmull74], or the ray-length maintained by a ray-casting algorithm [Appel68].  While the t

parameter is an essential element of the reprojection process, (via its relationship to δ( )x1 ) it is,

surprisingly, not required to establish the visibility of a warped image.

In this section, an algorithm is presented for computing the visible surface at each image-space

point of a desired image as it is being derived from a reference image via a warping equation.  This is

accomplished by establishing a warping order that guarantees a correct visibility solution.  This ordering is

established independently of the image contents.  Only the centers-of-projection of the desired and

reference images, as well as the pinhole-camera model for the reference image are needed.

In order to simplify the following discussion, the reference image is assumed to be stored as a two-

dimensional array whose entries represent uniformly spaced image samples.  This simplification is not

strictly necessary for the algorithm to operate correctly, but it allows for a concise statement of the

algorithm, and it is representative of many typical applications.

The approach of this visibility algorithm is to specify an ordering, or enumeration, of points from

the reference image which guarantees that any scene element that is hidden by some other scene element in

the desired image will always be drawn prior to its eventual occluder.  This type of ordering is commonly

called back-to-front.  It is well known that a simple painter’s algorithm  [Rogers85] can be used to display

any collection of scene elements with correct visibility when a back-to-front ordering can be established.

Given the reference image’s center-of-projection, &C1 , and ray-mapping function, P1 , and the

desired center-of-projection, &C2 , the projection of &C2  onto the reference image is first computed as

follows:
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Equation 18: 

An example of this projection is illustrated in Figure 9.

Figure 9: A desired center-of-projection projected onto the reference image

The image coordinate of &C2 on the reference image is given by e e
e

e
e

x

z

y

z
= ( , ) .  It will fall into

one of nine regions relative to the reference image shown below:

Desired
Center-of-projection

Reference Image’s
Center-of-projection



Figure 10: Figure of nine regions

Next, the reference image is subdivided into sheets that can be processed independently.  Any set

of orthogonal image-space basis vectors can be used to partition each sheet, but it is simplest to choose a

coordinate basis aligned with the image’s sampling grid.  The reference image is partitioned into 1, 2, or 4

sheets depending on the image-space coordinates of the projected point, e .  When e  projects within the

domain of the reference image, the image is divided into four sections separated along the row and column

of e .

Figure 11: A desired center-of-projection that divides the reference image into 4 sheets

When only one coordinate of e falls within the reference image, (i.e., when e falls into regions B,

D, F, and H) the image is subdivided into two sheets whose boundary is determined by either the row or

column of the one coordinate that lies within the domain.
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Figure 12: A desired center-of-projection that divides the reference image into 2 sheets

If neither component of e  falls within the reference image’s domain, (when e  projects into

regions A, C, H or J) then the entire image is treated as a single sheet.

Figure 13: A desired center-of-projection that divides the reference image into 1 sheet

Once the reference image’s domain is subdivided according to the projected position of the desired

center-of-projection, the warping order for each sheet can be determined as follows.  The sign of the ez

component from Equation 18 determines the enumeration direction.  When ez  is non-negative the warping

order of each sheet progresses toward the point e , otherwise the warping progresses away from e , as

shown in the figure below.  The case where ez  is zero indicates that the desired viewing position has no

proper projection onto the reference image, because the vector & &C C1 2−  is parallel to the reference image’s

viewing plane.  In this case, only one sheet will be enumerated, and the warping order progresses in the

direction determined by the quadrant indicated by the signs of the remaining two vector components, ex

and ey .
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Figure 14: Enumeration direction

During the warp, each radial line originating from the projected image of the desired center-of-

projection can be traversed independently.  Alternatively, the warp can progress along either rows or

columns of the sheets so long as the image of the desired center-of-projection, e , is drawn at the

appropriate time (i.e., p is drawn first when ez is negative, and last otherwise), allowing either a row major

or column major traversal.  The advantage of the latter approach is that it allows the reference image’s

traversal to take maximum advantage of the access coherence of most memory systems.

The entire visibility algorithm involves three simple steps.  First, the three-dimensional coordinate

of the desired center-of-projection, &C2 , is projected on the reference image’s viewing plane.  Second, the

image-plane is divided into sheets determined by the image-space coordinate of the projected center-of-

projection, e , and whose boundaries are aligned with the image-space coordinate axes1.  Computing this

coordinate involves a projective normalization.  Finally, the sign of the planar normalizing element of the

projective coordinate determines the traversal of the reference image2.

The algorithm presented here is similar to Anderson's algorithm for bivariate functions

[Anderson82]. The difference is that his visibility algorithm was defined for a different class of surfaces

(i.e., a height field, or Monge patch, rather than a projective surface), and his algorithm enumerates the

facets in a front-to-back occlusion order.  Anderson's choice of a front-to-back order requires that some

representation of the grid perimeter be maintained to aid in deciding what parts or edges of subsequent

facets need to be rendered.  Representing this perimeter requires auxiliary storage and extra clipping

computations.  This list must then be queried before each new facet's edge is displayed, and the display

must be updated if any part of the facet is visible.  In contrast, a back-to-front ordering requires no

additional storage because the proper occlusion is handled by the drawing order using the painter's

algorithm.

                                                     

1 Along the rows and columns of a discretely sampled image array

2 This is often called the homogeneous element of the projective coordinate.

ez negative ez non-negative



5. Reconstruction Issues

The planar-warping equation describes a mapping of the image-space points on a reference

viewing plane to image-space points on a desired viewing plane.  The underlying assumption is that both the

reference and desired images are continuous over their domains.  This is not generally the case for typical

images.  Usually, images are represented by a two-dimensional array of discrete samples.  There are many

subtle implications of warping sampled images rather than continuous ones.  While the warping equation

can easily be applied to the discrete coordinates of a sampled image, the likelihood that any sample will

map exactly onto a sampling-grid point of the desired image is negligible.  In addition to warping to

locations off the sampling grid, the points of a reference image will also distribute unevenly over the desired

image.  The desired image must then be synthesized from this irregular distribution of sampled and

reprojected image points.

The process of mapping a sampled image from one image-space to another is called image

resampling.  Conceptually, image resampling constructs a continuous representation of a reference image

which is then mapped onto the desired viewing plane using the warping function and resampled to form the

final discrete image.  When the three-dimensional points represented in the reference image lie on a

common plane, as shown in Figure 8,  and the scene contents are appropriately band limited, reconstructing

a continuous representation is a straightforward application of signal processing theory [Wolberg90].  The

same situation occurs when three-dimensional points are constrained to lie along the same rays of different

viewing planes, as when reprojecting an arbitrary set of points from the same center-of-projection as shown

in Figure 7.  The ideal continuous reconstruction of these surfaces is the summation of two-dimensional sinc

functions centered at each sample-grid point and scaled by the sample’s intensity.  Since the sinc function

has an infinite extent, local polynomial approximations are often used instead [Mitchell88].  However, when

the three-dimensional points visible in an image are not constrained to lie in a plane or share a center-of-

projection, the reconstruction of a continuous reference image representation is more involved.

Three-dimensional surfaces can be built up from discrete sub-surfaces, called surface patches.

The composite of a group of surface patches can represent the reconstruction of a three-dimensional point

set.  One measure of the continuity of a composite set of surface patches, called derivative continuity, is the

number of matching terms in the Taylor series expansions at abutting surface patches.  When only the first

terms of the composite surfaces’ Taylor series expansions match along their common boundaries, the

surface patches will have the same three-dimensional coordinate values along their abutting regions, and the

overall surface has C0 continuity.  When both the first and second terms of the expansion agree, the tangent

spaces of the abutting surfaces coincide, and the composite surface will have C1 continuity.

One approach to reconstructing a continuous function from a sampled reference image is to

consider each sample as specifying a surface patch.  The basis for these surface patch definitions is typically

polynomial.  However, this is not a requirement for defining a continuous reconstruction.  All that is



necessary is that the basis functions are sufficiently differentiable.  For instance, a sinc or a Gaussian basis

are both valid representations of surface patches3.

I will next describe two different methods for constructing a continuous representation of a

reference image for use in image warping based on C0 continuity models that use different surface patch

bases.  Recent work by Mark [Mark97] has extended these methods to include a model in which C0 and C1

continuity alternates throughout the domain.  His approach requires a local estimate of the tangent space at

each sample point.  This requirement can be easily satisfied when the reference images are synthesized

using traditional computer graphics techniques, but it is more difficult for acquired reference images.

However, there is some promise in this area.  It appears that many shape-from-shading [Horn89] and

photometric-ratio-based correspondence methods [Wolff94] can be adapted to estimate a surface normal at

each image-space point.

Figure 15: A Gaussian cloud representation of image-space points

The first reconstruction approach uses a spherical Gaussian basis function to represent each sample

point.  It assumes that every visible point in a reference image represents a three-dimensional spherical

cloud density located somewhere along the ray determined by the image point.  In three-dimensions this

radius could be determined by considering the solid angle represented at each sample point and the distance

of the cloud’s center from the image’s center-of-projection.  A two-dimensional equivalent of this radius

calculation can, however, be computed directly from the warping equation.

The image-space Gaussian reconstruction method described here is a straightforward adaptation of

Heckbert’s Elliptical Weighted Average (EWA) filter [Heckbert89], but it is used in a forward-mapping

algorithm, similar in spirit to the Splatting algorithm described by Westover [Westover91].  The support of

                                                     

3 The use of a sinc or Gaussian basis is somewhat complicated by their infinite extents.



the Gaussian reconstruction function is determined by computing the change in shape of differential circular

regions surrounding each sample as they undergo the image warp.  One useful measure of the change in

shape is provided by the Jacobian determinant of the mapping function.  The Jacobian determinant is a

direct measure of the local change in area induced by a transformation.  However, changes in differential

area are not necessarily a good indication of the changes in differential shape4.  The additional assumptions

required to address this discrepancy will be discussed shortly.  The Jacobian matrix of the planar-warping

function given in Equation 12 is
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Equation 19: Jacobian of the warping equation

The determinant of the Jacobian matrix simplifies to
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Equation 20: Jacobian determinant of the warping equation
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Equation 21: Camera-model matrix, H, and the structure matrix, G

The H component of the Jacobian determinant represents the change in projected area of an infinitesimal

region of the reference image due entirely to the changes in the pinhole-camera model since H P P&= −
2

1
1

and det( ( )) det( ) ( , , )Jacobian H Hx t u v= 0 3 .  The G component represents the change in projected

area due to the three-dimensional structure of the observed image point.  This can be seen by lettingH I= ,

which indicates no change in the pinhole camera model between the reference and desired image.  This

gives ∂
∂ δ
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=u v
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1 34

2 , indicating that the change in projected area is independent of the point’s

coordinate on the image plane, but instead it depends entirely on the generalized disparity value at that
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Jacobian determinant indicates that the differential area surrounding any sample remains constant; yet the
mapping introduces considerable stretching along the u  dimension and shrinking in the v dimension.



point.  Since the matrices H and G are constant for a given pair of reference and desired views, they need

only be calculated once per warp.

If we make the assumption that the warping function is well represented by a local linear

approximation centered at each sample in the reference image with a constant generalized disparity value,

then the Jacobian matrix can also be used to estimate the change in shape of a rotationally symmetric

reconstruction kernel as follows.  An infinitesimal circular region with a radius of dr  is described by the

expression

[ ]dr du dv
du

dv
2 =











Equation 22: 

When that region undergoes an arbitrary mapping, φ:( , ) ( , )u v u v→ ′ ′ , the best linear approximation to

the differential mapping is given by the Jacobian matrix
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Equation 23: 

By substituting Equation 23 into Equation 22, the mapping of the differential circular region can be

determined as follows:
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Equation 24: 

which expands to the following conic expression:
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Equation 25: 

This equation describes an ellipse if the Jacobian determinant is positive.  Therefore, any circular region

centered about a reference image sample will project as an ellipse in the desired image.  This property can

be used to reconstruct a continuous representation of the reference image prior to resampling.  The spatial

domain response of any rotationally symmetric filter, such as a Gaussian, can be computed at a sample point

in the desired image by evaluating Equation 25 at that point to determine the radius value in the undistorted

filter’s kernel.  The resampling process can be optimized by first computing the extents of the ellipse in the

desired image space.  In terms of the Jacobian these extents are given by the following expressions:
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Equation 26: 

Another approach to reconstructing a continuous representation of the reference image attempts to

fit a bilinear surface patch between any four neighboring grid samples.  This representation also has C0

continuity, but it uses a polynomial basis.  First, the individual sample points of the reference image are

mapped to the desire image’s coordinate system.  These warped points will generally not correspond to

sample grid positions.  The connectivity of the eight-connected neighborhood of each reference sample-

point is maintained after the warp.  This can be managed by maintaining a buffer of two scan lines while

enumerating the reference image in a visibility compatible order.  The warped sample points stored in these

two buffers can be considered a single strip of patches at the completion of each scan line.  A standard

polygonal rasterizer can be used to scan convert each patch in the strip.  Therefore, this technique can easily

take advantage of specialized rasterization hardware if it is available.  Once a strip is rasterized, one of the

scanline buffers becomes available for storing the mapped values of the next scan line.

Shown below is an example of the same warp using each of the two reconstruction methods

discussed.

Figure 16: Example image warp using different reconstruction methods

6. Occlusion and Exposure Errors

The image warp can only correctly reproject those scene points visible in the reference image.  In

some cases, even the visibility of a point does not guarantee its proper reconstruction.  These are not



weaknesses of either the image-warping or visibility methods described; they are, instead, inherent

limitations of an image-based representation.

The major visual artifacts resulting from these limitations can be classified as one of two cases,

exposure errors or occlusion errors.  Exposure errors occur when a background region that should have

been occluded is visible in a desired image because of the absence of some foreground element from the

reference image. On the other hand, occlusion errors occur in a desired image when an interpolation error in

the reconstruction process introduces a false foreground element that covers background regions visible in

the actual scene. The choice of reconstruction methods plays a significant role in either amplifying or

reducing these errors.  However, a reduction in one class of artifact often causes an increase in the other.

Many exposures and occlusions are correct.  For instance, when a viewpoint moves toward a

foreground object the projection of the object will enlarge in the field-of-view such that it covers adjacent

background points. As the viewpoint moves even closer to the foreground object, more of the background is

occluded.

Exposure errors and occlusion errors take place either when the underlying assumptions of the

reconstruction method are violated, or when there is insufficient information in the image to properly

reconstruct the correct surface. These two error sources are closely related. The role of reconstruction

kernel is to interpolate the missing gaps between samples.  Often the information needed to correctly fill a

missing image region is unavailable from the reference image.

Exposure errors are the subtler visual artifact.  The region uncovered by a legitimate exposure

lends itself to interpretation as a shadow produced by a light source placed at the reference image’s center-

of-projection. This is particularly noticeable when the exposure occurs along object boundaries.  An

exposure error occurs when a ray in the desired image passes through this shadow region, allowing some

background element to be erroneously seen. Both exposure errors and actual exposures are illustrated

below.



Figure 17: Exposures at occluding boundaries

The actual scene points that are visible from the reference image are shown darkened.  The shaded region

indicates where an exposure occurs in the desired image.  The solid dividing line through the exposure

region indicates the boundary between an actual exposure to the right and an exposure error to the left.

However, without external information the difference between valid and invalid exposures cannot be

resolved.

Exposure errors are most likely to occur at object silhouettes. They occur on smooth surfaces as

well as along sharp depth discontinuities.  This situation is depicted in Figure 18.  Exposure errors occur

immediately adjacent to those image points whose ray lies in the observed object’s tangent plane.

Therefore, as an observer moves to see around an object boundary, she should generally expect to see more

of the object rather than any component of the background.
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Figure 18: Exposure error on a smooth surface boundary

Merely changing the basis function used in the reconstruction of the reference image can eliminate

exposure errors, but it introduces occlusion errors.  Consider the example shown in Figure 19 when a

polynomial basis, instead of the Gaussian cloud model, is used to approximate the underlying surface.

Figure 19: Occlusion errors introduced by polynomial reconstruction

The lighter shaded area indicates the extent of an occlusion error, whereas the darker shaded area represents

an actual occlusion.  The surface seen along the occlusion error corresponds to an extension of the

foreground object’s tangent plane.  This surface will always enclose the actual surface.  However, it is

unlikely that any part of this extension will actually represent a point in the environment.  The occlusion
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error will usually hide valid exposures.  Furthermore, since occlusion errors are not adjacent to an actual

occlusion, they appear more unnatural than exposure errors.

The continuity of the polynomial interpolation basis causes an excessive estimation of the number

of points in the scene.  The polynomial interpolation model reconstructs images that are indistinguishable

from a model that assumes that all of the points beyond each ray’s observed point are occupied.  Such a

model will not miss any actual scene points, but it will erroneously include scene points that do not exist.

The polynomial reconstruction method will, therefore, introduce a disproportionate number of occlusion

errors. This can greatly hinder the usefulness of such a model.

In contrast, the Gaussian reconstruction method represents a vacuous estimate of a scene’s

contents.  It assumes that the visible image point is the only scene point located along the ray’s extent.

Therefore, a Gaussian reconstruction basis will correctly represent all empty regions of an environment,

while missing all scene points that are not visible in the reference image.  It is, therefore, conservative in its

estimate of the occupied volume of space, whereas the polynomial reconstruction makes a conservative

estimate of the space’s emptiness.  Exposure errors should be expected when the Gaussian reconstruction

model is used.

The visibility algorithm generally handles valid occlusions.  One exception is the case when a

scene point from outside the viewing frustum comes into view as a result of the change in the center-of-

projection.  This situation results in an invisible occluder error.  A simple example of this case is shown in

Figure 20.  This problem is a direct result of the limited field-of-view available to a planar-pinhole camera.

The use of panoramic pinhole-camera models can remedy this problem.

Figure 20:  An external exposure error

The two reconstruction methods discussed previously represent two extreme assumptions

concerning the structure of space.  The use of either of these extreme positions introduces artifacts in the
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final rendering.  A more accurate reconstruction should combine elements of both methods.  However, this

might require additional information beyond that which is deducible from the reference image alone.  This

is an interesting area for future research.

7. Summary

This report has presented a complete example of an image-based method for synthesizing

computer graphics.  Special mapping functions, called image warps, were derived that enabled arbitrary

views of a scene to be generated.  This underlying scene was represented by a reference image that was

augmented by a scalar value defined at each point, called generalized disparity.  An algorithm was also

presented to resolve the visibility of the mapped reference points at each coordinate in the desired image.

Two methods were presented for reconstructing continuous representations of the warped reference image

from these warped points.
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Two Schools of ThoughtTwo Schools of ThoughtTwo Schools of Thought
Images with structureImages with structure

Prerendering analysis
Small runtime footprint
Active image sensors
Backward compatible

Images without structureImages without structure
Can use raw images
Minimal analysis and 
assumptions
Large storage requirements
Incompatible/Radical

Consider images as a collection of rays,Consider images as a collection of rays,

… rather than a collection of pixels.… rather than a collection of pixels.

IBR PrinciplesIBR PrinciplesIBR Principles
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The Plenoptic FunctionThe Plenoptic FunctionThe Plenoptic Function
Given enough sample rays, can we Given enough sample rays, can we 
interpolate nearby ones?interpolate nearby ones?

IBR is a different approach toIBR is a different approach to
computer graphics.computer graphics.

Image-based rendering is aboutImageImage--based rendering is aboutbased rendering is about

… signal reconstruction rather than physical … signal reconstruction rather than physical 
simulation.simulation.

55--D for static scenes in generalD for static scenes in general
44--D in empty regions of static scenesD in empty regions of static scenes
66--D for dynamic scenesD for dynamic scenes
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Where to Begin?Where to Begin?Where to Begin?

Next Generation CamerasNext Generation Cameras
Known Internal calibration
Know where they are
Photometric
High-dynamic range

Image Courtesy of MIT City Scanning Project, 
Seth Teller, Satyan Coorg , JP Mellor, George Chou,

Doug De Couto, Neel Master, Barb Cutler,
Eric Amram, Mike Bosse, Matt Antone,

Stefano Totaro , and Manish Jethwa.

Warping Points with DepthWarping Points with DepthWarping Points with Depth
AdvantagesAdvantages

Simple warping transformation

Small footprint in memory
Occlusion compatible rendering order
Compatible with traditional graphics methods

DisadvantagesDisadvantages
View-independent shading
Reconstruction errors
Disocclusion
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Acquiring Depth ImagesAcquiring Depth ImagesAcquiring Depth Images
Economical laser scannersEconomical laser scanners

Images and video courtesy of the University of North Carolina at Chapel Hill,
“Office of the Future” Project, Wei-Chao Chen, Henry Fuchs, Lars Nyland,

Herman Towles and Greg Welch.

Warping ProspectsWarping ProspectsWarping Prospects

ModelingModeling
Active sensing
Passive sensing
Dynamic scenes

RenderingRendering
View-dependent shading
Disocclusion (LDIs, MCOPs)
Reconstruction

Hardware AccelerationHardware Acceleration
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Approximate GeometryApproximate GeometryApproximate Geometry
Many images with an approximate modelMany images with an approximate model

Façade
View-dependent texture mapping
Image-based visual hulls

Approx shape for interApprox shape for inter--object interactionsobject interactions
Occlusions
Walk-around

Textures for detailTextures for detail
View-dependent shading
Small geometric features

Visual HullsVisual HullsVisual Hulls
Intersection of all silhouette conesIntersection of all silhouette cones
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Why Use a Visual Hull?Why Use a Visual Hull?Why Use a Visual Hull?
Finding silhouettes is simple and robustFinding silhouettes is simple and robust

Blue-screen methods
Image differenceing

Contains actual objectContains actual object
Can seed more sophisticated methods

- =

background background 
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foregroundforeground

backgroundbackground foreground foreground 

AcquisitionAcquisitionAcquisition
Several cameras with overlapping viewsSeveral cameras with overlapping views

Geometric calibration
Photometric calibration
Synchronization



SIGGRAPH 2000 Course #35, Image-Based 
Modeling, Rendering, and Lighting

July 24, 2000

Leonard McMillan "Image-Based Rendering: 
With or Without Structure?" 8

Representing a Visual HullRepresenting a Visual HullRepresenting a Visual Hull

Geometric ModelGeometric Model
+Know how to render

Calculating intersections isn’t 
robust
High polygonal complexity

Volumetric ModelVolumetric Model
+Easy to compute

Expensive storage
Result seldom predicts inputs

Image-based Visual HullsImageImage--based Visual Hullsbased Visual Hulls
VolumeVolume--likelike
SelfSelf--consistentconsistent
DiscreteDiscrete--
discretediscrete--
continuouscontinuous
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Shading Visual HullsShading Visual HullsShading Visual Hulls
ViewView--dependent illuminationdependent illumination
VisibilityVisibility

ResultsResultsResults

A range of different virtual viewpoints of a visual hull computed from four 
cameras in real-time. Top images show depth maps and bottom images show 
shaded visual hulls. The background is a textured polygonal model.
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Visual Hull ProspectsVisual Hull ProspectsVisual Hull Prospects
CaptureCapture

Passive -
multiple synchronized calibrated cameras
Limited working volume
Approximate model (even in the limit)

RenderingRendering
Fast - can be computed at a constant cost/pixel
Limited view-dependent shading
Texture registration on approximate geometry 

AccelerationAcceleration
Scalable to a large number of cameras

Structured Light fieldsStructured Light fieldsStructured Light fields
Focal planes as approximate structureFocal planes as approximate structure
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Interpolating RaysInterpolating RaysInterpolating Rays
Less structure / More imagesLess structure / More images
Structure “onStructure “on--thethe--fly”fly” Dynamic 

Reparameterization

Light Field AcquisitionLight Field AcquisitionLight Field Acquisition
Motion PlatformsMotion Platforms

Precise positioning
Calibrated digital camera
Expensive (> $10K)
Very Slow (~20 mins)

Light field camerasLight field cameras
Less precise
Calibration per aperture
Inexpensive (~ $100)
Slow (> 3 mins)



SIGGRAPH 2000 Course #35, Image-Based 
Modeling, Rendering, and Lighting

July 24, 2000

Leonard McMillan "Image-Based Rendering: 
With or Without Structure?" 12

Focal Planes as StructureFocal Planes as StructureFocal Planes as Structure
Structure is discovered by user interaction Structure is discovered by user interaction 
rather than recovered by computer visionrather than recovered by computer vision
Intuitive “cameraIntuitive “camera--like” interfacelike” interface
Reconstruction (Interpolation) controlled Reconstruction (Interpolation) controlled 
by variable focus and variable apertureby variable focus and variable aperture

Focal Planes as UIFocal Planes as UIFocal Planes as UI

Apparent objectApparent object--centered navigationcentered navigation
Segmenting into layersSegmenting into layers

The apparent rotation in the scene above is about an axis through the pumpkin. 
However, the pumpkin’s position is unknown. The origin of the rotation in this 

case was determined by the placement of the focal plane.
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Prospects of DRLFProspects of DRLFProspects of DRLF
ModelingModeling

Many images/cameras (expensive setup)
Minimal assumptions about the scene
Compression = Structure?

RenderingRendering
Supports view-dependent shading
Very fast - large memory requirements
Less structure - more aliasing

Hardware AccelerationHardware Acceleration
Can use existing texture-mapping H/W

Unstructured Light FieldsUnstructured Light FieldsUnstructured Light Fields
Reference images along unconstrained Reference images along unconstrained 
camera pathscamera paths
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Acquiring Unstructured LFsAcquiring Unstructured Acquiring Unstructured LFsLFs

Can use a wide range of source imagesCan use a wide range of source images
Images from regular arrays or panoramas
Tracked or calibrated cameras
Hand-held camcorder

Position/Pose recoveryPosition/Pose recovery
Post-process source images by tracking features
Photometric equalization

Rendering Unstructured LFs Rendering UnstructuredRendering Unstructured LFs LFs 
ViewView--dependent parameterization via dependent parameterization via 
dynamic triangulationdynamic triangulation
H/W texture mapping H/W texture mapping 
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ResultsResultsResults
Static scenesStatic scenes

Dynamic scenesDynamic scenes

Unstructured LF ProspectsUnstructured LF ProspectsUnstructured LF Prospects
ModelingModeling

Wide range of source materials
Camera tracking is essential

RenderingRendering
Supports view-dependent shading
Very very fast - large memory requirements
Many artifacts to overcome (scattered data 
reconstruction)

Hardware AccelerationHardware Acceleration
Can use existing texture-mapping H/W
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Pure Light FieldsPure Light FieldsPure Light Fields
With enough images there is no need for focal With enough images there is no need for focal 
planes and variable apertures aside from special planes and variable apertures aside from special 
effectseffects

LF AcquisitionLF AcquisitionLF Acquisition
Needs 10000s or more images in a small regionNeeds 10000s or more images in a small region
Precision Motion platformsPrecision Motion platforms
Tightly packed camera arraysTightly packed camera arrays
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LF RenderingLF RenderingLF Rendering
AdvantagesAdvantages

Simple/Fast rendering algorithm
View-independent shading
High-quality reconstructions

DisadvantagesDisadvantages
Huge memory footprint
(compression)
Incompatible with traditional graphics

LF ProspectsLF ProspectsLF Prospects
ModelingModeling

Images only, no analysis
Capture devices
Dynamic scenes
Immersive scenes

RenderingRendering
Moving around occluders
Stitching together multiple light fields
Compression

Hardware AccelerationHardware Acceleration
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Open QuestionsOpen QuestionsOpen Questions

How much structure do we really need?How much structure do we really need?
How do we get it?How do we get it?
How about adaptive systems?How about adaptive systems?
Compression versus model extraction?Compression versus model extraction?
Structured versus unstructured capture?Structured versus unstructured capture?
Storage versus analysis?Storage versus analysis?
Generality versus effectiveness?Generality versus effectiveness?
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ABSTRACT
Image-based rendering is a powerful new approach for generating
real-time photorealistic computer graphics. It can provide convinc-
ing animations without an explicit geometric representation. We use
the “plenoptic function” of Adelson and Bergen to provide a concise
problem statement for image-based rendering paradigms, such as
morphing and view interpolation. The plenoptic function is a param-
eterized function for describing everything that is visible from a
given point in space. We present an image-based rendering system
based on sampling, reconstructing, and resampling the plenoptic
function. In addition, we introduce a novel visible surface algorithm
and a geometric invariant for cylindrical projections that is equiva-
lent to the epipolar constraint defined for planar projections.

CR Descriptors: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration– display algorithms, viewing algorithms; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism– hidden line/
surface removal; I.4.3 [Image Processing]: Enhancement–regis-
tration; I.4.7 [Image Processing]: Feature Measurement–
projections; I.4.8 [Image Processing]: Scene Analysis.

1. INTRODUCTION
In recent years there has been increased interest, within the computer
graphics community, in image-based rendering systems. These sys-
tems are fundamentally different from traditional geometry-based
rendering systems. In image-based systems the underlying data rep-
resentation (i.e model) is composed of a set of photometric
observations, whereas geometry-based systems use either mathe-
matical descriptions of the boundary regions separating scene
elements (B-rep) or discretely sampled space functions (volumetric).

The evolution of image-based rendering systems can be traced
through at least three different research fields. In photogrammetry the
initial problems of camera calibration, two-dimensional image reg-
istration, and photometrics have progressed toward the determina-
tion of three-dimensional models. Likewise, in computer vision,
problems such as robot navigation, image discrimination, and image
understanding have naturally led in the same direction. In computer
graphics, the progression toward image-based rendering systems

was initially motivated by the desire to increase the visual realism of
the approximate geometric descriptions by mapping images onto
their surface (texture mapping) [7], [12]. Next, images were used to
approximate global illumination effects (environment mapping) [5],
and, most recently, we have seen systems where the images them-
selves constitute the significant aspects of the scene’s description [8].

Another reason for considering image-based rendering systems
in computer graphics is that acquisition of realistic surface models is
a difficult problem. While geometry-based rendering technology has
made significant strides towards achieving photorealism, creating
accurate models is still nearly as difficult as it was ten years ago. Tech-
nological advances in three-dimensional scanning provide some
promise in model building. However, they also verify our worst sus-
picions— the geometry of the real-world is exceedingly complex.
Ironically, the primary subjective measure of image quality used by
proponents of geometric rendering systems is the degree with which
the resulting images are indistinguishable from photographs.

One liability of image-based rendering systems is the lack of a
consistent framework within which to judge the validity of the
results. Fundamentally, this arises from the absence of a clear prob-
lem definition. Geometry-based rendering, on the other hand, has a
solid foundation; it uses analytic and projective geometry to describe
the world’s shape and physics to describe the world’s surface prop-
erties and the light’s interaction with those surfaces.

This paper presents a consistent framework for the evaluation
of image-based rendering systems, and gives a concise problem def-
inition. We then evaluate previous image-based rendering methods
within this new framework. Finally, we present our own image-based
rendering methodology and results from our prototype implementa-
tion.

2. THE PLENOPTIC FUNCTION
Adelson and Bergen [1] assigned the nameplenoptic function (from
the latin rootplenus, meaning complete or full, andoptic pertaining
to vision) to the pencil of rays visible from any point in space, at any
time, and over any range of wavelengths. They used this function to
develop a taxonomy for evaluating models of low-level vision. The
plenoptic function describes all of the radiant energy that can be per-
ceived from the point of view of the observer rather than the point of
view of the source. They postulate

“ … all the basic visual measurements can be considered
to characterize local change along one or two dimensions
of a single function that describes the structure of the
information in the light impinging on an observer.”

Adelson and Bergen further formalized this functional description by
providing a parameter space over which the plenoptic function is
valid, as shown in Figure 1. Imagine an idealized eye which we are
free to place at any point in space(Vx, Vy, Vz). From there we can select
any of the viewable rays by choosing an azimuth and elevation angle
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(θ,φ) as well as a band of wavelengths,λ, which we wish to consider.

FIGURE 1. The plenoptic function describes all of the
image information visible from a particular viewing
position.

In the case of a dynamic scene, we can additionally choose the time,
t, at which we wish to evaluate the function. This results in the fol-
lowing form for the plenoptic function:

(1)

In computer graphics terminology, the plenoptic function
describes the set of all possible environment maps for a given scene.
For the purposes of visualization, one can consider the plenoptic
function as a scene representation. In order to generate a view from
a given point in a particular direction we would need to merely plug
in appropriate values for(Vx, Vy, Vz) and select from a range of (θ,φ)
for some constantt.

We define a complete sample of the plenoptic function as a full
spherical map for a given viewpoint and time value, and an incom-
plete sample as some solid angle subset of this spherical map.

Within this framework we can state the following problem def-
inition for image-based rendering.Given a set of discrete samples
(complete or incomplete) from the plenoptic function, the goal of
image-based rendering is to generate a continuous representation of
that function.This problem statement provides for many avenues of
exploration, such as how to optimally select sample points and how
to best reconstruct a continuous function from these samples.

3. PREVIOUS WORK

3.1 Movie-Maps
The Movie-Map system by Lippman [17] is one of the earliest
attempts at constructing an image-based rendering system. In Movie-
Maps, incomplete plenoptic samples are stored on interactive video
laser disks. They are accessed randomly, primarily by a change in
viewpoint; however, the system can also accommodate panning, tilt-
ing, or zooming about a fixed viewing position. We can characterize
Lippman’s plenoptic reconstruction technique as a nearest-neighbor
interpolation because, when given a set of input parameters(Vx, Vy,
Vz, θ, φ, t), the Movie-Map system can select the nearest partial sam-
ple. The Movie-Map form of image-based rendering can also be
interpreted as a table-based evaluation of the plenoptic function. This
interpretation reflects the database structure common to most image-
based systems.

3.2 Image Morphing
Image morphing is a very popular image-based rendering technique
[4], [28]. Generally, morphing is considered to occur between two
images. We can think of these images as endpoints along some path
through time and/or space. In this interpretation, morphing becomes
a method for reconstructing partial samples of the continuous ple-
noptic function along this path. In addition to photometric data,
morphing uses additional information describing the image flow
field. This information is usually hand crafted by an animator. At first

θ
φ

(Vx, Vy, Vz)

p P θ φ λ Vx Vy Vz t, , , , , ,( )=

glance, this type of augmentation might seem to place it outside of
the plenoptic function’s domain. However, several authors in the field
of computer vision have shown that this type of image flow infor-
mation is equivalent to changes in the local intensity due to
infinitesimal perturbations of the plenoptic function’s independent
variables [20], [13]. This local derivative behavior can be related to
the intensity gradient via applications of the chain rule. In fact, mor-
phing makes an even stronger assumption that the flow information
is constant along the entire path, thus amounting to a locally linear
approximation. Also, a blending function is often used to combine
both reference images after being partially flowed from their initial
configurations to a given point on the path. This blending function
is usually some linear combination of the two images based on what
percentage of the path’s length has been traversed. Thus, morphing
is a plenoptic reconstruction method which interpolates between
samples and uses local derivative information to construct approxi-
mations.

3.3 View Interpolation
Chen’s and Williams’ [8] view interpolation employs incomplete
plenoptic samples and image flow fields to reconstruct arbitrary
viewpoints with some constraints on gaze angle. The reconstruction
process uses information about the local neighborhood of a sample.
Chen and Williams point out and suggest a solution for one of the key
problems of image-based rendering— determining the visible sur-
faces. Chen and Williams chose to presort the quadtree compressed
flow-field in a back-to-front order according to its (geometric) z-
value. This approach works well when all of the partial sample
images share a common gaze direction, and the synthesized view-
points are restricted to stay within 90 degrees of this gaze angle.

An image flow field alone allows for many ambiguous visibility
solutions, unless we restrict ourselves to flow fields that do not fold,
such as rubber-sheet local spline warps or thin-plate global spline
warps. This problem must be considered in any general-purpose
image-based rendering system, and ideally, it should be done without
transporting the image into the geometric-rendering domain.

Establishing flow fields for a view interpolation system can also
be problematic. Chen and Williams used pre-rendered synthetic
images to determine flow fields from the z-values. In general, accu-
rate flow field information between two samples can only be estab-
lished for points that are mutually visible to both samples. This points
out a shortcoming in the use of partial samples, because reference
images seldom have a 100% overlap.

Like morphing, view interpolation uses photometric informa-
tion as well as local derivative information in its reconstruction pro-
cess. This locally linear approximation is nicely exploited to
approximate perspective depth effects, and Chen and Williams show
it to be correct for lateral motions relative to the gaze direction. View
interpolation, however, adds a nonlinearity by allowing the visibility
process to determine the blending function between reference frames
in a closest-take-all (a.k.a. winner-take-all) fashion.

3.4 Laveau and Faugeras
Laveau and Faugeras [15] have taken advantage of the fact that the
epipolar geometries between images restrict the image flow field in
such a way that it can be parameterized by a single disparity value
and a fundamental matrix which represents the epipolar relationship.
They also provide a two-dimensional raytracing-like solution to the
visibility problem which does not require an underlying geometric
description. Their method does, however, require establishing cor-
respondences for each image point along the ray’s path. The Laveau
and Faugeras system also uses partial plenoptic samples, and results
are shown only for overlapping regions between views.

Laveau and Faugeras also discuss the combination of informa-
tion from several views but primarily in terms of resolving visibility.
By relating the reference views and the desired views by the homog-
enous transformations between their projections, Laveau and
Faugeras can compute exact perspective depth solutions. The recon-
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struction process again takes advantage of both image data and local
derivative information to reconstruct the plenoptic function.

3.5 Regan and Pose
Regan and Pose [23] describe a hybrid system in which plenoptic
samples are generated on the fly by a geometry-based rendering sys-
tem at available rendering rates, while interactive rendering is
provided by the image-based subsystem. At any instant, a user inter-
acts with a single plenoptic sample. This allows the user to make
unconstrained changes in the gaze angle about the sample point.
Regan and Pose also discuss local reconstruction approximations due
to changes in the viewing position. These approximations amount to
treating the objects in the scene as being placed at infinity, resulting
in a loss of the kinetic depth effect. These partial updates can be com-
bined with the approximation values.

4. PLENOPTIC MODELING
We claim that all image-based rendering approaches can be cast

as attempts to reconstruct the plenoptic function from a sample set
of that function. We believe that there are significant insights to be
gleaned from this characterization. In this section, we propose our
prototype system in light of this plenoptic function framework.

We call our image-based rendering approach Plenoptic Model-
ing. Like other image-based rendering systems, the scene description
is given by a series of reference images. These reference images are
subsequently warped and combined to form representations of the
scene from arbitrary viewpoints. The warping function is defined by
image flow field information that can either be supplied as an input
or derived from the reference images.

Our discussion of the plenoptic modeling image-based render-
ing system is broken down into four sections. First, we discuss the
representation of the plenoptic samples. Next, we discuss their acqui-
sition. The third section covers the determination of image flow
fields, if required. And, finally, we describe how to reconstruct the
plenoptic function from these sample images.

4.1 Plenoptic Sample Representation
The most natural surface for projecting a complete plenoptic sample
is a unit sphere centered about the viewing position. One difficulty
of spherical projections, however, is the lack of a representation that
is suitable for storage on a computer. This is particularly difficult if
a uniform (i.e. equal area) discrete sampling is required. This diffi-
culty is reflected in the various distortions which arise in planar
projections of world maps in cartography. Those uniform mappings
which do exist are generally ill-suited for systematic access as a data
structure. Furthermore, those which do map to a plane with consistent
neighborhood relationships are generally quite distorted and, there-
fore, non-uniform.

A set of six planar projections in the form of a cube has been sug-
gested by Greene [10] as an efficient representation for environment
maps. While this representation can be easily stored and accessed by
a computer, it provides significant problems relating to acquisition,
alignment, and registration when used with real, non-computer-gen-
erated images. The orthogonal orientation of the cube faces requires
precise camera positioning. The wide, 90 degree field-of-view of
each face requires expensive lens systems to avoid optical distortion.
Also, the planar mapping does not represent a uniform sampling, but
instead, is considerably oversampled in the edges and corners. How-
ever, the greatest difficulty of a cube-oriented planar projection set
is describing the behavior of the image flow fields across the bound-
aries between faces and at corners. This is not an issue when the six
planar projections are used solely as an environment map, but it adds
a considerable overhead when it is used for image analysis.

We have chosen to use a cylindrical projection as the plenoptic
sample representation. One advantage of a cylinder is that it can be
easily unrolled into a simple planar map. The surface is without
boundaries in the azimuth direction, which simplifies correspon-
dence searches required to establish image flow fields. One short-

coming of a projection on a finite cylindrical surface is the boundary
conditions introduced at the top and bottom. We have chosen not to
employ end caps on our projections, which has the problem of lim-
iting the vertical field of view within the environment.

4.2 Acquiring Cylindrical Projections
A significant advantage of a cylindrical projection is the simplicity
of acquisition. The only acquisition equipment required is a video
camera and a tripod capable of continuous panning. Ideally, the cam-
era’s panning motion would be around the exact optical center of the
camera. In practice, in a scene where all objects are relatively far from
the tripod’s rotational center, a slight misalignment offset can be
tolerated.

Any two  planar perspective projections of a scene which share
a common viewpoint are related by a two-dimensional homogenous
transform:

(2)

wherex andy represent the pixel coordinates of an imageI, andx’
andy’ are their corresponding coordinates in a second imageI’. This
well known result has been reported by several authors [12], [28],
[22]. The images resulting from typical camera motions, such as pan,
tilt, roll, and zoom, can all be related in this fashion. When creating
a cylindrical projection, we will only need to consider panning cam-
era motions. For convenience we define the camera’s local
coordinate system such that the panning takes place entirely in thex-
z plane.

In order to reproject an individual image into a cylindrical pro-
jection, we must first determine a model for the camera’s projection
or, equivalently, the appropriate homogenous transforms. Many dif-
ferent techniques have been developed for inferring the homogenous
transformation between images sharing common centers of projec-
tion. The most common technique [12] involves establishing four
corresponding points across each image pair. The resulting trans-
forms provide a mapping of pixels from the planar projection of the
first image to the planar projection of the second. Several images
could be composited in this fashion by first determining the transform
which maps the Nth image to image N-1. These transforms can be
catenated to form a mapping of each image to the plane of the first.
This approach, in effect, avoids direct determination of an entire cam-
era model by performing all mappings between different instances of
the same camera. Other techniques for deriving these homogeneous
transformations without specific point correspondences have also
been described [22], [25].

The set of homogenous transforms,H i, can be decomposed into
two parts which will allow for arbitrary reprojections in a manner
similar to [11]. These two parts include an intrinsic transform,S,
which is determined entirely by camera properties, and an extrinsic
transform,Ri, which is determined by the rotation around the cam-
era’s center of projection:

(3)

This decomposition decouples the projection and rotational compo-
nents of the homogeneous transform. By an appropriate choice of
coordinate systems and by limiting the camera’s motion to panning,
the extrinsic transform component is constrained to a function of a
single parameter rotation matrix describing the pan.

(4)
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Since the intrinsic component’s properties are invariant over all of the
images, the decomposition problem can be broken into two parts: the
determination of the extrinsic rotation component,Ri, followed by
the determination of an intrinsic projection component,S. The first
step in our method determines estimates for the extrinsic panning
angle between each image pair of the panning sequence. This is
accomplished by using a linear approximation to an infinitesimal
rotation by the angle . This linear approximation results from sub-
stituting  for the cosine terms and  for the sine
terms of the rotation matrix. This infinitesimal perturbation has been
shown by [14] to reduce to the following approximate equations:

(5)

wheref is the apparent focal length of the camera measured in pixels,
and(Cx, Cy) is the pixel coordinate of the intersection of the optical
axis with the image plane.(Cx, Cy) is initially estimated to be at the
center pixel of the image plane. A better estimate for(Cx, Cy) is found
during the intrinsic matrix solution.

These equations show that small panning rotations can be
approximated by translations for pixels near the image’s center. We
require that some part of each image in the sequence must be visible
in the successive image, and that some part of the final image must
be visible in the first image of the sequence. The first stage of the
cylindrical registration process attempts to register the image set by
computing the optimal translation in x which maximizes the normal-
ized correlation within a region about the center third of the screen.
This is first computed at a pixel resolution, then refined on a 0.1 sub-
pixel grid, using a Catmull-Rom interpolation spline to compute sub-
pixel intensities. Once these translations,ti, are computed, Newton’s
method is used to convert them to estimates of rotation angles and the
focal length, using the following equation:

(6)

whereN is the number of images comprising the sequence. This usu-
ally converges in as few as five iterations, depending on the original
estimate forf. This first phase determines an estimate for the relative
rotational angles between each of the images (our extrinsic param-
eters) and the initial focal length estimate measured in pixels (one of
the intrinsic parameters).

The second stage of the registration process determines theS,
or structural matrix, which describes various camera properties such
as the tilt and roll angles which are assumed to remain constant over
the group of images. The following model is used:

(7)

whereP is the projection matrix:

(8)

and(Cx, Cy) is the estimated center of the viewplane as described pre-
viously, σ is a skew parameter representing the deviation of the
sampling grid from a rectilinear grid,ρ determines the sampling
grid’s aspect ratio, andf is the focal length in pixels as determined
from the first alignment stage.

The remaining terms,Ωx andΩz, describe the combined effects
of camera orientation and deviations of the viewplane’s orientation
from perpendicular to the optical axis. Ideally, the viewplane would
be normal to the optical axis, but manufacturing tolerances allow
these numbers to vary slightly [27].
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(9)

(10)

In addition, theωz term is indistinguishable from the camera’s roll
angle and, thus, represents both the image sensor’s and the camera’s
rotation. Likewise,ωx, is combined with an implicit parameter,φ, that
represents the relative tilt of the camera’s optical axis out of the pan-
ning plane. Ifφ is zero, the images are all tangent to a cylinder and
for a nonzeroφ the projections are tangent to a cone.

This gives six unknown parameters,(Cx, Cy, σ, ρ, ωx, ωz), to be
determined in the second stage of the registration process. Notice
that, when combined with theθi andf parameters determined in the
first stage, we have a total of eight parameters for each image, which
is consistent with the number of free parameters in a general homo-
geneous matrix.

The structural matrix,S, is determined by minimizing the fol-
lowing error function:

(11)

whereIi-1 andIi represent the center third of the pixels from images
i-1 and i respectively. Using Powell’s multivariable minimization
method [23] with the following initial values for our six parameters,

(12)

the solution typically converges in about six iterations. At this point
we will have a new estimate for (Cx, Cy) which can be fed back into
stage one, and the entire process can be repeated.

The registration process results in a single camera model,S(Cx,
Cy, σ, ρ, ωx, ωz, f), and a set of the relative rotations,θi, between each
of the sampled images. Using these parameters, we can compose
mapping functions from any image in the sequence to any other
image as follows:

(13)

We can also reproject images onto arbitrary surfaces by modifying
S. Since each image pixel determines the equation of a ray from the
center-of-projection, the reprojection process merely involves inter-
secting these rays with the projection manifold.

4.3 Determining Image Flow Fields
Given two or more cylindrical projections from different positions
within a static scene, we can determine the relative positions of cen-
ters-of-projection and establish geometric constraints across all
potential reprojections. These positions can only be computed to a
scale factor. An intuitive argument for this is that from a set of images
alone, one cannot determine if the observer is looking at a model or
a full-sized scene. This implies that at least one measurement is
required to establish a scale factor. The measurement may be taken
either between features that are mutually visible within images, or the
distance between the acquired image’s camera positions can be used.
Both techniques have been used with little difference in results.

To establish the relative relationships between any pair of cylin-
drical projections, the user specifies a set of corresponding points that
are visible from both views. These points can be treated as rays in
space with the following form:

Ωx

1 0 0

0 ωxcos ωxsin–

0 ωxsin ωxcos

=

Ωz

ωzcos ωzsin– 0

ωzsin ωzcos 0

0 0 1

=

error Cx Cy σ ρ ωx ωz, , , , ,( ) 1 CorrelationIi 1– S 1– Ryi
SIi,( )–

i 1=

n

∑=

Cx
image width

2
-----------------------------= Cy

image height
2

-------------------------------=

σ 0= ρ 1= ωx 0= ωz 0=

I'i S 1– Ryi 1+
Ryi 2+

Ryi 3+
…Ryj

SIj=



Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

5

(14)

where is the unknown position of the cylinder’s
center of projection,φa is the rotational offset which aligns the angu-
lar orientation of the cylinders to a common frame,ka is a scale factor
which determines the vertical field-of-view, and  is the scanline
where the center of projection would project onto the scene (i.e. the
line of zero elevation, like the equator of a spherical map).

A pair of tiepoints, one from each image, establishes a pair of
rays which ideally intersect at the point in space identified by the tie-
point. In general, however, these rays are skewed. Therefore, we use
the point that is simultaneously closest to both rays as an estimate of
the point’s position, , as determined by the following derivation.

(15)

where  and  are the tiepoint coordinates on cylin-
ders A and B respectively. The two points,  and , are given by

(16)

where

(17)

This allows us to pose the problem of finding a cylinder’s position
as a minimization problem. For each pair of cylinders we have two
sets of six unknowns, [(Ax,Ay,Az,φa,ka,Cva), (Bx,By,Bz,φb,kb,Cvb)]. In
general, we have good estimates for thek andCv terms, since these
values are found by the registration phase. The position of the cyl-
inders is determined by minimizing the distance between these
skewed rays. We also choose to assign a penalty for shrinking the ver-
tical height of the cylinder in order to bring points closer together.
This penalty could be eliminated by accepting either thek or Cv val-
ues given by the registration.

We have tested this approach using from 12 to 500 tiepoints, and
have found that it converges to a solution in as few as ten iterations
of Powell’s method. Since no correlation step is required, this process
is considerably faster than the minimization step required to deter-
mine the structural matrix,S.

The use of a cylindrical projection introduces significant geo-
metric constraints on where a point viewed in one projection might
appear in a second. We can capitalize on these restrictions when we
wish to automatically identify corresponding points across cylinders.
While an initial set of 100 to 500 tiepoints might be established by
hand, this process is far too tedious to establish a mapping for the
entire cylinder. Next, we present a geometric constraint for cylindri-
cal projections that determines the possible positions of a point given
its position in some other cylinder. This constraint plays the same role
that the epipolar geometries [18], [9], used in the computer vision
community for depth-from-stereo computations, play for planar pro-
jections.

First, we will present an intuitive argument for the existence of
such an invariant. Consider yourself at the center of a cylindrical pro-
jection. Every point on the cylinder around you corresponds to a ray
in space as given by the cylindrical epipolar geometry equation.
When one of the rays is observed from a second cylinder, its path
projects to a curve which appears to begin at the point corresponding
to the origin of the first cylinder, and it is constrained to pass through
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the point’s image on the second cylinder.
This same argument could obviously have been made for a pla-

nar projection. And, since two points are identified (the virtual image
of the camera in the second projection along with the corresponding
point) and, because a planar projection preserve lines, a unique, so
called epipolar line is defined. This is the basis for an epipolar geom-
etry, which identifies pairs of lines in two planar projections such that
if a point falls upon one line in the first image, it is constrained to fall
on the corresponding line in the second image. The existence of this
invariant reduces the search for corresponding points from anO(N2)
problem toO(N).

Cylindrical projections, however, do not preserve lines. In gen-
eral, lines map to quadratic parametric curves on the surface of a cyl-
inder. Surprisingly, we can completely specify the form of the curve
with no more information than was needed in the planar case.

The paths of these curves are uniquely determined sinusoids.
This cylindrical epipolar geometry is established by the following
equation.

(18)

where

(19)

This formula gives a concise expression for the curve formed by
the projection of a ray across the surface of a cylinder, where the ray
is specified by its position on some other cylinder.

This cylindrical epipolar relationship can be used to establish
image flow fields using standard computer vision methods. We have
used correlation methods [9], a simulated annealing-like relaxation
method [3], and the method of differences [20] to compute stereo dis-
parities between cylinder pairs. Each method has its strengths and
weaknesses. We refer the reader to the references for further details.

4.4 Plenoptic Function Reconstruction
Our image-based rendering system takes as input cylindrically pro-
jected panoramic reference images along with scalar disparity
images relating each cylinder pair. This information is used to auto-
matically generate image warps that map reference images to
arbitrary cylindrical or planar views that are capable of describing
both occlusion and perspective effects.

FIGURE 2. Diagram showing the transfer of the known
disparity values between cylinders A and B to a new
viewing position V.

We begin with a description of cylindrical-to-cylindrical map-
pings. Each angular disparity value, α, of the disparity images, can
be readily converted into an image flow vector field,

 using the epipolar relation given by Equation 18
for each position on the cylinder, (θ, v). We can transfer disparity val-
ues from the known cylindrical pair to a new cylindrical projection
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in an arbitrary position, as in Figure 2, using the following equations.

(20)

By precomputing  for each column of
the cylindrical reference image and storing  in place of the
disparity image, this transfer operation can be computed at interac-
tive speeds.

Typically, once the disparity images have been transferred to
their target, the cylindrical projection would be reprojected as a pla-
nar image for viewing. This reprojection can be combined with the
disparity transfer to give a single image warp that performs both oper-
ations. To accomplish this, a new intermediate quantity,δ, called the
generalized angular disparity is defined as follows:

(21)

This scalar function is the cylindrical equivalent to the classical ste-
reo disparity. Finally, a composite image warp from a given reference
image to any arbitrary planar projection can be defined as

(22)

where

(23)

and the vectors  and  are defined by the desired view as shown
in Figure 3.

FIGURE 3. The center-of-projection, , a vector to the
origin, , and two spanning vectors (  and ) uniquely
determine the planar projection.

In the case where , the image warp defined by
Equation 22, reduces to a simple reprojection of the cylindrical image
to a desired planar view. The perturbation introduced by allowing

 to vary over the image allows arbitrary shape and occlusions
to be represented.

Potentially, both the cylinder transfer and image warping
approaches are many-to-one mappings. For this reason we must con-
sider visibility. The following simple algorithm can be used to deter-
mine an enumeration of the cylindrical mesh which guarantees a
proper back-to-front ordering, (See Appendix). We project the
desired viewing position onto the reference cylinder being warped
and partition the cylinder into four toroidal sheets. The sheet bound-
aries are defined by theθ andv coordinates of two points, as shown
in Figure 4. One point is defined by the intersection of the cylinder
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with the vector from the origin through the eye’s position. The other
is the intersection with the vector from the eye through the origin.

FIGURE 4. A back-to-front ordering of the image flow field
can be established by projecting the eye’s position onto the
cylinder’s surface and dividing it into four toroidal sheets.

Next, we enumerate each sheet such that the projected image of
the desired viewpoint is the last point drawn. This simple partitioning
and enumeration provides a back-to-front ordering for use by a paint-
er’s style rendering algorithm. This hidden-surface algorithm is a
generalization of Anderson’s [2] visible line algorithm to arbitrary
projected grid surfaces. Additional details can be found in [21].

At this point, the plenoptic samples can be warped to their new
position according to the image flow field. In general, these new pixel
positions lie on an irregular grid, thus requiring some sort of recon-
struction and resampling. We use a forward-mapping [28] recon-
struction approach in the spirit of [27] in our prototype. This involves
computing the projected kernel’s size based on the current disparity
value and the derivatives along the epipolar curves.

While the visibility method properly handles mesh folds, we
still must consider the tears (or excessive stretching) produced by the
exposure of previously occluded image regions. In view interpola-
tion [8] a simple “distinguished color” heuristic is used based on the
screen space projection of the neighboring pixel on the same scan-
line. This approach approximates stretching for small regions of
occlusion, where the occluder still abuts the occluded region. And,
for large exposed occluded regions, it tends to interpolate between
the boundaries of the occluded region. These exposure events can be
handled more robustly by combining, on a pixel-by-pixel basis, the
results of multiple image warps according to the smallest-sized
reconstruction kernel.

5. RESULTS
We collected a series of images using a video camcorder on a leveled
tripod in the front yard of one of the author’s home. Accurate leveling
is not strictly necessary for the method to work. When the data were
collected, no attempt was made to pan the camera at a uniform angu-
lar velocity. The autofocus and autoiris features of the camera were
disabled, in order to maintain a constant focal length during the col-
lection process. The frames were then digitized at a rate of
approximately 5 frames per second to a resolution of 320 by 240 pix-
els. An example of three sequential frames are shown below.

Immediately after the collection of the first data set, the process
was repeated at a second point approximately 60 inches from the first.
The two image sequences were then separately registered using the
methods described in Section 4.2. The images were reprojected onto
the surface of a cylinder with a resolution of 3600 by 300 pixels. The
results are shown in Figures 5a and 5b. The operating room scene,
in Figure 5c, was also constructed using these same methods.

Next, the epipolar geometry was computed by specifying 12 tie-
points on the front of the house. Additional tiepoints were gradually
added to establish an initial disparity image for use by the simulated

Sheet 1 Sheet 2

Sheet 3Sheet 4

Projection of
Eye Position

33

3

4

2



Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

7

annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very slight. In Figure 5d, we show a cylin-
drical image with several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtual image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS
The plenoptic function provides a consistent framework for image-
based rendering systems. The various image-based methods, such as
morphing and view interpolation, are characterized by the different
ways they implement the three key steps of sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that is commonly available, and it results in cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camera through a full circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is translated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it is greatly
simplified when the samples are relatively close together. This is
because there is little change in the image between samples (which
makes the estimation easier), and because the viewer is never far from

a sample (which makes accurate estimation less important).
Resampling the plenoptic function and reconstructing a planar

projection are the key steps for display of images from arbitrary view-
points. Our methods allow efficient determination of visibility and
real-time display of visually rich environments on conventional
workstations without special purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. The degree of realism will be determined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finally, the difficulty of pro-
ducing realistic models of real environments will be greatly reduced
by replacing geometry with images.
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APPENDIX
We will show how occlusion compatible mappings can be deter-
mined on local spherical frames embedded within a global cartesian
frame,W. The projected visibility algorithm for cylindrical surfaces
given in the paper can be derived by reducing it to this spherical case.

First, consider an isolated topological multiplicity on the pro-
jective mapping fromSi to Sj, as shown below

Theorem 1: In the generic case, the points of a topological multi-
plicity induced by a mapping fromSi toSj, and the two frame origins
are coplanar.

Proof: The points of the topological multiplicity are colinear
with the origin ofSj since they share angular coordinates. A second
line segment connects the local frame origins,Si andSj. In general,
these two lines are distinct and thus they define a plane in three space.

Thus, a single affine transformation,A, ofWcan accomplish the
following results.

• TranslateSi to the origin
• RotateSj to lie on the x-axis
• Rotate the line along the multiplicity into the xy-plane
• Scale the system so thatSj has the coordinate (1,0,0).

With this transformation we can consider the multiplicity entirely
within the xy-plane, as shown in the following figure.

Theorem 2: If  and  then a < b.
Proof: The length of sidesa andb can be computed in terms of

the angles  and  using the law of sines as follows.

Thus, an occlusion compatible mapping, can be determined by
enumerating the topological mesh defined on  in an order of
increasing , while allowing later mesh facets to overwrite pre-
vious ones. This mapping is occlusion compatible since, by Theorem
2, greater range values will always proceed lesser values at all mul-
tiplicities. Notice, that this mapping procedure only considers the
changes in the local frame’s world coordinates, and makes no use of
the range information itself.
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View Morphing
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ABSTRACT

Image morphing techniques can generate compelling 2D transitions
between images. However, differences in object pose or viewpoint
often cause unnatural distortions in image morphs that are difficult
to correct manually. Using basic principles of projective geometry,
this paper introduces a simple extension to image morphing that cor-
rectly handles 3D projective camera and scene transformations. The
technique, called view morphing, works by prewarping two images
prior to computing a morph and then postwarping the interpolated
images. Because no knowledge of 3D shape is required, the tech-
nique may be applied to photographs and drawings, as well as ren-
dered scenes. The ability to synthesize changes both in viewpoint
and image structure affords a wide variety of interesting 3D effects
via simple image transformations.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation– viewing algorithms; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism– ani-
mation; I.4.3 [Image Processing]: Enhancement– geometric correc-
tion, registration.

Additional Keywords: Morphing, image metamorphosis, view in-
terpolation, view synthesis, image warping.

1 INTRODUCTION

Recently there has been a great deal of interest in morphing tech-
niques for producing smooth transitions between images. These
techniques combine 2D interpolations of shape and color to create
dramatic special effects. Part of the appeal of morphing is that the
images produced can appear strikingly lifelike and visually convinc-
ing. Despite being computed by 2D image transformations, effec-
tive morphs can suggest a natural transformation between objects
in the 3D world. The fact that realistic 3D shape transformations
can arise from 2D image morphs is rather surprising, but extremely
useful, in that 3D shape modeling can be avoided.

Although current techniques enable the creation of effective im-
age transitions, they do not ensure that the resulting transitions ap-
pear natural. It is entirely up to the user to evaluate a morph transi-
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Virtual Cameras

Morphed View

Figure 1: View morphing between two images of an object taken
from two different viewpoints produces the illusion of physically
moving a virtual camera.

tion and to design the interpolation to achieve the best results. Part
of the problem is that existing image morphing methods do not ac-
count for changes in viewpoint or object pose. As a result, sim-
ple 3D transformations (e.g., translations, rotations) become sur-
prisingly difficult to convey convincingly using existing methods.

In this paper, we describe a simple extension called view morph-
ing that allows current image morphing methods to easily synthe-
size changes in viewpoint and other 3D effects. When morphing be-
tween different views of an object or scene, the technique produces
new views of the same scene, ensuring a realistic image transition.
The effect can be described by what you would see if you physically
moved the object (or the camera) between its configurations in the
two images and filmed the transition, as shown in Fig. 1. More gen-
erally, the approach can synthesize 3D projective transformations of
objects, a class including 3D rotations, translations, shears, and ta-
pering deformations, by operating entirely on images (no 3D shape
information is required). Because view morphing employs existing
image morphing techniques as an intermediate step, it may also be
used to interpolate between different views of different 3D objects,
combining image morphing’s capacity for dramatic shape transfor-
mations with view morphing’s ability to achieve changes in view-
point. The result is a simultaneous interpolation of shape, color, and
pose, giving rise to image transitions that appear strikingly 3D.

View morphing works by prewarping two images, computing a
morph (image warp and cross-dissolve) between the prewarped im-
ages, and then postwarping each in-between image produced by the
morph. The prewarping step is performed automatically, while the
postwarping procedure may be interactively controlled by means of
a small number of user-specified control points. Any of several im-
age morphing techniques, for instance [15, 1, 8], may be used to
compute the intermediate image interpolation. View morphing does
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Figure 2: A Shape-Distorting Morph. Linearly interpolating two perspective views of a clock (far left and far right) causes a geometric bending
effect in the in-between images. The dashed line shows the linear path of one feature during the course of the transformation. This example
is indicative of the types of distortions that can arise with image morphing techniques.
not require knowledge of 3D shape, thereby allowing virtual ma-
nipulations of unknown objects or scenes given only as drawings or
photographs.

In terms of its ability to achieve changes in viewpoint, view mor-
phing is related to previous view-based techniques such as view syn-
thesis [3, 7, 11, 12] and mosaics [10, 2, 14, 6]. However, this paper
focuses on creating natural transitions between images rather than
on synthesizing arbitrary views of an object or scene. This distinc-
tion has a number of important consequences. First, in computing
the transition between two perspective views, we are free to choose
a natural camera path. By choosing this path along the line con-
necting the two optical centers, we show that the formulation and
implementation is greatly simplified. Second, our approach is gen-
eral in that it can be used to compute transitions between any two
images, thereby encompassing both rigid and nonrigid transforma-
tions. In contrast, previous view-based techniques have focused on
rigid scenes. Finally, view morphing takes advantage of existing
image morphing techniques, already in widespread use, for part of
the computation. Existing image morphing tools may be easily ex-
tended to produce view morphs by adding the image prewarping and
postwarping steps described in this paper.

The remainder of this paper is structured as follows: In Section 2
we review image morphing and argue that existing techniques may
produce unnatural results when morphing between images of the
same or similar shapes. Section 3 describes how to convert image
morphing techniques into view morphing techniques by adding pre-
warping and postwarping steps. Section 4 extends the method to en-
able interpolations between views of arbitrary projective transfor-
mations of the same 3D object. In addition, interactive techniques
for controlling the image transformations are introduced. We con-
clude with some examples in Section 5.

2 IMAGE MORPHING

Image morphing, or metamorphosis, is a popular class of techniques
for producing transitions between images. There are a variety of
morphing methods in the literature, all based on interpolating the po-
sitions and colors of pixels in two images. At present, there appears
to be no universal criterion for evaluating the quality or realism of a
morph, let alone of a morphing method. A natural question to ask,
however, is does the method preserve 3D shape. That is, does a
morph between two different views of an object produce new views
of the same object? Our investigation indicates that unless special
care is taken, morphing between images of similar 3D shapes of-
ten results in shapes that are mathematically quite different, leading
to surprisingly complex and unnatural image transitions. These ob-
servations motivate view morphing, introduced in the next section,
which preserves 3D shape under interpolation.
We write vectors and matrices in bold face and scalars in roman.
Scene and image quantities are written in capitals and lowercase re-
spectively. When possible, we also write corresponding image and
scene quantities using the same letter. Images, I, and 3D shapes or
scenes, S , are expressed as point sets. For example, an image point
(x; y) = p 2 I is the projection of a scene point (X;Y; Z) = P 2

S .
A morph is determined from two images I0 and I1 and maps

C0 : I0 ) I1 and C1 : I1 ) I0 specifying a complete correspon-
dence between points in the two images. Two maps are required be-
cause the correspondence may not be one-to-one. In practice, C0

and C1 are partially specified by having the user provide a sparse
set of matching features or regions in the two images. The remain-
ing correspondences are determined automatically by interpolation
[15, 1, 8]. A warp function for each image is computed from the
correspondence maps, usually based on linear interpolation:

W0(p0; s) = (1� s)p0 + sC0(p0) (1)

W1(p1; s) = (1� s)C1(p1) + sp1 (2)

W0 and W1 give the displacement of each point p0 2 I0 and
p1 2 I1 as a function of s 2 [0; 1]. The in-between images Is
are computed by warping the two original images and averaging the
pixel colors of the warped images. Existing morphing methods vary
principally in how the correspondence maps are computed. In ad-
dition, some techniques allow finer control over interpolation rates
and methods. For instance, Beier et al. [1] suggested two different
methods of interpolating line features, using linear interpolation of
endpoints, per Eqs. (1) and (2), or of position and angle. In this pa-
per, the term image morphing refers specifically to methods that use
linear interpolation to compute feature positions in in-between im-
ages, including [15, 1, 8].

To illustrate the potentially severe 3D distortions incurred by im-
age morphing, it is useful to consider interpolating between two dif-
ferent views of a planar shape. Any two such images are related by
a 2D projective mapping of the form:

H(x; y) = (
ax+ by + c

gx+ hy + i
;
dx+ ey + f

gx+ hy + i
)

Projective mappings are not preserved under 2D linear interpola-
tion since the sum of two such expressions is in general a ratio of
quadratics and therefore not a projective mapping. Consequently,
morphing is a shape-distorting transformation, as in-between im-
ages may not correspond to new views of the same shape. A partic-
ularly disturbing effect of image morphing is its tendency to bend
straight lines, yielding quite unintuitive image transitions. Fig. 2
shows a Dali-esque morph between two views of a clock in which
it appears to bend in half and then straighten out again during the



course of the transition. The in-between shapes were computed by
linearly interpolating points in the two views that correspond to the
same point on the clock.

3 VIEW MORPHING

In the previous section we argued that unless special care is taken,
image interpolations do not convey 3D rigid shape transformations.
We say that an image transformation is shape-preserving if from two
images of a particular object, it produces a new image representing a
view of the same object. In this section we describe an interpolation-
based image morphing procedure that is shape-preserving. Morphs
generated by this technique create the illusion that the object moves
rigidly (rotating and translating in 3D) between its positions in the
two images.

Computing the morph requires the following: (1) two images
I0 and I1, representing views of the same 3D object or scene, (2)
their respective projection matrices �0 and �1, and (3) a corre-
spondence between pixels in the two images. Note that no a pri-
ori knowledge of 3D shape information is needed. The requirement
that projection matrices be known differentiates this technique from
previous morphing methods. However, there exist a variety of tech-
niques for obtaining the projection matrices from the images them-
selves and knowledge of either the internal camera parameters or the
3D positions of a small number of image points. For an overview
of both types of techniques, consult [4]. In Section 4 we introduce
a variant that does not require knowledge of the projection matrices
and also allows interpolations between views of different 3D objects
or scenes.

The pixel correspondences are derived by a combination of user-
interaction and automatic interpolation provided by existing mor-
phing techniques. When the correspondence is correct, the meth-
ods described in this section guarantee shape-preserving morphs.
In practice, we have found that an approximate correspondence is
often sufficient to produce transitions that are visually convincing.
Major errors in correspondence may result in visible artifacts such
as “ghosting” and shape distortions. Some examples of these ef-
fects are shown in Section 5. Other errors may occur as a result of
changes in visibility. In order to completely infer the appearance of
a surface from a new viewpoint, that surface must be visible in both
I0 and I1. Changes in visibility may result in folds or holes, as dis-
cussed in Section 3.4.

Following convention, we represent image and scene quanti-
ties using homogeneous coordinates: a scene point with Euclidean
coordinates (X;Y; Z) is expressed by the column vector P =

[X Y Z 1]T and a Euclidean image point (x; y) by p = [x y 1]T .
We reserve the notation P and p for points expressed in Euclidean
coordinates, i.e., whose last coordinate is 1. Scalar multiples of
these points will be written with a tilde, as ~P and ~p. A camera is
represented by a 3� 4 homogeneous projection matrix of the form
� = [H j �HC]. The vector C gives the Euclidean position of
the camera’s optical center and the 3� 3 matrixH specifies the po-
sition and orientation of its image plane with respect to the world
coordinate system. The perspective projection equation is

~p = �P (3)

The term view will henceforth refer to the tuple hI;�i comprised
of an image and its associated projection matrix.

3.1 Parallel Views

We begin by considering situations in which linear interpolation of
images is shape-preserving. Suppose we take a photograph I0 of
an object, move the object in a direction parallel to the image plane
of the camera, zoom out, and take a second picture I1, as shown
P
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Figure 3: Morphing Parallel Views. Linear interpolation of cor-
responding pixels in parallel views with image planes I0 and I1

creates image I0:5, representing another parallel view of the same
scene.

in Fig. 3. Alternatively, we could produce the same two images by
moving the camera instead of the object. Chen and Williams [3] pre-
viously considered this special case, arguing that linear image in-
terpolation should produce new perspective views when the camera
moves parallel to the image plane. Indeed, suppose that the camera
is moved from the world origin to position (CX ; CY ; 0) and the fo-
cal length changes from f0 to f1. We write the respective projection
matrices,�0 and �1, as:

�0 =

"
f0 0 0 0
0 f0 0 0
0 0 1 0

#

�1 =

"
f1 0 0 �f1CX

0 f1 0 �f1CY

0 0 1 0

#

We refer to cameras or views with projection matrices in this form as
parallel cameras or parallel views, respectively. Let p0 2 I0 and
p1 2 I1 be projections of a scene point P = [X Y Z 1]T . Linear
interpolation of p0 and p1 yields

(1� s)p0 + sp1 = (1� s)
1

Z
�0P+ s

1

Z
�1P

=
1

Z
�sP (4)

where

�s = (1� s)�0 + s�1 (5)

Image interpolation therefore produces a new view whose projec-
tion matrix,�s, is a linear interpolation of�0 and�1, representing
a camera with center Cs and focal length fs given by:

Cs = (sCX ; sCY ; 0) (6)

fs = (1� s)f0 + sf1 (7)

Consequently, interpolating images produced from parallel cameras
produces the illusion of simultaneously moving the camera on the



line C0C1 between the two optical centers and zooming continu-
ously. Because the image interpolation produces new views of the
same object, it is shape-preserving.

In fact, the above derivation relies only on the equality of the
third rows of �0 and �1. Views satisfying this more general cri-
terion represent a broader class of parallel views for which linear
image interpolation is shape preserving. An interesting special case
is the class of orthographic projections, i.e., projections�0 and�1

whose last row is [0 0 0 1]. Linear interpolation of any two or-
thographic views of a scene therefore produces a new orthographic
view of the same scene.

3.2 Non-Parallel Views

In this section we describe how to generate a sequence of in-between
views from two non-parallel perspective images of the same 3D ob-
ject or scene. For convenience, we choose to model the transforma-
tion as a change in viewpoint, as opposed to a rotation and transla-
tion of the object or scene. The only tools used are image reprojec-
tion and linear interpolation, both of which may be performed using
efficient scanline methods.

3.2.1 Image Reprojection

Any two views that share the same optical center are related by a
planar projective transformation. Let I and Î be two images with
projection matrices� = [H j �HC] and �̂ = [Ĥ j � ĤC].
The projections ~p 2 I and ~̂p 2 Î of any scene point P are related
by the following transformation:

ĤH
�1~p = ĤH

�1
�P

= �̂P

= ~̂p

The 3 � 3 matrix ĤH�1 is a projective transformation that repro-
jects the image plane of I onto that of Î. More generally, any in-
vertible 3� 3 matrix represents a planar projective transformation,
a one-to-one map of the plane that transforms points to points and
lines to lines. The operation of reprojection is very powerful be-
cause it allows the gaze direction to be modified after a photograph
is taken, or a scene rendered. Our use of projective transforms to
compute reprojections takes advantage of an efficient scanline al-
gorithm [15]. Reprojection can also be performed through texture-
mapping and can therefore exploit current graphics hardware.

Image reprojection has been used previously in a number of ap-
plications [15]. Our use of reprojection is most closely related to the
techniques used for rectifying stereo views to simplify 3D shape re-
construction [4]. Image mosaic techniques [10, 2, 14, 6] also rely
heavily on reprojection methods to project images onto a planar,
cylindrical, or spherical manifold. In the next section we describe
how reprojection may be used to improve image morphs.

3.2.2 A Three Step Algorithm

Using reprojection, the problem of computing a shape-preserving
morph from two non-parallel perspective views can be reduced to
the case treated in Section 3.1. To this end, let I0 and I1 be two
perspective views with projection matrices�0 = [H0 j �H0C0]
and �1 = [H1 j �H1C1]. It is convenient to choose the world
coordinate system so that bothC0 andC1 lie on the world X-axis,
i.e., C0 = [X0 0 0]T and C1 = [X1 0 0]T . The two remaining
axes should be chosen in a way that reduces the distortion incurred
by image reprojection. A simple choice that works well in practice
is to choose the Y axis in the direction of the cross product of the
two image plane normals.
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Figure 4: View Morphing in Three Steps. (1) Original images I0
and I1 are prewarped to form parallel views Î0 and Î1. (2) Îs is
produced by morphing (interpolating) the prewarped images. (3) Îs
is postwarped to form Is.

In between perspective views on the line C0C1 may be synthe-
sized by a combination of image reprojections and interpolations,
depicted in Fig. 4. Given a projection matrix�s = [Hs j �HsCs],
withCs fixed by Eq. (6), the following sequence of operations pro-
duces an image Is corresponding to a view with projection matrix
�s:

1. Prewarp: apply projective transformsH�1
0

to I0 andH�1
1

to
I1, producing prewarped images Î0 and Î1

2. Morph: form Îs by linearly interpolating positions and col-
ors of corresponding points in Î0 and Î1, using Eq. (4) or any
image morphing technique that approximates it

3. Postwarp: apply Hs to Îs, yielding image Is

Prewarping brings the image planes into alignment without chang-
ing the optical centers of the two cameras. Morphing the prewarped
images moves the optical center toCs. Postwarping transforms the
image plane of the new view to its desired position and orientation.

Notice that the prewarped images Î0 and Î1 represent views with
projection matrices �̂0 = [I j � C0] and �̂1 = [I j � C1],
where I is the 3�3 identity matrix. Due to the special form of these
projection matrices, Î0 and Î1 have the property that corresponding
points in the two images appear in the same scanline. Therefore, the
interpolation Îs may be computed one scanline at a time using only
1D warping and resampling operations.

The prewarping and postwarping operations, combined with the
intermediate morph, require multiple image resampling operations
that may contribute to a noticeable blurring in the in-between im-
ages. Resampling effects can be reduced by supersampling the input
images [15] or by composing the image transformations into one ag-
gregate warp for each image. The latter approach is especially com-
patible with image morphing techniques that employ inverse map-
ping, such as the Beier and Neely method [1], since the inverse post-
warp, morph, and prewarp can be directly concatenated into a sin-
gle inverse map. Composing the warps has disadvantages however,
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Figure 5: Singular Views. In the parallel configuration (top), each
camera’s optical center is out of the field of view of the other. A sin-
gular configuration (bottom) arises when the optical center of cam-
era B is in the field of view of camera A. Because prewarping does
not change the field of view, singular views cannot be reprojected to
form parallel views.

including loss of both the scanline property and the ability to use
off-the-shelf image morphing tools to compute the intermediate in-
terpolation.

3.3 Singular View Configurations

Certain configurations of views cannot be made parallel through re-
projection operations. For parallel cameras, (Fig. 5, top) the optical
center of neither camera is within the field of view of the other. Note
that reprojection does not change a camera’s field of view, only its
viewing direction. Therefore any pair of views for which the optical
center of one camera is within the field of view of the other cannot
be made parallel through prewarping1 . Fig. 5 (bottom) depicts such
a pair of singular views, for which the prewarping procedure fails.
Singular configurations arise when the camera motion is roughly
parallel to the viewing direction, a condition detectable from the im-
ages themselves (see the Appendix). Singular views are not a prob-
lem when the prewarp, morph, and postwarp are composed into a
single aggregate warp, since prewarped images are never explicitly
constructed. With aggregate warps, view morphing may be applied
to arbitrary pairs of views, including singular views.

3.4 Changes in Visibility

So far, we have described how to correct for distortions in image
morphs by manipulating the projection equations. Eq. (3), however,
does not model the effects that changes in visibility have on image
content. From the standpoint of morphing, changes in visibility re-
sult in two types of conditions: folds and holes. A fold occurs in an
in-between image Is when a visible surface in I0 (or I1) becomes

1Prewarping is possible if the images are first cropped to exclude the
epipoles (see the Appendix).
occluded in Is. In this situation, multiple pixels of I0 map to the
same point in Is, causing an ambiguity. The opposite case, of an
occluded surface suddenly becoming visible, gives rise to a hole; a
region of Is having no correspondence in I0.

Folds can be resolved using Z-buffer techniques [3], provided
depth information is available. In the absence of 3D shape informa-
tion, we use point disparity instead. The disparity of corresponding
points p0 and p1 in two parallel views is defined to be the differ-
ence of their x-coordinates. For parallel views, point disparity is in-
versely proportional to depth so that Z-buffer techniques may be di-
rectly applied, with inverse disparity substituted for depth. Because
our technique makes images parallel prior to interpolation, this sim-
ple strategy suffices in general. Furthermore, since the interpolation
is computed one scanline at a time, Z-buffering may be performed at
the scanline level, thereby avoiding the large memory requirements
commonly associated with Z-buffering algorithms. An alternative
method using a Painter’s method instead of Z-buffering is presented
in [10].

Unlike folds, holes cannot always be eliminated using image in-
formation alone. Chen and Williams [3] suggested different meth-
ods for filling holes, using a designated background color, interpola-
tion with neighboring pixels, or additional images for better surface
coverage. The neighborhood interpolation approach is prevalent in
existing image morphing methods and was used implicitly in our ex-
periments.

3.4.1 Producing the Morph

Producing a shape-preserving morph between two images requires
choosing a sequence of projection matrices�s = [Hs j �HsCs],
beginning with �0 and ending with �1. Since Cs is determined
by Eq. (6), this task reduces to choosing Hs for each value of s 2
(0; 1), specifying a continuous transformation of the image plane
from the first view to the second.

There are many ways to specify this transformation. A natural
one is to interpolate the orientations of the image planes by a single
axis rotation. If the image plane normals are denoted by 3D unit
vectors N0 and N1, the axis D and angle of rotation � are given
by

D = N0 �N1

� = cos
�1(N0 �N1)

Alternatively, if the orientations are expressed using quaternions,
the interpolation is computed by spherical linear interpolation [13].
In either case, camera parameters such as focal length and aspect ra-
tio should be interpolated separately.

4 PROJECTIVE TRANSFORMATIONS

By generalizing what we mean by a “view”, the technique described
in the previous section can be extended to accommodate a range of
3D shape deformations. In particular, view morphing can be used to
interpolate between images of different 3D projective transforma-
tions of the same object, generating new images of the same object,
projectively transformed. The advantage of using view morphing
in this context is that salient features such as lines and conics are
preserved during the course of the transformation from the first im-
age to the second. In contrast, straightforward image morphing can
cause severe geometric distortions, as seen in Fig. 2.

As described in Section 3.1, a 2D projective transformation may
be expressed as a 3� 3 homogeneous matrix transformation. Sim-
ilarly, a 3D projective transformation is given by a 4 � 4 matrix
T. This class of transformations encompasses 3D rotations, trans-
lations, scales, shears, and tapering deformations. Applying T to a



homogeneous scene point produces the point ~Q = TP. The cor-
responding point Q in 3D Euclidean coordinates is obtained by di-
viding ~Q by its fourth component. 3D projective transformations
are notable in that they may be “absorbed” by the camera transfor-
mation. Specifically, consider rendering an image of a scene that
has been transformed by a 3D projective transformation T. If the
projection matrix is given by �, a point P in the scene appears at
position p in the image, where ~p = �(TP). If we define the 3�4

matrix ~� = �T, the combined transformation may be expressed
as a single projection, representing a view with projection matrix ~�.

By allowing arbitrary 3�4 projections, we can model the changes
in shape induced by projective transformations by changes in view-
point. In doing so, the problem of interpolating images of projective
transformations of an unknown shape is reduced to a form to which
the three-step algorithm of Section 3.2.2 may be applied. However,
recall that the three-step algorithm requires that the camera view-
points be known. In order to morph between two different faces, this
would require a priori knowledge of the 3D projective transforma-
tion that best relates them. Since this knowledge may be difficult to
obtain, we describe here a modification that doesn’t require know-
ing the projection matrices.

Suppose we wish to smoothly interpolate two images I0 and
I1 of objects related by a 3D projective transformation. Suppose
further that only the images themselves and pixel correspondences
are provided. In order to ensure that in-between images depict the
same 3D shape (projectively transformed), I0 and I1 must first be
transformed so as to represent parallel views. As explained in Sec-
tion 3.2.2, the transformed images, Î0 and Î1, have the property that
corresponding points appear in the same scanline of each image, i.e.,
two points p0 2 Î0 and p1 2 Î1 are projections of the same scene
point only if their y-coordinates are equal. In fact, this condition is
sufficient to ensure that two views are parallel. Consequently I0 and
I1 may be made parallel by finding any pair of 2D projective trans-
formations H0 and H1 that send corresponding points to the same
scanline. One approach for determiningH0 andH1 using 8 or more
image point correspondences is given in the Appendix.

4.1 Controlling the Morph

To fully determine a view morph,Hs must be provided for each in-
between image. Rather than specifying the 3� 3 matrix explicitly,
it is convenient to provideHs indirectly by establishing constraints
on the in-between images. A simple yet powerful way of doing this
is to interactively specify the paths of four image points through the
entire morph transition. These control points can represent the posi-
tions of four point features, the endpoints of two lines, or the bound-
ing quadrilateral of an arbitrary image region2. Fig. 6 illustrates the
process: first, four control points bounding a quadrilateral region
of Î0:5 are selected, determining corresponding quadrilaterals in I0
and I1. Second, the control points are interactively moved to their
desired positions in I0:5, implicitly specifying the postwarp trans-
formation and thus determining the entire image I0:5. The post-
warps of other in-between images are then determined by interpo-
lating the control points. The positions of the control points in Is
and Îs specify a linear system of equations whose solution yields
Hs [15]. The four curves traced out by the control points may also
be manually edited for finer control of the interpolation parameters.

The use of image control points bears resemblance to the view
synthesis work of Laveau and Faugeras [7], who used five pairs of
corresponding image points to specify projection parameters. How-
ever, in their case, the points represented the projection of a new im-
age plane and optical center and were specified only in the original

2Care should be taken to ensure that no three of the control points are
colinear in any image.
images. In our approach, the control points are specified in the in-
between image(s), providing more direct control over image appear-
ance.

4.2 View Morphing Without Prewarping

Prewarping is less effective for morphs between different objects
not closely related by a 3D projective transform. With objects that
are considerably different, it is advisable to leave out the prewarp
entirely, since its automatic computation becomes less stable [9].
The postwarp step should not be omitted, however, since it can be
used to reduce image plane distortions for more natural morphs. For
instance, a large change in orientation results in a noticeable 2D im-
age contraction, as seen in Fig. 10.

Prewarping is not strictly necessary for images that are approx-
imately orthographic, as noted in Section 3.1. Images taken with a
telephoto lens often fall into this category, as do images of objects
whose variation in depth is small relative to their distance from the
camera. In either case, the images may be morphed directly, yield-
ing new orthographic views. However, the prewarping step does in-
fluence the camera motion which, in the orthographic case, cannot
be controlled solely by postwarping. The camera transformation de-
termined by Eq. (5) may introduce unnatural skews and twists of the
image plane due to the fact that linear matrix interpolation does not
preserve row orthogonality. Prewarping the images ensures that the
view plane undergoes a single axis rotation. More details on the or-
thographic case are given in [12].

5 RESULTS

Fig. 6 illustrates the view morphing procedure applied to two images
of a bus. We manually selected a set of about 50 corresponding line
features in the two images. These features were used to automat-
ically prewarp the images to achieve parallelism using the method
described in the Appendix. Inspection of the prewarped images con-
firms that corresponding features do in fact occupy the same scan-
lines. An implementation of the Beier-Neely field-morphing algo-
rithm [1] was used to compute the intermediate images, based on the
same set of features used to prewarp the images. The resulting im-
ages were postwarped by selecting a quadrilateral region delimited
by four control points in Î0:5 and moving the control points to their
desired positions in I0:5. The final positions of the control points
for the image in the center of Fig. 6 were computed automatically
by roughly calibrating the two images based on their known focal
lengths and interpolating the changes in orientation [4]. Different
images obtained by other settings of the control points are shown
in Fig. 8. As these images indicate, a broad range of 3D projective
effects may be achieved through the postwarping procedure. For in-
stance, the rectangular shape of the bus can be skewed in different
directions and tapered to depict different 3D shapes.

Fig. 7 shows some results on interpolating human faces in vary-
ing poses. The first example shows selected frames from a morph
computed by interpolating views of the same person facing in two
different directions. The resulting animation depicts the subject
continuously turning his head from right to left. Because the sub-
ject’s right ear is visible in only one of the original images, it appears
“ghosted” in intermediate frames due to the interpolation of inten-
sity values. In addition, the subject’s nose appears slightly distorted
as a result of similar changes in visibility. The second sequence
shows a morph between different views of two different faces. In-
terpolating different faces is one of the most popular applications
of image morphing. Here, we combine image morphing’s capac-
ity for dramatic facial interpolations with view morphing’s ability
to achieve changes in viewpoint. The result is a simultaneous inter-
polation of facial structure, color, and pose, giving rise to an image
transition conveying a metamorphosis that appears strikingly 3D.



When an object has bilateral symmetry, view morphs can be com-
puted from a single image. Fig. 9 depicts a view morph between an
image of Leonardo da Vinci’s Mona Lisa and its mirror reflection.
Although the two sides of the face and torso are not perfectly sym-
metric, the morph conveys a convincing facial rotation.

Fig. 10 compares image morphing with view morphing using two
ray-traced images of a helicopter toy. The image morph was com-
puted by linearly interpolating corresponding pixels in the two orig-
inal images. The change in orientation between the original images
caused the in-between images to contract. In addition, the bending
effects seen in Fig. 2 are also present. Image morphing techniques
such as [1] that preserve lines can reduce bending effects, but only
when line features are present. An interesting side-effect is that a
large hole appears in the image morph, between the stick and pro-
peller, but not in the view morph, since the eye-level is constant
throughout the transition. To be sure, view morphs may also pro-
duce holes, but only as a result of a change in visibility.

6 CONCLUSIONS

Achieving realistic image transitions is possible but often difficult
with existing image morphing techniques due to the lack of avail-
able 3D information. In this paper, we demonstrated how to ac-
curately convey a range of 3D transformations based on a simple
yet powerful extension to the image morphing paradigm called view
morphing. In addition to changes in viewpoint, view morphing ac-
commodates changes in projective shape. By integrating these ca-
pabilities with those already afforded by existing image morphing
methods, view morphing enables transitions between images of dif-
ferent objects that give a strong sense of metamorphosis in 3D. Be-
cause no knowledge of 3D shape is required, the technique may be
applied to photographs and drawings, as well as to artificially ren-
dered scenes. Two different methods for controlling the image tran-
sition were described, using either automatic interpolation of cam-
era parameters or interactive user-manipulation of image control
points, based on whether or not the camera viewpoints are known.

Because view morphing relies exclusively on image information,
it is sensitive to changes in visibility. In our experiments, the best
morphs resulted when visibility was nearly constant, i.e., most sur-
faces were visible in both images. The visible effects of occlu-
sions may often be minimized by experimenting with different fea-
ture correspondences. Additional user input could be used to re-
duce ghosting effects by specifying the paths of image regions visi-
ble in only one of the original images. A topic of future work will be
to investigate ways of extending view morphing to handle extreme
changes in visibility, enabling 180 or 360 degree rotations in depth.
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APPENDIX

This appendix describes how to automatically compute the image
prewarping transformsH0 andH1 from the images themselves. We
assume that the 2D positions of 8 or more corresponding points are
given in each image. The fundamental matrix of two views is de-
fined to be the 3� 3, rank-two matrix F such that for every pair of
corresponding image points p0 2 I0 and p1 2 I1,

p
T
1 Fp0 = 0

F is defined up to a scale factor and can be computed from 8 or more
such points using linear [5] or non-linear [9] methods.

A sufficient condition for two views to be parallel is that their fun-
damental matrix have the form:

F̂ =

"
0 0 0
0 0 �1
0 1 0

#
(8)
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Figure 6: View Morphing Procedure: A set of features (yellow lines) is selected in original images I0 and I1. Using these features, the images
are automatically prewarped to produce Î0 and Î1. The prewarped images are morphed to create a sequence of in-between images, the middle
of which, Î0:5, is shown at top-center. Î0:5 is interactively postwarped by selecting a quadrilateral region (marked red) and specifying its
desired configuration, Q0:5, in I0:5. The postwarps for other in-between images are determined by interpolating the quadrilaterals (bottom).
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Figure 7: Facial View Morphs. Top: morph between two views of the same person. Bottom: morph between views of two different people.
In each case, view morphing captures the change in facial pose between original images I0 and I1, conveying a natural 3D rotation.



Figure 8: Postwarping deformations obtained by different settings of the control quadrilateral.
Figure 9: Mona Lisa View Morph. Morphed view (center) is halfway between original image (left) and it’s reflection (right).
Figure 10: Image Morphing Versus View Morphing. Top: image morph between two views of a helicopter toy causes the in-between images
to contract and bend. Bottom: view morph between the same two views results in a physically consistent morph. In this example the image
morph also results in an extraneous hole between the blade and the stick. Holes can appear in view morphs as well.



Consequently, any two images with fundamental matrix F may
be prewarped (i.e., made parallel) by choosing any two projective
transforms H0 and H1 such that (H�1

1
)
T
FH

�1

0
= F̂. Here we

describe one method that applies a rotation in depth to make the im-
ages planes parallel, followed by an affine transformation to align
corresponding scanlines. The procedure is determined by choos-
ing an (arbitrary) axis of rotation d0 = [dx0 d

y
0
0]T 2 I0. Given

[x y z]T = Fd0, the corresponding axis in I1 is determined ac-
cording to d1 = [�y x 0]T . To compute the angles of depth rota-
tion we need the epipoles, also known as vanishing points, e0 2 I0

and e1 2 I1. e0 = [ex0 e
y
0
ez0]

T and e1 = [ex1 e
y
1
ez1]

T are the unit
eigenvectors of F and FT respectively, corresponding to eigenval-
ues of 0. A view’s epipole represents the projection of the optical
center of the other view. The following procedure will work pro-
vided the views are not singular, i.e., the epipoles are outside the
image borders and therefore not within the field of view. The an-
gles of rotation in depth about di are given by

�i = �
�

2
� tan

�1(
d
y

i e
x
i � dxi e

y

i

ezi
)

We denote as Rdi

�i
the 3 � 3 matrix corresponding to a rotation of

angle �i about axis di. Applying Rd0

�0
to I0 and Rd1

�1
to I1 makes

the two image planes parallel. Although this is technically sufficient
for prewarping, it is useful to add an additional affine warp to align
the scanlines. This simplifies the morph step to a scanline interpo-
lation and also avoids bottleneck problems that arise as a result of
image plane rotations [15].

The next step is to rotate the images so that epipolar lines are hor-
izontal. The new epipoles are [~exi ~eyi 0]T = R

di

�i
ei. The angles of

rotation �0 and �1 are given by �i = �tan�1(~eyi =~e
x
i ). After ap-

plying these image plane rotations, the fundamental matrix has the
form

~F = R�1R
d1

�1
FR

d0

��0
R
��0 =

"
0 0 0
0 0 a
0 b c

#

The 3 � 3 matrix R� denotes an image plane (z axis) rotation of
angle �. Finally, to get F into the form of Eq. (8), the second image
is translated and vertically scaled by the matrix

T =

"
1 0 0
0 �a �c
0 0 b

#

In summary, the prewarping transforms H0 and H1 are

H0 = R�0R
d0

�0

H1 = TR�1R
d1

�1

The entire procedure is determined by selecting d0. A suitable
choice is to select d0 orthogonal to e0, i.e., d0 = [�ey

0
ex0 0]T .



1
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Abstract
In this paper, we present efficient algorithms for creating and rendering image-based visual hulls. These
algorithms are motivated by our desire to render real-time views of dynamic, real-world scenes. We first
describe the visual hull, an abstract geometric entity useful for describing the volumes of objects as
determined by their silhouettes.  We then introduce the image-based visual hull, an efficient
representation of an object’s visual hull.  We demonstrate two desirable properties of the image-based
visual hull.  First, it can be computed efficiently (i.e., in real-time) from multiple silhouette images.
Second, it can be quickly rendered from novel viewpoints.  These two properties motivate our use of the
image-based visual hull in a real-time rendering system that we are currently developing .

Introduction
Computer graphics has long been concerned with the rendering of static synthetic scenes, or scenes
composed of non-moving computer-created models.  In time, attention turned to the rendering of dynamic
synthetic scenes, as exemplified by virtual reality systems, most modern computer games, and the recent
computer-animated movies.  More recently, many researchers have embraced an image-based rendering
approach in which scenes are represented by simple images that may be synthetic or acquired from the
real world (say, with a digital camera).  In this spirit, work has been done in rendering static acquired
scenes, non-moving scenes acquired from real-world imagery (e.g., QuicktimeVR).  However, relatively
little work has been done in the case of dynamic acquired scenes.  It is the goal of our work to develop an
appropriate representation and rendering system for such scenes.

Figure 1.  A hypothetical arrangement for acquiring dynamic scenes.
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Using our system, a user can control a virtual camera within a moving scene that is acquired in real-
time.  Such a system has many potential uses.  A commonly cited example is the virtual sports camera:
users viewing a sporting event would be able to view the event from any angle, perhaps to focus on their
favorite player or to see the action better.  We are also targeting our current system at other tasks:
teleconferencing and virtual sets.  In a teleconferencing setting, our system would allow participants to
navigate the virtual conference room or change their gaze while viewing the other participants moving in
real-time.  Applied to synthetic sets, our system would enable a director to see his actors perform in real-
time in a dynamic three-dimensional virtual set.

A dynamic, acquired rendering system can be designed analogously to a static, acquired one.  Static
scenes (or objects) are typically acquired from many still photographs taken at different locations.  Many
photos are acquired, and often the same camera is used to take them.  To extend this scenario to the
dynamic case, we substitute video sequences for still photographs and place multiple, synchronized video
cameras around the scene to acquire these sequences (see Figure 1).  The dynamic setup is more restrictive
than the static case:  the number of input images is limited by the physical number of video cameras, and
the cameras can only be placed in locations that do not impede the activity in the scene.

In both the static and dynamic cases, the acquired images are generally processed in some way—
details vary from system to system—after which new images of the scene (or object) can be produced from
arbitrary camera locations.  In the dynamic case, a distinction can be made between real-time systems,
those that process video and synthesize views at interactive rates, and off-line systems, those that require
more extensive processing or rendering before viewing.  In this paper, we are concerned with real-time
systems.

There are a number of challenges inherent in real-time systems.  The first is processing all the video
frames at interactive rates.  Obvious approaches for extracting useful information from multiple video
streams, such as multi-baseline stereo algorithms, run too slow on current general-purpose hardware for a
real-time system.  The second challenge is rendering new views such that a virtual image exhibits as
much visual fidelity as an image from one of the real cameras.  For example, voxel-based systems often
display noticeable artifacts in their images as a result of the low-resolution voxel data structure.

Our real-time system for rendering dynamic, acquired objects is designed to meet these challenges.
We utilize between five and ten synchronized, digital video cameras to acquire continuous video streams.
To achieve interactive rates, we process the video streams using efficient silhouette-based techniques to
create a approximate on-the-fly models (called the visual hull) of the dynamic scene objects.  We then
create novel views of these dynamic objects using image-based rendering techniques, which are fast and
preserve much of the detail of the original video sequences.

Related Work
Kanade’s virtualized reality system [Kanade97] is perhaps closest in spirit to the dynamic acquired
rendering system that we envision, although it is not currently a real-time system. They use a collection of
cameras in conjunction with multi-baseline stereo techniques to extract models of dynamic scenes.
Currently their method still requires significant off-line preprocessing time to perform the stereo
correlation, but they are exploring special purpose hardware for this task, an option we wish to avoid.
Recently, they have begun using silhouette methods such as the ones we use to improve the quality of their
stereo reconstruction [Vedula98].

Pollard and Hayes [Pollard98] attempt to solve the problem of rendering real-time acquired data with
their immersive video objects.  Immersive video objects are annotated video streams that can be morphed
in real-time to simulate three-dimensional camera motion.  Their representation also utilizes object
silhouettes, but in a different manner.  They match silhouette edges across multiple views, and use these
correspondences to compute a morph to a novel view.  This approach has some problems, however, as
silhouette edges are generally not consistent between views.  These inconsistencies require their cameras
to be placed close together, limiting the usefulness of the system.

Static Silhouette Methods
Silhouette contours have been used by computer vision researchers build approximate geometric models of
static objects and scenes.  These techniques are attractive because of the ease of extracting and working
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with silhouettes.
Typically these object models are computed by using silhouettes to “carve” away regions of empty

space.  Potmesil describes a method for computing a voxel representation of objects from sequences of
silhouettes [Potmesil87].  He uses an octree data structure to represent a binary volume of space, and does
not attack the problem of reconstructing novel views of his objects.

Szeliski has implemented a similar idea [Szeliski92].  He uses a turntable to rotate objects in front of a
real camera.  After automatically extracting object silhouettes, he computes an octree-based voxel
representation of the object by projecting octree nodes into the silhouette images.

Laurentini, recognizing the interest in silhouette methods, has introduced a formalism for analyzing
object reconstruction from silhouettes [Laurentini94].  Central to his theory is the concept of the visual
hull, which, is the best approximation to an object’s shape that one can build from simple silhouettes.  His
framework is useful for understanding the limitations of silhouette methods, something that has not been
quantified in earlier work.

Other volumetric carving methods, related to silhouette techniques, have also been suggested. These
include volumetric reconstruction from active laser-range data [Curless96] and volumetric reconstruction
based on photometric sample correspondences [Sietz97]. These techniques could be used to improve upon
the approximate object models that are obtained from silhouettes. However, currently, they are not as well
suited to real-time implementation.

Image-Based Rendering
Image-based rendering has been proposed as a practical alternative to the traditional modeling/rendering
framework. In image based rendering, one starts with images and directly produces new images from this
data. This avoids the traditional (i.e., polygonal) modeling process, and often leads to rendering
algorithms whose running time is independent of the scene’s geometric and photometric complexity.

Chen’s QuicktimeVR [Chen95] is one of the first commercial static, acquired rendering systems.  This
system relies heavily on image-based rendering techniques to produce photo-realistic panoramic images of
real scenes.  Although successful, the system has some limitations:  the scenes are static and the viewpoint
is fixed.

McMillan’s plenoptic modeling system [McMillan95] is QuicktimeVR-like, although it does allow a
translating viewpoint.  The rendering engine is based on three-dimensional image warping, a now
commonplace image-based rendering technique.  Dynamic scenes are not supported as the panoramic
input images require much more off-line processing than the simple QuicktimeVR images.

Light field methods [Gortler96, Levoy96] represent scenes as a large database of images.  Processing
requirements are modest making real-time implementation feasible, if not for the large number of cameras
required (on the order of hundreds).  The cameras must also be placed close together, resulting in a small
effective navigation volume for the system.

Paper Organization
In the next section we describe the visual hull, the approximate geometric representation that we use in
our system.  We demonstrate how it is related to object silhouettes, and why silhouette-based analysis
techniques are well suited to this sort of system.  We also point out some of the problems with using the
visual hull as an object approximation.

In the second section, we describe various algorithms for computing visual hulls using a image-based
representation.  The first algorithm is slow, but conceptually simple, while the second algorithm is faster
and more sophisticated.  We present advantages and disadvantages and runtime analyses.

The third section discusses various rendering algorithms for image-based visual hulls.  We have
investigated at least four algorithms, each with strengths and weaknesses.  In this paper, we discuss three
of the algorithms.

Silhouettes and the Visual Hull
Silhouette methods are well suited to real-time analysis of object shape.  First, computing object
silhouettes is fast and relatively robust.  Second, multiple silhouettes of an object give a strong indication
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of that object’s shape.

Computing Silhouettes
An object silhouette is essentially a binary segmentation of an image in which pixels are labeled
“foreground” (belonging to the silhouette) or “background.”  In this paper, background pixels are typically
drawn in white and foreground pixels non-white.

One common technique for computing silhouettes is chromakeying, or bluescreen matting [Smith96].
In this technique, the actual scene background is a single uniform color that is unlikely to appear in
foreground objects.  Foreground objects can then be segmented from the background by using color
comparisons.  Chromakey techniques are widely used in television weather forecasts and for cinematic
special effects, which demonstrates their speed and quality.  However, chromakey techniques do not admit
arbitrary backgrounds, which is a severe limitation.

More general is a technique called background subtraction or image differencing [Bichsel94,
Friedman97].  In background subtraction, a statistical model of a background scene is accumulated from
many images.  Changes in the scene, such as a figure walking into view, can then be detected by
computing the difference between the new frame and the retained model.  Differences that fall outside the
allowed margins of the model are classified as foreground objects.  There are many variations on the
above two algorithms, but almost all of them are fast and robust enough to be used in a real-time system.

Shape from Silhouettes: The Visual Hull
It seems intuitive that the shape of an object can be recovered from many silhouettes.  However, it is also
clear that not all shapes can be recovered from silhouettes alone.  For example, the concave region inside
a bowl will never be evident in any silhouette, so any method based solely on silhouettes will fail to
reconstruct it completely [Koenderink90].

Laurentini has introduced the concept of the visual hull for understanding the shapes of objects that
can be reconstructed from their silhouettes [Laurentini94].  Loosely, the visual hull of an object is the
closest approximation to that object that can be obtained from silhouettes alone.

The visual hull of an object depends both on the object itself and on a particular viewing region.  A
viewing region is a set of points in space from which silhouettes of an object are seen.  The viewing region
might be the set of all points enclosing the object, or, in a more practical case, a finite set of camera
positions arranged around the object.

Formally, the visual hull of object S with respect to viewing region R, denoted VH(S, R), is a volume in
space such that for each point P ∈ VH(S,R) and each viewpoint V ∈ R, the half-line from V through P
contains at least one point of S [Laurentini94].  This definition simply states that the visual hull consists
of all points in space whose images lie within all silhouettes viewed  from the viewing region.  Stated
another way, the visual hull is the maximal object that has the same silhouettes as the original object, as
viewed from the viewing region.

It is useful to think of an alternative, constructive definition of the visual hull with respect to a viewing
region.  Given a point V in the viewing region R, the silhouette of the object as seen from V defines a
generalized cone in space with its apex at V (see Figure 2).  The intersection of the cones from every point
in R results in the visual hull with respect to R.
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Figure 2.  The intersection of the three silhouette cones defines the visual hull as
seen from the viewing region.  In this case, the viewing region contains only the
apexes of the three silhouette cones.

This definition is useful because it implies a practical way to compute a visual hull.  Almost all useful
visual hull construction algorithms use some sort of volume intersection technique, as discussed in later
sections.

Limitations of the Visual Hull
In the following discussion, we will assume that the viewing region for the visual hull is the set of all
“reasonable” vantage points:  those points outside the convex hull of the object.  Using this special
viewing region results in the closest possible approximation to the actual object.  This viewing region is
also assumed whenever reference is made to a visual hull whose viewing region is not implied by context.

The visual hull is a superset that contains the actual object’s shape.  It cannot represent concave
surface regions (e.g., the inside of a bowl), in general, or even convex or hyperbolic points that are below
the rim of a concavity (e.g., a marble inside a bowl).  However, the visual hull is a tighter fit to the object
than a convex hull, which only includes object regions that are globally convex.  The visual hull of a
convex object is the same as the object.  However, the visual hull of an object composed of multiple,
disjoint convex objects may not be the same as the actual objects, see Figure 3.

Figure 3.  The visual hull of these two gray circles (black and gray regions) is
slightly larger than the circles themselves.  It is delimited by the bi-tangent lines
drawn in the figure.

When the viewing region of the visual hull does not completely surround the object, the visual hull
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becomes a coarser approximation and may even be larger than the convex hull.  The visual hull becomes
even worse for finite viewing regions, and may exhibit undesirable artifacts such as phantom volumes
(Figure 4).

Figure 4.  Intersecting the two silhouette cones results in “phantom” volumes,
shown in gray on the left.  A third silhouette can resolve the problem in this case
(right).

In spite of these limitations, the visual hull is still a useful entity for approximating an object’s shape
in a dynamic rendering system.  Object concavities can largely be camouflaged by object motion or hidden
with surface texturing. Viewing regions that do not surround the object can be used as long as the virtual
camera is confined to locations within the viewing region, as the visual hull is guaranteed to reproduce
correctly all silhouettes seen from within the viewing region.  Artifacts arising from using a finite viewing
region (i.e., a finite amount of cameras) can be lessened by sampling a desired viewing region with
appropriately placed viewpoints.

An Image-Based Visual Hull
One could attempt to compute a visual hull geometrically, but this approach, based on the intersection of
multiple polytopes, is difficult to implement robustly and the resulting representation is composed of a
great number of polygons if the silhouette contour is complex.

As a result, most visual hulls have been computed volumetrically by successively carving away all
voxels outside of the projected silhouette cone.  However, volumetric approaches suffer from problems
with resolution.  First, volumetric data structures are generally very memory intensive. This limitation is
reduced somewhat by the fact that visual hull is a binary volume, and it is thus well suited to octree-type
representations.  However, it is still difficult to retain the full precision of the original silhouette images
using a standard volumetric representation. If arbitrary configurations of input images are allowed then
the intersection of the projected regions from them can have an arbitrarily high spatial frequency content.
Thus no uniform spatial sampling is sufficient for exactly representing the final volume. Of course,
reasonable approximations can be made by requiring the resulting volume to project to a silhouette
contour that is within some error bound relative to the original.

In our approach, we prefer to use an image-based representation of the visual hull, which alleviates
some of the problems with a standard voxel approach.  In the graphics community, the term “image-
based” has had many interpretations.  In the strictest sense, an image-based representation consists solely
of images (possibly along with matrices describing camera configurations).  Along these lines, an image-
based representation of the visual hull is simply the set of silhouettes themselves (along with the
associated viewpoints).  By definition, such a representation preserves the full resolution of the input
images and contains no more or no less information than that provided by the silhouettes.

More generally,  an “image-based” representation is often identified with a two-dimensional, sampled
representation.  For example, a standard color image is a rectangular grid of color samples, and a depth
image is a grid of depth samples.  Note that the samples are not considered connected in any way; they
simply exist at regular intervals.  The bulk of this paper is concerned with this second form of image-
based visual hull.
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This second type of image-based visual hull is constructed with respect to some viewpoint V in the
viewing region of the visual hull.  We can imagine that a camera at this viewpoint sees a silhouette image,
which is discretized into a grid of pixels (i.e., samples).  For each pixel in this silhouette image a list of
occupancy intervals is stored.  If a pixel does not belong to the silhouette (i.e., it is background), then the
list is empty.  Otherwise, the list contains intervals of space that are occupied by the visual hull of the
object.  These intervals, extruded over the solid angle subtended by the pixel, represent the region of the
visual hull that projects to that pixel.  The union of all such slices gives the visual hull as sampled from
that viewpoint.  In Figure 5, we show a slice of an image-based visual hull.  The lines represent viewing
rays along one column of the image, and the dark line segments denote occupied regions of space.

Figure 5.  A single slice of an image-based visual hull.  A full image-based visual
hull contains many such slices, forming a volume in space.

Advantages of the Image-Based Representation
The image-based representation has a number of advantages in terms of storage requirements,
computational efficiency, and ease of rendering.

The occupancy intervals can be stored as pairs of real numbers (where the numbers represent the
minimum and maximum depths of the interval), similar to a run-length encoded volume.  Thus, while the
volume is discretized in two dimensions, the third dimension is continuous, allowing for higher resolution
volumes than a voxel approach.  Note also that this representation can be used for an arbitrary volume; it
is not specialized for a visual hull.  Similar data structures have been used by [VanHook86] and
[Lacroute94] in traditional volume rendering settings.

Computing a visual hull using the image-based representation is much simpler than previous
approaches.
As we will show in the next section, the three-dimensional generalized cone intersections and the
volumetric carving operations of other methods are replaced with simple interval intersections in our
method.  These interval intersections are fast and robust, allowing for a real-time calculation of the visual
hull.

Rendering the visual hull is also facilitated by the image-based representation.  As we show in later
sections, this representation can be rendered using only slight modifications to the standard three-
dimensional image warp algorithm.  This approach minimizes image resampling, as we only resample
during rendering, and produces renderings of quality comparable to the input video images.

Mathematical Preliminaries
We first introduce the mathematical notation and concepts that we use in the rest of the paper.  Dotted

capital letters (e.g., C& ) represent points in three-dimensional space, while lowercase over-bar letters
(e.g., x ) represent homogeneous image (pixel) coordinates.  Matrices (all are 3 x 3) are written in bold
capital letters (e.g., P), while scalars are lowercase (e.g., t).  We denote equality up to a scale factor with a
dotted equals sign, =& .
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One View
The basic quantity that we manipulate is a view, which is an image along with the viewpoint from which

it was seen.  We characterize a view [P, C& ] by a center of projection C&  (i.e., the viewpoint) and an
inverse projection matrix P that transforms homogeneous image coordinates x  to rays in three-
dimensional world space according to the following equation:

xtCtX P+= && )( ,

where )(tX&  represents three-dimensional world points parameterized by the distance (or range) t along a

ray.  Conceptually, these rays originate at C&  and pass through the pixel x  = [u, v, 1]T in the imaging
plane.

Often it is computationally more convenient to work with the reciprocal of the range parameter t .  We
call this quantity the generalized disparity, defined as

t

1=δ .

Two Views
Two views [ 1P , 1C& ] and [ 2P , 2C& ] with different centers of projection (i.e., 1C& ≠ 2C& ) are related by a so-

called epipolar geometry.  This geometry describes how a ray through a pixel in one view is seen as an
epipolar line in the other view.  Mathematically, this relationship between pixel coordinates in one view
and epipolar lines in a second view is expressed by the fundamental matrix 21F  between the two views

[Faugeras93].  That is,

01212 =xx T F ,

where the quantity 121xF  gives the coefficients of a line equation in the second image.  Given two views

[ 1P , 1C& ] and [ 2P , 2C& ], their fundamental matrix can be computed as

1
1

2221 PPEF −= .

Matrix 2E  is a matrix representation of the cross product defined such that

vev ×= 22E ,

where v is an arbitrary vector and vector 2e is the epipole, or the projection of the first view’s center of

projection onto the second view’s image plane.  This epipole is computed as

)( 21
1

22 CCe && −= −P ,

and the epipole of the first view with respect to the second is computed similarly.

Often we want to calculate a desired view from a known view.  Given two views [1P , 1C& ] and [ 2P ,

2C& ], where the first one is known and the second one is desired, we can transform pixels from the known

view to pixels in the desired view using a three-dimensional image warping equation [McMillan96]:

)( 21
1

2111
1

22 CCxx &&

& −+= −− PPP δ . (1)

This equation gives pixel coordinates 2x  in the desired view of the point defined by the pixel 1x  and the

disparity 1δ  in the first view.  Thus, computing a desired view from a single known view requires

auxiliary disparity information, which is often stored in the form of a depth image associated with the
known view.

In computing image-based visual hulls, we are often interested in recovering the range (or disparity)
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parameter t2 given corresponding image points in two views.  We solve this problem by computing the
range parameters of the points of closest approach of the two rays defined by the corresponding pixels in
two images as follows:

[ ]
2

2211

22112212
1

det

xx

xxxCC
t

PP

PPP

×
×−=

&&

.

The parameter 2t  can be computed similarly.

Three Views
It has been shown [Shashua97] that three views are related by a mathematical entity called the trilinear
tensor.  Similar to the fundamental matrix for two views, the trilinear tensor describes the relationship
between points and lines in the three views.  A complete description of the trilinear tensor is beyond the
scope of this paper, however, we do present four equations derived from the tensor which relate the
coordinates of a pixel ]1,,[ yxp ′′′′=′′  in a third view to the coordinates of pixels in two other views

( ]1,,[ yxp =  and ]1,,[ yxp ′′=′ ):

011313313 =−′+′′′−′′ i
i

i
i

i
i

i
i ppxpxxpx αααα ,
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i
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i
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i

i
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,021313323 =−′+′′′−′′ i
i

i
i
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i

i
i ppypyxpx αααα

022323323 =−′+′′′−′′ i
i

i
i

i
i

i
i ppypyypy αααα .

In the above equations, jk
iα (i,j,k = 1,2,3) is the 27 element trilinear tensor, and the notation

inm
i pα denotes a dot-product of a row of the tensor with p .  The elements of jk

iα are obtained from the

three views [ 1P , 1C& ], [ 2P , 2C& ], and  [ 3P , 3C& ] according to the formulas given in [Shashua97].

The important quality of these equations, with regard to image synthesis, is that the third pixel’s
location is completely constrained by the locations of the two other pixels; no auxiliary depth image is
needed.  As we will demonstrate, these equations can be exploited when rendering novel views given two
or more known views.

Creating Image-Based Visual Hulls
In the following sections, we describe algorithms for computing image-based visual hulls from a finite
number of silhouette images.  In all of these algorithms, the input is assumed to be a set of k silhouettes
(i.e., binary images), their associated viewpoints, and a viewpoint from which the visual hull is to be
constructed.  The algorithms output a sampled image of the visual hull, in which each pixel of the image
contains a list of occupied intervals of space.

To ease algorithm analysis, the input silhouettes are assumed to be square m x m arrays of pixels.  The
output resolution of the image-based visual hull is n x n pixels.

The Basic Algorithm
We implement the same basic idea in all of our visual hull construction algorithms.  We cast a ray into
space for each pixel in the desired view of the visual hull.  We intersect this ray with the k silhouette cones
defined by the k silhouette views and record the intersections as pairs of enter/exit points (i.e., intervals).
This process results in k lists of intervals, which are then intersected together to form a single list.  This
final list, representing the intersection of the viewing ray with the visual hull, is stored in our data
structure.

The key aspect of all our algorithms is that all of the ray/cone intersection calculations are done in two
dimensions rather than three.  Recall that each silhouette cone is defined by a two-dimensional silhouette
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image and a center of projection.  Instead of projecting these cones into three-dimensional space and then
computing ray intersections, we can project the three-dimensional ray into the two-dimensional space of
the silhouette image and perform intersections there.  The ray simply projects to a line (in fact, the
epipolar line as discussed in a previous section), and the resulting two-dimensional calculations are much
more tractable.

The above observations lead directly to an algorithm for computing the image-based visual hull:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min  and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [depthi,l,min, depthi,l,max]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

The algorithm is illustrated in Figure 6. Six silhouettes from a synthetic dinosaur model are shown,
and the desired image-based visual hull is computed from the viewpoint of the upper left silhouette (the
primary view). Three pixels are labeled in this primary view. The corresponding epipolar line for each
pixel is shown in the remaining five (secondary) images. The algorithm processes one secondary image at
a time. First it detects each interval where the line crosses through the silhouette of the object. At each of
these silhouette contour crossings the length along the ray of the primary image is computed using the
equation for the point of closest approach. A list of these intervals is computed for each secondary image.
Finally, the interval lists are merged by computing their intersections across all secondary images. This
process is repeated for every pixel in the primary image.

Figure 6.  The image-based visual hull is computed from the viewpoint shown in the
upper left.  The epipolar lines corresponding to the three labeled pixels are shown
in the five other silhouettes.
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Analysis
The basic algorithm, while conceptually simple, is not a particularly efficient way to compute image-based
visual hulls.  The asymptotic running time is O(km2n), as the algorithm traces a line of length O(n) in k
images for each of m2 pixels in the primary view.  This analysis ignores the number of intervals traced and
the cost of intersecting them.  This omission is justified as there are typically far fewer intervals than the
number of pixels in one dimension of a secondary image, and certainly not more than this number.  When
the primary and secondary images are of the same dimensions, a common case, then the running time is
O(kn3).  Thus, we generally consider this an n-cubed algorithm.

The algorithm also suffers from some quantization problems.  The digital epipolar lines traced by the
algorithm are generally not identical to the ideal epipolar lines.  This discrepancy may cause the silhouette
intersection points to be slightly off.  In practice, such quantization problems have been largely
unnoticeable.

Line-Cache Algorithm
The best running time we might expect from a visual hull construction algorithm is O(km2).  This lower
bound arises from the fact that we need to fill in interval lists for m2 pixels, and we need to process k
views.  One might imagine a faster algorithm, based on a hierarchical decomposition (e.g., a quadtree) of
the visual hull image, but here we will assume we want to create m2 individual interval lists.  A
hierarchical decomposition, if desired, can then be applied to any of our algorithms.

The line-cache algorithm is an algorithm for computing the image-based visual hull that achieves the
O(km2) running time.  The increased efficiency is due to a simple observation:  multiple three-dimensional
rays from the primary image project to the same two dimensional line in the secondary images.  This fact
can be understood from the epipolar geometry between two views.  A viewing ray from the primary image
and the viewpoint of a secondary image are contained within a plane in space.  This plane projects to an
epipolar line in the secondary image.  Any other viewing ray from the primary image which also lies in
this plane projects to the same epipolar line in the secondary image.

The observation can also be demonstrated with a counting argument.  It takes roughly O(n) lines of
length O(n) to fill a discrete (pixelized) two-dimensional space of size O(n2).  Thus, if we project O(n2)
lines of length O(n) into this space, we can expect that O(n) lines will map to the same line.  Of course,
this argument is really only valid in a discrete setting, which is the setting in which we compute our
image-based visual hulls.

Using the above observation, we amend our basic algorithm in the following way.  When we attempt to
compute the two dimensional line/silhouette intersection, we first check in an “epipolar line cache” data
structure to see if the intersection intervals have already been computed.  If so, we used the cached results.
Otherwise, we compute the line intersections and store the resulting interval list in the line cache.

Epipole

Image

Figure 7.  We determine line cache indices by the farthest intersection of the
epipolar line with the image boundary.  Lines that do not intersect this boundary
need not be cached.
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The only real issue to deal with in this algorithm is how to index the cache.  That is, how do we
determine that two lines are the same?  There are many ways to do this; in our implementation we
compute the intersection of the epipolar line with the farthest image boundary (see Figure 7).  We use this
intersection coordinate as the index to our cache.  This indexing style allows us to vary the performance of
our cache by changing the resolution of our coordinate system.  For example, computing intersections to
the nearest half-pixel gives a larger cache that better represents lines, but may result in fewer cache hits.
Using the nearest double-pixel results in a smaller cache and more hits, but may group lines that are too
dissimilar in the same cache location.

The line-cache algorithm is as follows:

for each pixel p = [x,y,1] in VHULL
initialize VHULL[x][y] = [depthmin, depthmax]

for each silhouette image SILi
for each cache index

initialize CACHEi[index] = EMPTY
endfor
compute fundamental matrix Fi
for each pixel p = [x,y,1] in VHULL

compute epipolar line coefficients Fip
compute line cache index = compute_index(Fip)
if(CACHEi[index] = EMPTY)

trace epipolar line in image SILi
record list of silhouette contour intersection points [pi,k]
CACHEi[index] = [pi,k]

else
[pi,k] = CACHEi[index]

endif
interval_list = []
for each pair of intersection points pi,2l and pi,2l+1

compute depthi,l,min  and depthi,l,max measured w.r.t. VHULL
interval_list = interval_list ∪ [[depthi,l,min, depthi,l,max]]

endfor
VHULL[x][y] = VHULL[x][y] ∩ interval_list
endfor

endfor

Analysis
We will consider a worst case running time for the line-cache algorithm in which all cache lines are
accessed.  The size of each cache is O(n), and for each cache entry a line of length O(n) is traversed,
leading to a total time of O(kn2) spent computing all cache entries.  The algorithm spends time O(km2)
retrieving interval lists from the caches.  Thus, the runtime is O(kn2) if n > m, and O(km2) otherwise.  In
practice, we find that 90% of the cache entries are accessed, so this worst case analysis is applicable.

The line-cache algorithm gains its speed by making some tradeoffs in the quality of the resulting
visual hull.  In addition to the quantization errors from the basic algorithm, the line cache algorithm
introduces errors by mapping slightly different epipolar lines to the same cache location.  In practice, such
errors are small, although they may be noticeable near depth discontinuity edges.

Rendering Image-Based Visual Hulls
The rendering problem is to produce a novel image of the original object as seen from some desired view,
given an image-based visual hull of the object along with its original source views (i.e., the camera pose
and images before segmentation).  Since we have already shown that the visual hull is an approximation
to the object’s true shape, it will generally be impossible to create the exact image of the object from the
new view.  Thus, the goal of our rendering algorithms is to reproduce as closely as possible the true
object’s shape and color with information from the visual hull (shape) and the original camera images
(color).

We are interested in a number of additional sub-goals for our rendering algorithms.  First, they should
be fast enough so that they will be applicable in our dynamic, real-time system.  Second, they should offer
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high quality imagery in the sense that rendered images should be reasonably indistinguishable from the
original camera images.

The inputs to each algorithm are assumed to be an image-based visual hull (n x n pixels), k original
camera images (n x n pixels), and a desired view.  The output is an m x m pixel image as seen from the
desired view.

In all comparisons, we use the synthetic dinosaur images as inputs.  The visual hull is computed from
six 256 x 256 images.  We generate novel renderings from three different viewpoints to exercise the
strengths and weaknesses of the different algorithms.  All six input dinosaur images are shown in Figure
8.

Figure 8.  The six input dinosaur images (textures and silhouettes) used to create
and render the image-based visual hull examples in this paper.

Texture Extrusion
The texture extrusion rendering method requires the image-based visual hull to be computed from the
same viewpoint as one of the original camera images.  In this special case, the pixels in the camera image
are in one-to-one correspondence with the pixels in the visual hull image.  In other words, each list of
occupancy intervals in the visual hull image has a color assigned to it from the corresponding pixel in the
camera image.

This special arrangement suggests a simple rendering technique:  we can draw the occupancy intervals
as seen from the new view, and we can color them with the colors assigned from the camera image. Such
a rendering technique amounts to extruding the two-dimensional color image (or texture) along viewing
rays to create a three-dimensional textured volume.

The basic requirement to use this technique is an ability to render a list of occupancy intervals from
arbitrary viewpoints.  The occupancy intervals are essentially long, thin cones in space.  Calculating their
projected shape exactly in the desired view would be prohibitively expensive for a real-time rendering
algorithm.  However, for viewpoints that are close to the viewpoint of the visual hull, the occupancy
intervals can be approximated by simple line segments.  Drawing these line segments can be done very
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quickly since it is possible calculate the end points of the line segments efficiently.
The line segment endpoints can be incrementally computed using the three-dimensional warping

equation (Equation 1).  Recall that the image-based visual hull data structure stores a list of disparity
values ],,,,[ max,min,max,1min,1 kk δδδδ K  for each pixel ]1,,[ yxp = , much like a Layered Depth Image

[Shade98].  As is done when rendering Layered Depth Images, we exploit the fact that the warping
equation reduces to a simple function of disparity for a fixed pixel p :

eax δδ +=&)(2 , (2)

where pa 1
1

2 PP−=  and )( 21
1

2 CCe && −= −P , which are constant for a given p .

While a Layered Depth Image only stores depth values for front-facing surfaces, we store pairs of
depth values that delimit occupied regions of space.  Thus, to calculate the endpoints for the line
segments, we evaulate this simple expression for each disparity pair ),( maxmin δδ  in the occupancy

interval list.  Given the endpoints, we draw the line segments using a fast digital line drawing routine.
The complete texture extrusion algorithm is as follows:

compute H = P2
-1P1

compute e = P2
-1(C1 – C 2)

for each pixel p = [x,y,1] in VHULL
compute a = H p
for each interval [dl,min, dl,max] in VHULL[ x][ y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 2)
draw_line( xl,min, yl,min, xl,max, yl,max, VHULL[ x][ y].color)

endfor
endfor

Analysis
The texture extrusion algorithm runs in time complexity O(n2m), as it draws a line of length O(m) for
each of n2 interval lists in the visual hull data structure.  Although this may not seem fast, in practice it is
fast enough for real-time rendering (~ 20 frames/sec).  Texture extrusion also produces reasonably good
looking images for viewpoints close to the viewpoint of the visual hull.  Figure 9a demonstrates a novel
viewpoint close to the original one.  The visual hull in this case was computed from the viewpoint of the
upper left-hand image in Figure 8.

Texture extrusion fails, however, when the desired viewpoint is far from the viewpoint at which the
visual hull was sampled.  This failure is primarily due to two factors.  First, when the viewpoint is moved
too far to one side, the extruded colors no longer approximate the true color of the object (see Figure 9b).
This problem is unavoidable, as a single camera image can not see the entire object at one time.  Second,
when the viewpoint is moved very close to the object, the approximation of drawing line segments for the
occupancy intervals is no longer valid and the images “explode” (see Figure 9c).

(a) (b) (c)
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Figure 9.  Images rendered from three novel viewpoints using texture extrusion.

Texture Projection
The texture projection algorithm extends the texture extrusion algorithm to handle a wider range of
viewpoints.  It corrects the second viewpoint problem, that of incorrect colors for distant viewpoints, by
combining colors from multiple textures into a single rendering.

Texture projection is a simple extension to the texture extrusion algorithm.  In texture extrusion, a
single texture is essentially projected through the volume of the visual hull.  Regions of the visual hull that
are seen from the texture’s viewpoint are colored correctly, while other regions are colored incorrectly.  In
texture projection, we project multiple textures onto the surface of the visual hull.  Regions of the visual
hull that are not seen by one texture can be colored with information from another texture.

We implement texture projection by a small modification to the texture extrusion algorithm.  Instead
of drawing each line segment with a constant color, we projectively texture map the line segment with
colors from another texture.  The projective texture mapping is done using the trilinear tensor equations.
The tensor between the three views—the visual hull’s view, the texture’s view, and the desired view—
allow us to compute texture coordinates in the texture’s view given coordinates in the visual hull’s view

and the desired view.  Pseudocode for the algorithm is give below.  In the pseudocode [1P , 1C& ] refers to

the visual hull’s view, [ 2P , 2C& ] denotes the desired view, and [kP , kC& ] is one of the texture views.

compute H = P2
-1P1

compute e = P2
-1(C1 – C 2)

for each pixel p = [x,y,1] in VHULL
compute a = H p
for each interval [dl,min, dl,max] in VHULL[ x][ y]

compute line segment endpoints [xl,min, yl,min] = a + dl,mine
and [xl,max, yl,max] = a + dl,maxe using the incremental
three-dimensional warp equation (Equation 1)

k = select_texture( x, y, l)
draw_line_proj_tex( x, y, xl,min, yl,min, xl,max, yl,max, P1, C1, P2, C2, Pk, Ck)

endfor
endfor

The auxiliary function draw_line_proj_tex implements projective texture mapping using the

trilinear tensor computed from [ 1P , 1C& ], [ 2P , 2C& ], and [ kP , kC& ].  The function select_texture  selects

the texture to be mapped to the indicated visual hull interval.  Many mappings are possible; we
implemented a particularly simple strategy in our real-time implementation.  We choose the texture with
the minimum angle between the visual hull interval and the texture’s viewpoint.

Analysis
The texture projection algorithm has the same asymptotic running time as the texture extrusion algorithm,
O(n2m).  However, because of the cost of the texture mapping, the hidden constant is much larger, which
makes the algorithm slower in practice.  The quality of the images is generally better, and the algorithm is
useful for larger changes in the viewpoint (see Figures 10a and 10b).  However, texture projection does
suffer from the same zooming problem as the texture extrusion algorithm (see Figure 10c).
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(a) (b) (c)

Figure 10.  Images rendered from three novel viewpoints using texture projection.

Ray-Casting
Both the texture extrusion and the texture projection algorithms suffer from the same problem with
viewpoints that are too close to the object:  the image tends to break apart.  This problem is directly
related to the fact that both algorithms are forward mapped.  They transform points from the visual hull to
pixels in the desired view, and they may miss pixels along the way.  Similar problems exist in other areas
of computer graphics, and they are typically solved by using a backward mapped algorithm.  In such an
algorithm, pixels in the desired view are transformed to points in the visual hull.  In this manner, every
pixel in the desired view can be mapped to some point in the visual hull and colored appropriately.

To implement a backward mapped algorithm for rendering visual hulls, we would like to know for
every pixel in the desired view whether or not the ray through that pixel intersects the visual hull.  To
compute this, we can cast a ray for every pixel in the desired view and test it for intersections with the k
silhouette cones from the k cameras.  Or, in other words, we can compute an image-based visual hull from
the desired viewpoint.

An image-based visual hull computed from the desired viewpoint effectively gives the shape of the
visual hull in the form of a depth image.  However, we would like to have the proper colors along the with
shape.  We can compute the colors using a bit of additional computation to back project the visual hull to
the k camera images and sample the colors.  The complete algorithm is as follows:

compute VHULLd from view [Pd, Cd]

for each pixel p = [x, y, 1] in VHULLd
extract depthmin from VHULLd[x][y]
for each camera image CAMk

backproject p to pk = [xk, yk, 1] using Equation 1
colork = CAMk[xk][yk]

endfor
VHULLd[x][y] = weighted_avg(colork)

endfor

The function weighted_avg simply computes some weighted average of the colors sampled from the k
camera images.  A color weight may be 0 if the camera makes no contribution to the color (e.g., it is
occluded) or 1 if the camera contributes all the color (e.g., a winner-take-all strategy).  In some cases,
calculating the weights may be non-trivial.  We use the winner-take-all approach in our implementation.
That is, we assign a "best" camera a weight of 1 and assign all other cameras 0 weights.  We define the
best camera as the camera whose viewing ray is closest to that of the viewing direction.  This strategy for
assigning camera weights ignores the occlusion problem, and cameras may be selected which actually do
not see the pixel to be colored.
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Analysis
Due to its backward mapped nature, the ray-casting algorithm has a complexity fundamentally different
than the previous two rendering algorithms.  The running time is O(km2), as the visual hull calculation is
O(km2), and the pixel coloring loop backprojects each of m2 pixels k times.  This running time is
noteworthy as it is proportional to the size of the desired image and independent of the size of the camera
images (for m > n).  For m = n, the algorithm is n-squared, which compares favorably to the n-cubed
forward mapped algorithms.  However, the hidden constant is large, so this advantage is not realized at
typical values of n.

This algorithm is slower than the forward mapped algorithms, but potentially produces images of
higher quality (image quality and speed depend on the choice of color weighting).  However, since the
runtime of this algorithm includes the explicit visual hull calculation, the comparison is slightly unfair.
Also, because it is backward mapped, problems with close range viewpoints are avoided.   Ray-casting
results are shown in Figures 11a, 11b, and 11c.

(a) (b) (c)

Figure 11.  Images rendered from three novel viewpoints using ray-casting.

Conclusion
We have introduced the image-based visual hull as an approximate object representation for real-time
dynamic acquired rendering systems.  The needs of these systems require algorithms that allow for both
the analysis of video inputs and the synthesis of rendered outputs to occur in real-time.  Our algorithms
for creating and rendering image-based visual hulls satisfy these requirements.

We have shown that the visual hull is a reasonable object representation to use in terms of accuracy
and robustness.  It provides a reasonable approximation to object shape in most cases, and requires only
simple silhouette segmentation for acquisition.

We have demonstrated an efficient real-time algorithm for creating visual hulls.  First, we exploit
epipolar geometry to reduce three-dimensional volume intersections to simpler two-dimensional line
intersections.  Then, we use a line-caching approach to reuse previously computed results giving a further
increase in performance.

Finally, we have presented a number of algorithms for rendering views of image-based visual hulls
from novel viewpoints.   The texture extrusion algorithm is fast but does not make use of all available
color information.  The texture projection algorithm, while slower, does utilize color information from all
possible cameras.  Both algorithms, however, suffer from a problem with viewpoints that are too close to
the object.  This problem is remedied by the ray-casting algorithm, which generates an image directly
from the visual hull calculation.
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q Rendering from LDI

• Incremental in LDI X and Y 
• Guaranteed to be in back-to-front order



SIGGRAPH 2000 Course #35: Image-Based 
Modeling, Rendering, and Lighting

July 25, 2000

Michael F. Cohen: "Image or Object?" 5-32
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q Rendering from LDI

• Incremental in LDI X and Y 
• Guaranteed to be in back-to-front order
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Tiled LDIs
q Multiresolution
q Directionally dependent

View Dependent Surfaces



SIGGRAPH 2000 Course #35: Image-Based 
Modeling, Rendering, and Lighting

July 25, 2000

Michael F. Cohen: "Image or Object?" 5-34

Summary
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q 2.5D: View Dependent Models
q 2D: Image
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Abstract

In this paper we present a set of efficient image based rendering
methods capable of rendering multiple frames per second on a PC.
The first method warps Sprites with Depth representing smooth sur-
faces without the gaps found in other techniques. A second method
for more general scenes performs warping from an intermediate rep-
resentation called a Layered Depth Image (LDI). An LDI is a view of
the scene from a single input camera view, but with multiple pixels
along each line of sight. The size of the representation grows only
linearly with the observed depth complexity in the scene. Moreover,
because the LDI data are represented in a single image coordinate
system, McMillan’s warp ordering algorithm can be successfully
adapted. As a result, pixels are drawn in the output image in back-
to-front order. No z-buffer is required, so alpha-compositing can
be done efficiently without depth sorting. This makes splatting an
efficient solution to the resampling problem.

1 Introduction

Image based rendering (IBR) techniques have been proposed as an
efficient way of generating novel views of real and synthetic objects.
With traditional rendering techniques, the time required to render an
image increases with the geometric complexity of the scene. The
rendering time also grows as the requested shading computations
(such as those requiring global illumination solutions) become more
ambitious.

The most familiar IBR method is texture mapping. An image is
remapped onto a surface residing in a three-dimensional scene. Tra-
ditional texture mapping exhibits two serious limitations. First, the
pixelization of the texture map and that of the final image may be
vastly different. The aliasing of the classic infinite checkerboard
floor is a clear illustration of the problems this mismatch can cre-
ate. Secondly, texture mapping speed is still limited by the surface
the texture is applied to. Thus it would be very difficult to create
a texture mapped tree containing thousands of leaves that exhibits
appropriate parallax as the viewpoint changes.

Two extensions of the texture mapping model have recently been
presented in the computer graphics literature that address these two
difficulties. The first is a generalization ofsprites. Once a complex
scene is rendered from a particular point of view, the image that
would be created from a nearby point of view will likely be similar.
In this case, the original 2D image, orsprite, can be slightly altered
by a 2D affine or projective transformation to approximate the view
from the new camera position [30, 26, 14].

The sprite approximation’s fidelity to the correct new view is highly
dependent on the geometry being represented. In particular, the

errors increase with the amount of depth variation in the real part
of the scene captured by the sprite. The amount of virtual camera
motion away from the point of view of sprite creation also increases
the error. Errors decrease with the distance of the geometry from
the virtual camera.

The second recent extension is to add depth information to an image
to produce adepth imageand to then use the optical flow that would
be induced by a camera shift to warp the scene into an approximation
of the new view [2, 21].

Each of these methods has its limitations. Simple sprite warping
cannot produce theparallax induced when parts of the scenes have
sizable differences in distance from the camera. Flowing a depth
image pixel by pixel, on the other hand, can provide proper parallax
but will result in gaps in the image either due to visibility changes
when some portion of the scene become unoccluded, or when a
surface is magnified in the new view.

Some solutions have been proposed to the latter problem. Laveau
and Faugeras suggest performing a backwards mapping from the
output sample location to the input image [13]. This is an expensive
operation that requires some amount of searching in the input image.
Another possible solution is to think of the input image as a mesh
of micro-polygons, and to scan-convert these polygons in the output
image. This is an expensive operation, as it requires a polygon
scan-convert setup for each input pixel [17], an operation we would
prefer to avoid especially in the absence of specialized rendering
hardware. Alternatively one could use multiple input images from
different viewpoints. However, if one usesn input images, one
effectively multiplies the size of the scene description byn, and the
rendering cost increases accordingly.

This paper introduces two new extensions to overcome both of these
limitations. The first extension is primarily applicable to smoothly
varying surfaces, while the second is useful primarily for very com-
plex geometries. Each method provides efficient image based ren-
dering capable of producing multiple frames per second on a PC.

In the case of sprites representing smoothly varying surfaces, we
introduce an algorithm for renderingSprites with Depth. The algo-
rithm first forward maps (i.e., warps) the depth values themselves
and then uses this information to add parallax corrections to a stan-
dard sprite renderer.

For more complex geometries, we introduce theLayered Depth Im-
age, or LDI, that contains potentially multiple depth pixels at each
discrete location in the image. Instead of a 2D array of depth pixels
(a pixel with associated depth information), we store a 2D array of
layered depth pixels. A layered depth pixel stores a set of depth
pixels along one line of sight sorted in front to back order. The
front element in the layered depth pixel samples the first surface
seen along that line of sight; the next pixel in the layered depth pixel
samples the next surface seen along that line of sight, etc. When
rendering from an LDI, the requested view can move away from the
original LDI view and expose surfaces that were not visible in the
first layer. The previously occluded regions may still be rendered
from data stored in some later layer of a layered depth pixel.

There are many advantages to this representation. The size of the
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Figure 1 Different image based primitives can serve well
depending on distance from the camera

representation grows linearly only with the depth complexity of the
image. Moreover, because the LDI data are represented in a single
image coordinate system, McMillan’s ordering algorithm [20] can
be successfully applied. As a result, pixels are drawn in the output
image in back to front order allowing proper alpha blending without
depth sorting. No z-buffer is required, so alpha-compositing can be
done efficiently without explicit depth sorting. This makes splatting
an efficient solution to the reconstruction problem.

Sprites with Depth and Layered Depth Images provide us with two
new image based primitives that can be used in combination with
traditional ones. Figure 1 depicts five types of primitives we may
wish to use. The camera at the center of the frustum indicates where
the image based primitives were generated from. The viewing vol-
ume indicates the range one wishes to allow the camera to move
while still re-using these image based primitives.

The choice of which type of image-based or geometric primitive
to use for each scene element is a function of its distance, its in-
ternal depth variation relative to the camera, as well as its internal
geometric complexity. For scene elements at a great distance from
the camera one might simply generate an environment map. The
environment map is invariant to translation and simply translates
as a whole on the screen based on the rotation of the camera. At
a somewhat closer range, and for geometrically planar elements,
traditional planar sprites (orimage caches) may be used [30, 26].
The assumption here is that although the part of the scene depicted
in the sprite may display some parallax relative to the background
environment map and other sprites, it will not need to depict any
parallax within the sprite itself. Yet closer to the camera, for ele-
ments with smoothly varying depth, Sprites with Depth are capable
of displaying internal parallax but cannot deal with disocclusions

due to image flow that may arise in more complex geometric scene
elements. Layered Depth Images deal with both parallax and dis-
occlusions and are thus useful for objects near the camera that also
contain complex geometries that will exhibit considerable parallax.
Finally, traditional polygon rendering may need to be used for im-
mediate foreground objects.

In the sections that follow, we will concentrate on describing the
data structures and algorithms for representing and rapidly rendering
Sprites with Depth and Layered Depth Images.

2 Previous Work

Over the past few years, there have been many papers on image based
rendering. In [16], Levoy and Whitted discuss rendering point data.
Chen and Williams presented the idea of rendering from images [2].
Laveau and Faugeras discuss IBR using a backwards map [13].
McMillan and Bishop discuss IBR using cylindrical views [21].
Seitz and Dyer describe a system that allows a user to correctly
model view transforms in a user controlled image morphing sys-
tem [28]. In a slightly different direction, Levoy and Hanrahan [15]
and Gortleret al.[7] describe IBR methods using a large number of
input images to sample the high dimensional radiance function.

Max uses a representation similar to an LDI [18], but for a purpose
quite different than ours; his purpose is high quality anti-aliasing,
while our goal is efficiency. Max reports his rendering time as
5 minutes per frame while our goal is multiple frames per second.
Max warps fromn input LDIs with different camera information; the
multiple depth layers serve to represent the high depth complexity
of trees. We warp from a single LDI, so that the warping can be done
most efficiently. For output, Max warps to an LDI. This is done so
that, in conjunction with an A-buffer, high quality, but somewhat
expensive, anti-aliasing of the output picture can be performed.

Mark et al.[17] and Darsaet al.[4] create triangulated depth maps
from input images with per-pixel depth. Darsa concentrates on
limiting the number of triangles by looking for depth coherence
across regions of pixels. This triangle mesh is then rendered tra-
ditionally taking advantage of graphics hardware pipelines. Mark
et al.describe the use of multiple input images as well. In this aspect
of their work, specific triangles are given lowered priority if there
is a large discontinuity in depth across neighboring pixels. In this
case, if another image fills in the same area with a triangle of higher
priority, it is used instead. This helps deal with disocclusions.

Shadeet al.[30] and Shaufleret al.[26] render complex portions
of a scene such as a tree onto alpha matted billboard-like sprites

Layered
Depth
Image
Camera

Output
Camera

Epipolar Point

Figure 2 Back to front output ordering



and then reuse them as textures in subsequent frames. Lengyel and
Snyder [14] extend this work by warping sprites by a best fit affine
transformation based on a set of sample points in the underlying
3D model. These affine transforms are allowed to vary in time as
the position and/or color of the sample points change. Hardware
considerations for such system are discussed in [31].

Horryet al.[10] describe a very simple sprite-like system in which a
user interactively indicates planes in an image that represent areas in
a given image. Thus, from a single input image and some user sup-
plied information, they can warp an image and provide approximate
three dimensional cues about the scene.

The system presented here relies heavily on McMillan’s ordering
algorithm [20, 19, 21]. Using input and output camera information,
a warping order is computed such that pixels that map to the same
location in the output image are guaranteed to arrive in back to front
order.

In McMillan’s work, the depth order is computed by first finding
the projection of the output camera’s location in the input camera’s
image plane, that is, the intersection of the line joining the two
camera locations with the input camera’s image plane. The line
joining the two camera locations is called the epipolar line, and
the intersection with the image plane is called an epipolar point
[6] (see Figure 1). The input image is then split horizontally and
vertically at the epipolar point, generally creating 4 image quadrants.
(If the epipolar point lies off the image plane, we may have only 2
or 1 regions.) The pixels in each of the quadrants are processed
in a different order. Depending on whether the output camera is
in front of or behind the input camera, the pixels in each quadrant
are processed either inward towards the epipolar point or outwards
away from it. In other words, one of the quadrants is processed left
to right, top to bottom, another is processed left to right, bottom to
top, etc. McMillan discusses in detail the various special cases that
arise and proves that this ordering is guaranteed to produce depth
ordered output [19].

When warping from an LDI, there is effectively only one input cam-
era view. Therefore one can use the ordering algorithm to order the
layered depth pixels visited. Within each layered depth pixel, the
layers are processed in back to front order. The formal proof of [19]
applies, and the ordering algorithm is guaranteed to work.

3 Rendering Sprites

Sprites are texture maps or images with alphas (transparent pixels)
rendered onto planar surfaces. They can be used either for locally
caching the results of slower rendering and then generating new
views by warping [30, 26, 31, 14], or they can be used directly as
drawing primitives (as in video games).

The texture map associated with a sprite can be computed by simply
choosing a 3D viewing matrix and projecting some portion of the
scene onto the image plane. In practice, a view associated with the
current or expected viewpoint is a good choice. A 3D plane equation
can also be computed for the sprite, e.g., by fitting a 3D plane to the
z-buffer values associated with the sprite pixels. Below, we derive
the equations for the 2D perspective mapping between a sprite and
its novel view. This is useful both for implementing a backward
mapping algorithm, and lays the foundation for our Sprites with
Depth rendering algorithm.

A sprite consists of an alpha-matted imageI1(x1, y1), a 4×4 camera
matrix C1 which maps from 3D world coordinates (X, Y, Z, 1) into

the sprite’s coordinates (x1, y1, z1, 1),
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 , (1)

(z1 is the z-buffer value), and a plane equation. This plane equation
can either be specified in world coordinates,AX+BY+CZ+D = 0,
or it can be specified in the sprite’s coordinate system,ax1 + by1 +
cz1 + d = 0. In the former case, we can form a new camera matrix
Ĉ1 by replacing the third row ofC1 with the row [A B C D], while
in the latter, we can computêC1 = PC1, where

P =




1 0 0 0
0 1 0 0
a b c d
0 0 1 0




(note that [A B C D] = [a b c d]C1).

In either case, we can write the modified projection equation as
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whered1 = 0 for pixels on the plane. For pixels off the plane,d1 is
the scaled perpendicular distance to the plane (the scale factor is 1
if A2 + B2 + C2 = 1) divided by the pixel to camera distancew1.

Given such a sprite, how do we compute the 2D transformation
associated with a novel vieŵC2? The mapping between pixels
(x1, y1, d1, 1) in the sprite and pixels (w2x2, w2y2, w2d2, w2) in the
output camera’s image is given by the transfer matrixT1,2 = Ĉ2·Ĉ−1

1 .

For a flat sprite (d1 = 0), the transfer equation can be written as

w2x2

w2y2
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 = H1,2


x1

y1

1


 (3)

whereH1,2 is the 2D planar perspective transformation (homogra-
phy) obtained by dropping the third row and column ofT1,2. The
coordinates (x2, y2) obtained after dividing outw2 index a pixel ad-
dress in the output camera’s image. Efficient backward mapping
techniques exist for performing the 2D perspective warp [8, 34], or
texture mapping hardware can be used.

3.1 Sprites with Depth

The descriptive power (realism) of sprites can be greatly enhanced
by adding an out-of-plane displacement componentd1 at each pixel
in the sprite.1 Unfortunately, such a representation can no longer be
rendered directly using a backward mapping algorithm.

Using the same notation as before, we see that the transfer equation
is now 

w2x2

w2y2

w2


 = H1,2


x1

y1
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 + d1e1,2, (4)

1The d1 values can be stored as a separate image, say as 8-bit signed
depths. The full precision of a traditional z-buffer is not required, since
these depths are used only to compute local parallax, and not to perform
z-buffer merging of primitives. Furthermore, thed1 image could be stored
at a lower resolution than the color image, if desired.



wheree1,2 is calledepipole[6, 25, 11], and is obtained from the third
column ofT1,2.

Equation (4) can be used toforward mappixels from a sprite to a
new view. Unfortunately, this entails the usual problems associated
with forward mapping, e.g., the necessity to fill gaps or to use larger
splatting kernels, and the difficulty in achieving proper resampling.
Notice, however, that Equation (4) could be used to perform a back-
ward mapping step by interchanging the 1 and 2 indices, if only we
knew the displacementsd2 in the output camera’s coordinate frame.

A solution to this problem is to firstforward mapthe displacements
d1, and to then use Equation (4) to perform a backward mapping
step with the new (view-based) displacements. While this may at
first appear to be no faster or more accurate than simply forward
warping the color values, it does have some significant advantages.

First, small errors in displacement map warping will not be as ev-
ident as errors in the sprite image warping, at least if the displace-
ment map is smoothly varying (in practice, the shape of a simple
surface often varies more smoothly than its photometry). If bilinear
or higher order filtering is used in the final color (backward) re-
sampling, this two-stage warping will have much lower errors than
forward mapping the colors directly with an inaccurate forward map.
We can therefore use a quick single-pixel splat algorithm followed
by a quick hole filling, or alternatively, use a simple 2× 2 splat.

The second main advantage is that we can design the forward warp-
ing step to have a simpler form by factoring out the planar perspective
warp. Notice that we can rewrite Equation (4) as

w2x2

w2y2

w2


 = H1,2


x3

y3

1


 , (5)

with 
w3x3
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1


 + d1e

∗
1,2, (6)

wheree∗
1,2 = H−1

1,2 e1,2. This suggests that Sprite with Depth rendering
can be implemented by first shifting pixels by their local parallax,
filling any resulting gaps, and then applying a global homography
(planar perspective warp). This has the advantage that it can handle
large changes in view (e.g., large zooms) with only a small amount
of gap filling (since gaps arise only in the first step, and are due to
variations in displacement).

Our novel two-step rendering algorithm thus proceeds in two stages:

1. forward map the displacement mapd1(x1, y1), using only the
parallax component given in Equation (6) to obtaind3(x3, y3);

2a. backward map the resulting warped displacementsd3(x3, y3)
using Equation (5) to obtaind2(x2, y2) (the displacements in
the new camera view);

2b. backward map the original sprite colors, using both the ho-
mographyH2,1 and the new parallaxd2 as in Equation (4)
(with the 1 and 2 indices interchanged), to obtain the image
corresponding to cameraC2.

The last two operations can be combined into a single raster scan
over the output image, avoiding the need to perspective warpd3

into d2. More precisely, for each output pixel (x2, y2), we compute
(x3, y3) such that 

w3x3
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 = H2,1
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 (7)

to compute where to look up the displacementd3(x3, y3), and form
the final address of the source sprite pixel using


w1x1

w1y1

w1


 =


w3x3

w3y3

w3


 + d3(x3, y3)e2,1. (8)

We can obtain a quicker, but less accurate, algorithm by omitting
the first step, i.e., the pure parallax warp fromd1 to d3. If we as-
sume the depth at a pixel before and after the warp will not change
significantly, we can used1 instead ofd3 in Equation (8). This still
gives a useful illusion of 3-D parallax, but is only valid for a much
smaller range of viewing motions (see Figure 3).

Another variant on this algorithm, which uses somewhat more stor-
age but fewer computations, is to compute a 2-D displacement field
in the first pass,u3(x3, y3) = x1 − x3, v3(x3, y3) = y1 − y3, where
(x3, y3) is computed using the pure parallax transform in Equation
(6). In the second pass, the final pixel address in the sprite is com-
puted using

[
x1

y1

]
=

[
x3

y3

]
+

[
u3(x3, y3)
v3(x3, y3)

]
, (9)

where this time (x3, y3) is computed using the transform given in
Equation (7).

We can make the pure parallax transformation (6) faster by avoiding
the per-pixel division required after adding homogeneous coordi-
nates. One way to do this is to approximate the parallax transforma-
tion by first moving the epipole to infinity (setting its third compo-
nent to 0). This is equivalent to having anaffineparallax component
(all points move in the same direction, instead of towards a common
vanishing point). In practice, we find that this still provides a very
compelling illusion of 3D shape.

Figure 3 shows some of the steps in our two-pass warping algorithm.
Figures 3a and 3f show the original sprite (color) image and the depth
map. Figure 3b shows the sprite warped with no parallax. Figures
3g, 3h, and 3i shows the depth map forward warped with only pure
parallax, only the perspective projection, and both. Figure 3c shows
the backward warp using the incorrect depth mapd1 (note how dark
“background” colors are mapped onto the “bump”), whereas Figure
3d shows the backward warp using the correct depth mapd3. The
white pixels near the right hand edge are a result of using only a
single step of gap filling. Using three steps results in the better
quality image shown in Figure 3e. Gaps also do not appear for a
less quickly slantingd maps, such as the pyramid shown in Figure
3j.

The rendering times for the 256×256 image shown in Figure 3 on a
300 MHz Pentium II are as follows. Using bilinear pixel sampling,
the frame rates are 30 Hz for no z-parallax, 21 Hz for “crude” one-
pass warping (no forward warping ofd1 values), and 16 Hz for
two-pass warping. Using nearest-neighbor resampling, the frame
rates go up to 47 Hz, 24 Hz, and 20 Hz, respectively.

3.2 Recovering sprites from image sequences

While sprites and sprites with depth can be generated using com-
puter graphics techniques, they can also be extracted from image
sequences using computer vision techniques. To do this, we use a
layered motion estimation algorithm [32, 1], which simultaneously
segments the sequence into coherently moving regions, and com-
putes a parametric motion estimate (planar perspective transforma-
tion) for each layer. To convert the recovered layers into sprites, we
need to determine the plane equation associated with each region.
We do this by tracking features from frame to frame and applying



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 Plane with bump rendering example: (a) input color (sprite) imageI1(x1, y1); (b) sprite warped by homography only
(no parallax); (c) sprite warped by homography and crude parallax (d1); (d) sprite warped by homography and true parallax (d2);
(e) with gap fill width set to 3; (f) input depth mapd1(x1, y1); (g) pure parallax warped depth mapd3(x3, y3); (h) forward warped
depth mapd2(x2, y2); (i) forward warped depth map without parallax correction; (j) sprite with “pyramid” depth map.

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 4 Results of sprite extraction from image sequence: (a) third of five images; (b) initial segmentation into six layers;
(c) recovered depth map; (d) the five layer sprites; (e) residual depth image for fifth layer; (f) re-synthesized third image (note
extended field of view); (g) novel view without residual depth; (h) novel view with residual depth (note the “rounding” of the
people).
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Figure 5 Layered Depth Image

a standard structure from motion algorithm to recover the camera
parameters (viewing matrices) for each frame [6]. Tracking several
points on each sprite enables us to reconstruct their 3D positions,
and hence to estimate their 3D plane equations [1]. Once the sprite
pixel assignment have been recovered, we run a traditional stereo
algorithm to recover the out-of-plane displacements.

The results of applying the layered motion estimation algorithm to
the first five images from a 40-image stereo dataset2 are shown in
Figure 4. Figure 4(a) shows the middle input image, Figure 4(b)
shows the initial pixel assignment to layers, Figure 4(c) shows the
recovered depth map, and Figure 4(e) shows the residual depth map
for layer 5. Figure 4(d) shows the recovered sprites. Figure 4(f)
shows the middle image re-synthesized from these sprites, while
Figures 4(g–h) show the same sprite collection seen from a novel
viewpoint (well outside the range of the original views), both with
and without residual depth-based correction (parallax). The gaps
visible in Figures 4(c) and 4(f) lieoutsidethe area corresponding
to the middle image, where the appropriate parts of the background
sprites could not be seen.

4 Layered Depth Images

While the use of sprites and Sprites with Depth provides a fast means
to warp planar or smoothly varying surfaces, more general scenes
require the ability to handle more general disocclusions and large
amounts of parallax as the viewpoint moves. These needs have led
to the development of Layered Depth Images (LDI).

Like a sprite with depth, pixels contain depth values along with their
colors (i.e., adepth pixel). In addition, a Layered Depth Image (Fig-
ure 5) contains potentially multiple depth pixels per pixel location.
The farther depth pixels, which are occluded from the LDI center,
will act to fill in the disocclusions that occur as the viewpoint moves
away from the center.

The structure of an LDI is summarized by the following conceptual
representation:

DepthPixel =
ColorRGBA: 32 bit integer
Z: 20 bit integer
SplatIndex: 11 bit integer

LayeredDepthPixel =
NumLayers: integer
Layers[0..numlayers-1]:array of DepthPixel

2Courtesy of Dayton Taylor.

LayeredDepthImage =
Camera: camera
Pixels[0..xres-1,0..yres-1]:array of LayeredDepthPixel

The layered depth image contains camera information plus an array
of sizexresby yreslayered depth pixels. In addition to image data,
each layered depth pixel has an integer indicating how many valid
depth pixels are contained in that pixel. The data contained in the
depth pixel includes the color, the depth of the object seen at that
pixel, plus an index into a table that will be used to calculate a splat
size for reconstruction. This index is composed from a combination
of the normal of the object seen and the distance from the LDI
camera.

In practice, we implement Layered Depth Images in two ways.
When creating layered depth images, it is important to be able to
efficiently insert and delete layered depth pixels, so theLayersarray
in theLayeredDepthPixelstructure is implemented as a linked list.
When rendering, it is important to maintain spatial locality of depth
pixels in order to most effectively take advantage of the cache in
the CPU [12]. In Section 5.1 we discuss the compact render-time
version of layered depth images.

There are a variety of ways to generate an LDI. Given a synthetic
scene, we could use multiple images from nearby points of view for
which depth information is available at each pixel. This informa-
tion can be gathered from a standard ray tracer that returns depth
per pixel or from a scan conversion and z-buffer algorithm where
the z-buffer is also returned. Alternatively, we could use a ray tracer
to sample an environment in a less regular way and then store com-
puted ray intersections in the LDI structure. Given multiple real
images, we can turn to computer vision techniques that can infer
pixel correspondence and thus deduce depth values per pixel. We
will demonstrate results from each of these three methods.

4.1 LDIs from Multiple Depth Images

We can construct an LDI by warpingn depth images into a com-
mon camera view. For example the depth imagesC2 and C3 in
Figure 5 can be warped to the camera frame defined by the LDI (C1

in figure 5).3 If, during the warp from the input camera to the LDI
camera, two or more pixels map to the same layered depth pixel,
their Z values are compared. If the Z values differ by more than
a preset epsilon, a new layer is added to that layered depth pixel
for each distinct Z value (i.e.,NumLayersis incremented and a new
depth pixel is added), otherwise (e.g., depth pixelsc andd in fig-
ure 5), the values are averaged resulting in a single depth pixel. This
preprocessing is similar to the rendering described by Max [18].
This construction of the layered depth image is effectively decou-
pled from the final rendering of images from desired viewpoints.
Thus, the LDI construction does not need to run at multiple frames
per second to allow interactive camera motion.

4.2 LDIs from a Modified Ray Tracer

By construction, a Layered Depth Image reconstructs images of a
scene well from the center of projection of the LDI (we simply
display the nearest depth pixels). The quality of the reconstruction
from another viewpoint will depend on how closely the distribution
of depth pixels in the LDI, when warped to the new viewpoint,
corresponds to the pixel density in the new image. Two common
events that occur are: (1) disocclusions as the viewpoint changes,

3Any arbitrary single coordinate system can be specified here. However,
we have found it best to use one of the original camera coordinate systems.
This results in fewer pixels needing to be resampled twice; once in the LDI
construction, and once in the rendering process.



Figure 6 An LDI consists of the 90 degree frustum exiting
one side of a cube. The cube represents the region of interest
in which the viewer will be able to move.

and (2) surfaces that grow in terms of screen space. For example,
when a surface is edge on to the LDI, it covers no area. Later, it may
face the new viewpoint and thus cover some screen space.

When using a ray tracer, we have the freedom to sample the scene
with any distribution of rays we desire. We could simply allow
the rays emanating from the center of the LDI to pierce surfaces,
recording each hit along the way (up to some maximum). This would
solve the disocclusion problem but would not effectively sample
surfaces edge on to the LDI.

What set of rays should we trace to sample the scene, to best ap-
proximate the distribution of rays from all possible viewpoints we
are interested in? For simplicity, we have chosen to use a cubical
region of empty space surrounding the LDI center to represent the
region that the viewer is able to move in. Each face of the viewing
cube defines a 90 degree frustum which we will use to define a single
LDI (Figure 6). The six faces of the viewing cube thus cover all of
space. For the following discussion we will refer to a single LDI.

Each ray in free space has four coordinates, two for position and two
for direction. Since all rays of interest intersect the cube faces, we
will choose the outward intersection to parameterize the position of
the ray. Direction is parameterized by two angles.

Given noa priori knowledge of the geometry in the scene, we as-
sume that every ray intersection the cube is equally important. To
achieve a uniform density of rays we sample the positional coor-
dinates uniformly. A uniform distribution over the hemisphere of
directions requires that the probability of choosing a direction is pro-
portional to theprojectedarea in that direction. Thus, the direction
is weighted by the cosine of the angle off the normal to the cube
face.

Choosing a cosine weighted direction over a hemisphere can be
accomplished by uniformly sampling the unit disk formed by the
base of the hemisphere to get two coordinates of the ray direction,
sayx andy if the z-axis is normal to the disk. The third coordinate
is chosen to give a unit length (z =

√
1− x2 − y2). We make the

selection within the disk by first selecting a point in the unit square,
then applying a measure preserving mapping [23] that maps the unit
square to the unit disk.

Given this desired distribution of rays, there are a variety of ways to
perform the sampling:

Uniform . A straightforward stochastic method would take as input
the number of rays to cast. Then, for each ray it would choose an
origin on the cube face and a direction from the cosine distribution

Figure 7 Intersections from sampling rays A and B are added
to the same layered depth pixel.

and cast the ray into the scene. There are two problems with this
simple scheme. First, suchwhite noisedistributions tend to form
unwanted clumps. Second, since there is no coherence between
rays, complex scenes require considerable memory thrashing since
rays will access the database in a random way [24]. The model
of the chestnut tree seen in the color images was too complex to
sample with a pure stochastic method on a machine with 320MB of
memory.

Stratified Stochastic. To improve the coherence and distribution of
rays, we employ a stratified scheme. In this method, we divide the
4D space of rays uniformly into a grid ofN × N × N × N strata.
For each stratum, we castM rays. Enough coherence exists within
a stratum that swapping of the data set is alleviated. Typical values
for N andM are 32 and 16, generating approximately 16 million
rays per cube face.

Once a ray is chosen, we cast it into the scene. If it hits an object, and
that object lies in the LDI’s frustum, we reproject the intersection
into the LDI, as depicted in Figure 7, to determine which layered
depth pixel should receive the sample. If the new sample is within an
epsilon tolerance in depth of an existing depth pixel, the color of the
new sample is averaged with the existing depth pixel. Otherwise,
the color, normal, and distance to the sample create a new depth
pixel that is inserted into the Layered Depth Pixel.

4.3 LDIs from Real Images

The dinosaur model in Figure 13 is constructed from 21 photographs
of the object undergoing a 360 degree rotation on a computer-
controlled calibrated turntable. An adaptation of Seitz and Dyer’s
voxel coloring algorithm [29] is used to obtain the LDI represen-
tation directly from the input images. The regular voxelization of
Seitz and Dyer is replaced by a view-centered voxelization similar
to the LDI structure. The procedure entails moving outward on rays
from the LDI camera center and projecting candidate voxels back
into the input images. If all input images agree on a color, this voxel
is filled as a depth pixel in the LDI structure. This approach en-
ables straightforward construction of LDI’s from images that do not
contain depth per pixel.

5 Rendering Layered Depth Images

Our fast warping-based renderer takes as input an LDI along with its
associated camera information. Given a new desired camera posi-
tion, the warper uses an incremental warping algorithm to efficiently
create an output image. Pixels from the LDI are splatted into the
output image using theover compositing operation. The size and



footprint of the splat is based on an estimated size of the reprojected
pixel.

5.1 Space Efficient Representation

When rendering, it is important to maintain the spatial locality of
depth pixels to exploit the second level cache in the CPU [12]. To
this end, we reorganize the depth pixels into a linear array ordered
from bottom to top and left to right in screen space, and back to
front along a ray. We also separate out the number of layers in each
layered depth pixel from the depth pixels themselves. The layered
depth pixel structure does not exist explicitly in this implementation.
Instead, a double array of offsets is used to locate each depth pixel.
The number of depth pixels in each scanline is accumulated into
a vector of offsets to the beginning of each scanline. Within each
scanline, for each pixel location, a total count of the depth pixels from
the beginning of the scanline to that location is maintained. Thus to
find any layered depth pixel, one simply offsets to the beginning of
the scanline and then further to the first depth pixel at that location.
This supports scanning in right-to-left order as well as the clipping
operation discussed later.

5.2 Incremental Warping Computation

The incremental warping computation is similar to the one used
for certain texture mapping operations [9, 27]. The geometry of
this computation has been analyzed by McMillan [22], and efficient
computation for the special case of orthographic input images is
given in [3].

Let C1 be the 4× 4 matrix for the LDI camera. It is composed of
an affine transformation matrix, a projection matrix, and a viewport
matrix,C1 = V1 ·P1 ·A1. This camera matrix transforms a point from
the global coordinate system into the camera’s projected image co-
ordinate system. The projected image coordinates (x1, y1), obtained
after multiplying the point’s global coordinates byC1 and dividing
outw1, index a screen pixel address. Thez1 coordinate can be used
for depth comparisons in a z buffer.

Let C2 be the output camera’s matrix. Define the transfer matrix as
T1,2 = C2 · C−1

1 . Given the projected image coordinates of some
point seen in the LDI camera (e.g., the coordinates ofa in Figure 5),
this matrix computes the image coordinates as seen in the output
camera (e.g., the image coordinates ofa2 in cameraC2 in Figure 5).

T1,2 ·




x1

y1

z1

1


 =




x2 · w2

y2 · w2

z2 · w2

w2


 = result

The coordinates (x2, y2) obtained after dividing byw2, index a pixel
address in the output camera’s image.

Using the linearity of matrix operations, this matrix multiply can
be factored to reuse much of the computation from each iteration
through the layers of a layered depth pixel;result can be computed
as

T1,2 ·




x1

y1

z1

1


 = T1,2 ·




x1

y1

0
1


 + z1 · T1,2 ·




0
0
1
0


 = start + z1 · depth

To compute the warped position of the next layered depth pixel along
a scanline, the newstart is simply incremented.

C1

C2

d1

d2

φ1

φ2

Z2

θ1

θ2

Normal

Surface

Figure 8 Values for size computation of a projected pixel.
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The warping algorithm proceeds using McMillan’s ordering algo-
rithm [20]. The LDI is broken up into four regions above and below
and to the left and right of the epipolar point. For each quadrant,
the LDI is traversed in (possibly reverse) scan line order. At the
beginning of each scan line,start is computed. The sign ofxincr
is determined by the direction of processing in this quadrant. Each
layered depth pixel in the scan line is then warped to the output
image by callingWarp. This procedure visits each of the layers in
back to front order and computesresult to determine its location
in the output image. As in perspective texture mapping, a divide is
required per pixel. Finally, the depth pixel’s color is splatted at this
location in the output image.

The following pseudo code summarizes the warping algorithm ap-
plied to each layered depth pixel.

procedureWarp(ldpix, start, depth, xincr )
for k←0 to dpix.NumLayers-1

z1←ldpix.Layers[k].Z
result←start + z1∗ depth
//cull if the depth pixel goes behind the output camera
//or if the depth pixel goes out of the output cam’s frustum
if result .w > 0 and IsInViewport(result) then

result←result / result.w
// see next section
sqrtSize←z2∗ lookupTable[ldpix.Layers[k].SplatIndex]
splat(ldpix.Layers[k].ColorRGBA, x2, y2, sqrtSize)

end if
// increment for next layered pixel on this scan line
start ←start + xincr

end for
end procedure



5.3 Splat Size Computation

To splat the LDI into the output image, we estimate the projected
area of the warped pixel. This is a rough approximation to the
footprint evaluation [33] optimized for speed. The proper size can
be computed (differentially) as

size=
(d1)2 cos(θ2) res2 tan(fov1/2)
(d2)2 cos(θ1) res1 tan(fov2/2)

whered1 is the distance from the sampled surface point to the LDI
camera,fov1 is the field of view of the LDI camera,res1 = (w1h1)−1

wherew1 andh1 are the width and height of the LDI, andθ1 is the
angle between the surface normal and the line of sight to the LDI
camera (see Figure 8). The same terms with subscript 2 refer to the
output camera.

It will be more efficient to compute an approximation of the square
root of size,

√
size =

1
d2
· d1

√
cos(θ2)res2tan(fov1/2)√

cos(θ1)res1tan(fov2/2)

≈ 1
Z2
· d1

√
cos(φ2)res2tan(fov1/2)√

cos(φ1)res1tan(fov2/2)

≈ z2 · d1

√
cos(φ2)res2tan(fov1/2)√

cos(φ1)res1tan(fov2/2)

We approximate theθs as the anglesφ between the surface nor-
mal vector and thez axes of the camera’s coordinate systems. We
also approximated2 by Z2, the z coordinate of the sampled point
in the output camera’s unprojected eye coordinate system. During
rendering, we set the projection matrix such thatz2 = 1/Z2.

The current implementation supports 4 different splat sizes, so a very
crude approximation of the size computation is implemented using
a lookup table. For each pixel in the LDI, we stored1 using 5 bits.
We use 6 bits to encode the normal, 3 fornx, and 3 forny. This gives
us an eleven-bit lookup table index. Before rendering each new
image, we use the new output camera information to precompute
values for the 2048 possible lookup table indexes. At each pixel we
obtain

√
sizeby multiplying the computedz2 by the value found in

the lookup table.

√
size≈ z2 · lookup [nx , ny , d1 ]

To maintain the accuracy of the approximation ford1, we discretize
d1 nonlinearly using a simple exponential function that allocates
more bits to the nearbyd1 values, and fewer bits to the distantd1

values.

The four splat sizes we currently use have 1 by 1, 3 by 3, 5 by 5, and
7 by 7 pixel footprints. Each pixel in a footprint has an alpha value
to approximate a Gaussian splat kernel. However, the alpha values
are rounded to 1, 1/2, or 1/4, so the alpha blending can be done with
integer shifts and adds.

5.4 Depth Pixel Representation

The size of a cache line on current Intel processors (Pentium Pro
and Pentium II) is 32 bytes. To fit four depth pixels into a single
cache line we convert the floating point Z value to a 20 bit integer.
This is then packed into a single word along with the 11 bit splat
table index. These 32 bits along with the R, G, B, and alpha values
fill out the 8 bytes. This seemingly small optimization yielded a 25
percent improvement in rendering speed.

Figure 9 LDI with two segments

5.5 Clipping

The LDI of the chestnut tree scene in Figure 11 is a large data set
containing over 1.1 million depth pixels. If we naively render this
LDI by reprojecting every depth pixel, we would only be able to
render at one or two frames per second. When the viewer is close
to the tree, there is no need to flow those pixels that will fall outside
of the new view. Unseen pixels can be culled by intersecting the
view frustum with the frustum of the LDI. This is implemented by
intersecting the view frustum with the near and far plane of the
LDI frustum, and taking the bounding box of the intersection. This
region defines the rays of depth pixels that could be seen in the new
view. This computation is conservative, and gives suboptimal results
when the viewer is looking at the LDI from the side (see Figure 9).
The view frustum intersects almost the entire cross section of the
LDI frustum, but only those depth pixels in the desired view need
be warped. Our simple clipping test indicates that most of the LDI
needs to be warped. To alleviate this, we split the LDI into two
segments, a near and a far segment (see Figure 9). These are simply
two frustra stacked one on top of the other. The near frustum is kept
smaller than the back segment. We clip each segment individually,
and render the back segment first and the front segment second.
Clipping can speed rendering times by a factor of 2 to 4.

6 Results

Sprites with Depth and Layered Depth Images have been imple-
mented in C++. The color figures show two examples of rendering
sprites and three examples of rendering LDIs. Figures 3a through 3j
show the results of rendering a sprite with depth. The hemisphere
in the middle of the sprite pops out of the plane of the sprite, and
the illusion of depth is quite good. Figure 4 shows the process of
extracting sprites from multiple images using the vision techniques
discussed in Section 3. There is a great deal of parallax between the
layers of sprites, resulting in a convincing and inexpensive image-
based-rendering method.

Figure 10 shows two views of a barnyard scene modeled in Sof-
timage. A set of 20 images was pre-rendered from cameras that
encircle the chicken using the Mental Ray renderer. The renderer
returns colors, depths, and normals at each pixel. The images were
rendered at 320 by 320 pixel resolution, taking approximately one
minute each to generate. In the interactive system, the 3 images
out of the 17 that have the closest direction to the current camera
are chosen. The preprocessor (running in a low-priority thread) uses
these images to create an LDI in about 1 second. While the LDIs are
allocated with a maximum of 10 layers per pixel, the average depth
complexity for these LDIs is only 1.24. Thus the use of three input
images only increases the rendering cost by 24 percent. The fast



Figure 10 Barnyard scene

Figure 11 Near segment of chestnut tree

Figure 12 Chestnut tree in front of environment map



Figure 13 Dinosaur model reconstructed from 21 photographs

renderer (running concurrently in a high-priority thread) generates
images at 300 by 300 resolution. On a Pentium II PC running at
300MHz, we achieved frame rate of 8 to 10 frames per second.

Figures 11 and 12 show two cross-eye stereo pairs of a chestnut tree.
In Figure 11 only the near segment is displayed. Figure 12 shows
both segments in front of an environment map. The LDIs were
created using a modified version of the Rayshade raytracer. The tree
model is very large; Rayshade allocates over 340 MB of memory to
render a single image of the tree. The stochastic method discussed
in Section 4.2 took 7 hours to trace 16 million rays through this
scene using an SGI Indigo2 with a 250 MHz processor and 320MB
of memory. The resulting LDI has over 1.1 million depth pixels,
70,000 of which were placed in the near segment with the rest in the
far segment. When rendering this interactively we attain frame rates
between 4 and 10 frames per second on a Pentium II PC running at
300MHz.

7 Discussion

In this paper, we have described two novel techniques for image
based rendering. The first technique renders Sprites with Depth
without visible gaps, and with a smoother rendering than traditional
forward mapping (splatting) techniques. It is based on the observa-
tion that a forward mapped displacement map does not have to be as

accurate as a forward mapped color image. If the displacement map
is smooth, the inaccuracies in the warped displacement map result
in only sub-pixel errors in the final color pixel sample positions.

Our second novel approach to image based rendering is a Layered
Depth Image representation. The LDI representation provides the
means to display the parallax induced by camera motion as well as
reveal disoccluded regions. The average depth complexity in our
LDI’s is much lower that one would achieve using multiple input
images (e.g., only 1.24 in the Chicken LDI). The LDI representation
takes advantage of McMillan’s ordering algorithm allowing pixels
to be splatted back to Front with anovercompositing operation.

Traditional graphics elements and planar sprites can be combined
with Sprites with Depth and LDIs in the same scene if a back-to-front
ordering is maintained. In this case they are simply composited onto
one another. Without such an ordering a z-buffer approach will still
work at the extra cost of maintaining depth information per frame.

Choosing a single camera view to organize the data has the advan-
tage of having sampled the geometry with a preference for views
very near the center of the LDI. This also has its disadvantages.
First, pixels undergo two resampling steps in their journey from in-
put image to output. This can potentially degrade image quality.
Secondly, if some surface is seen at a glancing angle in the LDIs
view the depth complexity for that LDI increases, while the spatial
sampling resolution over that surface degrades. The sampling and
aliasing issues involved in our layered depth image approach are
still not fully understood; a formal analysis of these issues would be
helpful.

With the introduction of our two new representations and rendering
techniques, there now exists a wide range of different image based
rendering methods available. At one end of the spectrum are tradi-
tional texture-mapped models. When the scene does not have too
much geometric detail, and when texture-mapping hardware is avail-
able, this may be the method of choice. If the scene can easily be
partitioned into non-overlapping sprites (with depth), then triangle-
based texture-mapped rendering can be used without requiring a z
buffer [17, 4].

All of these representations, however, do not explicitly account for
certain variation of scene appearance with viewpoint, e.g., specu-
larities, transparency, etc. View-dependent texture maps [5], and
4D representations such as lightfields or Lumigraphs [15, 7], have
been designed to model such effects. These techniques can lead to
greater realism than static texture maps, sprites, or Layered Depth
Images, but usually require more effort (and time) to render.

In future work, we hope to explore representations and rendering al-
gorithms which combine several image based rendering techniques.
Automatic techniques for taking a 3D scene (either synthesized or
real) and re-representing it in the most appropriate fashion for im-
age based rendering would be very useful. These would allow us to
apply image based rendering to truly complex, visually rich scenes,
and thereby extend their range of applicability.
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Abstract
A number of techniques have been proposed for flyin

through scenes by redisplaying previously rendered or digitiz
views. Techniques have also been proposed for interpolat
between views by warping input images, using depth informati
or correspondences between multiple images. In this paper,
describe a simple and robust method for generating new vie
from arbitrary camera positions without depth information or fe
ture matching, simply by combining and resampling the availab
images. The key to this technique lies in interpreting the inp
images as 2D slices of a 4D function - the light field. This fun
tion completely characterizes the flow of light through unob
structed space in a static scene with fixed illumination.

We describe a sampled representation for light fields th
allows for both efficient creation and display of inward and ou
ward looking views. We hav e created light fields from larg
arrays of both rendered and digitized images. The latter 
acquired using a video camera mounted on a computer-contro
gantry. Once a light field has been created, new views may
constructed in real time by extracting slices in appropriate dire
tions. Since the success of the method depends on having a 
sample rate, we describe a compression system that is abl
compress the light fields we have generated by more than a fa
of 100:1 with very little loss of fidelity. We also address the issu
of antialiasing during creation, and resampling during slice extra
tion.

CR Categories:I.3.2 [Computer Graphics]: Picture/Image Gene
ation —Digitizing and scanning, Viewing algorithms; I.4.2 [Com-
puter Graphics]: Compression —Approximate methods

Additional keywords: image-based rendering, light field, holo
graphic stereogram, vector quantization, epipolar analysis

1. Introduction
Traditionally the input to a 3D graphics system is a sce

consisting of geometric primitives composed of different materia
and a set of lights. Based on this input specification, the render
system computes and outputs an image. Recently a new appr
to rendering has emerged:image-based rendering. Image-based
rendering systems generate different views of an environm
from a set of pre-acquired imagery. There are several advanta
to this approach:

Address: Gates Computer Science Building 3B levo y@cs.stanford.ed
Stanford University hanrahan@cs.stanford.edu
Stanford, CA 94305 http://www-graphics.stanford.edu
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• The display algorithms for image-based rendering requ
modest computational resources and are thus suitable for 
time implementation on workstations and personal compute

• The cost of interactively viewing the scene is independent
scene complexity.

• The source of the pre-acquired images can be from a rea
virtual environment, i.e. from digitized photographs or fro
rendered models. In fact, the two can be mixed together.

The forerunner to these techniques is the use of envir
ment maps to capture the incoming light in a texture m
[Blinn76, Greene86]. An environment map records the incide
light arriving from all directions at a point. The original use o
environment maps was to efficiently approximate reflections
the environment on a surface. However, environment maps 
may be used to quickly display any outward looking view of t
environment from a fixed location but at a variable orientatio
This is the basis of the Apple QuickTimeVR system [Chen95].
this system environment maps are created at key locations in
scene. The user is able to navigate discretely from location
location, and while at each location continuously change the vi
ing direction.

The major limitation of rendering systems based on en
ronment maps is that the viewpoint is fixed. One way to relax t
fixed position constraint is to use view interpolation [Chen9
Greene94, Fuchs94, McMillan95a, McMillan95b, Narayanan9
Most of these methods require a depth value for each pixel in
environment map, which is easily provided if the environme
maps are synthetic images. Given the depth value it is possib
reproject points in the environment map from different vanta
points to warp between multiple images. The key challenge
this warping approach is to "fill in the gaps" when previous
occluded areas become visible.

Another approach to interpolating between acquir
images is to find corresponding points in the two [Laveau9
McMillan95b, Seitz95]. If the positions of the cameras a
known, this is equivalent to finding the depth values of the cor
sponding points. Automatically finding correspondences betw
pairs of images is the classic problem of stereo vision, and un
tunately although many algorithms exist, these algorithms 
fairly fragile and may not always find the correct correspo
dences.

In this paper we propose a new technique that is robust 
allows much more freedom in the range of possible views. T
major idea behind the technique is a representation of thelight
field, the radiance as a function of position and direction, 
regions of space free of occluders (free space). In free space
light field is a 4D, not a 5D function. An image is a two dime
sional slice of the 4D light field. Creating a light field from a s
of images corresponds to inserting each 2D slice into the 4D l
field representation. Similarly, generating new views correspon
to extracting and resampling a slice.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
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Generating a new image from a light field is quite differen
than previous view interpolation approaches. First, the new ima
is generally formed from many different pieces of the origina
input images, and need not look like any of them. Second, n
model information, such as depth values or image correspo
dences, is needed to extract the image values. Third, image gen
ation involves only resampling, a simple linear process.

This representation of the light field is similar to the epipo
lar volumes used in computer vision [Bolles87] and to horizonta
parallax-only holographic stereograms [Benton83]. An epipola
volume is formed from an array of images created by translating
camera in equal increments in a single direction. Such a repres
tation has recently been used to perform view interpolatio
[Katayama95]. A holographic stereogram is formed by exposin
a piece of film to an array of images captured by a camera movi
sideways. Halle has discussed how to set the camera aperture
properly acquire images for holographic stereograms [Halle94
and that theory is applicable to this work. Gavin Miller has als
recognized the potential synergy between true 3D display tec
nologies and computer graphics algorithms [Miller95].

There are several major challenges to using the light fie
approach to view 3D scenes on a graphics workstation. Fir
there is the choice of parameterization and representation of 
light field. Related to this is the choice of sampling pattern for th
field. Second, there is the issue of how to generate or acquire 
light field. Third, there is the problem of fast generation of differ
ent views. This requires that the slice representing rays through
point be easily extracted, and that the slice be properly resamp
to avoid artifacts in the final image. Fourth, the obvious disadva
tage of this approach is the large amount of data that may 
required. Intuitively one suspects that the light field is cohere
and that it may be compressed greatly. In the remaining sectio
we discuss these issues and our proposed solutions.

2. Representation
We define the light field as the radiance at a point in 

given direction. Note that our definition is equivalent to the
plenoptic functionintroduced by Adelson and Bergen [Adel-
son91]. The phrase light field was coined by A. Gershun in h
classic paper describing the radiometric properties of light in 
space [Gershun36].1 McMillan and Bishop [McMillan95b] dis-
cuss the representation of 5D light fields as a set of panoram
images at different 3D locations.

However, the 5D representation may be reduced to 4D 
free space (regions free of occluders). This is a consequence
the fact that the radiance does not change along a line unl
blocked. 4D light fields may be interpreted as functions on th
space of oriented lines. The redundancy of the 5D representat
is undesirable for two reasons: first, redundancy increases the s
of the total dataset, and second, redundancy complicates 
reconstruction of the radiance function from its samples. Th
reduction in dimension has been used to simplify the represen
tion of radiance emitted by luminaires [Levin71, Ashdown93]
For the remainder of this paper we will be only concerned wit
4D light fields.

1 For those familiar with Gershun’s paper, he actually uses the term light field 
mean the irradiance vector as a function of position. For this reason P. Moon in a 

er book [Moon81] uses the term photic field to denote what we call the light field.
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Although restricting the validity of the representation 
free space may seem like a  limitation, there are two common s
ations where this assumption is useful. First, most geome
models are bounded. In this case free space is the region ou
the convex hull of the object, and hence all views of an obje
from outside its convex hull may be generated from a 4D ligh
field. Second, if we are moving through an architectural mode
an outdoor scene we are usually moving through a region of 
space; therefore, any view from inside this region, of objects o
side the region, may be generated.

The major issue in choosing a representation of the 
light field is how to parameterize the space of oriented lin
There are several issues in choosing the parameterization:

Efficient calculation. The computation of the position of a line
from its parameters should be fast. More importantly, for t
purposes of calculating new views, it should be easy to comp
the line parameters given the viewing transformation and
pixel location.

Control over the set of lines.The space of all lines is infinite,
but only a finite subset of line space is ever needed. For ex
ple, in the case of viewing an object we need only lines int
secting the convex hull of the object. Thus, there should be a
intuitive connection between the actual lines in 3-space and 
parameters.

Uniform sampling. Given equally spaced samples in lin
parameter space, the pattern of lines in 3-space should als
uniform. In this sense, a uniform sampling pattern is one wh
the number of linesin intervals between samples is consta
ev erywhere. Note that the correct measure for number of li
is related to the form factor kernel [Sbert93].

The solution we propose is to parameterize lines by th
intersections with two planes in arbitrary position (see figure 
By convention, the coordinate system on the first plane is (u, v)
and on the second plane is (s, t). An oriented line is defined by
connecting a point on the uv plane to a point on the st plane
practice we restrictu, v, s, andt to lie between 0 and 1, and thu
points on each plane are restricted to lie within a convex quadrilat-
eral. We call this representation alight slab. Intuitively, a light
slab represents the beam of light entering one quadrilateral 
exiting another quadrilateral.

A nice feature of this representation is that one of t
planes may be placed at infinity. This is convenient since th
lines may be parameterized by a point and a direction. The la
will prove useful for constructing light fields either from ortho
graphic images or images with a fixed field of view. Furthermo
if all calculations are performed using homogeneous coordina
the two cases may be handled at no additional cost.

u

v

s

t

L(u,v,s,t)

Figure 1: The light slab representation.
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Figure 2: Definition of the line space we use to visualize sets of light ray
Each oriented line in Cartesian space (at left) is represented in line sp
(at right) by a point. To simplify the visualizations, we show only lines in
2D; the extension to 3D is straightforward.

Figure 3: Using line space to visualize ray coverage. (a) shows a sing
light slab. Light rays (drawn in gray) connect points on two defining line
(drawn in red and green). (c) shows an arrangement of four rotated cop
of (a). (b) and (d) show the corresponding line space visualizations. F
any set of lines in Cartesian space, the envelope formed by the correspo
ing points in line space indicates our coverage of position and directio
ideally the coverage should be complete inθ and as wide as possible inr .
As these figures show, the single slab in (a) does not provide full covera
in θ , but the four-slab arrangement in (c) does. (c) is, however, narrow
r . Such an arrangement is suitable for inward-looking views of a sma
object placed at the origin. It was used to generate the lion light field 
figure 14d.

A big advantage of this representation is the efficiency o
geometric calculations. Mapping from (u, v) to points on the plane
is a projective map and involves only linear algebra (multiplyin
by a 3x3 matrix). More importantly, as will be discussed in sec
tion 5, the inverse mapping from an image pixel (x, y) to
(u, v, s, t) is also a projective map. Methods using spherical o
cylindrical coordinates require substantially more computation.
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Figure 4: Using line space to visualize sampling uniformity. (a) shows
light slab defined by two lines at right angles. (c) shows a light slab wh
one defining line is at infinity. This arrangement generates rays pass
through the other defining line with an angle between -45° and +45°. (b)
and (d) show the corresponding line space visualizations. Our use of (r ,θ )
to parameterize line space has the property that equal areas in line s
correspond to equally dense sampling of position and orientation in Ca
sian space; ideally the density of points in line space should be unifo
As these figures show, the singularity at the corner in (a) leads to a hig
nonuniform and therefore inefficient sampling pattern, indicated by da
areas in (b) at angles of 0 and−π /2. (c) generates a more uniform set o
lines. Although (c) does not provide full coverage ofθ , four rotated
copies do. Such an arrangement is suitable for outward-looking views
an observer standing near the origin. It was used to generate the hal
light field in figure 14c.

Many properties of light fields are easier to understand 
line space (figures 2 through 4). In line space, each oriented 
is represented by a point and each set of lines by a region. In
ticular, the set of lines represented by a light slab and the se
lines intersecting the convex hull of an object are both regions in
line space. All views of an object could be generated from o
light slab if its set of lines include all lines intersecting the conv
hull of the object. Unfortunately, this is not possible. Therefor
it takes multiple light slabs to represent all possible views of 
object. We therefore tile line space with a collection of ligh
slabs, as shown in figure 3.

An important issue related to the parameterization is t
sampling pattern. Assuming that all views are equally likely to 
generated, then any line is equally likely to be needed. Thus
regions of line space should have an equal density of samp
Figure 4 shows the density of samples in line space for differ
arrangements of slabs. Note that no slab arrangement is per
arrangements with a singularity such as two polygons joined a
corner (4a) are bad and should be avoided, whereas slabs for



d
tt
e

e
e

h
d
e
c
y
p
to

d
n

b
p

 of
 is
re

ure
er
from parallel planes (3a) generate fairly uniform patterns. In ad
tion, arrangements where one plane is at infinity (4c) are be
than those with two finite planes (3a). Finally, because of symm
try the spacing of samples in uv should in general be the sam
st. However, if the observer is likely to stand near the uv plan
then it may be acceptable to sample uv less frequently than st.

3. Creation of light fields
In this section we discuss the creation of both virtual lig

fields (from rendered images) and real light fields (from digitize
images). One method to create a light field would be to choos
4D sampling pattern, and for each line sample, find the radian
This is easily done directly for virtual environments by a ra
tracer. This could also be done in a real environment with a s
radiometer, but it would be very tedious. A more practical way 
generate light fields is to assemble a collection of images.

3.1. From rendered images
For a virtual environment, a light slab is easily generate

simply by rendering a 2D array of images. Each image represe
a slice of the 4D light slab at a fixed uv value and is formed 
placing the center of projection of the virtual camera at the sam
4
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Camera plane
        (uv)

Focal plane
       (st)

Field of view

Figure 5: The viewing geometry used to create a light slab from an
array of perspective images.

location on the uv plane. The only issue is that the xy samples
each image must correspond exactly with the st samples. This
easily done by performing a sheared perspective projection (figu
5) similar to that used to generate a stereo pair of images. Fig
6 shows the resulting 4D light field, which can be visualized eith
as a uv array of st images or as an st array of uv images.
n the st
 (a) are off-
been placed
Figure 6: Tw o visualizations of a light field. (a) Each image in the array represents the rays arriving at one point on the uv plane from all points o
plane, as shown at left. (b) Each image represents the rays leaving one point on the st plane bound for all points on the uv plane. The images in
axis (i.e. sheared) perspective views of the scene, while the images in (b) look like reflectance maps. The latter occurs because the object has 
astride the focal plane, making sets of rays leaving points on the focal plane similar in character to sets of rays leaving points on the object.
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Tw o other viewing geometries are useful. A light slab m
be formed from a 2D array of orthographic views. This can 
modeled by placing the uv plane at infinity, as shown in figure 
In this case, each uv sample corresponds to the direction of a
allel projection. Again, the only issue is to align the xy and
samples of the image with the st quadrilateral. The other us
geometry consists of a 2D array of outward looking (non-shear
perspective views with fixed field of view. In this case, ea
image is a slice of the light slab with the st plane at infinity. T
fact that all these cases are equally easy to handle with light s
attests to the elegance of projective geometry. Light fields us
each arrangement are presented in section 6 and illustrated in
ure 14.

As with any sampling process, sampling a light field m
lead to aliasing since typical light fields contain high frequenci
Fortunately, the effects of aliasing may be alleviated by filteri
before sampling. In the case of a light field, a 4D filter in t
space of lines must be employed (see figure 7). Assuming a 
filter, a weighted average of the radiances on all lines connec
sample squares in the uv and st planes must be computed.
camera is placed on the uv plane and focussed on the st p
then the filtering process corresponds to integrating both ove
pixel corresponding to an st sample, and an aperture equal in
to a uv sample, as shown in figure 8. The theory behind this fil
ing process has been discussed in the context of holographic s
ograms by Halle [Halle94].

Note that although prefiltering has the desired effect 
antialiasing the light field, it has what at first seems like an un
sirable side effect — introducing blurriness due to depth of fie
However, this blurriness is precisely correct for the situatio
Recall what happens when creating a pair of images from 
adjacent camera locations on the uv plane: a given object p
will project to different locations, potentially several pixels apa
in these two images. The distance between the two projec
locations is called the stereo disparity. Extending this idea to m
tiple camera locations produces a sequence of images in which
object appears to jump by a distance equal to the disparity. T
jumping is aliasing. Recall now that taking an image with a fin
aperture causes points out of focus to be blurred on the film p
by a circle of confusion. Setting the diameter of the aperture
the spacing between camera locations causes the circle of co
sion for each object point to be equal in size to its stereo dispa
This replaces the jumping with a sequence of blurred imag
Thus, we are removing aliasing by employing finite depth of fie

Pixel filter     +     Aperture filter    =     Ray filter

uv

st

Figure 7: Prefiltering a light field. To avoid aliasing, a 4D low
pass filter must be applied to the radiance function.
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Camera plane
          (uv)

Film plane Aperture

Focal plane
       (st) 

Figure 8: Prefiltering using an aperture. This figure shows a cam-
era focused on the st plane with an aperture on the uv plane whose
size is equal to the uv sample spacing. A hypothetical film plane is
drawn behind the aperture. Ignore the aperture for a moment (con-
sider a pinhole camera that precisely images the st plane onto the
film plane). Then integrating over a pixel on the film plane is
equivalent to integrating over an st region bounded by the pixel.
Now consider fixing a point on the film plane while using a finite
sized aperture (recall that all rays from a point on the film through
the aperture are focussed on a single point on the focal plane).
Then integrating over the aperture corresponds to integrating all
rays through the uv region bounded by the aperture. Therefore, by
simultaneously integrating over both the pixel and the aperture, the
proper 4D integral is computed.

The necessity for prefiltering can also be understood in l
space. Recall from our earlier discussion that samples of the l
field correspond to points in line space. Having a finite depth
field with an aperture equal in size to the uv sample spac
insures that each sample adequately covers the interval betw
these line space points. Too small or too large an aperture yi
gaps or overlaps in line space coverage, resulting in views tha
either aliased or excessively blurry, respectively.

3.2. From digitized images
Digitizing the imagery required to build a light field of 

physical scene is a formidable engineering problem. The num
of images required is large (hundreds or thousands), so the pro
must be automated or at least computer-assisted. Moreover
lighting must be controlled to insure a static light field, yet flexib
enough to properly illuminate the scene, all the while staying cl
of the camera to avoid unwanted shadows. Finally, real opt
systems impose constraints on angle of view, focal distance, d
of field, and aperture, all of which must be managed. Sim
issues have been faced in the construction of devices for perfo
ing near-field photometric measurements of luminaires [As
down93]. In the following paragraphs, we enumerate the ma
design decisions we faced in this endeavor and the solutions
adopted.

Inward versus outward looking. The first decision to be made
was between a flyaround of a small object and a flythrough o
large-scale scene. We judged flyarounds to be the simpler c
so we attacked them first.
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Figure 9: Our prototype camera gantry. A modified Cyberware
MS motion platform with additional stepping motors from Lin-
Tech and Parker provide four degrees of freedom: horizontal
and vertical translation, pan, and tilt. The camera is a Panasonic
WV-F300 3-CCD video camera with a Canon f/1.7 10-120mm
zoom lens. We keep it locked off at its widest setting (10mm)
and mounted so that the pitch and yaw axes pass through the
center of projection. While digitizing, the camera is kept point-
ed at the center of the focal plane. Calibrations and alignments
are verified with the aid of a Faro digitizing arm, which is accu-
rate to 0.3 mm.

Human versus computer-controlled. An inexpensive
approach to digitizing light fields is to move a handheld camera
through the scene, populating the field from the result
images [Gortler96]. This approach necessitates estima
camera pose at each frame and interpolating the light field f
scattered data - two challenging problems. To simplify the s
ation, we chose instead to build a computer-controlled cam
gantry and to digitize images on a regular grid.

Spherical versus planar camera motion.For flyarounds of
small objects, an obvious gantry design consists of two con
tric hemicycles, similar to a gyroscope mounting. The cam
in such a gantry moves along a spherical surface, always p
ing at the center of the sphere. Apple Computer has c
structed such a gantry to acquire imagery for Quick-Time 
flyarounds [Chen95]. Unfortunately, the lighting in their sy
tem is attached to the moving camera, so it is unsuitable
acquiring static light fields. In general, a spherical gantry 
three advantages over a planar gantry: (a) it is easier to c
the entire range of viewing directions, (b) the sampling rate
direction space is more uniform, and (c) the distance betw
the camera and the object is fixed, providing sharper fo
throughout the range of camera motion. A planar gantry 
two advantages over a spherical gantry: (a) it is easier to b
the entire structure can be assembled from linear motion sta
and (b) it is closer to our light slab representation. For our 
prototype gantry, we chose to build a planar gantry, as show
figure 9.

Field of view. Our goal was to build a light field that allowe
360 degrees of azimuthal viewing. To accomplish this usin
planar gantry meant acquiring four slabs each providing
6
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lights
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Figure 10: Object and lighting support. Objects are mounted
on a Bogen fluid-head tripod, which we manually rotate to four
orientations spaced 90 degrees apart. Illumination is provided
by two 600W Lowell Omni spotlights attached to a ceiling-
mounted rotating hub that is aligned with the rotation axis of the
tripod. A stationary 6’ x 6’ diffuser panel is hung between the
spotlights and the gantry, and the entire apparatus is enclosed in
black velvet to eliminate stray light.

degrees. This can be achieved with a camera that translates
does not pan or tilt by employing a wide-angle lens. This so
tion has two disadvantages: (a) wide-angle lenses exhibit sig
icant distortion, which must be corrected after acquisition, a
(b) this solution trades off angle of view against sensor reso
tion. Another solution is to employ a  view camera in which th
sensor and optical system translate in parallel planes, the for
moving faster than the latter. Horizontal parallax holograph
stereograms are constructed using such a camera [Halle
Incorporating this solution into a gantry that moves both ho
zontally and vertically is difficult. We instead chose to equ
our camera with pan and tilt motors, enabling us to use a n
row-angle lens. The use of a rotating camera means that
order to transfer the acquired image to the light slab represe
tion, it must be reprojected to lie on a common plane. Th
reprojection is equivalent to keystone correction in architectu
photography.

Standoff distance.A disadvantage of planar gantries is that th
distance from the camera to the object changes as the cam
translates across the plane, making it difficult to keep the obj
in focus. The view camera described above does not suffer
from this problem, because the ratio of object distance to ima
distance stays constant as the camera translates. For a rota
camera, servo-controlled focusing is an option, but changing 
focus of a camera shifts its center of projection and changes
image magnification, complicating acquisition. We instead m
igate this problem by using strong lighting and a small apertu
to maximize depth of field.

Sensor rotation.Each sample in a light slab should ideally rep
resent the integral over a pixel, and these pixels should lie o
common focal plane. A view camera satisfies this constra
because its sensor translates in a plane. Our use of a rota
camera means that the focal plane also rotates. Assuming 
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we resample the images carefully during reprojection, the pr
ence of a rotated focal plane will introduce no additional err
into the light field. In practice, we have not seen artifacts due
this resampling process.

Aperture size.Each sample in a light slab should also represe
the integral over an aperture equal in size to a uv sample. O
use of a small aperture produces a light field with little or no 
antialiasing. Even fully open, the apertures of commerc
video cameras are small. We can approximate the requi
antialiasing by averaging together some number of adjac
views, thereby creating asynthetic aperture. Howev er, this
technique requires a very dense spacing of views, which in t
requires rapid acquisition. We do not currently do this.

Object support. In order to acquire a 360-degree light field in
four 90-degree segments using a planar gantry, either the ga
or the object must be rotated to each of four orientations spa
90 degrees apart. Given the massiveness of our gantry, the
ter was clearly easier. For these experiments, we mounted 
objects on a tripod, which we manually rotate to the four po
tions as shown in figure 10.

Lighting. Given our decision to rotate the object, satisfying th
requirement for fixed illumination means that either the lightin
must exhibit fourfold symmetry or it must rotate with the
object. We chose the latter solution, attaching a lighting syst
to a rotating hub as shown in figure 10. Designing a lightin
system that stays clear of the gantry, yet provides enough li
to evenly illuminate an object, is a challenging problem.

Using this gantry, our procedure for acquiring a light fiel
is as follows. For each of the four orientations, the camera
translated through a regular grid of camera positions. At ea
position, the camera is panned and tilted to point at the cente
the object, which lies along the axis of rotation of the tripod. W
then acquire an image, and, using standard texture mapping a
rithms, reproject it to lie on a common plane as described ear
Table II gives a typical set of acquisition parameters. Note th
the distance between camera positions (3.125 cm) exceeds
diameter of the aperture (1.25 mm), underscoring the need 
denser spacing and a synthetic aperture.

4. Compression
Light field arrays are large — the largest example in th

paper is 1.6 GB. To make creation, transmission, and display
light fields practical, they must be compressed. In choosing fro
among many available compression techniques, we were gui
by several unique characteristics of light fields:

Data redundancy. A good compression technique remove
redundancy from a signal without affecting its content. Ligh
fields exhibit redundancy in all four dimensions. For exampl
the smooth regions in figure 6a tell us that this light field co
tains redundancy in s and t, and the smooth regions in figure
tell us that the light field contains redundancy in u and v. T
former corresponds to our usual notion of interpixel coheren
in a perspective view. The latter can be interpreted either as
interframe coherence one expects in a motion sequence o
the smoothness one expects in the bidirectional reflectance 
tribution function (BRDF) for a diffuse or moderately specula
surface. Occlusions introduce discontinuities in both cases,
course.
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Random access.Most compression techniques place some co
straint on random access to data. For example, variable-bitr
coders may require scanlines, tiles, or frames to be decode
once. Examples in this class are variable-bitrate vector qua
zation and the Huffman or arithmetic coders used in JPEG
MPEG. Predictive coding schemes further complicate rando
access because pixels depend on previously decoded pix
scanlines, or frames. This poses a problem for light fields sin
the set of samples referenced when extracting an image fro
light field are dispersed in memory. As the observer moves, 
access patterns change in complex ways. We therefore se
compression technique that supports low-cost random acces
individual samples.

Asymmetry. Applications of compression can be classified a
symmetric or asymmetric depending on the relative time sp
encoding versus decoding. We assume that light fields 
assembled and compressed ahead of time, making this an as
metric application.

Computational expense.We seek a compression scheme th
can be decoded without hardware assistance. Although s
ware decoders have been demonstrated for standards like J
and MPEG, these implementations consume the full power o
modern microprocessor. In addition to decompression, the d
play algorithm has additional work to perform, as will b
described in section 5. We therefore seek a compress
scheme that can be decoded quickly.

The compression scheme we chose was a two-sta
pipeline consisting of fixed-rate vector quantization followed b
entropy coding (Lempel-Ziv), as shown in figure 11. Followin
similar motivations, Beers et al. use vector quantization to co
press textures for use in rendering pipelines [Beers96].

4.1. Vector quantization
The first stage of our compression pipeline is vector quan

zation (VQ) [Gersho92], a lossy compression technique wherei
vector of samples is quantized to one of a number of prede
mined reproduction vectors. A reproduction vector is called
codeword, and the set of codewords available to encode a so
is called the codebook, Codebooks are constructed during a tr
ing phase in which the quantizer is asked to find a set of co
words that best approximates a set of sample vectors, called
training set. The quality of a codeword is typically characterize

codebook

light field

indices

LZ

bitstreamVQ

LZ
(402 MB)

(0.8 MB)

(16.7 MB)

(3.4 MB)

Figure 11Tw o-stage compression pipeline. The light field is parti-
tioned into tiles, which are encoded using vector quantization to
form an array of codebook indices. The codebook and the array of
indices are further compressed using Lempel-Ziv coding. Decom-
pression also occurs in two stages: entropy decoding as the file is
loaded into memory, and dequantization on demand during interac-
tive viewing. Typical file sizes are shown beside each stage.
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using mean-squared error (MSE), i.e. the sum over all sample
the vector of the squared difference between the source sa
and the codeword sample. Once a codebook has been constru
encoding consists of partitioning the source into vectors and fi
ing for each vector the closest approximating codeword from 
codebook. Decoding consists of looking up indices in the co
book and outputting the codewords found there — a very f
operation. Indeed, decoding speed is one of the primary ad
tages of vector quantization.

In our application, we typically use 2D or 4D tiles of th
light field, yielding 12-dimensional or 48-dimensional vector
respectively. The former takes advantage of coherence in s a
only, while the latter takes advantage of coherence in all f
dimensions. To maximize image quality, we train on a represen
tive subset of each light field to be compressed, then transmit
resulting codebook along with the codeword index array. Sin
light fields are large, even after compression, the additional o
head of transmitting a codebook is small, typically less than 20
We train on a subset rather than the entire light field to reduce
expense of training.

The output of vector quantization is a sequence of fixe
rate codebook indices. Each index is logN bits whereN is the
number of codewords in the codebook, so the compression ra
the quantizer is (kl) / (log N) wherek is the number of elements
per vector (i.e. the dimension), andl is the number of bits per ele-
ment, usually 8. In our application, we typically use 16384-wo
codebooks, leading to a compression rate for this stage of
pipeline of (48 x 8) / (log 16384) = 384 bits / 14 bits = 27:1. T
simplify decoding, we represent each index using an integral n
ber of bytes, 2 in our case, which reduces our compress
slightly, to 24:1.

4.2. Entropy coding
The second stage of our compression pipeline is an entr

coder designed to decrease the cost of representing h
probability code indices. Since our objects are typically rende
or photographed against a constant-color background, the a
contains many tiles that occur with high probability. For th
examples in this paper, we employed gzip, an implementation
Lempel-Ziv coding [Ziv77]. In this algorithm, the input stream 
partitioned into nonoverlapping blocks while constructing a d
tionary of blocks seen thus far. Applying gzip to our array of co
indices typically gives us an additional 5:1 compression. Huffm
coding would probably yield slightly higher compression, b
encoding and decoding would be more expensive. Our total c
pression is therefore 24 x 5 = 120:1. See section 6 and tabl
for more detail on our compression results.

4.3. Decompression
Decompression occurs in two stages. The first stage

gzip decoding — is performed as the file is loaded into memo
The output of this stage is a codebook and an array of c
indices packed in 16-bit words. Although some efficiency h
been lost by this decoding, the light field is still compressed 24
and it is now represented in a way that supports random acces

The second stage — dequantization — proceeds as follo
As the observer moves through the scene, the display en
requests samples of the light field. Each request consists 
(u, v, s, t) coordinate tuple. For each request, a subscripting ca
lation is performed to determine which sample tile is bei
8
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addressed. Each tile corresponds to one quantization vector a
thus represented in the index array by a single entry. Looking 
index up in the codebook, we find a vector of sample values.
second subscripting calculation is then performed, giving us 
offset of the requested sample within the vector. With the aid
precomputed subscripting tables, dequantization can be im
mented very efficiently. In our tests, decompression consum
about 25% of the CPU cycles.

5. Display
The final part of the system is a real time viewer that co

structs and displays an image from the light slab given the im
ing geometry. The viewer must resample a 2D slice of lines fr
the 4D light field; each line represents a ray through the eye p
and a pixel center as shown in figure 12. There are two step
this process: step 1 consists of computing the (u, v, s, t) line
parameters for each image ray, and step 2 consists of resam
the radiance at those line parameters.

As mentioned previously, a big advantage of the light sl
representation is the efficiency of the inverse calculation of 
line parameters. Conceptually the (u, v) and (s, t) parameters may
be calculated by determining the point of intersection of an ima
ray with each plane. Thus, any ray tracer could easily be ada
to use light slabs. However, a polygonal rendering system a
may be used to view a light slab. The transformation from ima
coordinates (x, y) to both the (u, v) and the (s, t) coordinates is a
projective map. Therefore, computing the line coordinates can
done using texture mapping. The uv quadrilateral is drawn us
the current viewing transformation, and during scan convers
the (uw, vw, w) coordinates at the corners of the quadrilateral a
interpolated. The resultingu = uw/w andv = vw/w coordinates at
each pixel represent the ray intersection with the uv quadrilate
A similar procedure can be used to generate the (s, t) coordinates
by drawing the st quadrilateral. Thus, the inverse transformat
from (x, y) to (u, v, s, t) reduces essentially to two texture coord
nate calculations per ray. This is cheap and can be done in
time, and is supported in many rendering systems, both hardw
and software.

Only lines with (u, v) and (s, t) coordinates inside both
quadrilaterals are represented in the light slab. Thus, if the tex
coordinates for each plane are computed by drawing each qu
laterial one after the other, then only those pixels that have b
valid uv and st coordinates should be looked up in the light s
array. Alternatively, the two quadrilaterals may be simultaneou
scan converted in their region of overlap to cut down on unnec
sary calculations; this is the technique that we use in our softw
implementation.

u

v

s

t

x y

Figure 12: The process of resampling a light slab during
display.
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Figure 13: The effects of interpolation during slice extraction. (a)
No interpolation. (b) Linear interpolation in uv only. (c) Quadra-
linear interpolation in uvst.

To draw an image of a collection of light slabs, we draw
them sequentially. If the sets of lines in the collection of ligh
slabs do not overlap, then each pixel is drawn only once and 
this is quite efficient. To further increase efficiency, "back-facing
light slabs may be culled.

The second step involves resampling the radiance. T
ideal resampling process first reconstructs the function from t
original samples, and then applies a bandpass filter to the rec
structed function to remove high frequencies that may cause alias
ing. In our system, we approximate the resampling process 
simply interpolating the 4D function from the nearest sample
This is correct only if the new sampling rate is greater than th
original sampling rate, which is usually the case when displayin
light fields. However, if the image of the light field is very small
then some form of prefiltering should be applied. This could ea
ily be done with a 4D variation of the standard mipmapping algo
rithm [Williams83].

Figure 13 shows the effect of nearest neighbor versus bili
ear interpolation on the uv plane versus quadrilinear interpolatio
of the full 4D function. Quadralinear interpolation coupled with
the proper prefiltering generates images with few aliasing ar
facts. The improvement is particularly dramatic when the obje
or camera is moving. However, quadralinear filtering is mor
expensive and can sometimes be avoided. For example, if 
sampling rates in the uv and st planes are different, and then 
benefits of filtering one plane may be greater than the other pla

6. Results
Figure 14 shows images extracted from four light fields

The first is a buddha constructed from rendered images. T
model is an irregular polygon mesh constructed from range da
The input images were generated using RenderMan, which a
provided the machinery for computing pixel and apertur

buddha kidney hallway lion
Number of slabs 1 1  4 4
Images per slab 16x16 64x64 64x32 32x16
Total images 256 4096 8192 2048
Pixels per image 2562 1282 2562 2562

Raw size (MB) 50 201 1608 402
Prefiltering uvst st only uvst st only

Table I: Statistics of the light fields shown in figure 14.
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antialiasing. The light field configuration was a single slab simi
to that shown in figure 3a.

Our second light field is a human abdomen construc
from volume renderings. The two tan-colored organs on eit
side of the spine are the kidneys. In this case, the input ima
were orthographic views, so we employed a slab with one plan
infinity as shown in figure 4c. Because an orthographic ima
contains rays of constant direction, we generated more in
images than in the first example in order to provide the angu
range needed for creating perspective views. The images inc
pixel antialiasing but no aperture antialiasing. However, the de
spacing of input images reduces aperture aliasing artifacts 
minimum.

Our third example is an outward-looking light field depic
ing a hallway in Berkeley’s Soda Hall, rendered using a radios
program. To allow a full range of observer motion while optimi
ing sampling uniformity, we used four slabs with one plane 
infinity, a four-slab version of figure 4c. The input images we
rendered on an SGI RealityEngine, using the accumulation bu
to provide both pixel and aperture antialiasing.

Our last example is a light field constructed from digitize
images. The scene is of a toy lion, and the light field consists
four slabs as shown in figure 3c, allowing the observer to w
completely around the object. The sensor and optical system 
vide pixel antialiasing, but the aperture diameter was too sma
provide correct aperture antialiasing. As a result, the light fi
exhibits some aliasing, which appears as double images. Th
artifacts are worst near the head and tail of the lion becaus
their greater distance from the axis around which the cam
rotated.

Table I summarizes the statistics of each light field. Tab
II gives additional information on the lion dataset. Table III give
the performance of our compression pipeline on two represe
tive datasets. The buddha was compressed using a 2D tiling o

Camera motion
translation per slab 100 cm x 50 cm
pan and tilt per slab 90° x 45°
number of slabs 4 slabs 90° apart
total pan and tilt 360° x 45°

Sampling density
distance to object 50 cm
camera pan per sample 3.6°
camera translation per sample 3.125 cm

Aperture
focal distance of lens 10mm
F-number f/8
aperture diameter 1.25 mm

Acquisition time
time per image 3 seconds
total acquisition time 4 hours

Table II: Acquisition parameters for the lion light field. Distance
to object and camera pan per sample are given at the center of the
plane of camera motion. Total acquisition time includes longer
gantry movements at the end of each row and manual setup time
for each of the four orientations. The aperture diameter is the focal
length divided by the F-number.
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buddha lion
Vector quantization

raw size (MB) 50.3 402.7
fraction in training set 5% 3%
samples per tile 2x2x1x1 2x2x2x2
bytes per sample 3 3
vector dimension 12 48
number of codewords 8192 16384
codebook size (MB) 0.1 0.8
bytes per codeword index 2 2
index array size (MB) 8.4 16.8
total size (MB) 8.5 17.6
compression rate 6:1 23:1

Entropy coding
gzipped codebook (MB) 0.1 0.6
gzipped index array (MB) 1.0 2.8
total size (MB) 1.1 3.4
compression due to gzip 8:1 5:1
total compression 45:1 118:1

Compression performance
training time 15 mins 4 hrs
encoding time 1 mins 8 mins
original entropy (bits/pixel) 4.2 2.9
image quality (PSNR) 36 27

Table III: Compression statistics for two light fields. The buddha
was compressed using 2D tiles of RGB pixels, forming 12-dimen-
sional vectors, and the lion was compressed using 4D tiles (2D
tiles of RGB pixels from each of 2 x 2 adjacent camera positions),
forming 48-dimensional vectors. Bytes per codeword index in-
clude padding as described in section 4. Peak signal-to-noise ratio

(PSNR) is computed as 10 log10(2552/MSE).

light field, yielding a total compression rate of 45:1. The lion wa
compressed using a 4D tiling, yielding a higher compression r
of 118:1. During interactive viewing, the compressed buddha
indistinguishable from the original; the compressed lion exhib
some artifacts, but only at high magnifications. Representat
images are shown in figure 15. We hav e also experimented w
higher rates. As a general rule, the artifacts become objectiona
only above 200:1.

Finally, table IV summarizes the performance of our inte
active viewer operating on the lion light field. As the table show
we achieve interactive playback rates for reasonable image si
Note that the size of the light field has no effect on playback ra
only the image size matters. Memory size is not an issue beca
the compressed fields are small.

7. Discussion and future work
We hav e described a new light field representation, t

light slab, for storing all the radiance values in free space. Bo
inserting images into the field and extracting new views from t
field involve resampling, a simple and robust procedure. T
resulting system is easily implemented on workstations and p
sonal computers, requiring modest amounts of memory a
cycles. Thus, this technique is useful for many applications requ
ing interaction with 3D scenes.
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Display times (ms) no bilerp uv lerp uvst lerp
coordinate calculation 13 13 13
sample extraction 14 59 214
overhead 3 3 3

total 30 75 230

Table IV: Display performance for the lion light field. Displayed
images are 192 x 192 pixels. Sample extraction includes VQ de-
coding and sample interpolation. Display overhead includes read-
ing the mouse, computing the observer position, and copying the
image to the frame buffer. Timings are for a software-only imple-
mentation on a 250 MHz MIPS 4400 processor.

There are three major limitation of our method. First, th
sampling density must be high to avoid excessive blurriness. T
requires rendering or acquiring a large number of images, wh
may take a long time and consume a lot of memory. Howev
denser sample spacing leads to greater inter-sample coherenc
the size of the light field is usually manageable after compressi
Second, the observer is restricted to regions of space free
occluders. This limitation can be addressed by stitching toget
multiple light fields based on a partition of the scene geome
into convex regions. If we augment light fields to include Z-
depth, the regions need not even be convex. Third, the illumin
tion must be fixed. If we ignore interreflections, this limitatio
can be addressed by augmenting light fields to include surf
normals and optical properties. To handle interreflections, 
might try representing illumination as a superposition of bas
functions [Nimeroff94]. This would correspond in our case t
computing a sum of light fields each lit with a different illumina
tion function.

It is useful to compare this approach with depth-based 
correspondence-based view interpolation. In these systems, a
model is created to improve quality of the interpolation and hence
decrease the number of pre-acquired images. In our approac
much larger number of images is acquired, and at first this see
like a disadvantage. However, because of the 3D structure of 
light field, simple compression schemes are able to find a
exploit this same 3D structure. In our case, simple 4D block co
ing leads to compression rates of over 100:1. Given the succes
the compression, a high density compressed light field has
advantage over other approaches because the resampling pro
is simpler, and no explicit 3D structure must be found or stored.

There are many representations for light used in compu
graphics and computer vision, for example, images, shadow
environment maps, light sources, radiosity and radiance ba
functions, and ray tracing procedures. However, abstract light r
resentations have not been systematically studied in the same 
as modeling and display primitives. A fruitful line of future
research would be to reexamine these representations from 
principles. Such reexaminations may in turn lead to new metho
for the central problems in these fields.

Another area of future research is the design of instrume
tation for acquisition. A large parallel array of cameras connect
to a parallel computer could be built to acquire and compres
light field in real time. In the short term, there are many intere
ing engineering issues in designing and building gantries to mo
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a small number of cameras and lights to sequentially acquire bo
inward- and outward-looking light fields. This same instrumenta
tion could lead to breakthroughs in both 3D shape acquisition a
reflection measurements. In fact, the interaction of light with an
object can be represented as a higher-dimensional interact
matrix; acquiring, compressing, and manipulating such represe
tations are a fruitful area for investigation.
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Abstract

This paper discusses a new method for capturing the complete ap-
pearanceof both synthetic and real world objects and scenes, repres-
enting this information, and then using this representation to render
images of the object from new camera positions. Unlike the shape
capture process traditionally used in computer vision and the render-
ing process traditionally used in computer graphics, our approach
does not rely on geometric representations. Instead we sample and
reconstruct a 4D function, which we call a Lumigraph. The Lu-
migraph is a subsetof the complete plenoptic function that describes
the flow of light at all positions in all directions. With the Lu-
migraph, new images of the object can be generated very quickly, in-
dependent of the geometric or illumination complexity of the scene
or object. The paper discusses a complete working system includ-
ing the capture of samples, the construction of the Lumigraph, and
the subsequent rendering of images from this new representation.

1 Introduction

The process of creating a virtual environment or object in computer
graphics begins with modeling the geometric and surface attributes
of the objects in the environment along with any lights. An image
of the environment is subsequently rendered from the vantage point
of a virtual camera. Great effort has been expendedto develop com-
puter aided design systems that allow the specification of complex
geometry and material attributes. Similarly, a great deal of work has
been undertaken to produce systems that simulate the propagation of
light through virtual environments to create realistic images.

Despite these efforts, it has remained difficult or impossible to
recreate much of the complex geometry and subtle lighting effects
found in the real world. The modeling problem can potentially be
bypassed by capturing the geometry and material properties of ob-
jects directly from the real world. This approach typically involves
some combination of cameras, structured light, range finders, and
mechanical sensing devices such as 3D digitizers. When success-
ful, the results can be fed into a rendering program to create images
of real objects and scenes. Unfortunately, these systems are still un-
able to completely capture small details in geometry and material
properties. Existing rendering methods also continue to be limited
in their capability to faithfully reproduce real world illumination,
even if given accurate geometric models.

�Work performed while visiting Microsoft Research.
Quicktime VR [6] was one of the first systems to suggest that the
traditional modeling/rendering process can be skipped. Instead, a
series of captured environment maps allow a user to look around a
scene from fixed points in space. One can also flip through differ-
ent views of an object to create the illusion of a 3D model. Chen and
Williams [7] and Werner et al [30] have investigated smooth inter-
polation between images by modeling the motion of pixels (i.e., the
optical flow) as one moves from one camera position to another. In
Plenoptic Modeling [19], McMillan and Bishop discuss finding the
disparity of each pixel in stereo pairs of cylindrical images. Given
the disparity (roughly equivalent to depth information), they can
then move pixels to create images from new vantage points. Similar
work using stereo pairs of planar images is discussed in [14].

This paper extends the work begun with Quicktime VR and Plen-
optic Modeling by further developing the idea of capturing the com-
plete flow of light in a region of the environment. Such a flow is de-
scribed by a plenoptic function[1]. The plenoptic function is a five
dimensional quantity describing the flow of light at every 3D spa-
tial position (x; y; z) for every 2D direction (�; �). In this paper,
we discuss computational methods for capturing and representing
a plenoptic function, and for using such a representation to render
images of the environment from any arbitrary viewpoint.

Unlike Chen and Williams’ view interpolation [7] and McMil-
lan and Bishop’s plenoptic modeling [19], our approach does not
rely explicitly on any optical flow information. Such information
is often difficult to obtain in practice, particularly in environments
with complex visibility relationships or specular surfaces. We do,
however, use approximate geometric information to improve the
quality of the reconstruction at lower sampling densities. Previous
flow basedmethods implicitly rely on diffuse surface reflectance, al-
lowing them to use a pixel from a single image to represent the ap-
pearanceof a single geometric location from a variety of viewpoints.
In contrast, our approach regularly samples the full plenoptic func-
tion and thus makes no assumptions about reflectance properties.

If we consider only the subset of light leaving a bounded ob-
ject (or equivalently entering a bounded empty region of space),
the fact that radiance along any ray remains constant1 allows us to
reduce the domain of interest of the plenoptic function to four di-
mensions. This paper first discusses the representation of this 4D
function which we call a Lumigraph. We then discuss a system
for sampling the plenoptic function with an inexpensive hand-held
camera, and “developing” the captured light into a Lumigraph. Fi-
nally this paper describes how to use texture mapping hardware to
quickly reconstruct images from any viewpoint with a virtual cam-
era model. The Lumigraph representation is applicable to synthetic
objects as well, allowing us to encode the complete appearance of
a complex model and to rerender the object at speeds independent
of the model complexity. We provide results on synthetic and real
sequences and discuss work that is currently underway to make the
system more efficient.

1We are assuming the medium (i.e., the air) to be transparent.
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2 Representation

2.1 From 5D to 4D

The plenoptic function is a function of 5 variables representing po-
sition and direction 2 . If we assume the air to be transparent then
the radiance along a ray through empty space remains constant. If
we furthermore limit our interest to the light leaving the convex hull
of a bounded object, then we only need to represent the value of the
plenoptic function along some surface that surrounds the object. A
cube was chosen for its computational simplicity (see Figure 1). At
any point in space, one can determine the radiance along any ray in
any direction, by tracing backwards along that ray through empty
space to the surface of the cube. Thus, the plenoptic function due to
the object can be reduced to 4 dimensions 3.

The idea of restricting the plenoptic function to some surround-
ing surface has been used before. In full-parallax holographic ste-
reograms [3], the appearance of an object is captured by moving a
camera along some surface (usually a plane) capturing a 2D array of
photographs. This array is then transferred to a single holographic
image, which can display the appearanceof the 3D object. The work
reported in this paper takes many of its concepts from holographic
stereograms.

Global illumination researchers have used the “surface restric-
ted plenoptic function” to efficiently simulate light-transfer between
regions of an environment containing complicated geometric ob-
jects. The plenoptic function is represented on the surface of a cube
surrounding some region; that information is all that is needed to
simulate the light transfer from that region of space to all other re-
gions [17]. In the context of illumination engineering, this idea has
been used to model and represent the illumination due to physical
luminaires. Ashdown [2] describes a gantry for moving a camera
along a sphere surrounding a luminaire of interest. The captured in-
formation can then be used to represent the light source in global
illumination simulations. Ashdown traces this idea of the surface-
restricted plenoptic function back to Levin [15].

A limited version of the work reported here has been described
by Katayama et al. [11]. In their system, a camera is moved along a
track, capturing a 1D array of images of some object. This inform-
ation is then used to generate new images of the object from other
points in space. Because they only capture the plenoptic function
along a line, they only obtain horizontal parallax, and distortion is
introduced as soon as the new virtual camera leaves the line. Finally,
in work concurrent to our own, Levoy and Hanrahan [16] represent
a 4D function that allows for undistorted, full parallax views of the
object from anywhere in space.

2.2 Parameterization of the 4D Lumigraph

There are many potential ways to parameterize the four dimensions
of the Lumigraph. We adopt a parameterization similar to that used
in digital holographic stereograms [9] and also used by Levoy and
Hanrahan [16]. We begin with a cube to organize a Lumigraph
and, without loss of generality, only consider for discussion a single
square face of the cube (the full Lumigraph is constructed from six
such faces).

2We only consider a snapshot of the function, thus time is eliminated.
Without loss of generality, we also consider only a monochromatic func-
tion (in practice 3 discrete color channels), eliminating the need to consider
wavelength. We furthermore ignore issues of dynamic range and thus limit
ourselves to scalar values lying in some finite range.

3In an analogous fashion one can reconstruct the complete plenoptic
function inside an empty convex region by representing it only on the sur-
face bounding the empty region. At any point inside the region, one can find
the light entering from any direction by finding that direction’s intersection
with the region boundary.
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Figure 1: The surface of a cube holds all the radiance information
due to the enclosed object.
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Figure 2: Parameterization of the Lumigraph

We choose a simple parameterization of the cube face with or-
thogonal axes running parallel to the sides labeled s and t (see Fig-
ure 1). Direction is parameterized using a second plane parallel to
the st plane with axes labeled u and v (Figure 2). Any point in the
4D Lumigraph is thus identified by its four coordinates (s; t; u; v),
the coordinates of a ray piercing the first plane at (s; t) and intersect-
ing the second plane at (u; v) (see Ray(s; t; u; v) in Figure 2). We
place the origin at the center of the uv plane, with the z axis normal
to the plane. The st plane is located at z = 1. The full Lumigraph
consists of six such pairs of planes with normals along the x,�x, y,
�y, z, and �z directions.

It will be instructive at times to consider two 2D analogs to the
4D Lumigraph. Figure 2(b) shows a 2D slice of the 4D Lumigraph
that indicates the u and s axes. Figure 2(c) shows the same arrange-
ment in 2D ray coordinates in which rays are mapped to points (e.g.,
ray(s; u) ) and points are mapped to lines.4

Figure 3 shows the relationship between this parameterization of
the Lumigraph and a pixel in some arbitrary image. Given a Lu-

4More precisely, a line in ray space represents the set of rays through a
point in space.
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Figure 3: Relationship between Lumigraph and a pixel in an arbit-
rary image

migraph, L, one can generate an arbitrary new image coloring each
pixel with the appropriate value L(s; t;u; v). Conversely given
some arbitrary image and the position and orientation of the cam-
era, each pixel can be considered a sample of the Lumigraph value
at (s; t; u; v) to be used to construct the Lumigraph.

There are many advantages of the two parallel plane parameter-
ization. Given the geometric description of a ray, it is computation-
ally simple to compute its coordinates; one merely finds its intersec-
tion with two planes. Moreover, reconstruction from this paramet-
erization can be done rapidly using the texture mapping operations
built into hardware on modern workstations (see section 3.6.2). Fi-
nally, in this parameterization, as one moves an eyepoint along the
st plane in a straight line, the projection on the uv plane of points on
the geometric object track along parallel straight lines. This makes it
computationally efficient to compute the apparent motion of a geo-
metric point (i.e., the optical flow), and to apply depth correction to
the Lumigraph.

2.3 Discretization of the 4D Parameterization

So far, the Lumigraph has been discussed as an unknown, con-
tinuous, four dimensional function within a hypercubical domain
in s; t; u; v and scalar range. To map such an object into a com-
putational framework requires a discrete representation. In other
words, we must choose some finite dimensional function space
within which the function resides. To do so, we choose a discrete
subdivision in each of the (s; t; u; v) dimensions and associate a
coefficient and a basis function (reconstruction kernel) with each 4D
grid point.

ChoosingM subdivisions in the s and t dimensions andN subdi-
visions in u and v results in a grid of points on the st and uv planes
(Figure 4). An st grid point is indexed with (i; j) and is located
at (si; tj). A uv grid point is indexed with (p; q) and is located at
(up; vq). A 4D grid point is indexed (i; j; p; q). The data value (in
fact an RGB triple) at this grid point is referred to as xi;j;p;q

2.3.1 Choice of Basis

We associate with each grid point a basis function Bi;j;p;q so that
the continuous Lumigraph is reconstructed as the linear sum

~L(s; t; u; v) =

MX
i=0

MX
j=0

NX
p=0

NX
q=0

xi;j;p;qBi;j;p;q (s; t; u; v)

where ~L is a finite dimensional Lumigraph that exists in the space
defined by the choice of basis.
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Figure 4: Discretization of the Lumigraph

For example, if we select constant basis functions (i.e., a 4D box
with value 1 in the 4D region closest to the associated grid point
and zero elsewhere), then the Lumigraph is piecewise constant, and
takes on the value of the coefficient of the nearest grid point.

Similarly, a quadralinearbasis function has a value of 1 at the grid
point and drops off to 0 at all neighboring grid points. The value
of ~L(s; t; u; v) is thus interpolated from the 16 grid points forming
the hypercube in which the point resides.

We have chosen to use the quadralinear basis for its computa-
tional simplicity and the C0 continuity it imposes on ~L. However,
because this basis is not band limited by the Nyquist frequency, and
thus the corresponding finite dimensional function space is not shift
invariant [24], the grid structure will be slightly noticeable in our
results.

2.3.2 Projection into the Chosen Basis

Given a continuous Lumigraph,L, and a choice of basis for the finite
dimensional Lumigraph, ~L, we still need to define a projection of
L into ~L (i.e., we need to find the coefficients x that result in an ~L
which is by some metric closest to L). If we choose the L2 distance
metric, then the projection is defined by integrating L against the
duals of the basis functions [8], given by the inner products,

xi;j;p;q =< L; ~Bi;j;p;q > (1)

In the case of the box basis,B = ~B. The duals of the quadralinear
basis functions are more complex, but these basis functions suffi-
ciently approximate their own duals for our purposes.

One can interpret this projection as point sampling L after it has
been low pass filtered with the kernel ~B. This interpretation is pur-
sued in the context of holographic stereograms by Halle [9]. One
can also interpret this projection as the result of placing a physical
or synthetic “skewed” camera at grid point (si; tj) with an aper-
ture corresponding to the bilinear basis and with a pixel centered at
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(up; vq) antialiased with a bilinear filter. This analogy is pursued in
[16].

In Figure 16 we show images generated from Lumigraphs. The
geometric scene consisted of a partial cube with the pink face in
front, yellow face in back, and the brown face on the floor. These
Lumigraphs were generated using two different quadrature meth-
ods to approximate equation 1, and using two different sets of basis
functions, constant and quadralinear. In (a) and (c) only one sample
was used to compute each Lumigraph coefficient. In these examples
severe ghosting artifacts can be seen. In (b) and (d) numerical integ-
ration over the support of ~B in stwas computed for each coefficient.
It is clear that best results are obtained using quadralinearbasis func-
tion, with a full quadrature method.

2.3.3 Resolution

An important decision is how to set the resolutions,M and N , that
best balance efficiency and the quality of the images reconstructed
from the Lumigraph. The choices for M and N are influenced by
the fact that we expect the visible surfaces of the object to lie closer
to the uv plane than the st plane. In this case, N , the resolution
of the uv plane, is closely related to the final image resolution and
thus a choice for N close to final image resolution works best (we
consider a range of resolutions from 128 to 512).

One can gain some intuition for the choice of M by observing the
2D subset of the Lumigraph from a single grid point on the uv plane
(seeu = 2 in Figure 5(a)). If the surface of the object lies exactly on
the uv plane at a gridpoint, then all rays leaving that point represent
samples of the radiance function at a single position on the object’s
surface. Even when the object’s surface deviates from the uv plane
as in Figure 5(b), we can still expect the function across the st plane
to remain smooth and thus a low resolution is sufficient. Thus a sig-
nificantly lower resolution for M than N can be expected to yield
good results. In our implementation we use values of M ranging
from 16 to 64.

2.3.4 Use of Geometric Information

Assuming the radiance function of the object is well behaved,know-
ledge about the geometry of the object gives us information about
the coherenceof the associatedLumigraph function, and can be used
to help define the shape of our basis functions.

Consider the ray (s;u) in a two-dimensional Lumigraph (Fig-
ure 6). The closest grid point to this ray is (si+1; up). However,
gridpoints (si+1; up�1) and (si; up+1) are likely to contain values
closer to the true value at (s; u) since these grid points represent
rays that intersect the object nearby the intersection with (s; u). This
suggests adapting the shape of the basis functions.

Supposewe know the depth value z at which ray (s; u) first inter-
sects a surface of the object. Then for a given si, one can compute a
corresponding u0 for a ray (si; u

0) that intersects the same geomet-
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Figure 7: An (s; u; v) slice of a Lumigraph

ric location on the object as the original ray (s; u)5 . Let the depth
z be 0 at the uv plane and 1 at the st plane. The intersections can
then be found by examining the similar triangles in Figure 6,

u0 = u + (s� si) z

1�z (2)

It is instructive to view the same situation as in Figure 6(a), plot-
ted in ray space (Figure 6(b)). In this figure, the triangle is the ray
(s; u), and the circles indicate the nearby gridpoints in the discrete
Lumigraph. The diagonal line passing through (s; u) indicates the
optical flow (in this case, horizontal motion in 2D) of the intersection
point on the object as one moves back and forth in s. The intersec-
tion of this line with si and si+1 occurs at u0 and u00 respectively.

Figure 7 shows an (s; u) slice through a three-dimensional
(s; u; v) subspace of the Lumigraph for the ray-traced fruitbowl
used in Figure 19. The flow of pixel motion is along straight lines in
this space, but more than one motion may be present if the scene in-
cludes transparency. The slope of the flow lines corresponds to the
depth of the point on the object tracing out the line. Notice how the
function is coherent along these flow lines [4].

We expect the Lumigraph to be smooth along the optical flow
lines, and thus it would be beneficial to have the basis functions ad-
apt their shape correspondingly. The remapping ofu andv values to
u0 and v0 performs this reshaping. The idea of shaping the support
of basis functions to closely match the structure of the function be-
ing approximated is used extensively in finite element methods. For
example, in the Radiosity method for image synthesis, the mesh of
elements is adapted to fit knowledgeabout the illumination function.

5Assuming there has been no change in visibility.
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Figure 8: (a) Support of an uncorrected basis function. (b) Support
of a depth corrected basis function. (c) Support of both basis func-
tions in ray space.

The new basis function B0

i;j;p;q (s; t;u; v) is defined by first
finding u0 and v0 using equation 2 and then evaluating B, that is

B
0

i;j;p;q(s; t; u; v) = Bi;j;p;q(s; t; u
0

; v
0)

Although the shape of the new depth corrected basis is complic-
ated, ~L(s; t;u; v) is still a linear sum of coefficients and the weights
of the contributing basis functions still sum to unity. However, the
basis is no longer representable as a tensor product of simple boxes
or hats as before. Figure 8 shows the supportof an uncorrected (light
gray) and a depth corrected (dark gray) basis function in 2D geomet-
ric space and in 2D ray space. Notice how the support of the depth
corrected basis intersects the surface of the object across a narrower
area compared to the uncorrected basis.

We use depth corrected quadralinear basis functions in our sys-
tem. The value of ~L(s; t; u; v) in the corrected quadralinear basis is
computed using the following calculation:

QuadralinearDepthCorrect(s,t,u,v,z)
Result = 0
hst = s1 � s0 /* grid spacing */
huv = u1 � u0
for each of the four (si; tj) surrounding (s; t)

u0 = u+ (s� si) � z=(1� z)
v0 = v + (t� tj) � z=(1� z)
temp = 0
for each of the four (up; vq) surrounding (u0; v0)

iterpWeight
uv

=
(huv� j up � u0 j) � (huv� j vq � v0 j)=h2uv

temp+= interpWeight
uv

� L(si; tj ; up; vq)
interpWeight

st
=

(hst� j si � s j) � (hst� j tj � t j)=h2st
Result += interpWeight

st
� temp

return Result

Figure 17 shows images generated from a Lumigraph using un-
corrected and depth corrected basis functions. The depth correction
was done using a 162 polygon model to approximate the original
70,000 polygons. The approximation was generated using a mesh
simplification program [10]. These images show how depth correc-
tion reduces the artifacts present in the images.

3 The Lumigraph System

This section discusses many of the practical implementation issues
related to creating a Lumigraph and generating images from it. Fig-
ure 9 shows a block diagram of the system. The process begins with
capturing images with a hand-held camera. From known markers
Capture Rebin Compress
Reconstruct

Images

Segment
Object

Create
Geometry

Figure 9: The Lumigraph system

in the image, the camera’s position and orientation (its pose) is es-
timated. This provides enough information to create an approxim-
ate geometric object for use in the depth correction of (u; v) values.
More importantly, each pixel in each image acts as a sample of the
plenoptic function and is used to estimate the coefficients of the dis-
crete Lumigraph (i.e., to develop the Lumigraph). Alternatively, the
Lumigraph of a synthetic object can be generated directly by integ-
rating a set of rays cast in a rendering system. We only briefly touch
on compression issues. Finally, given an arbitrary virtual camera,
new images of the object are quickly rendered.

3.1 Capture for Synthetic Scenes

Creating a Lumigraph of a synthetic scene is straightforward. A
single sample per Lumigraph coefficient can be captured for each
gridpoint (i; j) by placing the center of a virtual pin hole camera at
(si; tj) looking down the z axis, and defining the imaging frustum
using the uv square as the film location. Rendering an image us-
ing this skewed perspective camera produces the Lumigraph coeffi-
cients. The pixel values in this image, indexed (p; q), are used as the
Lumingraph coefficientsxi;j;p;q . To perform the integration against
the kernel ~B, multiple rays per coefficient can be averaged by jit-
tering the camera and pixel locations, weighting each image using
~B. For ray traced renderings, we have used the ray tracing program
provided with the Generative Modeling package[25].

3.2 Capture for Real Scenes

Computing the Lumigraph for a real object requires the acquisition
of object images from a large number of viewpoints. One way in
which this can be accomplished is to use a special motion control
platform to place the real camera at positions and orientations coin-
cident with the (si; tj) gridpoints [16]. While this is a reasonable
solution, we are interested in acquiring the images with a regular
hand-held camera. This results in a simpler and cheaper system, and
may extend the range of applicability to larger scenes and objects.

To achieve this goal, we must first calibrate the camera to determ-
ine the mapping between directions and image coordinates. Next,
we must identify special calibration markers in each image and
compute the camera’s pose from these markers. To enable depth-
corrected interpolation of the Lumigraph, we also wish to recover
a rough geometric model of the object. To do this, we convert each
input image into a silhouette using a blue-screen technique, and then
build a volumetric model from these binary images.

3.2.1 Camera Calibration and Pose Estimation

Camera calibration and pose estimation can be thought of as two
parts of a single process: determining a mapping between screen
pixels and rays in the world. The parameters associated with this
process naturally divide into two sets: extrinsic parameters, which
define the camera’s pose (a rigid rotation and translation), and in-
trinsic parameters, which define a mapping of 3D camera coordin-
ates onto the screen. This latter mapping not only includes a per-
spective (pinhole) projection from the 3D coordinates to undistorted



Figure 10: The capture stage

image coordinates, but also a radial distortion transformation and a
final translation and scaling into screen coordinates [29, 31].

We use a camera with a fixed lens, thus the intrinsic parameters
remain constant throughout the process and need to be estimated
only once, before the data acquisition begins. Extrinsic parameters,
however, change constantly and need to be recomputed for each new
video frame. Fortunately, given the intrinsic parameters, this can be
done efficiently and accurately with many fewer calibration points.
To compute the intrinsic and extrinsic parameters, we employ an al-
gorithm originally developed by Tsai [29] and extended by Willson
[31].

A specially designed stage provides the source of calibration data
(see Figure 10). The stage has two walls fixed together at a right
angle and a base that can be detached from the walls and rotated in
90 degree increments. An object placed on such a movable base
can be viewed from all directions in the upper hemisphere. The
stage background is painted cyan for later blue-screen processing.
Thirty markers, each of which consists of several concentric rings
in a darker shade of cyan, are distributed along the sides and base.
This number is sufficiently high to allow for a very precise intrinsic
camera calibration. During the extrinsic camera calibration, only 8
or more markers need be visible to reliably compute a pose.

Locating markers in each image is accomplishedby first convert-
ing the image into a binary (i.e., black or white) image. A double
thresholding operator divides all image pixels into three groups sep-
arated by intensity thresholds T1 and T2. Pixels with an intensity
below T1 are considered black, pixels with an intensity above T2
are considered white. Pixels with an intensity between T1 and T2
are considered black only if they have a black neighbor, otherwise
they are considered white. The binary thresholded image is then
searched for connected components [23]. Sets of connected com-
ponents with similar centers of gravity are the likely candidates for
the markers. Finally, the ratio of radii in each marker is used to
uniquely identify the marker. To help the user correctly sample the
viewing space, a real-time visual feedback displays the current and
past locations of the camera in the view space (Figure 11). Marker
tracking, pose estimation, feedback display, and frame recording
takes approximately 1/2 second per frame on an SGI Indy.

3.3 3D Shape Approximation

The recovery of 3D shape information from natural imagery has
long been a focus of computer vision research. Many of these tech-
niques assume a particularly simple shape model, for example, a
polyhedral scenewhere all edgesare visible. Other techniques, such
as stereo matching, produce sparse or incomplete depth estimates.
To produce complete, closed 3D models, several approaches have
been tried. One family of techniques builds 3D volumetric models
Figure 11: The user interface for the image capture stage displays
the current and previous camera positions on a viewing sphere. The
goal of the user is to “paint” the sphere.

Figure 12: Segmented image plus volume construction

directly from silhouettes of the object being viewed [21]. Another
approach is to fit a deformable 3D model to sparse stereo data. Des-
pite over 20 years of research, the reliable extraction of accurate 3D
geometric information from imagery (without the use of active illu-
mination and positioning hardware) remains elusive.

Fortunately, a rough estimate of the shape of the object is enough
to greatly aid in the capture and reconstruction of images from a Lu-
migraph. We employ the octree construction algorithm described
in [26] for this process. Each input image is first segmented into a
binary object/background image using a blue-screen technique [12]
(Figure 12). An octree representation of a cube that completely en-
closes the object is initialized. Then for each segmented image, each
voxel at a coarse level of the octree is projected onto the image plane
and tested against the silhouette of the object. If a voxel falls outside
of the silhouette, it is removed from the tree. If it falls on the bound-
ary, it is marked for subdivision into eight smaller cubes. After a
small number of images are processed, all marked cubes subdivide.
The algorithm proceeds for a preset number of subdivisions, typic-
ally 4. The resulting 3D model consists of a collection of voxels de-
scribing a volume which is known to contain the object6 (Figure 12).
The external polygons are collected and the resulting polyhedron is
then smoothed using Taubin’s polyhedral smoothing algorithm [27].

3.4 Rebinning

As described in Equation 1, the coefficient associated with the basis
function Bi;j;p;q is defined as the integral of the continuous Lu-
migraph function multiplied by some kernel function ~B. This can
be written as

xi;j;p;q =

Z
L(s; t; u; v) ~Bi;j;p;q (s; t; u; v)ds dt du dv (3)

In practice this integral must be evaluated using a finite number of
samples of the function L. Each pixel in the input video stream
coming from the hand-held camera represents a single sample

6Technically, the volume is a superset of the visual hull of the object [13].



L(sk; tk; uk; vk), of the Lumigraph function. As a result, the
sample points in the domain cannot be pre-specified or controlled.
In addition, there is no guarantee that the incoming samples are
evenly spaced.

Constructing a Lumigraph from these samples is similar to the
problem of multidimensional scattered data approximation. In the
Lumigraph setting, the problem is difficult for many reasons. Be-
cause the samples are not evenly spaced, one cannot apply stand-
ard Fourier-based sampling theory. Because the number of sample
points may be large (� 108) and because we are working in a 4 di-
mensional space, it is too expensive to solve systems of equations
(as is done when solving thin-plate problems [28, 18]) or to build
spatial data structures (such as Delauny triangulations).

In addition to the number of sample points, the distribution of the
data samples have two qualities that make the problem particularly
difficult. First, the sampling density can be quite sparse, with large
gaps in many regions. Second, the sampling density is typically very
non-uniform.

The first of these problems has been addressed in a two dimen-
sional scattered data approximation algorithm describedby Burt [5].
In his algorithm, a hierarchical set of lower resolution data sets is
created using an image pyramid. Each of these lower resolutions
represents a “blurred” version of the input data; at lower resolutions,
the gaps in the data become smaller. This low resolution data is then
used to fill in the gaps at higher resolutions.

The second of these problems, the non-uniformity of the
sampling density, has been addressed by Mitchell [20]. He
solves the problem of obtaining the value of a pixel that has been
super-sampled with a non-uniform density. In this problem, when
averaging the sample values, one does not want the result to
be overly influenced by the regions sampled most densely. His
algorithm avoids this by computing average values in a number of
smaller regions. The final value of the pixel is then computed by
averaging together the values of these strata. This average is not
weighted by the number of samples falling in each of the strata.
Thus, the non-uniformity of the samples does not bias the answer.

For our problem, we have developed a new hierarchical al-
gorithm that combines concepts from both of these algorithms. Like
Burt, our method uses a pyramid algorithm to fill in gaps, and like
Mitchell, we ensure that the non-uniformity of the data does not bias
the “blurring” step.

For ease of notation, the algorithm is described in 1D, and will
use only one index i. A hierarchical set of basis functions is used,
with the highest resolution labeled0 and with lower resolutions hav-
ing higher indices. Associated with each coefficientxri at resolution
r is a weight wr

i . These weights determine how the coefficients at
different resolution levels are eventually combined. The use of these
weights is the distinguishing feature of our algorithm.

The algorithm proceeds in three phases. In the first phase, called
splat, the sample data is used to approximate the integral of Equa-
tion 3, obtaining coefficients x0i and weights w0

i . In regions where
there is little or no nearby sample data, the weights are small or zero.
In the second phase, called pull, coefficients are computed for basis
functions at a hierarchical set of lower resolution grids by combin-
ing the coefficient values from the higher resolution grids. In the
lower resolution grids, the gaps (regions where the weights are low)
become smaller (see figure 13). In the third phase, called push, in-
formation from the each lower resolution grid is combined with the
next higher resolution grid, filling in the gaps while not unduly blur-
ring the higher resolution information already computed.

3.4.1 Splatting

In the splatting phase, coefficients are computed by performing
Monte-Carlo integration using the following weighted average es-
Figure 13: 2D pull-push. At lower resolutions the gaps are smaller.

timator:
w0
i =

P
k

~Bi(sk)

x0i = 1

w0
i

P
k

~Bi(sk)L(sk)
(4)

where sk denotes the domain location of sample k. If w0
i is 0, then

the x0i is undefined. If the ~Bi have compact support, then each
sample influences only a constant number of coefficients. There-
fore, this step runs in time linear in the number of samples.

If the sample points sk are chosen from a uniform distribution,
this estimator converges to the correct value of the integral in Equa-
tion (3), and for n sample points has a variance of approximately
1

n

R �
~Bi(s)L(s)� xi ~Bi(s)

�2
ds. This variance is similar to that

obtained using importance sampling, which is often much smaller
than the crude Monte Carlo estimator. For a full analysis of this es-
timator, see [22].

3.4.2 Pull

In the pull phase, lower resolution approximations of the function
are derived using a set of wider kernels. These wider kernels are
defined by linearly summing together the higher resolution kernels
( ~Br+1

i
=
P

k

~hk�2i ~B
r

k
) using some discrete sequence ~h. For lin-

ear “hat” functions, ~h[�1::1] is f 1
2
; 1; 1

2
g

The lower resolution coefficients are computed by combining the
higher resolution coefficients using ~h. One way to do this would be
to compute

wr+1

i
=

P
k

~hk�2i w
r

k

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i w
r

k x
r

k

(5)

It is easy to see that this formula, which corresponds to the method
used by Burt, computes the same result as would the original estim-
ator (Equation (4)) applied to the wider kernels. Once again, this
estimator works if the sampling density is uniform. Unfortunately,
when looking on a gross scale, it is imprudent to assume that the data
is sampled uniformly. For example, the user may have held the cam-
era in some particular region for a long time. This non-uniformity
can greatly bias the estimator.

Our solution to this problem is to apply Mitchell’s reasoning to
this context, replacing Equation (5) with:

wr+1

i
=

P
k

~hk�2i min(wr

k; 1)

xr+1
i

= 1

w
r+1

i

P
k

~hk�2i min(wr

k; 1)x
r

k

The value 1 represents full saturation7, and the min operator is used
to place an upper bound on the degree that one coefficient in a highly

7Using the value 1 introduces no loss of generality if the normalization
of ~h is not fixed.



sampled region, can influence the total sum 8.
The pull stage runs in time linear in the number of basis function

summed over all of the resolutions. Because each lower resolution
has half the density of basis functions, this stage runs in time linear
in the number of basis functions at resolution 0.

3.4.3 Push

During the push stage, the lower resolution approximation is used to
fill in the regions in the higher resolution that have low weight 9 . If a
higher resolution coefficient has a high associated confidence (i.e.,
has weight greater than one), we fully disregard the lower resolu-
tion information there. If the higher resolution coefficient does not
have sufficient weight, we blend in the information from the lower
resolution.

To blend this information, the low resolution approximation of
the function must be expressed in the higher resolution basis. This is
done by upsampling and convolving with a sequenceh, that satisfies
Br+1

i
=
P

k
hk�2iB

r

k .
We first compute temporary values

twr

i =
P

k
hi�2k min(wr+1

k
; 1)

txri = 1

tw
r

i

P
k
hi�2k min(wr+1

k
; 1) xr+1

k

These temporary values are now ready to be blended with the values
x and w values already at level r.

x
r
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r

i (1�w
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r
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r
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This is analogous to the blending performed in image compositing.

3.4.4 Use of Geometric Information

This three phase algorithm must be adapted slightly when using the
depth corrected basis functions B0. During the splat phase, each
sample rayL(sk; tk; uk; vk)must have its u and v values remapped
as explained in Section 2.3.4. Also, during the push and pull phases,
instead of simply combining coefficients using basis functions with
neighboring indices, depth corrected indices are used.

3.4.5 2D Results

The validity of the algorithm was tested by first applying it to a
2D image. Figure 18 (a) shows a set of scattered samples from the
well known mandrill image. The samples were chosen by picking
256 random line segments and sampling the mandrill very densely
along these lines 10. Image (b) shows the resulting image after the
pull/push algorithm has been applied. Image (c) and (d) show the
same process but with only 100 sample lines. The success of our al-
gorithm on both 2D image functions and 4D Lumigraph functions
leads us to believe that it may have many other uses.

3.5 Compression

A straightforward sampling of the Lumigraph requires a large
amount of storage. For the examples shown in section 4, we use,
for a single face, a 32� 32 sampling in (s; t) space and 256� 256

8This is actually less extreme that Mitchell’s original algorithm. In this
context, his algorithm would set all non-zero weights to 1.

9Variance measures could be used instead of weight as a measure of con-
fidence in this phase.
10We chose this type of sampling pattern because it mimics in many ways

the structure of the Lumigraph samples taken from a hand-held camera. In
that case each input video image is a dense sampling of the 4D Lumigraph
along a 2D plane.
(u; v) images. To store the six faces of our viewing cube with 24-
bits per pixel requires 322 � 2562 � 6 � 3 = 1:125GB of storage.

Fortunately, there is a large amount of coherence between
(s; t; u; v) samples. One could apply a transform code to the 4D ar-
ray, such as a wavelet transform or block DCT. Given geometric in-
formation, we can expect to do even better by considering the 4D ar-
ray as a 2D array of images. We can then predict new (u; v) images
from adjacent images, (i.e., images at adjacent (s; t) locations). In-
traframe compression issues are identical to compressing single im-
ages (a simple JPEG compression yields about a 20:1 savings). In-
terframe compression can take advantage of increased information
over other compressionmethods such as MPEG. Since we know that
the object is static and know the camera motion between adjacent
images, we can predict the motion of pixels. In addition, we can
leverage the fact that we have a 2D array of images rather than a
single linear video stream.

Although we have not completed a full analysis of compression
issues, our preliminary experiments suggest that a 200:1 compres-
sion ratio should be achievable with almost no degradation. This
reduces the storage requirements to under 6MB. Obviously, further
improvements can be expected using a more sophisticated predic-
tion and encoding scheme.

3.6 Reconstruction of Images

Given a desired camera (position, orientation, resolution), the re-
construction phase colors each pixel of the output image with the
color that this camera would create if it were pointed at the real ob-
ject.

3.6.1 Ray Tracing

Given a Lumigraph, one may generate a new image from an arbit-
rary camera pixel by pixel, ray by ray. For each ray, the correspond-
ing (s; t; u; v) coordinates are computed, the nearby grid points are
located, and their values are properly interpolated using the chosen
basis functions (see Figure 3).

In order to use the depth corrected basis functions given an ap-
proximate object, we transform the (u; v) coordinates to the depth
corrected (u0; v0) before interpolation. This depth correction of the
(u; v) values can be carried out with the aid of graphics hardware.
The polygonal approximation of the object is drawn from the point
of view and with the same resolution as the desired image. Each ver-
tex is assigned a red, green, blue value corresponding to its (x;y; z)
coordinate resulting in a “depth” image. The corrected depth value
is found by examining the blue value in the corresponding pixel of
the depth image for the �z-faces of the Lumigraph cube (or the red
or green values for other faces). This information is used to find u0

and v0 with Equation 2.

3.6.2 Texture mapping

The expense of tracing a ray for each pixel can be avoided by recon-
structing images using texture mapping operations. The st plane it-
self is tiled with texture mapped polygons with the textures defined
by slices of the Lumigraph: texi;j(up; vq) = xi;j;p;q . In other
words, we have one texture associated with each st gridpoint.

Constant Basis
Consider the case of constant basis functions. Suppose we wish

to render an image from the desired camera shown in Figure 14. The
set of rays passing through the shaded square on the st plane have
(s; t) coordinates closest to the grid point (i; j). Suppose that theuv
plane is filled with texi;j . Then, when using constant basis func-
tions, the shaded region in the desired camera’s film plane should
be filled with the corresponding pixels in the shaded region of the
uv plane. This computation can be accomplished by placing a vir-
tual camera at the desired location, drawing a square polygon on the
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Figure 14: Texture mapping a portion of the st plane

st plane, and texture mapping it using the four texture coordinates
(u; v)0, (u; v)1, (u; v)2, and (u; v)3 to index into texi;j .

Repeating this process for each grid point on the st plane and
viewing the result from the desired camera results in a complete re-
construction of the desired image. Thus, if one has an M � M
resolution for the st plane, one needs to draw at most M2 texture
mapped squares, requiring on average, only one ray intersection for
each square since the vertices are shared. Since many of the M2

squares on the st plane are invisible from the desired camera, typic-
ally only a small fraction of these squares need to be rendered. The
rendering cost is independent of the resolution of the final image.

Intuitively, you can think of the st plane as a piece of holographic
film. As your eye moves back and forth you see different things at
the same point in st since each point holds a complete image.

Quadralinear Basis
The reconstruction of images from a quadralinear basis Lu-

migraph can also be performed using a combination of texture map-
ping and alpha blending. In the quadralinear basis, the support of
the basis function at i; j covers a larger square on the st plane than
does the box basis (see Figure 15(a)). Although the regions do not
overlap in the constant basis, they do in the quadralinear basis. For
a given pixel in the desired image, values from 16 4D grid points
contribute to the final value.

The quadralinear interpolation of these 16 values can be carried
out as a sequence of bilinear interpolations, first in uv and then in
st. A bilinear basis function is shown in Figure 15(b) centered at
grid point (i; j). A similar basis would lie over each grid point in
uv and every grid point in st.

Texture mapping hardware on an SGI workstation can automatic-
ally carry out the bilinear interpolation of the texture in uv. Unfortu-
nately, there is no hardware support for the st bilinear interpolation.
We could approximate the bilinear pyramid with a linear pyramid by
drawing the four triangles shown on the floor of the basis function
in Figure 15(b). By assigning� values to each vertex (� = 1 at the
center, and � = 0 at the outer four vertices) and using alpha blend-
ing, the final image approximates the full quadralinear interpolation
with a linear-bilinear one. Unfortunately, such a set of basis func-
tions do not sum to unity which causes serious artifacts.

A different pyramid of triangles can be built that does sum
to unity and thus avoids these artifacts. Figure 15(c) shows a
hexagonal region associated with grid point (i; j) and an associated
linear basis function. We draw the six triangles of the hexagon with
� = 1 at the center and � = 0 at the outside six vertices11. The
linear interpolation of � values together with the bilinear interpol-
ation of the texture map results in a linear-bilinear interpolation. In
practice we have found it to be indistinguishable from the full quad-

11The alpha blending mode is set to perform a simple summation.
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Figure 15: Quadralinear vs. linear-bilinear

ralinear interpolation. This process requires at most 6M2 texture
mapped, �-blended triangles to be drawn.

Depth Correction
As before, the (u; v) coordinates of the vertices of the texture

mapped triangles can be depth corrected. At interior pixels, the
depth correction is only approximate. This is not valid when there
are large depth changes within the bounds of the triangle. There-
fore, we adaptively subdivide the triangles into four smaller ones by
connecting the midpoints of the sides until they are (a) smaller than
a minimum screen size or (b) have a sufficiently small variation in
depth at the three corners and center. The � values at intermediate
vertices are the average of the vertices of the parent triangles.

4 Results

We have implemented the complete system described in this paper
and have created Lumigraphs of both synthetic and actual objects.
For synthetic objects, Lumigraphs can be created either from poly-
gon rendered or ray traced images. Computing all of the necessary
images is a lengthy process often taking weeks of processing time.

For real objects, the capture is performed with an inexpensive,
single chip Panasonicanalog video camera. The capture phase takes
less than one hour. The captured data is then “developed” into a Lu-
migraph. This off-line processing, which includes segmenting the
image from its background,creating an approximate volumetric rep-
resentation, and rebinning the samples, takes less than one day of
processing on an SGI Indy workstation.

Once the Lumigraph has been created, arbitrary new images of
the object or scene can be generated. One may generate these new
images on a ray by ray basis, which takes a few seconds per frame
at 450�450 resolution. If one has hardware texture mapping avail-
able, then one may use the acceleration algorithm described in Sec-
tion 3.6.2. This texture mapping algorithm is able to create multiple
frames per second from the Lumigraph on an SGI Reality Engine.
The rendering speed is almost independent of the desired resolution
of the output images. The computational bottleneck is moving the
data from main memory to the smaller texture cache.

Figure 19 shows images of a synthetic fruit bowl, an actual fruit
bowl, and a stuffed lion, generated from Lumigraphs. No geometric
information was used in the Lumigraph of the synthetic fruit bowl.
For the actual fruit bowl and the stuffed lion, we have used the ap-
proximate geometry that was computed using the silhouette inform-
ation. These images can be generated in a fraction of a second, inde-
pendent of scene complexity. The complexity of both the geometry
and the lighting effects present in these images would be difficult to
achieve using traditional computer graphics techniques.



5 Conclusion

In this paper we have described a rendering framework based on
the plenoptic function emanating from a static object or scene. Our
method makes no assumptions about the reflective properties of the
surfaces in the scene. Moreover, this representation does not require
us to derive any geometric knowledge about the scene such as depth.
However, this method does allow us to include any geometric know-
ledge we may compute, to improve the efficiency of the representa-
tion and improve the quality of the results. We compute the approx-
imate geometry using silhouette information.

We have developed a system for capturing plenoptic data using a
hand-held camera, and converting this data into a Lumigraph using a
novel rebinning algorithm. Finally, we have developedan algorithm
for generating new images from the Lumigraph quickly using the
power of texture mapping hardware.

In the examples shown in this paper, we have not captured the
complete plenoptic function surrounding an object. We have limited
ourselves to only one face of a surrounding cube. There should be
no conceptualobstacles to extending this work to complete captures
using all six cube faces.

There is much future work to be done on this topic. It will be
important to develop powerful compression methods so that Lu-
migraphs can be efficiently stored and transmitted. We believe that
the large degree of coherence in the Lumigraph will make a high
rate of compression achievable. Future research also includes im-
proving the accuracy of our system to reduce the amount of arti-
facts in the images created by the Lumigraph. With these extensions
we believe the Lumigraph will be an attractive alternative to tradi-
tional methods for efficiently storing and rendering realistic 3D ob-
jects and scenes.
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Abstract. This paper presents how the image-based rendering technique ofview-
dependent texture-mapping (VDTM) can be efficiently implementedusing projec-
tive texture mapping, a feature commonly available inpolygon graphics hardware.
VDTM is a technique for generating novelviews of a scene with approximately
known geometry making maximal useof a sparse set of original views. The origi-
nal presentation of VDTMby Debevec, Taylor, and Malik required significant per-
pixelcomputation and did not scale well with the number of original images.In our
technique, we precompute for each polygon the set of originalimages in which it
is visible and create a “view map” data structurethat encodes the best texture map
to use for a regularly sampled setof possible viewing directions. To generate a
novel view, the viewmap for each polygon is queried to determine a set of no more
thanthree original images to blend together to render the polygon.Invisible trian-
gles are shaded using an object-space hole-fillingmethod. We show how the ren-
dering process can be streamlined forimplementation on standard polygon graph-
ics hardware, and presentresults of using the method to render a large-scale model
of theBerkeley bell tower and its surrounding campus environment.

1 Introduction

A clear application of image-based modeling and rendering techniques will be in the
creation and display of realistic virtual environments of real places. Acquiring geomet-
ric models of environments has been the subject of research in interactive image-based
modeling techniques, and is now becoming practical to perform with techniques such as
laser scanning or interactive photogrammetry. Acquiring the corresponding appearance
information (under given lighting conditions) is easily performed with a digital camera.
The remaining challenge is to use the recovered geometry and the available real views
to generate novel views of the scene quickly and realistically.

In addressing this problem, it is important to make judicious use of all the available
views, especially when a particular surface is seen from different directions in multiple
images. This problem was addressed in [2], which presented view-dependent texture
mapping as a means to render each pixel of a novel view as a blend of its correspond-
ing pixels in the original views. However, the technique presented did not guarantee
smooth blending between images as the viewpoint changed and did not scale well with
the number of available views.

In this paper we reformulate view-dependent texture-mapping to guarantee smooth
blending between images, to scale well with the number of views, and to make efficient
use of projective polygon texture-mapping hardware. The result is an effective and ef-
ficient technique for generating virtual views of a scene under the following conditions:

� A reasonably accurate geometric model of the scene is available



� A set of calibrated photographs (with known locations and known imaging geom-
etry) is available

� The photographs are taken in the same lighting conditions
� The photographs generally observe each surface of the scene from a few different

angles
� Surfaces in the scene are not extremely specular

2 Previous Work

Early image-based modeling and rendering work [16, 5, 8], presented methods of using
image depth or image correspondences to reproject the pixels from one camera position
to the viewpoint of another. However, the work did not concentrate on how to combine
appearance information from multiple images to optimally produce novel views.

View-Dependent Texture Mapping (VDTM) was presented in [2] as a method of ren-
dering interactively constructed 3D architectural scenes using images taken from multi-
ple locations. The method attempted to make full use of the available imagery using the
following principle: to generate a novel view of a particular surface patch in the scene,
the best original image from which to sample reflectance information is the image that
observed the patch from as close a direction as possible as the desired novel view. As
an example, suppose that a particular surface of a building is seen in three original im-
ages from the left, front, and right. If one is generating a novel view from the left, one
would want to use the surface’s appearance in the left view as the texture map. Simi-
larly, for a view in front of the surface one would most naturally use the frontal view.
For an animation of moving from the left to the front, it would make sense to smoothly
blend, as in morphing, between the left and front texture maps during the animation in
order to prevent the texture map suddenly changing from one frame to the next. As a re-
sult, the view-dependent texture mapping approach allows renderings to be considerably
more realistic than static texture-mapping allows, since it better represents non-diffuse
reflectance and can simulate the appearance of unmodeled geometry.

Other image-based modeling and rendering work has addressed the problem of
blending between available views of the scene in order to produce renderings. In [6],
blending is performed amongst a dense regular sampling of images in order to generate
novel views. Since scene geometry is not used, a very large number of views is neces-
sary to produce even low-resolution renderings. [4] is similar to [6] but uses irregularly
sampled views and leverages approximate scene geometry derived from object silhou-
ettes. View-dependent texture-mapping, used with a dense sampling of images and with
simple geometry, reduces to the light field approach. The representation used in the pre-
sented methods restricts the viewpoint to be outside the convex hull of an object or inside
a convex empty region of space. This restriction, and the number of images necessary,
could complicate using these methods for acquiring and rendering a large environment.
The work in this paper leverages the light field methods to render each surface of a model
as a light field constructed from a sparse set of views; since the model is assumed to con-
form well to the scene and the scene is assumed to be predominantly diffuse, far fewer
images are necessary to achieve coherent results.

The implementation of VDTM in [2] computed texture weighting on a per-pixel ba-
sis, required visibility calculations to be performed at rendering time, examined every
original view to produce every novel view, and only blended between the two closest
viewpoints available. As a result, it was computationally expensive (several minutes
per frame) and did not always guarantee the image blending to vary smoothly as the
viewpoint changed. Subsequent work [9, 7] presented more efficient methods for op-



tically compositing multiple re-rendered views of a scene. In this work we associate
appearance information with surfaces, rather than with viewpoints, in order to better in-
terpolate between widely spaced viewpoints in which each sees only a part of the scene.
We use visibility preprocessing, polygon view maps, and projective texture mapping to
implement our technique.

3 Overview of the Method

Our method for VDTM first preprocesses the scene to determine which images observe
which polygons from which directions. This preprocessing occurs as follows:

1. Compute Visibility: For each polygon, determine in which images it is seen.
Split polygons that are partially seen in one of the images. (Section 5).

2. Fill Holes: For each polygon not seen in any view, choose appropriate vertex col-
ors for performing Gouraud shading. (Section 5).

3. Construct View Maps: For each polygon, store the index of the image closest
in viewing angle for each direction of a regularly sampled viewing hemisphere.
(Section 7).

The rendering algorithm (Section 8) runs as follows:

1. Draw all polygons seen in none of the original views using the vertex colors de-
termined during hole filling.

2. Draw all polygons which are seen in just one view.
3. For each polygon seen in more than one view, calculate its viewing direction for

the desired novel view. Calculate where the novel view falls within the view map,
and then determine the three closest viewing directions and their relative weights.
Render the polygon using alpha-blending of the three textures with projective tex-
ture mapping.

4 Image-Based Rendering with Projective Texture Mapping

Projective texture mapping was introduced in [10] and is now part of the OpenGL graph-
ics standard. Although the original paper used it only for shadows and lighting effects, it
is directly applicable to image-based rendering because it can simulate the inverse pro-
jection of taking photographs with a camera. In order to perform projective texture map-
ping, the user specifies a virtual camera position and orientation, and a virtual image
plane with the texture. The texture is then cast onto a geometric model using the cam-
era position as the center of projection. The focus of this paper is to adapt projective
texture-mapping to take advantage of multiple images of the scene via view-dependent
texture-mapping.

Of course, we should only map a particular image onto the portions of the scene that
are visible from its original camera viewpoint. The OpenGL implementation of projec-
tive texture mapping does not automatically perform such visibility checks; instead a
texture map will project through any amount of geometry and be mapped onto occluded
polygons as seen in Fig. 1. Thus, we need to explicitly compute visibility information
before performing projective texture-mapping.

We could solve the visibility problem in image-space using ray tracing, an item
buffer, or a shadow buffer (as in [2]). However, such methods would require us to com-
pute visibility in image-space for each novel view, which is computationally expensive
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Fig. 1. The current hardware implementation of projective texture mapping in OpenGL lets the
texture pass through the geometry and be mapped onto all backfacing and occluded polygons on
the path of the ray, as can be seen in this rendering of a building on the right. Thus it is necessary to
perform visibility pre-processing so that only polygons visible to a particular camera are texture-
mapped with the corresponding image.

and not suited to interactive applications. Projective texture-mapping is extremely ef-
ficient if we know beforehand which polygons to texture-map, which suggests that we
employ a visibility preprocessing step in object-space to determine which polygons are
visible to which cameras. The next section describes such a visibility preprocessing
method.

5 Determining Visibility

The purpose of our visibility algorithm is to determine for each polygon in the model in
which images it is visible, and to split polygons as necessary so that each is fully visible
or fully invisible to any particular camera. Polygons are clipped to the camera viewing
frustums, to each other, and to user-specified clipping regions. This algorithm operates
in both object space [3, 15] and image space and runs as follows:

1. Assign each original polygon an ID number. If a polygon is subdivided later, all
the smaller polygons generated share the same original ID number.

2. If there are intersecting polygons, subdivide them along the line of intersection.
3. Clip the polygons against all image boundaries and any user-specified clipping

regions so that all resulting polygons lie either totally inside or totally outside the
view frustum and clipping regions.

4. For each camera position, rendering the original polygons of the scene with Z-
buffering using the polygon ID numbers as their colors.

5. For each frontfacing polygon, uniformly sample points and project them onto
the image plane. Retrieve the polygon ID at each projected point from the color
buffer. If the retrieved ID is different from the current polygon ID, the potentially
occluding polygon is tested in object-space to determine whether it is an occluder
or coplanar.

6. Clip each polygon with each of its occluders in object-space.
7. Associate with each polygon a list of photographs to which it is totally visible.

Using identification numbers to retrieve objects from the Z-buffer is similar to the
item buffer technique introduced in [14]. The image-space steps in the algorithm can



quickly obtain the list of occluders for each polygon. Errors due to image-space sam-
pling are largely avoided by checking the pixels in a neighborhood of each projection in
addition to the pixels at the projected sample points.

Our technique also allows the user the flexibility to specify that only a particular
region of an image be used in texture mapping. This is accomplished by specifying an
additional clipping region in step 3 of the algorithm.

Z

C

W

X

Y

camera
B

A

(a) (b)

Fig. 2. (a) To clip a polygon against an occluder, we need to form a pyramid for the occluder with
the apex at the camera position, and then clip the polygon with the bounding faces of the pyramid.
(b) Our algorithm does shallow clipping in the sense that if polygon A occludes polygon B, we only
use A to clip B, and any polygons behind B are unaffected.

The method of clipping a polygon against image boundaries is the same as that of
clipping a polygon against an occluding polygon. In either case, we form a pyramid for
the occluding polygon or image frame with the apex at the camera position (Fig. 2(a)),
and then clip the polygon with the bounding faces of the pyramid. Our algorithm does
shallow clipping in the sense that if polygon A occludes polygon B, we only use A to clip
B, and any polygons behind B are unaffected(Fig. 2(b)). Only partially visible polygons
are clipped; invisible ones are left intact. This greatly reduces the number of resulting
polygons.

If a polygon P has a list of occluders O = fp1; p2; :::; pmg, we use a recursive ap-
proach to do the clipping: First, we obtain the overlapping area on the image plane be-
tween each member of O and polygon P; we then choose the polygon p in O with max-
imum overlapping area to clip P into two parts P0 and S where P0 is the part of P that is
occluded by p, and S is a set of convex polygons which make up the part of P not oc-
cluded by p. We recursively apply the algorithm on each member of S, first detecting its
occluders and then performing the clipping.

To further reduce the number of resulting polygons, we set a lower threshold on the
size of polygons. If the object-space area of a polygon is below the threshold, it is as-
signed a constant color based on the textures of its surrounding polygons. If a polygon
is very small, it is not noticeable whether it is textured or simply a constant color. Fig. 3
shows visibility processing results for two geometric models.

6 Object-Space Hole Filling

No matter how many photographs we have, there may still be some polygons invisible
to all cameras. Unless some sort of coloring is assigned to them, they will appear as
undefined regions when visible in novel views.



Fig. 3. Visibility results for a bell tower model with 24 camera positions and for the university
campus model with 10 camera positions. The shade of each polygon encodes the number of cam-
era positions from which it is visible; the white regions in the overhead view of the second image
are “holes” invisible to all cameras.

Instead of relying on photographic data for these regions, we instead assign colors
to them based on the appearance of their surrounding surfaces, a processed called hole
filling. Previous hole-filling algorithms [16, 2, 7] have operated in image space, which
can cause flickering in animations since the manner in which a hole is filled will not nec-
essarily be consistent from frame to frame. Object-space hole-filling can guarantee that
the derived appearance of each invisible polygon is consistent between viewpoints. By
filling these regions with colors close to the colors of the surrounding visible polygons,
the holes can be made difficult to notice.

Fig. 4. The image on the left exhibits black regions which were invisible to all the original cameras
but not to the current viewpoint. The image on the right shows the rendering result with all the
holes filled. See also Fig. 8.

The steps in hole filling are:

1. Determine polygon connectivity. At each shared vertex, set up a linked list for
those polygons sharing that vertex. In this way, from a polygon, we can access all



its neighboring polygons.
2. Determine colors of visible polygons. Compute an “average” color for each vis-

ible polygon by projecting its centroid onto the image planes of each image in
which it appears and sample the colors at those coordinates.

3. Iteratively assign colors to the holes. For each invisible polygon, if it has not yet
been assigned a color, assign to each of its vertices the color of the closest polygon
which is visible or that has been filled in a previous iteration.

The reason for the iterative step is that an invisible polygon may not have a visible
polygon in its neighborhood. In this way its vertex colors can be determined after its
neighboring invisible polygons are assigned colors.

Due to slight misalignments between the geometry and the original photographs, the
textures of the edges of some objects may be projected onto the background. For exam-
ple, a sliver of the edge of a building may project onto the ground nearby. In order to
avoid filling the invisible areas with these incorrect textures, we do not sample polygon
colors at regions directly adjacent to occlusion boundaries.

Fig. 4 shows the results of hole filling. The invisible polygons, filled will Gouraud-
shaded low-frequency image content, are largely unnoticeable in animations. Because
we assume that the holes will be relatively small and that the scene is mostly diffuse, we
do not use the view-dependent information to render the holes.

7 Constructing and Querying Polygon View Maps

The goal of view-dependent texture-mapping is to always use surface appearance in-
formation sampled from the images which observed the scene closest in angle to the
novel viewing angle. In this way, the errors in rendered appearance due to specular re-
flectance and incorrect model geometry will be minimized. Note that in any particular
novel view, different visible surfaces may have different “best views”; an obvious case
of this is when the novel view encompasses an area not entirely observed in any one
view.

In order to avoid the perceptually distracting effect of surfaces suddenly switching
between different best views from frame to frame, we wish to blend between the avail-
able views as the angle of view changes. This section shows how for each polygon
we create a view map that encodes how to blend between at most three available views
for any given novel viewpoint, with guaranteed smooth image weight transitions as the
viewpoint changes. The view map for each polygon takes little storage and is simple
to compute as a preprocessing step. A polygon’s view map may be queried very effi-
ciently: given a desired novel viewpoint, it quickly returns the set of images with which
to texture-map the polygon and their relative weights.

To build a polygon’s view map, we construct a local coordinate system for the poly-
gon that represents the space of all viewing directions. We then regularly sample the
set of viewing directions, and assign to each of these samples the closest original view
in which the polygon is visible. The view maps are stored and used at rendering time
to determine the three best original views and their blending factors by a quick look-up
based on the current viewpoint.

The local polygon coordinate system is constructed as in Equation 1:

x =

�
yW � n , if yW and n are not collinear,
xW otherwise



y = n � x (1)

where xW and yW are world coordinate system axes, and n is the triangle unit normal.
We transform viewing directions to the local coordinate system as in Fig. 5. We first

obtain v, the unit vector in the direction from the polygon centroid c to the original view
position. We then rotate this vector into the x � y plane of the local coordinate system
for the polygon.

vr = (n � v)� n (2)

This vector is then scaled by the arc length l = cos�1(nT v) and projected onto the x
and y axes giving the desired view mapping.

x = (lvr)
T x

y = (lvr)
T y (3)
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Fig. 5. The local polygon coordinate system for constructing view maps.

We pre-compute for each polygon of the model the mapping coordinates pi = (xi; yi)
for each original view i in which the polygon is visible. These points pi represent a sparse
sampling of view direction samples.

To extrapolate the sparse set of original viewpoints, we regularize the sampling of
viewing directions as in Fig. 6. For every viewing direction on the grid, we assign to
it the original view nearest to its location. This new regular configuration is what we
store and use at rendering time. For the current virtual viewing direction we compute
its mapping pvirtual in the local space of each polygon. Then based on this value we do
a quick lookup into the regularly resampled view map. We find the grid triangle inside
which pvirtual falls and use the original views associated with its vertices in the render-
ing (p4, p5, and p7 in the example of Fig. 6). The blending weights are computed as
the barycentric coordinates of pvirtual in the triangle in which it lies. In this manner the
weights of the various viewing images are guaranteed to vary smoothly as the viewpoint
changes.

8 Efficient 3-pass View-Dependent Texture-Mapping

This section explains the implementation of the view-dependent texture-mapping ren-
dering algorithm.

For each polygon visible in more than one original view we pre-compute and store
the viewmaps described in Section 7. Before rendering begins, for each polygon we
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Fig. 6. A View Map. The space of viewing directions for each polygon is regularly sampled,
and the closest original view is stored for each sample. To determine the weightings of original
views to be used in a new view, the barycentric coordinates of the novel view within its contain-
ing triangle are used. This guarantees smooth changes of the set of three original views used for
texture mapping when moving the virtual viewpoint. Here, for viewpoint pvirtual , the polygon cor-
responding to this view map will be texture-mapped by an almost evenly weighted combination
of original views p4, p5, and p7, since those are the views assigned to the vertices of pvirtual’s view
map triangle.

find the coordinate mapping of the current viewpoint pvirtual and do a quick lookup to
determine which triangle of the grid it lies within. As explained in Section 7 this returns
the three best original views and their relative weights α1; α2; α3.

Since each VDTM polygon must be rendered with three texture maps, the rendering
is performed in three passes. Texture mapping is enabled in modulate mode, where the
new pixel color C is obtained by multiplying the existing pixel color Cf and the texture
color Ct . The Z-buffer test is set to less than or equal (GL LEQUAL) instead of the default
less than (GL LESS) to allow a polygon to blend with itself as it is drawn multiple times
with different textures. The first pass proceeds by selecting an image camera, binding the
corresponding texture, loading the corresponding texture matrix transformation Mtexture
in the texture matrix stack, and rendering the part of the model geometry for which the
first best camera is the selected one with modulation color (α1; α1; α1). These steps are
repeated for all image cameras. The results of this pass can seen on the tower in Fig.
8 (b). The first pass fills the depth buffer with correct depth values for the entire view.
Before proceeding with the second pass we enable blending in the frame buffer, i.e. in-
stead of replacing the existing pixel values with incoming values, we add those values



together. The second pass then selects cameras and renders polygons for which the sec-
ond best camera is the selected one with modulation color (α2; α2; α2). The results of
the second pass can seen on the tower in Fig. 8 (c). The third pass proceeds similarly,
rendering polygons for which the third best camera is the currently selected one with
modulation color (α3; α3; α3). The results of this last pass can seen on the tower in Fig.
8 (d). Polygons visible from only one original viewpoint are compiled in separate list
and rendered during the first pass with modulation color (1:0; 1:0; 1:0).

The polygons that are not visible in any image cameras are compiled in a separate
OpenGL display list and their vertex colors are specified according to the results of the
hole-filling algorithm. Those polygons are rendered before the first pass with Gouraud
shading after the texture mapping is disabled.

The block diagram in Fig. 7 summarizes the display loop steps.

Disable TM

specifying vertex colors
Render invisible triangles and sky

Load the appropriate M texture

in the texture matrix stack

Perform viewing transformation

Clear color and depth buffers

tC = C Cf )(

Enable blending after 
the first pass.

Do not overwrite pixels 
in the frame buffer, but 

add to their values. 

RC T C
0

)(

More original views? 

0f, u  ,v  , w, h, ,

YES

NO

Bind the corresponding image texture

being the currently selected

Enable TM in modulate mode 

Repeat 2 more times 
for VDTM.

Select an original view

Render all polygons with best view

Fig. 7. The multi-pass view-dependent projective texture mapping rendering loop.



9 Discussion and Future Work

The presented method was effective at realistically rendering a relatively large-scale
image-based scene at interactive rates on standard graphics hardware. Using relatively
unoptimized code, we were able to achieve 20 frames per second on a Silicon Graphics
InfiniteReality for the full tower and campus models. Nonetheless, many aspects of this
work should be regarded as preliminary in nature. One problem with the technique is
that it ignores the spatial resolution of the original images in its selection process – an
image that shows a particular surface at very low resolution but at just the right angle
would be given greater weighting than a high-resolution image from a slightly different
angle. Having the algorithm blend between the images using a multiresolution image
pyramid would allow low-resolution images to influence only the low-frequency con-
tent of the renderings. However, it is less clear how this could be implemented using
standard graphics hardware.

While the algorithm guarantees smooth texture weight transitions as the viewpoint
moves, it does not guarantee that the weights will transition smoothly across surfaces of
the scene. As a result, seams can appear in the renderings where neighboring polygons
are rendered with very different combinations of images. The problem is most likely to
be noticeable near the frame boundaries of the original images, or near a shadow bound-
ary of an image, where polygons lying on one side of the boundary include an image in
their view maps but the polygons on the other side do not. [2] and [9] suggest feath-
ering the influence of images in image-space toward their boundaries and near shadow
boundaries to reduce the appearance of such seams; with some consideration this tech-
nique should be adaptable to the object-space method presented here.

The algorithm as we have presented it requires all the available images of the scene
to fit within the main memory of the rendering computer. For a very large-scale en-
vironment, this is unreasonable to expect. To solve this problem, spatial partitioning
schemes [13], image caching [11], and impostor manipulation [11, 12] techniques could
be adapted to the current framework.

As we have presented the algorithm, it is only appropriate for models that can be
broken into polygonal patches. The algorithm can also work for curved surfaces (such
as those acquired by laser scanning); these surfaces would be need to be broken down by
the visibility algorithm until they are seen without self-occlusion by their set of cameras.

Lastly, it seems as if it would be more efficient to analyze the set of available views of
each polygon and distill a unified view-dependent function of its appearance, rather than
the raw set of original views. One such representation is the Bidirectional Texture Func-
tion, presented in [1], or a yet-to-be-presented form of geometry-enhanced light field.
Such a technique will require new rendering methods in order to render the distilled rep-
resentations in real time. Lastly, extensions of techniques such as model-based stereo [2]
might be able to perform a better job of interpolating between the various views than lin-
ear interpolation.

Images and Animations

Images and Animations of the Berkeley campus model may be found at:
http://www.cs.berkeley.edu/~debevec/Campanile
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(b) (d)

(a) (c)

Fig. 8. The different view-dependent projective texture-mapping passes in producing a frame of
the Berkeley campus virtual fly-by. The complete model contains approximately 100,000 trian-
gles. (a) The campus buildings and terrain after hole-filling; these areas were seen from only one
viewpoint and are thus rendered before the VDTM passes. (b) The Berkeley tower after the first
pass of view-dependent texture mapping. (c) The Berkeley tower after the second pass of view-
dependent texture mapping. (d) The complete rendering after all three VDTM passes.



SIGGRAPH 99 Course #39 - Image-Based 
Modeling, Rendering, and Lighting

http://www.cs.berkeley.edu/~debevec/IBMR2
000

Paul Debevec - "Image-Based Lighting" 6-1

Image-Based LightingImage-Based Lighting

Paul DebevecPaul Debevec

August 1999August 1999

Computer Science Division
University of California at Berkeley

Computer Science Division
University of California at Berkeley

A Photometric Approach to Rendering and CompositingA Photometric Approach to Rendering and Compositing

http://www.cs.berkeley.edu/~debevechttp://www.cs.berkeley.edu/~debevec

Reflection Mapping - 1982Reflection Mapping - 1982

http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/

Gene Miller and Ken PerlinGene Miller and Ken PerlinMike Chou and Lance WilliamsMike Chou and Lance Williams
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MotivationsMotivations

Image-Based Modeling and Rendering
• IBMR allows us to model and render real scenes
• We want to add new objects

- buildings, furniture, people
• We want the lighting to be correct

CGI / Background Plate Compositing
• Want to add synthetic actors, creatures, props to film 

and video
• Must be photorealistic
• Current techniques are challenging
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• We want the lighting to be correct

CGI / Background Plate Compositing
• Want to add synthetic actors, creatures, props to film 

and video
• Must be photorealistic
• Current techniques are challenging

CGI / Background Plate 
Compositing
CGI / Background Plate 
Compositing
Need to match:

• Camera Parameters

- Pose, Focal length, Distortion, Focus

• Film Response

- Contrast, Toe & Shoulder, Color Balance

• MTF / Film Grain

- Modulation Transfer Function, Ag Particles

• Illumination

- Highlights, Reflections, and Shadows
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• MTF / Film Grain

- Modulation Transfer Function, Ag Particles
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- Highlights, Reflections, and Shadows



SIGGRAPH 99 Course #39 - Image-Based 
Modeling, Rendering, and Lighting

http://www.cs.berkeley.edu/~debevec/IBMR2
000

Paul Debevec - "Image-Based Lighting" 6-3

Photometric Approach:Photometric Approach:

Illuminate Synthetic Objects 
with Measurements of

Real Light

Illuminate Synthetic Objects 
with Measurements of

Real Light

How can we measure the light?How can we measure the light?

Light is difficult to measureLight is difficult to measure

10’ x 15’ x 9’ room, 9” by 9” light, 50% reflective walls10’ x 15’ x 9’ room, 9” by 9” light, 50% reflective walls

100

50,000

Concentrated Light Sources => High Dynamic RangeConcentrated Light Sources => High Dynamic Range
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Mirrored Ball -
Records light in all directions
Mirrored Ball -
Records light in all directions

Brightest regions 
are saturated

Intensity and color
information lost

Brightest regions 
are saturated

Intensity and color
information lost

kitchen scenekitchen scene

• 3• 3• 3

• 1• 1• 1

• 2• 2• 2

∆∆t =t =
11 secsec

• 3• 3• 3

• 1• 1• 1

• 2• 2• 2

∆∆t =t =
1/16 1/16 secsec

• 3• 3• 3

• 1• 1• 1 • 2• 2• 2

∆∆t =t =
44 secsec

• 3• 3• 3

• 1• 1• 1

• 2• 2• 2

∆∆t =t =
1/64 1/64 secsec

Constructing Radiance ImagesConstructing Radiance Images

Image seriesImage seriesImage series

• 3• 3• 3

• 1• 1• 1

• 2• 2• 2

∆∆t =t =
1/4 1/4 secsec

Exposure = Radiance × ∆tExposure = Radiance × ∆t
log Exposure = log Radiance + log ∆tlog Exposure = log Radiance + log ∆t

Debevec and Malik, SIGGRAPH 97Debevec andDebevec and MalikMalik, SIGGRAPH 97, SIGGRAPH 97

High Dynamic Range Photography
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Recovering the Response Curve
” mkdhr”  beta package available at:

http://www.cs.berkeley.edu/Research/HDR

Recovering the Response Curve
” mkdhr”  beta package available at:

http://www.cs.berkeley.edu/Research/HDR

log Exposurelog Exposure

Assuming unit radiance
for each pixel

Assuming unit radiance
for each pixel

After adjusting radiances to 
obtain a smooth curve

After adjusting radiances to 
obtain a smooth curve
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High-Dynamic Range 
Photography
High-Dynamic Range 
Photography
”mkdhr” beta package available at:

http://www.cs.berkeley.edu/Research/HDR
”mkdhr” beta package available at:

http://www.cs.berkeley.edu/Research/HDR

300,000 : 1300,000 : 1
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Representing High Dynamic Range 
Radiance Images
Representing High Dynamic Range 
Radiance Images

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)  .

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)  .

Red               Green               Blue             ExponentRed               Green               Blue             Exponent

32 bits / pixel32 bits / pixel

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

Radiance Map from the 
Mirrored Ball
Radiance Map from the 
Mirrored Ball

Assembled from ten digital images,
∆ t = 1/4 to 1/10000 sec
Assembled from ten digital images,
∆ t = 1/4 to 1/10000 sec

(60,40,35)(60,40,35)
(18,17,19)(18,17,19)

(5700,8400,11800)(5700,8400,11800)(620,890,1300)(620,890,1300)
(11700,7300,2600)(11700,7300,2600)
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Illuminating Objects using 
Measurements of Real Light
Illuminating Objects using 
Measurements of Real Light

ObjectObject

LightLight

http://radsite.lbl.gov/radiance/http://radsite.lbl.gov/radiance/
See also: Larson and Shakespeare, “Rendering with Radiance”, 1998See also: Larson and Shakespeare, “Rendering with Radiance”, 1998

Environment 
assigned “glow” 

material 
property in

Greg Larson’s 
RADIANCE

system.

Environment 
assigned “glow” 

material 
property in

Greg Larson’s 
RADIANCE

system.

Illumination ResultsIllumination Results
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Illuminating a Small SceneIlluminating a Small Scene
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Early Tests of
HDRI and Image-Based Lighting
in LightWave 3D

Early Tests of
HDRI and Image-Based Lighting
in LightWave 3D

Lighting Environments from the Light Probe Image Gallery
http://www.cs.berkeley.edu/~debevec/Probes/

www.debevec.org

Lighting Environments from the Light Probe Image Gallery
http://www.cs.berkeley.edu/~debevec/Probes/

www.debevec.org
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VideoVideo

We can now illuminate
synthetic objects with real light.

How do we add synthetic objects to a 
real scene?

We can now illuminate
synthetic objects with real light.

How do we add synthetic objects to a 
real scene?
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Real Scene ExampleReal Scene Example

Goal: place synthetic objects on tableGoal: place synthetic objects on table

Light Probe / Calibration GridLight Probe / Calibration Grid
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real scenereal scene

Modeling the SceneModeling the Scene

light-based modellight-based model

The Light-Based Room ModelThe Light-Based Room Model
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real scenereal scene

Modeling the SceneModeling the Scene

synthetic objectssynthetic objects

light-based modellight-based model

local scenelocal scene

The Lighting ComputationThe Lighting Computation

synthetic objects
(known BRDF)

synthetic objects
(known BRDF)

distant scene (light-based, unknown BRDF)distant scene (light-based, unknown BRDF)

local scene
(estimated BRDF)

local scene
(estimated BRDF)
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Rendering into the SceneRendering into the Scene

Background PlateBackground Plate

Rendering into the SceneRendering into the Scene

Objects and Local Scene matched to SceneObjects and Local Scene matched to Scene
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Differential RenderingDifferential Rendering

Local scene w/o objects, illuminated by modelLocal scene w/o objects, illuminated by model

Differential Rendering (2)
Difference in local scene
Differential Rendering (2)
Difference in local scene

-- ==



SIGGRAPH 99 Course #39 - Image-Based 
Modeling, Rendering, and Lighting

http://www.cs.berkeley.edu/~debevec/IBMR2
000

Paul Debevec - "Image-Based Lighting" 6-16

Differential Rendering (3)Differential Rendering (3)

Final ResultFinal Result

Differential RenderingDifferential Rendering

Final ResultFinal Result
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VideoVideo

Domino animation rendered by
Son Chang and Christine Waggoner

Domino animation rendered by
Son Chang and Christine Waggoner

Estimating the local scene 
material properties
Estimating the local scene 
material properties
• Necessary for correct shadows and reflections

• For each part of the local scene, we know its 
irradiance from the light-based model

• If the material is diffuse, its albedo is its 
radiance divided by its irradiance

• Non-diffuse properties can be estimated by 
iterative methods or specified by hand

• See: Ward92, Karner20, Dana97, Sato97, Yu98, Debevec98, 
Yu99

• Necessary for correct shadows and reflections

• For each part of the local scene, we know its 
irradiance from the light-based model

• If the material is diffuse, its albedo is its 
radiance divided by its irradiance

• Non-diffuse properties can be estimated by 
iterative methods or specified by hand

• See: Ward92, Karner20, Dana97, Sato97, Yu98, Debevec98, 
Yu99
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Reflectance Properties for a Whole 
Scene: Inverse Global Illumination
Reflectance Properties for a Whole 
Scene: Inverse Global Illumination

Yizhou Yu, Paul Debevec, Jitendra Malik, Tim Hawkins

SIGGRAPH 99, Thursday, 11:50-12:15pm, West Hall A

Yizhou Yu, Paul Debevec, Jitendra Malik, Tim Hawkins

SIGGRAPH 99, Thursday, 11:50-12:15pm, West Hall A

40 radiance maps of a room40 radiance maps of a room

Recovered Geometry and ViewpointsRecovered Geometry and Viewpoints
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Real/Synthetic Comparison
Same viewpoints, Same lighting, Same objects

Real/Synthetic Comparison
Same viewpoints, Same lighting, Same objects

Real/Synthetic Comparison
New viewpoint, New lighting, New object
Real/Synthetic Comparison
New viewpoint, New lighting, New object



SIGGRAPH 99 Course #39 - Image-Based 
Modeling, Rendering, and Lighting

http://www.cs.berkeley.edu/~debevec/IBMR2
000

Paul Debevec - "Image-Based Lighting" 6-20

Communicating the sense of 
Brightness
Communicating the sense of 
Brightness

• Fade In / Fade Out

- Bright areas appear first / fade last

• Motion Blur

- Bright areas leave streaks

• Blur / Glare / Soft Focus

- Bright areas blossom

• Radial Light Falloff (Vignetting)

- Bright areas sear through corners

• Color tinting

- Bright areas still ramp to white

• Fade In / Fade Out

- Bright areas appear first / fade last

• Motion Blur

- Bright areas leave streaks

• Blur / Glare / Soft Focus

- Bright areas blossom

• Radial Light Falloff (Vignetting)

- Bright areas sear through corners

• Color tinting

- Bright areas still ramp to white

RNL ExampleRNL Example

Renderer OutputRenderer Output
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RNL ExampleRNL Example

Defocus & Glare AddedDefocus & Glare Added

RNL ExampleRNL Example

Soft Focus AddedSoft Focus Added
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RNL ExampleRNL Example

Light Falloff (Vignetting) AddedLight Falloff (Vignetting) Added

Motion BlurMotion Blur

Normal digitized photoNormal digitized photo Synthetic blur addedSynthetic blur added
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Motion BlurMotion Blur

Blurred radiance map,Blurred radiance map,
virtuallyvirtually rephotographedrephotographed

Actual blurred Actual blurred 
photographphotograph

Color Tinting ExampleColor Tinting Example

Input IntensityInput Intensity
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Interior Illumination Model
St. Peter’s Basilica for “Fiat Lux”
Interior Illumination Model
St. Peter’s Basilica for “Fiat Lux”

Christine Cheng, H.P. 
Duiker, Tal Garfinkel, 
Tim Hawkins, Jenny 
Huang, Westley Sarokin, 
Paul Debevec

SIGGRAPH 99 ET

http://fiatlux.berkeley.edu/

Interior of St. Peter’s from one ViewpointInterior of St. Peter’s from one Viewpoint
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The Light Stage

See: “Acquiring the 
Reflectance Field of a Human 

Face” - Debevec, Hawkins, 
Tchou, Duiker, Sarokin, and 

Sagar - SIGGRAPH 2000

The Light Stage

See: “Acquiring the 
Reflectance Field of a Human 

Face” - Debevec, Hawkins, 
Tchou, Duiker, Sarokin, and 

Sagar - SIGGRAPH 2000
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Light Stage
Original Data
Light Stage
Original Data

Point Source Illumination

Light Stage ResultsLight Stage Results

Lighting Environments from the Light Probe Image Gallery
http://www.cs.berkeley.edu/~debevec/Probes/

www.debevec.org

Lighting Environments from the Light Probe Image Gallery
http://www.cs.berkeley.edu/~debevec/Probes/

www.debevec.org
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ThanksThanks
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Reflection Mapping History

The Story of Reflection Mapping
(Title inspired by Frank Foster's " The Story of Computer Graphics")

The Quest Begins

Some of the recent graphics research I've been working on builds on the techniques of reflection 
mapping and environment mapping developed in the late 70's and early 80's. I had a paper about the 
work at SIGGRAPH 98 ("Rendering Synthetic Objects into Real Scenes") which appears later in  

Blinn and Newell 1976

In the paper I referenced reflection mapping using synthetically rendered environment maps as 
presented by Jim Blinn in 1976:

Blinn, J. F. and Newell, M. E. Texture and reflection in computer generated images. 
Communications of the ACM Vol. 19, No. 10 (October 1976), 542-547.

I met with Jim Blinn in June 1999 during a visit to Microsoft Research, and by coincidence he was just 
in the process of resurrecting some old files, including the images from this paper.  The first 
environment-mapped object, quite appropriately, was the Utah Teapot, with a room image made with a 
paint program (which Blinn wrote) as the environment map:

 

In the paper, Blinn also included an image of a satellite, environment-mapped with an image of the 
earth and the sun which he drew, shown below.  Note that in both cases the objects are also being 
illuminated by a traditional light source to create their diffuse appearance.

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/

these notes.
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More images from Blinn's early environment mapping work may be found here.

What about Photographs?

I was surprised in writing the paper that there didn't seem to be a good reference for using real 
omnidirectional photographs as reflection maps. The seemed odd, since the technique is in common 
usage in the computer graphics industry, and was used in creating some of the more memorable movie 
effects in the 80's and 90's (e.g. the spaceship in Flight of the Navigator (1986), and the metal man in 
Terminator II (1991)). Furthermore, it can be regarded as one of the earliest forms of image-based 
rendering. So I've tried to go about figuring out where the technique came from.

The First Renderings

While at SIGGRAPH 98 in Orlando, I talked to Paul Heckbert, Ned Greene, Michael Chou, Lance 
Williams, and Ken Perlin to try to find out the origin of the technique. The story that took shape was 
that the technique was developed independently by Gene Miller working with Ken Perlin, and also by 
Michael Chou working with Lance Williams, around 1982 or 1983. I heard that the first two images in 
which reflection mapping was used to place objects into scenes were of a synthetic shiny robot 
standing next to Michael Chou in a garden, and of a reflective blobby dog floating over a parking lot. 

A few months later, with the help of Gene Miller, Lance Williams, and Paul Heckbert, I was able to 
see both of these images side-by side:

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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A reflection-mapped blobby dog floating in the MAGI parking lot.
(Courtesy of Gene Miller)

A reflection-mapped robot standing next to Chou
(In hi-res courtesy of Lance Williams)

At NYIT, it was Michael Chou who carried out the very first experiments on using images as 
reflection maps. For obtaining the reflection image, Chou used a ten-inch "Gazing Ball", which is a 
shiny glass sphere with a metallic coating on the inside, usually sold as a lawn ornament. Gene Miller 
used a three-inch Christmas tree ornament, which was held in place by Christine Chang while he took 
a 35mm photograph of it:

In January 1999, Gene Miller 
sent over a wealth of 
information and images about 
his knowledge of the origin of 
the technique. Click here to 
continue on to Gene Miller's 
stories and images about the 
development of reflection 
mapping.

Williams 1983

The Chou and robot image appeared in Lance Williams's 1983 SIGGRAPH paper "Pyramidal 

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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Parametrics". The paper introduced MIP-mapping, an elegant pre-filtering scheme for avoiding aliasing 
in texture-mapping algorithms. MIP-mapping has since been implemented on scores of graphics 
architectures and is used everywhere from video games to PC graphics to high-end flight simulators. 
The reflection-mapped robot image was just one example used to demonstrate the technique.

Williams, Lance, "Pyramidal Parametrics," Computer Graphics (SIGGRAPH), vol. 17, No. 3, 
Jul. 1983 pp. 1-11.

Miller and Hoffman 1984

In talking to Gene Miller, I learned that in December 1982 he and Bob Hoffman submitted a paper on 
the technique to SIGGRAPH 83 but it was not accepted for publication. However, a revised version of 
this work appeared in the SIGGRAPH 84 course notes on advanced computer graphics animation:

Gene S. Miller and C. Robert Hoffman. Illumination and Reflection Maps: Simulated Objects in 
Simulated and Real Environments. Course Notes for Advanced Computer Graphics Animation, 
SIGGRAPH 84.

Thanks to Gene Miller, these notes can be viewed in HTML and PDF formats.

Noteworthy is that the notes suggest that reflection maps can be used to render diffuse as well as 
specular objects, and that issues arising from the limited dynamic range of film could be addressed by 
combining a series of photographs taken with different exposure levels. Both issues were problems I 
worked to address in my SIGGRAPH 98 paper.

Interface - 1985

In 1985, Lance Williams was part of a team at the New York Institute of Technology that used 
reflection mapping in a moving scene with an animated CG element. The piece "Interface" featured a 
young woman kissing a shiny robot. In reality, she was filmed kissing a 10-inch shiny ball, and the 
reflection map was taken from the reflection of the ball. To make the animation, the reflection map was 
applied to the robot, and the robot was composited into the scene to replace the ball.

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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QuickTime - "Video" 
Compressor, 160 by 120, 
15fps, 2.4MB
QuickTime - "Sorenson" 
Compressor, 240 by 160, 
15fps, 2.6MB

"Interface", courtesy of Lance Williams.

Interface is the first use of photo-based reflection mapping in an animation, and also its first use to help 
tell a story. The woman quickly kisses the robot and then heads out for the evening. As the silent robot 
waves goodbye, her reflected image recedes, and you can't help but think that he might have wanted to 
go along with her.

Interface was also worked on by Carter Burwell and Ned Greene, and the actress was Ginevra 
Walker.  Carter Burwell later composed music for feature films such as Raising Arizona, Miller's 
Crossing, The Hudsucker Proxy, and Barton Fink.

Lance Williams shortly thereafter added reflection mapping (as well as texture, bump, and transparency 
mapping) to Pacific Data Images' renderer, which was used to create Jose Dias' "Globo" reflection 
mapping images.

Flight of the Navigator - 1986

The first feature film to use the technique was Randal Kleiser's Flight of the Navigator in 1986. Bob 
Hoffman was part of the effects team that rendered a CG shiny spaceship flying over and reflecting 
airports, fields, and oceans. The technique was recently revisited to render the reflective Naboo 
spacecraft in Star Wars: Episode I.

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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Greene 1986

Also in 1986, Ned Greene published a paper further developing 
and formalizing the technique of reflection mapping. In particular, 
he showed that environment maps could be pre-filtered and 
indexed with summed-area tables in order to perform a good 
approximation to correct anti-aliasing. Greene combined a real 
180-degree fisheye image of the sky with a computer-generated 
image of desert terrain to create a full-view environment cube.

Ned Greene. Environment Mapping and Other Applications
of World Projections. IEEE Computer Graphics and 
Applications,
Vol 6. No. 11. Nov. 1986.

In this paper, Greene constructed an environment map using a photograph of the sky, and a rendering 
of the ground. In the rendering on the right, the map was re-warped to directly render the environment 
as well as to environment-map the ship.

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/

A still from Randal Kleiser's 1986 film Flight of the Navigator,
demonstrating reflection mapping in a feature film.

Image courtesy of Bob Hoffman.
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Terminator II - 1991

Reflection Mapping made its most visible splash to date in 1991 in a film by James Cameron.  Inspired 
by the use of reflection mapping (as well as shape morphing) in "Flight of the Navigator", Cameron 
used the technique to create the amazing look of the T1000 robot in "Terminator II".

Haeberli and Segal 1993

In 1993, Paul Haeberli and Mark Segal published a wonderful review of innovative uses of 
texture-mapping. Reflection mapping was one such application, and they demonstrated the technique 
by applying a mirrored ball image taken in a cafe to a torus shape.

http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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A reflection mapping still from Haeberli  and Segal, 1993.

Paul Haeberli and Mark Segal. Texture Mapping as a Fundamental Drawing Primitive. Fourth 
Eurographics Workshop on Rendering. June 1993, pp. 259-266.

The full paper is available at Paul Haeberli's delightful Graphica Obscura website.

Paul Debevec / debevec@cs.berkeley.edu         http://www.cs.berkeley.edu/~debevec/ReflectionMapping/
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Recovering High Dynamic Range Radiance Maps from Photographs

Paul E. Debevec Jitendra Malik

University of California at Berkeley1

ABSTRACT
We present a method of recovering high dynamic range radiance
maps from photographs taken with conventional imaging equip-
ment. In our method, multiple photographs of the scene are taken
with different amounts of exposure. Our algorithm uses these dif-
ferently exposed photographs to recover the response function of the
imaging process, up to factor of scale, using the assumption of reci-
procity. With the known response function, the algorithm can fuse
the multiple photographs into a single, high dynamic range radiance
map whose pixel values are proportional to the true radiance values
in the scene. We demonstrate our method on images acquired with
both photochemical and digital imaging processes. We discuss how
this work is applicable in many areas of computer graphics involv-
ing digitized photographs, including image-based modeling, image
compositing, and image processing. Lastly, we demonstrate a few
applications of having high dynamic range radiance maps, such as
synthesizing realistic motion blur and simulating the response of the
human visual system.

CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Intensity, color, photometry and threshold-
ing; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism - Color, shading, shadowing, and texture; I.4.1 [Image
Processing]: Digitization - Scanning; I.4.8 [Image Processing]:
Scene Analysis - Photometry, Sensor Fusion.

1 Introduction
Digitized photographs are becoming increasingly important in com-
puter graphics. More than ever, scanned images are used as texture
maps for geometric models, and recent work in image-based mod-
eling and rendering uses images as the fundamental modeling prim-
itive. Furthermore, many of today’s graphics applications require
computer-generated images to mesh seamlessly with real photo-
graphic imagery. Properly using photographically acquired imagery
in these applications can greatly benefit from an accurate model of
the photographic process.

When we photograph a scene, either with film or an elec-
tronic imaging array, and digitize the photograph to obtain a two-
dimensional array of “brightness” values, these values are rarely

1Computer Science Division, University of California at Berkeley,
Berkeley, CA 94720-1776. Email: debevec@cs.berkeley.edu, ma-
lik@cs.berkeley.edu. More information and additional results may be found
at: http://www.cs.berkeley.edu/˜debevec/Research/HDR

true measurements of relative radiance in the scene. For example, if
one pixel has twice the value of another, it is unlikely that it observed
twice the radiance. Instead, there is usually an unknown, nonlinear
mapping that determines how radiance in the scene becomes pixel
values in the image.

This nonlinear mapping is hard to know beforehand because it is
actually the composition of several nonlinear mappings that occur
in the photographic process. In a conventional camera (see Fig. 1),
the film is first exposed to light to form a latent image. The film is
then developed to change this latent image into variations in trans-
parency, or density, on the film. The film can then be digitized using
a film scanner, which projects light through the film onto an elec-
tronic light-sensitive array, converting the image to electrical volt-
ages. These voltages are digitized, and then manipulated before fi-
nally being written to the storage medium. If prints of the film are
scanned rather than the film itself, then the printing process can also
introduce nonlinear mappings.

In the first stage of the process, the film response to variations
in exposure X (which is E�t, the product of the irradiance E the
film receives and the exposure time �t) is a non-linear function,
called the “characteristic curve” of the film. Noteworthy in the typ-
ical characteristic curve is the presence of a small response with no
exposure and saturation at high exposures. The development, scan-
ning and digitization processes usually introduce their own nonlin-
earities which compose to give the aggregate nonlinear relationship
between the image pixel exposures X and their values Z.

Digital cameras, which use charge coupled device (CCD) arrays
to image the scene, are prone to the same difficulties. Although the
charge collected by a CCD element is proportional to its irradiance,
most digital cameras apply a nonlinear mapping to the CCD outputs
before they are written to the storage medium. This nonlinear map-
ping is used in various ways to mimic the response characteristics of
film, anticipate nonlinear responses in the display device, and often
to convert 12-bit output from the CCD’s analog-to-digital convert-
ers to 8-bit values commonly used to store images. As with film,
the most significant nonlinearity in the response curve is at its sat-
uration point, where any pixel with a radiance above a certain level
is mapped to the same maximum image value.

Why is this any problem at all? The most obvious difficulty,
as any amateur or professional photographer knows, is that of lim-
ited dynamic range—one has to choose the range of radiance values
that are of interest and determine the exposure time suitably. Sunlit
scenes, and scenes with shiny materials and artificial light sources,
often have extreme differences in radiance values that are impossi-
ble to capture without either under-exposing or saturating the film.
To cover the full dynamic range in such a scene, one can take a series
of photographs with different exposures. This then poses a prob-
lem: how can we combine these separate images into a composite
radiance map? Here the fact that the mapping from scene radiance
to pixel values is unknown and nonlinear begins to haunt us. The
purpose of this paper is to present a simple technique for recover-
ing this response function, up to a scale factor, using nothing more
than a set of photographs taken with varying, known exposure du-
rations. With this mapping, we then use the pixel values from all
available photographs to construct an accurate map of the radiance
in the scene, up to a factor of scale. This radiance map will cover

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance L to pixel values Z from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications

Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering

Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.

By determining the response functions of the imaging device, the
method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.

The area of image-based modeling and rendering is working to-
ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing

Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.

In computer graphics, one common image processing operation
is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing

Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool

One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illumination models, and comparing global
illumination solutions against ground truth data.

Rendering high dynamic range scenes on conventional display
devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background

The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.

In previous work, [13] used multiple flux integration times of a
CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the



problem of nonlinear pixel value response. [14] addressed the prob-
lem of nonlinear response but provide a rather limited method of re-
covering the response curve. Specifically, a parametric form of the
response curve is arbitrarily assumed, there is no satisfactory treat-
ment of image noise, and the recovery process makes only partial
use of the available data.

2 The Algorithm
This section presents our algorithm for recovering the film response
function, and then presents our method of reconstructing the high
dynamic range radiance image from the multiple photographs. We
describe the algorithm assuming a grayscale imaging device. We
discuss how to deal with color in Section 2.6.

2.1 Film Response Recovery

Our algorithm is based on exploiting a physical property of imaging
systems, both photochemical and electronic, known as reciprocity.

Let us consider photographic film first. The response of a film
to variations in exposure is summarized by the characteristic curve
(or Hurter-Driffield curve). This is a graph of the optical density
D of the processed film against the logarithm of the exposure X
to which it has been subjected. The exposure X is defined as the
product of the irradiance E at the film and exposure time, �t, so
that its units are Jm�2. Key to the very concept of the characteris-
tic curve is the assumption that only the product E�t is important,
that halvingE and doubling �twill not change the resulting optical
density D. Under extreme conditions (very large or very low �t ),
the reciprocity assumption can break down, a situation described as
reciprocity failure. In typical print films, reciprocity holds to within
1

3
stop1 for exposure times of 10 seconds to 1/10,000 of a second.2

In the case of charge coupled arrays, reciprocity holds under the as-
sumption that each site measures the total number of photons it ab-
sorbs during the integration time.

After the development, scanning and digitization processes, we
obtain a digital number Z, which is a nonlinear function of the orig-
inal exposureX at the pixel. Let us call this function f , which is the
composition of the characteristic curve of the film as well as all the
nonlinearities introduced by the later processing steps. Our first goal
will be to recover this function f . Once we have that, we can com-
pute the exposure X at each pixel, as X = f�1(Z). We make the
reasonable assumption that the function f is monotonically increas-
ing, so its inverse f�1 is well defined. Knowing the exposureX and
the exposure time �t, the irradiance E is recovered as E = X=�t,
which we will take to be proportional to the radianceL in the scene.3

Before proceeding further, we should discuss the consequences
of the spectral response of the sensor. The exposure X should be
thought of as a function of wavelengthX(�), and the abscissa on the
characteristic curve should be the integral

R
X(�)R(�)d� where

R(�) is the spectral response of the sensing element at the pixel lo-
cation. Strictly speaking, our use of irradiance, a radiometric quan-
tity, is not justified. However, the spectral response of the sensor site
may not be the photopic luminosity function V�, so the photomet-
ric term illuminance is not justified either. In what follows, we will
use the term irradiance, while urging the reader to remember that the

11 stop is a photographic term for a factor of two; 1
3

stop is thus 2
1

3

2An even larger dynamic range can be covered by using neutral density
filters to lessen to amount of light reaching the film for a given exposure time.
A discussion of the modes of reciprocity failure may be found in [18], ch. 4.

3L is proportional E for any particular pixel, but it is possible for the
proportionality factor to be different at different places on the sensor. One

formula for this variance, given in [7], is E = L
�
4

�
d
f

�2
cos

4
�, where �

measures the pixel’s angle from the lens’ optical axis. However, most mod-
ern camera lenses are designed to compensate for this effect, and provide a
nearly constant mapping between radiance and irradiance at f/8 and smaller
apertures. See also [10].

quantities we will be dealing with are weighted by the spectral re-
sponse at the sensor site. For color photography, the color channels
may be treated separately.

The input to our algorithm is a number of digitized photographs
taken from the same vantage point with different known exposure
durations �tj .4 We will assume that the scene is static and that this
process is completed quickly enough that lighting changes can be
safely ignored. It can then be assumed that the film irradiance values
Ei for each pixel i are constant. We will denote pixel values by Zij
where i is a spatial index over pixels and j indexes over exposure
times �tj . We may now write down the film reciprocity equation
as:

Zij = f(Ei�tj) (1)

Since we assume f is monotonic, it is invertible, and we can rewrite
(1) as:

f�1(Zij) = Ei�tj

Taking the natural logarithm of both sides, we have:

ln f�1(Zij) = lnEi + ln�tj

To simplify notation, let us define function g = ln f�1. We then
have the set of equations:

g(Zij) = lnEi + ln�tj (2)

where i ranges over pixels and j ranges over exposure durations. In
this set of equations, the Zij are known, as are the �tj . The un-
knowns are the irradiances Ei, as well as the function g, although
we assume that g is smooth and monotonic.

We wish to recover the function g and the irradiances Ei that best
satisfy the set of equations arising from Equation 2 in a least-squared
error sense. We note that recovering g only requires recovering the
finite number of values that g(z) can take since the domain of Z,
pixel brightness values, is finite. Letting Zmin and Zmax be the
least and greatest pixel values (integers), N be the number of pixel
locations and P be the number of photographs, we formulate the
problem as one of finding the (Zmax � Zmin + 1) values of g(Z)
and theN values of lnEi that minimize the following quadratic ob-
jective function:

O =

NX
i=1

PX
j=1

[g(Zij)� lnEi � ln�tj ]
2 + �

Zmax�1X
z=Z

min
+1

g00(z)2

(3)
The first term ensures that the solution satisfies the set of equa-

tions arising from Equation 2 in a least squares sense. The second
term is a smoothness term on the sum of squared values of the sec-
ond derivative of g to ensure that the function g is smooth; in this
discrete setting we use g00(z) = g(z�1)�2g(z)+g(z+1). This
smoothness term is essential to the formulation in that it provides
coupling between the values g(z) in the minimization. The scalar
� weights the smoothness term relative to the data fitting term, and
should be chosen appropriately for the amount of noise expected in
the Zij measurements.

Because it is quadratic in the Ei’s and g(z)’s, minimizing O is
a straightforward linear least squares problem. The overdetermined

4Most modern SLR cameras have electronically controlled shutters
which give extremely accurate and reproducible exposure times. We tested
our Canon EOS Elan camera by using a Macintosh to make digital audio
recordings of the shutter. By analyzing these recordings we were able to
verify the accuracy of the exposure times to within a thousandth of a sec-
ond. Conveniently, we determined that the actual exposure times varied by
powers of two between stops ( 1

64
, 1

32
, 1

16
, 1
8

, 1
4

, 1
2

, 1, 2, 4, 8, 16, 32), rather

than the rounded numbers displayed on the camera readout ( 1
60

, 1

30
, 1

15
, 1
8

,
1

4
, 1

2
, 1, 2, 4, 8, 15, 30). Because of problems associated with vignetting,

varying the aperture is not recommended.



system of linear equations is robustly solved using the singular value
decomposition (SVD) method. An intuitive explanation of the pro-
cedure may be found in Fig. 2.

We need to make three additional points to complete our descrip-
tion of the algorithm:

First, the solution for the g(z) and Ei values can only be up to
a single scale factor �. If each log irradiance value lnEi were re-
placed by lnEi+�, and the function g replaced by g+�, the sys-
tem of equations 2 and also the objective function O would remain
unchanged. To establish a scale factor, we introduce the additional
constraint g(Zmid) = 0, where Zmid = 1

2
(Zmin+Zmax), simply

by adding this as an equation in the linear system. The meaning of
this constraint is that a pixel with value midway between Zmin and
Zmax will be assumed to have unit exposure.

Second, the solution can be made to have a much better fit by an-
ticipating the basic shape of the response function. Since g(z) will
typically have a steep slope near Zmin and Zmax, we should ex-
pect that g(z) will be less smooth and will fit the data more poorly
near these extremes. To recognize this, we can introduce a weight-
ing functionw(z) to emphasize the smoothness and fitting terms to-
ward the middle of the curve. A sensible choice of w is a simple hat
function:

w(z) =

�
z � Zmin for z � 1

2
(Zmin + Zmax)

Zmax � z for z > 1

2
(Zmin + Zmax)

(4)

Equation 3 now becomes:

O =

NX
i=1

PX
j=1

fw(Zij) [g(Zij)� lnEi � ln�tj ]g
2 +

�

Zmax�1X
z=Z

min
+1

[w(z)g00(z)]2

Finally, we need not use every available pixel site in this solu-
tion procedure. Given measurements ofN pixels inP photographs,
we have to solve for N values of lnEi and (Zmax � Zmin) sam-
ples of g. To ensure a sufficiently overdetermined system, we want
N(P � 1) > (Zmax�Zmin). For the pixel value range (Zmax�
Zmin) = 255, P = 11 photographs, a choice of N on the or-
der of 50 pixels is more than adequate. Since the size of the sys-
tem of linear equations arising from Equation 3 is on the order of
N � P + Zmax � Zmin, computational complexity considera-
tions make it impractical to use every pixel location in this algo-
rithm. Clearly, the pixel locations should be chosen so that they have
a reasonably even distribution of pixel values from Zmin to Zmax,
and so that they are spatially well distributed in the image. Further-
more, the pixels are best sampled from regions of the image with
low intensity variance so that radiance can be assumed to be con-
stant across the area of the pixel, and the effect of optical blur of the
imaging system is minimized. So far we have performed this task
by hand, though it could easily be automated.

Note that we have not explicitly enforced the constraint that g
must be a monotonic function. If desired, this can be done by trans-
forming the problem to a non-negative least squares problem. We
have not found it necessary because, in our experience, the smooth-
ness penalty term is enough to make the estimated g monotonic in
addition to being smooth.

To show its simplicity, the MATLAB routine we used to minimize
Equation 5 is included in the Appendix. Running times are on the
order of a few seconds.

2.2 Constructing the High Dynamic Range Radi-
ance Map

Once the response curve g is recovered, it can be used to quickly
convert pixel values to relative radiance values, assuming the expo-
sure �tj is known. Note that the curve can be used to determine ra-
diance values in any image(s) acquired by the imaging process asso-
ciated with g, not just the images used to recover the response func-
tion.

From Equation 2, we obtain:

lnEi = g(Zij)� ln�tj (5)

For robustness, and to recover high dynamic range radiance val-
ues, we should use all the available exposures for a particular pixel
to compute its radiance. For this, we reuse the weighting function in
Equation 4 to give higher weight to exposures in which the pixel’s
value is closer to the middle of the response function:

lnEi =

PP

j=1
w(Zij)(g(Zij)� ln�tj)PP

j=1
w(Zij)

(6)

Combining the multiple exposures has the effect of reducing
noise in the recovered radiance values. It also reduces the effects
of imaging artifacts such as film grain. Since the weighting func-
tion ignores saturated pixel values, “blooming” artifacts5 have little
impact on the reconstructed radiance values.

2.2.1 Storage

In our implementation the recovered radiance map is computed as
an array of single-precision floating point values. For efficiency, the
map can be converted to the image format used in the RADIANCE
[22] simulation and rendering system, which uses just eight bits for
each of the mantissa and exponent. This format is particularly com-
pact for color radiance maps, since it stores just one exponent value
for all three color values at each pixel. Thus, in this format, a high
dynamic range radiance map requires just one third more storage
than a conventional RGB image.

2.3 How many images are necessary?

To decide on the number of images needed for the technique, it is
convenient to consider the two aspects of the process:

1. Recovering the film response curve: This requires a minimum
of two photographs. Whether two photographs are enough
can be understood in terms of the heuristic explanation of the
process of film response curve recovery shown in Fig. 2.
If the scene has sufficiently many different radiance values,
the entire curve can, in principle, be assembled by sliding to-
gether the sampled curve segments, each with only two sam-
ples. Note that the photos must be similar enough in their ex-
posure amounts that some pixels fall into the working range6

of the film in both images; otherwise, there is no information
to relate the exposures to each other. Obviously, using more
than two images with differing exposure times improves per-
formance with respect to noise sensitivity.

2. Recovering a radiance map given the film response curve: The
number of photographs needed here is a function of the dy-
namic range of radiance values in the scene. Suppose the
range of maximum to minimum radiance values that we are

5Blooming occurs when charge or light at highly saturated sites on the
imaging surface spills over and affects values at neighboring sites.

6The working range of the film corresponds to the middle section of the
response curve. The ends of the curve, in which large changes in exposure
cause only small changes in density (or pixel value), are called the toe and
the shoulder.
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Figure 2: In the figure on the left, the � symbols represent samples of the g curve derived from the digital values at one pixel for 5 different
known exposures using Equation 2. The unknown log irradiance lnEi has been arbitrarily assumed to be 0. Note that the shape of the g curve
is correct, though its position on the vertical scale is arbitrary corresponding to the unknown lnEi. The + and � symbols show samples of
g curve segments derived by consideration of two other pixels; again the vertical position of each segment is arbitrary. Essentially, what we
want to achieve in the optimization process is to slide the 3 sampled curve segments up and down (by adjusting their lnEi’s) until they “line
up” into a single smooth, monotonic curve, as shown in the right figure. The vertical position of the composite curve will remain arbitrary.

interested in recovering accurately is R, and the film is capa-
ble of representing in its working range a dynamic range of F .
Then the minimum number of photographs needed is dR

F
e to

ensure that every part of the scene is imaged in at least one
photograph at an exposure duration that puts it in the work-
ing range of the film response curve. As in recovering the re-
sponse curve, using more photographs than strictly necessary
will result in better noise sensitivity.

If one wanted to use as few photographs as possible, one might
first recover the response curve of the imaging process by pho-
tographing a scene containing a diverse range of radiance values at
three or four different exposures, differing by perhaps one or two
stops. This response curve could be used to determine the working
range of the imaging process, which for the processes we have seen
would be as many as five or six stops. For the remainder of the shoot,
the photographer could decide for any particular scene the number
of shots necessary to cover its entire dynamic range. For diffuse in-
door scenes, only one exposure might be necessary; for scenes with
high dynamic range, several would be necessary. By recording the
exposure amount for each shot, the images could then be converted
to radiance maps using the pre-computed response curve.

2.4 Recovering extended dynamic range from sin-
gle exposures

Most commericially available film scanners can detect reasonably
close to the full range of useful densities present in film. However,
many of these scanners (as well as the Kodak PhotoCD process) pro-
duce 8-bit-per-channel images designed to be viewed on a screen or
printed on paper. Print film, however, records a significantly greater
dynamic range than can be displayed with either of these media. As
a result, such scanners deliver only a portion of the detected dynamic
range of print film in a single scan, discarding information in either
high or low density regions. The portion of the detected dynamic
range that is delivered can usually be influenced by “brightness” or
“density adjustment” controls.

The method presented in this paper enables two methods for re-
covering the full dynamic range of print film which we will briefly

outline7. In the first method, the print negative is scanned with the
scanner set to scan slide film. Most scanners will then record the
entire detectable dynamic range of the film in the resulting image.
As before, a series of differently exposed images of the same scene
can be used to recover the response function of the imaging system
with each of these scanner settings. This response function can then
be used to convert individual exposures to radiance maps. Unfortu-
nately, since the resulting image is still 8-bits-per-channel, this re-
sults in increased quantization.

In the second method, the film can be scanned twice with the
scanner set to different density adjustment settings. A series of dif-
ferently exposed images of the same scene can then be used to re-
cover the response function of the imaging system at each of these
density adjustment settings. These two response functions can then
be used to combine two scans of any single negative using a similar
technique as in Section 2.2.

2.5 Obtaining Absolute Radiance

For many applications, such as image processing and image com-
positing, the relative radiance values computed by our method are
all that are necessary. If needed, an approximation to the scaling
term necessary to convert to absolute radiance can be derived using
the ASA of the film8 and the shutter speeds and exposure amounts in
the photographs. With these numbers, formulas that give an approx-
imate prediction of film response can be found in [9]. Such an ap-
proximation can be adequate for simulating visual artifacts such as
glare, and predicting areas of scotopic retinal response. If desired,
one could recover the scaling factor precisely by photographing a
calibration luminaire of known radiance, and scaling the radiance
values to agree with the known radiance of the luminaire.

2.6 Color

Color images, consisting of red, green, and blue channels, can be
processed by reconstructing the imaging system response curve for

7This work was done in collaboration with Gregory Ward Larson
8Conveniently, most digital cameras also specify their sensitivity in terms

of ASA.



each channel independently. Unfortunately, there will be three un-
known scaling factors relating relative radiance to absolute radi-
ance, one for each channel. As a result, different choices of these
scaling factors will change the color balance of the radiance map.

By default, the algorithm chooses the scaling factor such that a
pixel with valueZmid will have unit exposure. Thus, any pixel with
the RGB value (Zmid; Zmid; Zmid) will have equal radiance val-
ues for R, G, and B, meaning that the pixel is achromatic. If the
three channels of the imaging system actually do respond equally to
achromatic light in the neighborhood of Zmid, then our procedure
correctly reconstructs the relative radiances.

However, films are usually calibrated to respond achromatically
to a particular color of light C, such as sunlight or fluorescent light.
In this case, the radiance values of the three channels should be
scaled so that the pixel value (Zmid; Zmid; Zmid) maps to a radi-
ance with the same color ratios as C. To properly model the color
response of the entire imaging process rather than just the film re-
sponse, the scaling terms can be adjusted by photographing a cali-
bration luminaire of known color.

2.7 Taking virtual photographs

The recovered response functions can also be used to map radiance
values back to pixel values for a given exposure �t using Equa-
tion 1. This process can be thought of as taking a virtual photograph
of the radiance map, in that the resulting image will exhibit the re-
sponse qualities of the modeled imaging system. Note that the re-
sponse functions used need not be the same response functions used
to construct the original radiance map, which allows photographs
acquired with one imaging process to be rendered as if they were
acquired with another.9

3 Results
Figures 3-5 show the results of using our algorithm to determine the
response curve of a DCS460 digital camera. Eleven grayscale pho-
tographs filtered down to 765�509 resolution (Fig. 3) were taken at
f/8 with exposure times ranging from 1

30
of a second to 30 seconds,

with each image receiving twice the exposure of the previous one.
The film curve recovered by our algorithm from 45 pixel locations
observed across the image sequence is shown in Fig. 4. Note that al-
though CCD image arrays naturally produce linear output, from the
curve it is evident that the camera nonlinearly remaps the data, pre-
sumably to mimic the response curves found in film. The underlying
registered (Ei�tj ; Zij) data are shown as light circles underneath
the curve; some outliers are due to sensor artifacts (light horizontal
bands across some of the darker images.)

Fig. 5 shows the reconstructed high dynamic range radiance map.
To display this map, we have taken the logarithm of the radiance
values and mapped the range of these values into the range of the
display. In this representation, the pixels at the light regions do not
saturate, and detail in the shadow regions can be made out, indicat-
ing that all of the information from the original image sequence is
present in the radiance map. The large range of values present in
the radiance map (over four orders of magnitude of useful dynamic
range) is shown by the values at the marked pixel locations.

Figure 6 shows sixteen photographs taken inside a church with a
Canon 35mm SLR camera on Fuji 100 ASA color print film. A fish-
eye 15mm lens set at f/8 was used, with exposure times ranging from
30 seconds to 1

1000
of a second in 1-stop increments. The film was

developed professionally and scanned in using a Kodak PhotoCD
film scanner. The scanner was set so that it would not individually

9Note that here we are assuming that the spectral response functions for
each channel of the two imaging processes is the same. Also, this technique
does not model many significant qualities of an imaging system such as film
grain, chromatic aberration, blooming, and the modulation transfer function.

Figure 3: (a) Eleven grayscale photographs of an indoor scene ac-
quired with a Kodak DCS460 digital camera, with shutter speeds
progressing in 1-stop increments from 1

30
of a second to 30 seconds.
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Figure 4: The response function of the DCS460 recovered by our al-
gorithm, with the underlying (Ei�tj ; Zij) data shown as light cir-
cles. The logarithm is base e.

Figure 5: The reconstructed high dynamic range radiance map,
mapped into a grayscale image by taking the logarithm of the ra-
diance values. The relative radiance values of the marked pixel lo-
cations, clockwise from lower left: 1.0, 46.2, 1907.1, 15116.0, and
18.0.



Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to 1

1000
sec. The sun is directly behind the rightmost stained

glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying (Ei�tj ; Zij) data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.



(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower 0:1% of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.



adjust the brightness and contrast of the images10 to guarantee that
each image would be digitized using the same response function.

An unfortunate aspect of the PhotoCD process is that it does not
scan precisely the same area of each negative relative to the extents
of the image.11 To counteract this effect, we geometrically regis-
tered the images to each other using a using normalized correlation
(see [4]) to determine, with sub-pixel accuracy, corresponding pix-
els between pairs of images.

Fig. 7(a-c) shows the response functions for the red, green, and
blue channels of the church sequence recovered from 28 pixel loca-
tions. Fig. 7(d) shows the recovered red, green, and blue response
curves plotted on the same set of axes. From this plot, we can see
that while the red and green curves are very consistent, the blue
curve rises significantly above the others for low exposure values.
This indicates that dark regions in the images exhibit a slight blue
cast. Since this artifact is modeled by the response curves, it will
not affect the relative radiance values.

Fig. 8 interprets the recovered high dynamic range radiance map
in a variety of ways. Fig. 8(a) is one of the actual photographs,
which lacks detail in its darker regions at the same time that many
values within the two rightmost stained glass windows are saturated.
Figs. 8(b,c) show the radiance map, linearly scaled to the display de-
vice using two different scaling factors. Although one scaling fac-
tor is one thousand times the other, there is useful detail in both im-
ages. Fig. 8(d) is a false-color image showing radiance values for
a grayscale version of the radiance map; the highest listed radiance
value is nearly 250,000 times that of the lowest. Figs. 8(e,f) show
two renderings of the radiance map using a new tone reproduction
algorithm [23]. Although the rightmost stained glass window has
radiance values over a thousand times higher than the darker areas
in the rafters, these renderings exhibit detail in both areas.

Figure 9 demonstrates two applications of the techniques pre-
sented in this paper: accurate signal processing and virtual photog-
raphy. The task is to simulate the effects of motion blur caused by
moving the camera during the exposure. Fig. 9(a) shows the re-
sults of convolving an actual, low-dynamic range photograph with
a 37 � 1 pixel box filter to simulate horizontal motion blur. Fig.
9(b) shows the results of applying this same filter to the high dy-
namic range radiance map, and then sending this filtered radiance
map back through the recovered film response functions using the
same exposure time�t as in the actual photograph. Because we are
seeing this image through the actual image response curves, the two
left images are tonally consistent with each other. However, there is
a large difference between these two images near the bright spots. In
the photograph, the bright radiance values have been clamped to the
maximum pixel values by the response function. As a result, these
clamped values blur with lower neighboring values and fail to satu-
rate the image in the final result, giving a muddy appearance.

In Fig. 9(b), the extremely high pixel values were represented
properly in the radiance map and thus remained at values above the
level of the response function’s saturation point within most of the
blurred region. As a result, the resulting virtual photograph exhibits
several crisply-defined saturated regions.

Fig. 9(c) is an actual photograph with real motion blur induced
by spinning the camera on the tripod during the exposure, which is
equal in duration to Fig. 9(a) and the exposure simulated in Fig.
9(b). Clearly, in the bright regions, the blurring effect is qualita-
tively similar to the synthetic blur in 9(b) but not 9(a). The precise
shape of the real motion blur is curved and was not modeled for this
demonstration.

10This feature of the PhotoCD process is called “Scene Balance Adjust-
ment”, or SBA.

11This is far less of a problem for cinematic applications, in which the film
sprocket holes are used to expose and scan precisely the same area of each
frame.

(a) Synthetically blurred digital image

(b) Synthetically blurred radiance map

(c) Actual blurred photograph
Figure 9: (a) Synthetic motion blur applied to one of the origi-
nal digitized photographs. The bright values in the windows are
clamped before the processing, producing mostly unsaturated val-
ues in the blurred regions. (b) Synthetic motion blur applied to
a recovered high-dynamic range radiance map, then virtually re-
photographed through the recovered film response curves. The ra-
diance values are clamped to the display device after the processing,
allowing pixels to remain saturated in the window regions. (c) Real
motion blur created by rotating the camera on the tripod during the
exposure, which is much more consistent with (b) than (a).



4 Conclusion
We have presented a simple, practical, robust and accurate method
of recovering high dynamic range radiance maps from ordinary pho-
tographs. Our method uses the constraint of sensor reciprocity to
derive the response function and relative radiance values directly
from a set of images taken with different exposures. This work has
a wide variety of applications in the areas of image-based modeling
and rendering, image processing, and image compositing, a few of
which we have demonstrated. It is our hope that this work will be
able to help both researchers and practitioners of computer graphics
make much more effective use of digitized photographs.
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A Matlab Code
Here is the MATLAB code used to solve the linear system that min-
imizes the objective function O in Equation 3. Given a set of ob-
served pixel values in a set of images with known exposures, this
routine reconstructs the imaging response curve and the radiance
values for the given pixels. The weighting function w(z) is found
in Equation 4.

%
% gsolve.m − Solve for imaging system response function
%
% Given a set of pixel values observed for several pixels in several
% images with different exposure times, this function returns the
% imaging system’s response function g as well as the log film irradiance
% values for the observed pixels.
%
% Assumes:
%
%  Zmin = 0
%  Zmax = 255
%
% Arguments:
%
%  Z(i,j) is the pixel values of pixel location number i in image j
%  B(j)   is the log delta t, or log shutter speed, for image j
%  l      is lamdba, the constant that determines the amount of smoothness
%  w(z)   is the weighting function value for pixel value z
% 
% Returns:
%
%  g(z)   is the log exposure corresponding to pixel value z
%  lE(i)  is the log film irradiance at pixel location i
%

function [g,lE]=gsolve(Z,B,l,w)

n = 256;

A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

%% Include the data−fitting equations

k = 1;
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij;  A(k,n+i) = −wij;       b(k,1) = wij * B(i,j);
    k=k+1;
  end
end

%% Fix the curve by setting its middle value to 0

A(k,129) = 1;
k=k+1;

%% Include the smoothness equations

for i=1:n−2
  A(k,i)=l*w(i+1);        A(k,i+1)=−2*l*w(i+1);  A(k,i+2)=l*w(i+1);
  k=k+1;
end

%% Solve the system using SVD

x = A\b;

g = x(1:n);
lE = x(n+1:size(x,1));
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Rendering Synthetic Objects into Real Scenes:
Bridging Traditional and Image-based Graphics with Global Illumination

and High Dynamic Range Photography

Paul Debevec

University of California at Berkeley1

ABSTRACT

We present a method that uses measured scene radiance and global
illumination in order to add new objects to light-based models with
correct lighting. The method uses a high dynamic range image-
based model of the scene, rather than synthetic light sources, to il-
luminate the new objects. To compute the illumination, the scene is
considered as three components: the distant scene, the local scene,
and the synthetic objects. The distant scene is assumed to be pho-
tometrically unaffected by the objects, obviating the need for re-
flectance model information. The local scene is endowed with es-
timated reflectance model information so that it can catch shadows
and receive reflected light from the new objects. Renderings are
created with a standard global illumination method by simulating
the interaction of light amongst the three components. A differen-
tial rendering technique allows for good results to be obtained when
only an estimate of the local scene reflectance properties is known.

We apply the general method to the problem of rendering syn-
thetic objects into real scenes. The light-based model is constructed
from an approximate geometric model of the scene and by using a
light probe to measure the incident illumination at the location of
the synthetic objects. The global illumination solution is then com-
posited into a photograph of the scene using the differential render-
ing technique. We conclude by discussing the relevance of the tech-
nique to recovering surface reflectance properties in uncontrolled
lighting situations. Applications of the method include visual ef-
fects, interior design, and architectural visualization.

CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and
Scene Understanding - Intensity, color, photometry and threshold-
ing; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism - Color, shading, shadowing, and texture; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism - Radiosity;
I.4.1 [Image Processing]: Digitization - Scanning; I.4.8 [Image
Processing]: Scene Analysis - Photometry, Sensor Fusion.

1Computer Science Division, University of California at Berke-
ley, Berkeley, CA 94720−1776. Email: debevec@cs.berkeley.edu.
More information and additional results may be found at:
http://www.cs.berkeley.edu/˜debevec/Research

1 Introduction
Rendering synthetic objects into real-world scenes is an important
application of computer graphics, particularly in architectural and
visual effects domains. Oftentimes, a piece of furniture, a prop, or
a digital creature or actor needs to be rendered seamlessly into a
real scene. This difficult task requires that the objects be lit con-
sistently with the surfaces in their vicinity, and that the interplay of
light between the objects and their surroundings be properly simu-
lated. Specifically, the objects should cast shadows, appear in reflec-
tions, and refract, focus, and emit light just as real objects would.

Local
Scene

estimated
reflectance

model

Distant
Scene

light−based
(no reflectance

model)

Synthetic
Objects

known
reflectance

model

light

Figure 1: The General Method In our method for adding synthetic
objects into light-based scenes, the scene is partitioned into three
components: the distant scene, the local scene, and the synthetic ob-
jects. Global illumination is used to simulate the interplay of light
amongst all three components, except that light reflected back at the
distant scene is ignored. As a result, BRDF information for the dis-
tant scene is unnecessary. Estimates of the geometry and material
properties of the local scene are used to simulate the interaction of
light between it and the synthetic objects.

Currently available techniques for realistically rendering syn-
thetic objects into scenes are labor intensive and not always success-
ful. A common technique is to manually survey the positions of the
light sources, and to instantiate a virtual light of equal color and in-
tensity for each real light to illuminate the synthetic objects. An-
other technique is to photograph a reference object (such as a gray
sphere) in the scene where the new object is to be rendered, and
use its appearance as a qualitative guide in manually configuring the
lighting environment. Lastly, the technique of reflection mapping is
useful for mirror-like reflections. These methods typically require
considerable hand-refinement and none of them easily simulates the
effects of indirect illumination from the environment.

http://www.cs.berkeley.edu/~debevec/Research
mailto:debevec@cs.berkeley.edu
http://www.cs.berkeley.edu/~debevec
http://www.siggraph.org/s98
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Accurately simulating the effects of both direct and indirect light-
ing has been the subject of research in global illumination. With a
global illumination algorithm, if the entire scene were modeled with
its full geometric and reflectance (BRDF) characteristics, one could
correctly render a synthetic object into the scene simply by adding it
to the model and recomputing the global illumination solution. Un-
fortunately, obtaining a full geometric and reflectance model of a
large environment is extremeley difficult. Furthermore, global il-
lumination solutions for large complex environments are extremely
computationally intensive.

Moreover, it seems that having a full reflectance model of the
large-scale scene should be unnecessary: under most circumstances,
a new object will have no significant effect on the appearance of
most of the of the distant scene. Thus, for such distant areas, know-
ing just its radiance (under the desired lighting conditions) should
suffice.

Recently, [9] introduced a high dynamic range photographic
technique that allows accurate measurements of scene radiance to
be derived from a set of differently exposed photographs. This tech-
nique allows both low levels of indirect radiance from surfaces and
high levels of direct radiance from light sources to be accurately
recorded. When combined with image-based modeling techniques
(e.g. [22, 24, 4, 10, 23, 17, 29]), and possibly active techniques for
measuring geometry (e.g. [35, 30, 7, 27]) these derived radiance
maps can be used to construct spatial representations of scene ra-
diance.

We will use the term light-based model to refer to a repre-
sentation of a scene that consists of radiance information, possi-
bly with specific reference to light leaving surfaces, but not neces-
sarily containing material property (BRDF) information. A light-
based model can be used to evaluate the 5D plenoptic function [1]
P (�; �; Vx; Vy; Vz) for a given virtual or real subset of space1. A
material-based model is converted to a light-based model by com-
puting an illumination solution for it. A light-based model is differ-
entiated from an image-based model in that its light values are ac-
tual measures of radiance2, whereas image-based models may con-
tain pixel values already transformed and truncated by the response
function of an image acquisition or synthesis process.

In this paper, we present a general method for using accurate
measurements of scene radiance in conjunction with global illumi-
nation to realistically add new objects to light-based models. The
synthetic objects may have arbitrary material properties and can be
rendered with appropriate illumination in arbitrary lighting environ-
ments. Furthermore, the objects can correctly interact with the en-
vironment around them: they cast the appropriate shadows, they are
properly reflected, they can reflect and focus light, and they exhibit
appropriate diffuse interreflection. The method can be carried out
with commonly available equipment and software.

In this method (see Fig. 1), the scene is partitioned into three
components. The first is the distant scene, which is the visible part
of the environment too remote to be perceptibly affected by the syn-
thetic object. The second is the local scene, which is the part of the
environment which will be significantly affected by the presence of
the objects. The third component is the synthetic objects. Our ap-
proach uses global illumination to correctly simulate the interaction
of light amongst these three elements, with the exception that light
radiated toward the distant environment will not be considered in the
calculation. As a result, the BRDF of the distant environment need
not be known — the technique uses BRDF information only for the
local scene and the synthetic objects. We discuss the challenges in
estimating the BRDF of the local scene, and methods for obtain-
ing usable approximations. We also present a differential rendering

1Time and wavelength dependence can be included to represent the gen-
eral 7D plenoptic function as appropriate.

2In practice, the measures of radiance are with respect to a discrete set of
spectral distributions such as the standard tristimulus model.

technique that produces perceptually accurate results even when the
estimated BRDF is somewhat inaccurate.

We demonstrate the general method for the specific case of ren-
dering synthetic objects into particular views of a scene (such as
background plates) rather than into a general image-based model. In
this method, a light probe is used to acquire a high dynamic range
panoramic radiance map near the location where the object will be
rendered. A simple example of a light probe is a camera aimed at a
mirrored sphere, a configuration commonly used for acquiring envi-
ronment maps. An approximate geometric model of the scene is cre-
ated (via surveying, photogrammetry, or 3D scanning) and mapped
with radiance values measured with the light probe. The distant
scene, local scene, and synthetic objects are rendered with global
illumination from the same point of view as the background plate,
and the results are composited into the background plate with a dif-
ferential rendering technique.

1.1 Overview

The rest of this paper is organized as follows. In the next section
we discuss work related to this paper. Section 3 introduces the ba-
sic technique of using acquired maps of scene radiance to illuminate
synthetic objects. Section 4 presents the general method we will use
to render synthetic objects into real scenes. Section 5 describes a
practical technique based on this method using a light probe to mea-
sure incident illumination. Section 6 presents a differential render-
ing technique for rendering the local environment with only an ap-
proximate description of its reflectance. Section 7 presents a sim-
ple method to approximately recover the diffuse reflectance char-
acteristics of the local environment. Section 8 presents results ob-
tained with the technique. Section 9 discusses future directions for
this work, and we conclude in Section 10.

2 Background and Related Work
The practice of adding new objects to photographs dates to the early
days of photography in the simple form of pasting a cut-out from one
picture onto another. While the technique conveys the idea of the
new object being in the scene, it usually fails to produce an image
that as a whole is a believable photograph. Attaining such realism
requires a number of aspects of the two images to match. First, the
camera projections should be consistent, otherwise the object may
seem too foreshortened or skewed relative to the rest of the picture.
Second, the patterns of film grain and film response should match.
Third, the lighting on the object needs to be consistent with other
objects in the environment. Lastly, the object needs to cast realistic
shadows and reflections on the scene. Skilled artists found that by
giving these considerations due attention, synthetic objects could be
painted into still photographs convincingly.

In optical film compositing, the use of object mattes to prevent
particular sections of film from being exposed made the same sort of
cut-and-paste compositing possible for moving images. However,
the increased demands of realism imposed by the dynamic nature of
film made matching camera positions and lighting even more criti-
cal. As a result, care was taken to light the objects appropriately for
the scene into which they were to be composited. This would still
not account for the objects casting shadows onto the scene, so often
these were painted in by an artist frame by frame [13, 2, 28]. Digi-
tal film scanning and compositing [26] helped make this process far
more efficient.

Work in global illumination [16, 19] has recently produced algo-
rithms (e.g. [31]) and software (e.g. [33]) to realistically simulate
lighting in synthetic scenes, including indirect lighting with both
specular and diffuse reflections. We leverage this work in order to
create realistic renderings.

Some work has been done on the specific problem of composit-
ing objects into photography. [25] presented a procedure for ren-

2



To appear in the SIGGRAPH 98 conference proceedings

dering architecture into background photographs using knowledge
of the sun position and measurements or approximations of the lo-
cal ambient light. For diffuse buildings in diffuse scenes, the tech-
nique is effective. The technique of reflection mapping (also called
environment mapping) [3, 18] produces realistic results for mirror-
like objects. In reflection mapping, a panoramic image is rendered
or photographed from the location of the object. Then, the surface
normals of the object are used to index into the panoramic image
by reflecting rays from the desired viewpoint. As a result, the shiny
object appears to properly reflect the desired environment3. How-
ever, the technique is limited to mirror-like reflection and does not
account for objects casting light or shadows on the environment.

A common visual effects technique for having synthetic objects
cast shadows on an existing environment is to create an approximate
geometric model of the environment local to the object, and then
compute the shadows from the various light sources. The shadows
can then be subtracted from the background image. In the hands of
professional artists this technique can produce excellent results, but
it requires knowing the position, size, shape, color, and intensity of
each of the scene’s light sources. Furthermore, it does not account
for diffuse reflection from the scene, and light reflected by the ob-
jects onto the scene must be handled specially.

To properly model the interaction of light between the objects and
the local scene, we pose the compositing problem as a global illumi-
nation computation as in [14] and [12]. As in this work, we apply
the effect of the synthetic objects in the lighting solution as a dif-
ferential update to the original appearance of the scene. In the pre-
vious work an approximate model of the entire scene and its origi-
nal light sources is constructed; the positions and sizes of the light
sources are measured manually. Rough methods are used to esti-
mate diffuse-only reflectance characteristics of the scene, which are
then used to estimate the intensities of the light sources. [12] addi-
tionally presents a method for performing fast updates of the illu-
mination solution in the case of moving objects. As in the previous
work, we leverage the basic result from incremental radiosity [6, 5]
that making a small change to a scene does not require recomputing
the entire solution.

3 Illuminating synthetic objects with real
light

In this section we propose that computer-generated objects be lit by
actual recordings of light from the scene, using global illumination.
Performing the lighting in this manner provides a unified and phys-
ically accurate alternative to manually attempting to replicate inci-
dent illumination conditions.

Accurately recording light in a scene is difficult because of the
high dynamic range that scenes typically exhibit; this wide range
of brightness is the result of light sources being relatively concen-
trated. As a result, the intensity of a source is often two to six orders
of magnitude larger than the intensity of the non-emissive parts of
an environment. However, it is necessary to accurately record both
the large areas of indirect light from the environment and the con-
centrated areas of direct light from the sources since both are signif-
icant parts of the illumination solution.

Using the technique introduced in [9], we can acquire correct
measures of scene radiance using conventional imaging equipment.
The images, called radiance maps, are derived from a series of im-
ages with different sensor integration times and a technique for com-
puting and accounting for the imaging system response function f .
We can use these measures to illuminate synthetic objects exhibiting
arbitrary material properties.

Fig. 2 shows a high-dynamic range lighting environment with
electric, natural, and indirect lighting. This environment was

3Using the surface normal indexing method, the object will not reflect
itself. Correct self-reflection can be obtained through ray tracing.

recorded by taking a full dynamic range photograph of a mirrored
ball on a table (see Section 5). A digital camera was used to acquire
a series images in one-stop exposure increments from 1

4
to 1

10000

second. The images were fused using the technique in [9].
The environment is displayed at three exposure levels (-0, -3.5,

and -7.0 stops) to show its full dynamic range. Recovered RGB ra-
diance values for several points in the scene and on the two major
light sources are indicated; the color difference between the tung-
sten lamp and the sky is evident. A single low-dynamic range pho-
tograph would be unable to record the correct colors and intensities
over the entire scene.

Fig. 3(a-e) shows the results of using this panoramic radiance
map to synthetically light a variety of materials using the RADI-
ANCE global illumination algorithm [33]. The materials are: (a)
perfectly reflective, (b) rough gold, (c) perfectly diffuse gray ma-
terial, (d) shiny green plastic, and (e) dull orange plastic. Since
we are computing a full illumination solution, the objects exhibit
self-reflection and shadows from the light sources as appropriate.
Note that in (c) the protrusions produce two noticeable shadows of
slightly different colors, one corresponding to the ceiling light and
a softer shadow corresponding to the window.

The shiny plastic object in (d) has a 4 percent specular component
with a Gaussian roughness of 0.04 [32]. Since the object’s surface
both blurs and attenuates the light with its rough specular compo-
nent, the reflections fall within the dynamic range of our display de-
vice and the different colors of the light sources can be seen. In (e)
the rough plastic diffuses the incident light over a much larger area.

To illustrate the importance of using high dynamic range radi-
ance maps, the same renderings were produced using just one of
the original photographs as the lighting environment. In this single
image, similar in appearance to Fig. 2(a), the brightest regions had
been truncated to approximately 2 percent of their true values. The
rendering of the mirrored surface (f) appears similar to (a) since it
is displayed in low-dynamic range printed form. Significant errors
are noticeable in (g-j) since these materials blur the incident light.
In (g), the blurring of the rough material darkens the light sources,
whereas in (b) they remain saturated. Renderings (h-j) are very dark
due to the missed light; thus we have brightened by a factor of eight
on the right in order to make qualitative comparisons to (c-e) pos-
sible. In each it can be seen that the low-dynamic range image of
the lighting environment fails to capture the information necessary
to simulate correct color balance, shadows, and highlights.

Fig. 4 shows a collection of objects with different material prop-
erties illuminated by two different environments. A wide variety
of light interaction between the objects and the environment can be
seen. The (synthetic) mirrored ball reflects both the synthetic ob-
jects as well as the environment. The floating diffuse ball shows
a subtle color shift along its right edge as it shadows itself from
the windows and is lit primarily by the incandescent lamp in Fig.
4(a). The reflection of the environment in the black ball (which has
a specular intensity of 0.04) shows the colors of the light sources,
which are too bright to be seen in the mirrored ball. A variety of
shadows, reflections, and focused light can be observed on the rest-
ing surface.

The next section describes how the technique of using radiance
maps to illuminate synthetic objects can be extended to compute the
proper photometric interaction of the objects with the scene. It also
describes how high dynamic range photography and image-based
modeling combine in a natural manner to allow the simulation of
arbitrary (non-infinite) lighting environments.

4 The General Method
This section explains our method for adding new objects to light-
based scene representations. As in Fig. 1, we partition our scene
into three parts: the distant scene, the local scene, and the synthetic

3



To appear in the SIGGRAPH 98 conference proceedings

(11700,7300,2600)

(5700,8400,11800)

(60,40,35) (620,890,1300)

(18,17,19)

Figure 2: An omnidirectional radiance map This full dynamic range lighting environment was acquired by photographing a mirrored ball
balanced on the cap of a pen sitting on a table. The environment contains natural, electric, and indirect light. The three views of this image
adjusted to (a) +0 stops, (b) -3.5 stops, and (c) -7.0 stops show that the full dynamic range of the scene has been captured without saturation.
As a result, the image usefully records the direction, color, and intensity of all forms of incident light.

Figure 3: Illuminating synthetic objects with real light (Top row: a,b,c,d,e) With full dynamic range measurements of scene radiance from
Fig. 2. (Bottom row: f,g,h,i,j) With low dynamic range information from a single photograph of the ball. The right sides of images (h,i,j)
have been brightened by a factor of six to allow qualitative comparison to (c,d,e). The high dynamic range measurements of scene radiance
are necessary to produce proper lighting on the objects.

Figure 4: Synthetic objects lit by two different environments (a) A collection of objects is illuminated by the radiance information in 2.
The objects exhibit appropriate interreflection. (b) The same objects are illuminated by different radiance information obtained in an outdoor
urban environment on an overcast day. The radiance map used for the illumination is shown in the upper left of each image. Candle holder
model courtesy of Gregory Ward Larson.
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objects. We describe the geometric and photometric requirements
for each of these components.

1. A light-based model of the distant scene
The distant scene is constructed as a light-based model. The
synthetic objects will receive light from this model, so it is nec-
essary that the model store true measures of radiance rather
than low dynamic range pixel values from conventional im-
ages. The light-based model can take on any form, using very
little explicit geometry [23, 17], some geometry [24], moder-
ate geometry [10], or be a full 3D scan of an environment with
view-dependent texture-mapped [11] radiance. What is im-
portant is for the model to provide accurate measures of inci-
dent illumination in the vicinity of the objects, as well as from
the desired viewpoint. In the next section we will present a
convenient procedure for constructing a minimal model that
meets these requirements.
In the global illumination computation, the distant scene ra-
diates light toward the local scene and the synthetic objects,
but ignores light reflected back to it. We assume that no area
of the distant scene will be significantly affected by light re-
flecting from the synthetic objects; if that were the case, the
area should instead belong to the local scene, which contains
the BRDF information necessary to interact with light. In the
RADIANCE [33] system, this exclusively emissive behavior
can be specified with the ”glow” material property.

2. An approximate material-based model of the local scene
The local scene consists of the surfaces that will photomet-
rically interact with the synthetic objects. It is this geome-
try onto which the objects will cast shadows and reflect light.
Since the local scene needs to fully participate in the illumina-
tion solution, both its geometry and reflectance characteristics
should be known, at least approximately. If the geometry of
the local scene is not readily available with sufficient accuracy
from the light-based model of the distant scene, there are vari-
ous techniques available for determining its geometry through
active or passive methods. In the common case where the lo-
cal scene is a flat surface that supports the synthetic objects, its
geometry is determined easily from the camera pose. Meth-
ods for estimating the BRDF of the local scene are discussed
in Section 7.
Usually, the local scene will be the part of the scene that is geo-
metrically close to the synthetic objects. When the local scene
is mostly diffuse, the rendering equation shows that the visible
effect of the objects on the local scene decreases as the inverse
square of the distance between the two. Nonetheless, there is a
variety of circumstances in which synthetic objects can signif-
icantly affect areas of the scene not in the immediate vicinity.
Some common circumstances are:

� If there are concentrated light sources illuminating the
object, then the object can cast a significant shadow on
a distant surface collinear with it and the light source.

� If there are concentrated light sources and the object is
flat and specular, it can focus a significant amount of
light onto a distant part of the scene.

� If a part of the distant scene is flat and specular (e.g. a
mirror on a wall), its appearance can be significantly af-
fected by a synthetic object.

� If the synthetic object emits light (e.g. a synthetic laser),
it can affect the appearance of the distant scene signifi-
cantly.

These situations should be considered in choosing which parts
of the scene should be considered local and which parts dis-
tant. Any part of the scene that will be significantly affected in

its appearance from the desired viewpoint should be included
as part of the local scene.
Since the local scene is a full BRDF model, it can be added
to the global illumination problem as would any other object.
The local scene may consist of any number of surfaces and ob-
jects with different material properties. For example, the local
scene could consist of a patch of floor beneath the synthetic
object to catch shadows as well as a mirror surface hanging
on the opposite wall to catch a reflection. The local scene re-
places the corresponding part of the light-based model of the
distant scene.
Since it can be difficult to determine the precise BRDF char-
acteristics of the local scene, it is often desirable to have only
the change in the local scene’s appearance be computed with
the BRDF estimate; its appearance due to illumination from
the distant scene is taken from the original light-based model.
This differential rendering method is presented in Section 6.

3. Complete material-based models of the objects
The synthetic objects themselves may consist of any variety
of shapes and materials supported by the global illumination
software, including plastics, metals, emitters, and dielectrics
such as glass and water. They should be placed in their desired
geometric correspondence to the local scene.

Once the distant scene, local scene, and synthetic objects are
properly modeled and positioned, the global illumination software
can be used in the normal fashion to produce renderings from the
desired viewpoints.

5 Compositing using a light probe
This section presents a particular technique for constructing a light-
based model of a real scene suitable for adding synthetic objects at a
particular location. This technique is useful for compositing objects
into actual photography of a scene.

In Section 4, we mentioned that the light-based model of the dis-
tant scene needs to appear correctly in the vicinity of the synthetic
objects as well as from the desired viewpoints. This latter require-
ment can be satisfied if it is possible to directly acquire radiance
maps of the scene from the desired viewpoints. The former require-
ment, that the appear photometrically correct in all directions in
the vicinity of the synthetic objects, arises because this information
comprises the incident light which will illuminate the objects.

To obtain this part of the light-based model, we acquire a full dy-
namic range omnidirectional radiance map near the location of the
synthetic object or objects. One technique for acquiring this radi-
ance map is to photograph a spherical first-surface mirror, such as a
polished steel ball, placed at or near the desired location of the syn-
thetic object4. This procedure is illustrated in Fig. 7(a). An actual
radiance map obtained using this method is shown in Fig. 2.

The radiance measurements observed in the ball are mapped onto
the geometry of the distant scene. In many circumstances this model
can be very simple. In particular, if the objects are small and resting
on a flat surface, one can model the scene as a horizontal plane for
the resting surface and a large dome for the rest of the environment.
Fig. 7(c) illustrates the ball image being mapped onto a table surface
and the walls and ceiling of a finite room; 5 shows the resulting light-
based model.

5.1 Mapping from the probe to the scene model

To precisely determine the mapping between coordinates on the ball
and rays in the world, one needs to record the position of the ball

4Parabolic mirrors combined with telecentric lenses [34] can be used to
obtain hemispherical fields of view with a consistent principal point, if so
desired.
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relative to the camera, the size of the ball, and the camera param-
eters such as its location in the scene and focal length. With this
information, it is straightforward to trace rays from the camera cen-
ter through the pixels of the image, and reflect rays off the ball into
the environment. Often a good approximation results from assum-
ing the ball is small relative to the environment and that the camera’s
view is orthographic.

The data acquired from a single ball image will exhibit a num-
ber of artifacts. First, the camera (and possibly the photographer)
will be visible. The ball, in observing the scene, interacts with it:
the ball (and its support) can appear in reflections, cast shadows,
and can reflect light back onto surfaces. Lastly, the ball will not re-
flect the scene directly behind it, and will poorly sample the area
nearby. If care is taken in positioning the ball and camera, these ef-
fects can be minimized and will have a negligible effect on the final
renderings. If the artifacts are significant, the images can be fixed
manually in image editing program or by selectively combining im-
ages of the ball taken from different directions; Fig. 6 shows a rela-
tively artifact-free enviroment constructed using the latter method.
We have found that combining two images of the ball taken ninety
degrees apart from each other allows us to eliminate the camera’s
appearance and to avoid poor sampling.

(a)

(b)
Figure 6: Rendering with a Combined Probe Image The full dy-
namic range environment map shown at the top was assembled from
two light probe images taken ninety degrees apart from each other.
As a result, the only visible artifact is small amount of the probe sup-
port visible on the floor. The map is shown at -4.5, 0, and +4.5 stops.
The bottom rendering was produced using this lighting information,
and exhibits diffuse and specular reflections, shadows from different
sources of light, reflections, and caustics.

5.2 Creating renderings

To render the objects into the scene, a synthetic local scene model is
created as described in Section 4. Images of the scene from the de-
sired viewpoint(s) are taken (Fig. 7(a)), and their position relative to
the scene is recorded through pose-instrumented cameras or (as in
our work) photogrammetry. The location of the ball in the scene is
also recorded at this time. The global illumination software is then
run to render the objects, local scene, and distant scene from the de-
sired viewpoint (Fig. 7(d)).

The objects and local scene are then composited onto the back-
ground image. To perform this compositing, a mask is created by
rendering the objects and local scene in white and the distant scene
in black. If objects in the distant scene (which may appear in front
of the objects or local scene from certain viewpoints) are geomet-
rically modeled, they will properly obscure the local scene and the
objects as necessary. This compositing can be considered as a subset
of the general method (Section 4) wherein the light-based model of
the distant scene acts as follows: if (Vx; Vy; Vz) corresponds to an
actual view of the scene, return the radiance value looking in direc-
tion (�; �). Otherwise, return the radiance value obtained by casting
the ray (�; �; Vx; Vy; Vz) onto the radiance-mapped distant scene
model.

In the next section we describe a more robust method of com-
positing the local scene into the background image.

6 Improving quality with differential ren-
dering

The method we have presented so far requires that the local scene
be modeled accurately in both its geometry and its spatially varying
material properties. If the model is inaccurate, the appearance of the
local scene will not be consistent with the appearance of adjacent
distant scene. Such a border is readily apparent in Fig. 8(c), since
the local scene was modeled with a homogeneous BRDF when in
reality it exhibits a patterned albedo (see [21]). In this section we
describe a method for greatly reducing such effects.

Suppose that we compute a global illumination solution for the
local and distant scene models without including the synthetic ob-
jects. If the BRDF and geometry of the local scene model were per-
fectly accurate, then one would expect the appearance of the ren-
dered local scene to be consistent with its appearance in the light-
based model of the entire scene. Let us call the appearance of the lo-
cal scene from the desired viewpoint in the light-based model LSb.
In the context of the method described in Section 5, LSb is simply
the background image. We will let LSnoobj denote the appearance
of the local scene, without the synthetic objects, as calculated by the
global illumination solution. The error in the rendered local scene
(without the objects) is thus: Errls = LSnoobj � LSb. This error
results from the difference between the BRDF characteristics of the
actual local scene as compared to the modeled local scene.

LetLSobj denote the appearance of the local environment as cal-
culated by the global illumination solution with the synthetic objects
in place. We can compensate for the error if we compute our final
rendering LSfinal as:

LSfinal = LSobj �Errls

Equivalently, we can write:

LSfinal = LSb + (LSobj � LSnoobj)

In this form, we see that whenever LSobj and LSnoobj are the
same (i.e. the addition of the objects to the scene had no effect on
the local scene) the final rendering of the local scene is equivalent
to LSb (e.g. the background plate). When LSobj is darker than
LSnoobj , light is subtracted from the background to form shadows,
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Figure 5: A Light-Based Model A simple light-based model of a room is constructed by mapping the image from a light probe onto a box. The
box corresponds to the upper half of the room, with the bottom face of the box being coincident with the top of the table. The model contains
the full dynamic range of the original scene, which is not reproduced in its entirety in this figure.

and when LSobj is lighter than LSnoobj light is added to the back-
ground to produce reflections and caustics.

Stated more generally, the appearance of the local scene without
the objects is computed with the correct reflectance characteristics
lit by the correct environment, and the change in appearance due to
the presence of the synthetic objects is computed with the modeled
reflectance characteristics as lit by the modeled environment. While
the realism of LSfinal still benefits from having a good model of
the reflectance characteristics of the local scene, the perceptual ef-
fect of small errors in albedo or specular properties is considerably
reduced. Fig. 8(g) shows a final rendering in which the local en-
vironment is computed using this differential rendering technique.
The objects are composited into the image directly from the LSobj
solution shown in Fig. 8(c).

It is important to stress that this technique can still produce abi-
trarily wrong results depending on the amount of error in the es-
timated local scene BRDF and the inaccuracies in the light-based
model of the distance scene. In fact, Errls may be larger than
LSobj , causing LSfinal to be negative. An alternate approach is
to compensate for the relative error in the appearance of the local
scene: LSfinal = LSb(LSobj=LSnoobj). Inaccuracies in the local
scene BDRF will also be reflected in the objects.

In the next section we discuss techniques for estimating the
BRDF of the local scene.

7 Estimating the local scene BRDF
Simulating the interaction of light between the local scene and the
synthetic objects requires a model of the reflectance characteristics
of the local scene. Considerable recent work [32, 20, 8, 27] has pre-
sented methods for measuring the reflectance properties of mate-
rials through observation under controlled lighting configurations.
Furthermore, reflectance characteristics can also be measured with
commercial radiometric devices.

It would be more convenient if the local scene reflectance could
be estimated directly from observation. Since the light-based model
contains information about the radiance of the local scene as well as
its irradiance, it actually contains information about the local scene
reflectance. If we hypothesize reflectance characteristics for the lo-
cal scene, we can illuminate the local scene with its known irradi-
ance from the light-based model. If our hypothesis is correct, then
the appearance should be consistent with the measured appearance.
This suggests the following iterative method for recovering the re-
flectance properties of the local scene:

1. Assume a reflectance model for the local scene (e.g. diffuse
only, diffuse + specular, metallic, or arbitrary BRDF, including

spatial variation)
2. Choose approximate initial values for the parameters of the re-

flectance model
3. Compute a global illumination solution for the local scene

with the current parameters using the observed lighting con-
figuration or configurations.

4. Compare the appearance of the rendered local scene to its ac-
tual appearance in one or more views.

5. If the renderings are not consistent, adjust the parameters of
the reflectance model and return to step 3.

Efficient methods of performing the adjustment in step 5 that ex-
ploit the properties of particular reflectance models are left as future
work. However, assuming a diffuse-only model of the local scene
in step 1 makes the adjustment in step 5 straightforward. We have:

Lr1(�r; �r) =

Z
2�

0

Z �=2

0

�dLi(�i; �i) cos �i sin �i d�i d�i =

�d

Z
2�

0

Z �=2

0

Li(�i; �i) cos �i sin �i d�i d�i

If we initialize the local scene to be perfectly diffuse (�d = 1)
everywhere, we have:

Lr2(�r; �r) =

Z
2�

0

Z �=2

0

Li(�i; �i) cos �i sin �i d�i d�i

The updated diffuse reflectance coefficient for each part of the lo-
cal scene can be computed as:

�0

d =
Lr1(�r; �r)

Lr2(�r; �r)

In this manner, we use the global illumination calculation to ren-
der each patch as a perfectly diffuse reflector, and compare the re-
sulting radiance to the observed value. Dividing the two quantities
yields the next estimate of the diffuse reflection coefficient �0

d. If
there is no interreflection within the local scene, then the �0

d esti-
mates will make the renderings consistent. If there is interreflection,
then the algorithm should be iterated until there is convergence.

For a trichromatic image, the red, green, and blue diffuse re-
flectance values are computed independently. The diffuse charac-
teristics of the background material used to produce Fig. 8(c) were
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Figure 7: Using a light probe (a) The background plate of the scene
(some objects on a table) is taken. (b) A light probe (in this case, the
camera photographing a steel ball) records the incident radiance
near the location of where the synthetic objects are to be placed.
(c) A simplified light-based model of the distant scene is created as
a planar surface for the table and a finite box to represent the rest
of the room. The scene is texture-mapped in high dynamic range
with the radiance map from the light probe. The objects on the ta-
ble, which were not explicitly modeled, become projected onto the
table. (d) Synthetic objects and a BRDF model of the local scene are
added to the light-based model of the distant scene. A global illumi-
nation solution of this configuration is computed with light coming
from the distant scene and interacting with the local scene and syn-
thetic objects. Light reflected back to the distant scene is ignored.
The results of this rendering are composited (possibly with differ-
ential rendering) into the background plate from (a) to achieve the
final result.

computed using this method, although it was assumed that the entire
local scene had the same diffuse reflectance.

In the standard “plastic” illumination model, just two more co-
efficients – those for specular intensity and roughness – need to be
specified. In Fig. 8, the specular coefficients for the local scene were
estimated manually based on the specular reflection of the window
in the table in Fig. 2.

8 Compositing Results
Fig. 5 shows a simple light-based model of a room constructed us-
ing the panoramic radiance map from Fig. 2. The room model be-
gins at the height of the table and continues to the ceiling; its mea-
surements and the position of the ball within it were measured man-
ually. The table surface is visible on the bottom face. Since the room
model is finite in size, the light sources are effectively local rather
than infinite. The stretching on the south wall is due to the poor sam-
pling toward the silhouette edge of the ball.

Figs. 4 and 6 show complex arrangements of synthetic objects lit
entirely by a variety of light-based models. The selection and com-
position of the objects in the scene was chosen to exhibit a wide vari-
ety of light interactions, including diffuse and specular reflectance,
multiple soft shadows, and reflected and focused light. Each ren-
dering was produced using the RADIANCE system with two dif-
fuse light bounces and a relatively high density of ambient sample
points.

Fig. 8(a) is a background plate image into which the synthetic ob-
jects will be rendered. In 8(b) a calibration grid was placed on the
table in order to determine the camera pose relative to the scene and
to the mirrored ball, which can also be seen. The poses were deter-
mined using the photogrammetric method in [10]. In 8(c), a model
of the local scene as well as the synthetic objects is geometrically
matched and composited onto the background image. Note that the
local scene, while the same average color as the table, is readily dis-
tinguishable at its edges and because it lacks the correct variations
in albedo.

Fig. 8(d) shows the results of lighting the local scene model with
the light-based model of the room, without the objects. This image
will be compared to 8(c) in order to determine the effect the syn-
thetic objects have on the local scene. Fig. 8(e) is a mask image in
which the white areas indicate the location of the synthetic objects.
If the distant or local scene were to occlude the objects, such regions
would be dark in this image.

Fig. 8(f) shows the difference between the appearance of the lo-
cal scene rendered with (8(c)) and without (8(d)) the objects. For il-
lustration purposes, the difference in radiance values have been off-
set so that zero difference is shown in gray. The objects have been
masked out using image 8(e). This difference image encodes both
the shadowing (dark areas) and reflected and focussed light (light
areas) imposed on the local scene by the addition of the synthetic
objects.

Fig. 8(g) shows the final result using the differential rendering
method described in Section 6. The synthetic objects are copied
directly from the global illumination solution 8(c) using the object
mask 8(e). The effects the objects have on the local scene are in-
cluded by adding the difference image 8(f) (without offset) to the
background image. The remainder of the scene is copied directly
from the background image 8(a). Note that in the mirror ball’s re-
flection, the modeled local scene can be observed without the effects
of differential rendering — a limitation of the compositing tech-
nique.

In this final rendering, the synthetic objects exhibit a consistent
appearance with the real objects present in the background image
8(a) in both their diffuse and specular shading, as well as the di-
rection and coloration of their shadows. The somewhat speckled
nature of the object reflections seen in the table surface is due to
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(a) Background photograph (b) Camera calibration grid and light probe

(c) Objects and local scene matched to background (d) Local scene, without objects, lit by the model

(e) Object matte (f) Difference in local scene between c and d

(g) Final result with differential rendering

Figure 8: Compositing synthetic objects into a real scene using a light probe and differential rendering
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the stochastic nature of the particular global illumination algorithm
used.

The differential rendering technique successfully eliminates the
border between the local scene and the background image seen in
8(c). Note that the albedo texture of the table in the local scene area
is preserved, and that a specular reflection of a background object
on the table (appearing just to the left of the floating sphere) is cor-
rectly preserved in the final rendering. The local scene also exhibits
reflections from the synthetic objects. A caustic from the glass ball
focusing the light of the ceiling lamp onto the table is evident.

9 Future work
The method proposed here suggests a number of areas for future
work. One area is to investigate methods of automatically recov-
ering more general reflectance models for the local scene geome-
try, as proposed in Section 7. With such information available, the
program might also also be able to suggest which areas of the scene
should be considered as part of the local scene and which can safely
be considered distant, given the position and reflectance character-
istics of the desired synthetic objects.

Some additional work could be done to allow the global illumina-
tion algorithm to compute the ilumination solution more efficiently.
One technique would be to have an algorithm automatically locate
and identify concentrated light sources in the light-based model of
the scene. With such knowledge, the algorithm could compute most
of the direct illumination in a forward manner, which could dra-
matically increase the efficiency with which an accurate solution
could be calculated. To the same end, use of the method presented
in [15] to expedite the solution could be investigated. For the case
of compositing moving objects into scenes, greatly increased effi-
ciency could be obtained by adapting incremental radiosity methods
to the current framework.

10 Conclusion
We have presented a general framework for adding new objects to
light-based models with correct illumination. The method lever-
ages a technique of using high dynamic range images of real scene
radiance to synthetically illuminate new objects with arbitrary re-
flectance characteristics. We leverage this technique in a general
method to simulate interplay of light between synthetic objects and
the light-based environment, including shadows, reflections, and
caustics. The method can be implemented with standard global il-
lumination techniques.

For the particular case of rendering synthetic objects into real
scenes (rather than general light-based models), we have presented a
practical instance of the method that uses a light probe to record inci-
dent illumination in the vicinity of the synthetic objects. In addition,
we have described a differential rendering technique that can con-
vincingly render the interplay of light between objects and the local
scene when only approximate reflectance information for the local
scene is available. Lastly, we presented an iterative approach for
determining reflectance characteristics of the local scene based on
measured geometry and observed radiance in uncontrolled lighting
conditions. It is our hope that the techniques presented here will be
useful in practice as well as comprise a useful framework for com-
bining material-based and light-based graphics.
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ABSTRACT

In this paper we present a method for recovering the reflectance
properties of all surfaces in a real scene from a sparse set of pho-
tographs, taking into account both direct and indirect illumination.
The result is a lighting-independent model of the scene’s geom-
etry and reflectance properties, which can be rendered with ar-
bitrary modifications to structure and lighting via traditional ren-
dering methods. Our technique models reflectance with a low-
parameter reflectance model, and allows diffuse albedo to vary arbi-
trarily over surfaces while assuming that non-diffuse characteristics
remain constant across particular regions. The method’s input is a
geometric model of the scene and a set of calibrated high dynamic
range photographs taken with known direct illumination. The al-
gorithm hierarchically partitions the scene into a polygonal mesh,
and uses image-based rendering to construct estimates of both the
radiance and irradiance of each patch from the photographic data.
The algorithm computes the expected location of specular high-
lights, and then analyzes the highlight areas in the images by run-
ning a novel iterative optimization procedure to recover the diffuse
and specular reflectance parameters for each region. Lastly, these
parameters are used in constructing high-resolution diffuse albedo
maps for each surface.

The algorithm has been applied to both real and synthetic data,
including a synthetic cubical room and a real meeting room. Re-
renderings are produced using a global illumination system under
both original and novel lighting, and with the addition of synthetic
objects. Side-by-side comparisons show success at predicting the
appearance of the scene under novel lighting conditions.
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1 Introduction

Computer graphics is being increasingly used to visualize real ob-
jects and environments. Applications in entertainment, architec-
ture, interior design, virtual reality, and digital museums often re-
quire that aspects of the real world be rendered realistically from
novel viewpoints and/or under novel illumination. For example,
one would want to see how a room in a house would look like with
different lighting, or how a statue would look at various times of
day in a different wing of a museum. Lastly, one might want to
realistically render a film location in different lighting, and add in
digital props and characters, with the expectation that the rendered
results would be the same as what would have happened had it all
been for real.

Work in image-based modeling and rendering e.g. [18, 3, 22,
19, 12, 9, 6, 29]) has shown that photographs of a scene can be
used along with geometry to produce realistic renderings of dif-
fuse scenes under the original lighting conditions. However, chal-
lenges remain in making modifications to such scenes. Whether it is
changing the geometry or changing the lighting, generating a new
rendering requires re-computing the interaction of light with the
surfaces in the scene. Computing this interaction requires know-
ing the reflectance properties (diffuse color, shininess, etc.) of each
surface. Unfortunately, such reflectance property information is not
directly available from the scene geometry or from photographs.

Considerable work (e.g. [32, 16, 5, 27, 21]) has been done to es-
timate reflectance properties of real surfaces in laboratory settings
from a dense set of measurements. However, reflectance properties
of real scenes are usually spatially varying, and typically change
with use and age, makinga priori laboratory measurements im-
practical. It would clearly be preferable to estimate the reflectance
properties of an entire scene at once, with the surfaces being illumi-
natedin situ rather than as isolated samples, and from a relatively
sparse set of photographs. This is difficult for two reasons.

The first is that we wish to use only a sparse set of photographs
of the scene, rather than exhaustively photographing every point
of every surface from a dense set of angles. With such a set of
photographs, we can expect to observe each surface point from
only a small number of angles. As a result, there will be too little
data to determine fully general bi-directional reflectance distribu-
tion functions (BRDFs) for each surface. We address this problem
in two ways. First, we limit ourselves to recovering low-parameter
reflectance models of the surfaces in the scene. Second, we as-
sume that the scene can be decomposed into areas with related re-
flectance properties. Specifically, we allow the diffuse reflectance,
or albedo, of the object to vary arbitrarily over any surface; the es-
timated albedo is computed as an image called analbedo map1. In
contrast, we require that the directional reflectance properties (such
as specular reflectance and roughness) remain constant over each
area. In this work, such areas are specified as part of the geometry

1The commonly used termtexture mapis sometimes used to refer to
this same concept. However, texture maps are also sometimes used to store
surface radiance information, which is not lighting-independent.



recovery process.
The second problem we face is that in a real scene, surfaces will

exhibit mutual illumination. Thus, the light that any particular sur-
face receives will arrive not just from the light sources, but also
from the rest of the environment through indirect illumination. As
a result, the incident radiance of an observed surface is a complex
function of the light sources, the geometry of the scene, and the
as-yet-undetermined reflectance properties of all of the scene’s sur-
faces. In this work, we use radiance data from photographs and
image-based rendering to estimate the incident radiances of sur-
faces in the scene. This allows us to estimate the reflectance prop-
erties of the surfaces in the scene via an iterative optimization pro-
cedure, which allows us to re-estimate the incident radiances. We
refer to this procedure asinverse global illumination.

Addressing these two problems makes it possible to robustly re-
cover reflectance parameters from the limited radiance information
present in a sparse set of photographs, and the accommodations
made are appropriate for a wide variety of real scenes. Even when
they are not met, the algorithm will compute the reflectance prop-
erty parameters that best fit the observed image data, which in many
cases can still yield a visually acceptable result.

The input to our algorithm is a geometric model of the scene, a
set of radiance maps taken under known direct illumination, and
a partitioning of the scene into areas of similar non-diffuse re-
flectance properties. The algorithm outputs a set of high-resolution
albedo maps for the surfaces in the scene along with their specular
reflectance properties, yielding a traditional material-based model.
This output is readily used as input to traditional rendering algo-
rithms to realistically render the scene under arbitrary lighting con-
ditions. Moreover, modifications to the scene’s lighting and geom-
etry and the addition of synthetic objects is easily accomplished
using conventional modeling methods.
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Radiance
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Illumination

Geometry

Reflectance
Properties

Lighting

Radiance
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Geometry
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Figure 1:Overview of the MethodThis figure shows the relation-
ship between global illumination and inverse global illumination.
Global illumination uses geometry, lighting, and reflectance prop-
erties to compute radiance maps (i.e. rendered images), and inverse
global illumination uses geometry, lighting, and radiance maps to
determine reflectance properties.

1.1 Overview

The rest of this paper is organized as follows. In the next section
we discuss work related to this paper. Section 3 describesinverse
radiosity, a stepping stone to the full algorithm which considers
diffuse scenes. Section 4 presents a technique for recovering spec-
ular reflectance properties for homogeneous surfaces considering
direct illumination only. Section 5 describes how these two tech-
niques are combined to produce our inverse global illumination al-
gorithm. Section 6 completes the technical discussion by describ-
ing how high-resolution albedo maps are derived for the surfaces
in the scene. Section 7 presents reflectance recovery results from

both real and synthetic data, a description of our data acquisition,
and synthetic renderings which are compared to real photographs.
Section 8 presents some conclusions and avenues for future work.

2 Background and Related Work

The work we present in this paper has been made possible by previ-
ous work in BRDF modeling, measurement and recovery, geometry
acquisition, image-based rendering, and global illumination.

In graphics, there is a long history of modeling surface re-
flectance properties using a small number of parameters. Recent ef-
forts in this direction include models introduced in [14, 32, 25, 17].
These models have been shown to yield reasonable approximations
to the reflectance properties of many real materials, and they have
been used to produce realistic renderings.

On the other hand, considerable recent work has presented meth-
ods for measuring and recovering the reflectance properties of
materials using imaging devices. [32] and [16] presented tech-
niques and apparatus for measuring reflectance properties, includ-
ing anisotropic reflection. [5] measured directional reflectance
properties of textured objects. [27] and [21] showed that diffuse
and specular reflectance properties could be recovered from multi-
ple photographs of an object under direct illumination. [36] recov-
ered reflectance properties of isolated buildings under daylight and
was able to re-render them at novel times of day. [7] estimated ma-
terial properties of parts of a scene so that they could receive shad-
ows and reflections from synthetic objects. [10, 20] used a model
of the scene and forward radiosity to estimate diffuse albedos to in-
teractively modify the scene and its lighting. Although mutual illu-
mination has been considered in the problem of shape from shading
[23], it has not yet been fully considered for recovering non-diffuse
reflectance properties in real environments. A survey of some of
the methods is in Marschner [21].

Certain work has shown that changing the lighting in a scene
does not necessarily require knowledge of the surface reflectance
properties – taking linear combinations of a large set of basis im-
ages [24, 35] can yield images with novel lighting conditions.

Recent work in laser range scanning and image-based model-
ing has made it possible to recover accurate geometry of real-world
scenes. A number of robust techniques for merging multiple range
images into complex models are now available [34, 30, 4, 27].
For architectural scenes involving regular geometry, robust pho-
togrammetric techniques requiring only photographs can also be
employed. The model used in this research was constructed using
such a technique from [9]; however, our basic technique can be used
regardless of how the geometry is acquired.

Work in global illumination (e.g. [11, 15, 31, 37]) has produced
algorithms and software to realistically simulate light transport in
synthetic scenes. In this work we leverage the hierarchical subdi-
vision technique [13, 1] to efficiently compute surface irradiance.
The renderings in this paper were produced using Gregory Ward
Larson’s RADIANCE system [33].

Photographs taken by a camera involve nonlinearities from the
imaging process, and do not have the full dynamic range of real
world radiance distributions. In this work we use the high dynamic
range technique in [8] to solve these problems.

3 Inverse Radiosity

Most real surfaces exhibit specular as well as diffuse reflection. Re-
covering both diffuse and specular reflectance models simultane-
ously in a mutual illumination environment is complicated. In this
section, we consider a simplified situation where all surfaces in an
environment are pure diffuse (Lambertian). In this case, the global
illumination problem simplifies considerably and can be treated in
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Figure 2: (a) The lighting and viewing directions at different points on a surface are different with respect to a fixed light source and a fixed
viewpoint. This fact can be used to recover a low-parameter BRDF model for the surface from a single image.ni’s andHi’s are the normals
and halfway vectors between lighting and viewing directions at different locations on the surface. We can infer that surface pointP2 with
normaln2 is close to the center of the highlight, and pointP1 with normaln1 is relatively far away from the center. (b) An example of an
isotropic specular highlight, (c) An example of an anisotropic specular highlight.

the radiosity framework [28]. We defineinverse radiosityas recov-
ering the diffuse albedo at each surface patch in the environment,
provided that the geometry, the lighting conditions and the radiance
distribution in the scene are known. In the next section we will
discuss another simple case — recovering more general reflectance
models with specularity considering only direct illumination — and
we address the full problem in Section 5.

In the radiosity framework [28], the surfaces in the environment
are broken into a finite number of patches. The partitioning is as-
sumed to be fine enough that the radiosity and diffuse albedo of
each patch can be treated as constant. For each such patch,

Bi = Ei + �i
X

j

BjFij (1)

whereBi,Ei, and�i are the radiosity, emission, and diffuse albedo,
respectively, of patchi, andFij is the form-factor between patches
i andj. The form-factorFij is the proportion of the total power
leaving patchi that is received by patchj. It can be shown that
this is a purely geometric quantity which can be computed from the
known geometry of the environment [28].

We take photographs of the surfaces, including the light sources,
and use a high dynamic range image technique [8] to capture the
radiance distribution. Since Lambertian surfaces have uniform di-
rectional radiance distributions, one camera position is sufficient for
each surface. ThenBi andEi in Eqn. (1) become known. Form-
factorsFij can be derived from the known geometry. Once these
are done,�i = (Bi � Ei)=(

P
j
BjFij). The solution to inverse

radiosity is so simple because the photographs capture the final so-
lution of the underlying light transport among surfaces.

4 Recovering Parameterized BRDFs from
Direct Illumination

Before tackling the general case of reflectance recovery from pho-
tographs of mutually illuminated surfaces with diffuseandspecular
components, we study another special case. Consider a single sur-
face of uniform BRDF which is illuminated by a point light source
in known position and photographed by a camera, also in a known
geometric position with respect to the surface(Fig. 2). Every pixel
in the radiance image provides a measurement of radianceLi of the
corresponding surface pointPi in the direction of the camera, and
the known light source position lets us calculate the irradianceIi
incident on that point.

Our objective is to use these data(Li; Ii) to estimate the BRDF
of the surface. Since the BRDF is a function of four variables (az-
imuth and elevation of incident and viewing directions) it is obvi-

ous that the 2-dimensional set of measurements for a single cam-
era/light source pairing is inadequate to do this in general. How-
ever for many materials it is possible to approximate the BRDF
adequately by a parameterized BRDF model with a small number
of parameters (e.g. Ward [32], Lafortune [17], He [14] etc). We
use Ward’s parameterization in which the BRDF is modeled as the
sum of a diffuse term�d

�
and a specular term�sK(�;�). Here

�d and�s are the diffuse and specular reflectance of the surface, re-
spectively, andK(�;�) is a function of vector�, the azimuth and
elevation of the incident and viewing directions, and parameterized
by�, the surface roughness vector. For anisotropic surfaces� has
3 components; for isotropic surfaces� has only one component
and reduces to a scalar. The precise functional form ofK(�;�) in
the two cases may be found in Appendix 1.

This leads us to the following equation for each surface pointPi,

Li = (
�d
�
+ �sK(�;�i))Ii (2)

whereLi, Ii and�i are known, and the parameters�d,�s, � are
unknowns to be estimated. Depending on whether we are using an
isotropic or anisotropic model for the specular term we have a total
of 3 or 5 unknown parameters, while there are as many constrain-
ing equations as the number of pixels in the radiance image of the
surface patch. By solving a nonlinear optimization problem (see
Appendix 1 for details), we can find the best estimate of�d,�s,�.

There are two important subtleties in the treatment of this op-
timization problem. One is that we need to solve a weighted
least squares problem, otherwise the larger values from the high-
light (with correspondingly larger noise in radiance measurements)
cause a bias in parameter estimation. The second is the use of color
information which needs to be done differently for dielectrics and
metals. Both of these issues are discussed in Appendix 1.

To obtain an obvious global minimum for this optimization prob-
lem and achieve robust parameter recovery, the radiance image
should cover the area that has a specular highlight as well as some
area with very low specular component. If the highlight is missing,
we do not have enough information for recovering specular param-
eters, and can only consider the surface to be diffuse.

5 Recovering Parameterized BRDFs in a
Mutual Illumination Environment

We are now ready to study the general case when the environment
consists of a number of surfaces and light sources with the surface
reflectances allowed to have both diffuse and specular components.

Consider a pointPi on a surface patch seen by cameraCv (Fig.
3). The radiance fromPi in the direction of the camera is the re-
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Figure 3: PatchAj is in the radiance image captured by cameraCk.
The specular component atAj in the direction of sample pointPi
is different from that in the direction of cameraCk. The difference
is denoted by�S.

flection of the incident light contributed by all the light sources as
well as all the surrounding surfaces. Eqn. (2) generalizes to

LCvPi = ECvPi + �d
P

j
LPiAjFPiAj

+�s
P

j
LPiAjKCvPiAj ;

(3)

whereLCvPi is the radiance value in the direction of cameraCv

at some sample pointPi on the surface,ECvPi is the emission in
the direction of cameraCv, LPiAj is the radiance value along the
direction from patchAj to pointPi on the surface,FPiAj is the
analytical point-to-patch form-factor [2] between sample pointPi
and patchAj , and�sKCvPiAj is the specular term evaluated atPi
for a viewpoint at cameraCv and a light source position at patch
Aj . The arguments,� and�, of K have been dropped to simplify
notation.

As before, our objective is to estimate�d, �s, and specular
roughness parameters�. Of the other variables in Eqn. (3),
ECvPi = 0 for nonsources, andLCvPi can be measured directly
from the radiance image at cameraCv. In general, the radiances
LPiAj cannot be measured directly but have to be estimated iter-
atively. Suppose patchAj in the environment appears in another
radiance image taken by cameraCk(Fig. 3). Only if we assumeAj

is Lambertian, doesLPiAj in Eqn. (3) equalLCkAj , the radiance
fromAj to cameraCk. Otherwise, the diffuse components will be
equal, but the specular components will differ.

LPiAj = LCkAj +�SCkPiAj (4)

Here�SCkPiAj = SPiAj � SCkAj is the difference between the
specular componentsSPiAj andSCkAj of the radiances in the two
directions. To compute the specular differences�SCkPiAj , we
need the BRDF ofAj , which is initially unknown. The estima-
tion of �S (Section 5.1) therefore has to be part of an iterative
framework. Assuming that the dominant component of reflectance
is diffuse, we can initialize the iterative process with�S = 0 (this
setsLPiAj = LCkAj ).

To recover BRDF parameters for all the surfaces, we need radi-
ance images covering the whole scene. Each surface patch needs
to be assigned a camera from which its radiance image is selected.
At least one specular highlight on each surface needs to be visible
in the set of images, or we will not be able to recover its specular
reflectance and roughness parameters. Each sample point gives an

For each camera position C
For each polygon T

For each light source O
Obtain the intersection P between plane of T and line CO’

(O’ and O are symmetric about T);
Check if P falls inside polygon T;
Check if there is any occlusion between P and O;
Check if there is any occlusion between C and any point

in a local neighborhood of P;
/* A highlight area is detected if P passed all the above tests.*/

End

Figure 4: The specular highlight detection algorithm.

equation similar to Eqn. (3). From these equations, we can set up a
weighted least-squares problem for each surface as in Appendix 1.
During optimization, we need to gather irradiance at each sample
point from the surface patches in the environment. One efficient
way of doing this is to subdivide each surface into a hierarchy of
patches [13, 1] and link different sample points to patches at differ-
ent levels in the hierarchy. The solid angles subtended by the linked
patches at the sample points should always be less than a prescribed
threshold. There is a radiance value from the patch to the sample
point and a�S associated with each hierarchical link.

For each sample point, we build hierarchical links to a large
number of patches, and gather irradiance from these links. The
amount of memory and computation involved in this process limits
the number of samples for each highlight area. To make a rea-
sonable tradeoff, we note that irradiance from indirect illumination
caused by surrounding surfaces generally has little high-frequency
spatial variation. Because of this, it makes sense to draw two sets
of samples, one sparse set, and one dense set2. For the samples
in the sparse set, we build hierarchical links and gather irradiance
from the environment as usual. For the samples in the dense set,
only their irradiance from light sources is computed explicitly, their
irradiance from indirect illumination is computed by interpolation.

We are now ready to state the complete inverse global illumi-
nation algorithm. First detect all specular highlight blobs falling
inside the radiance images using knowledge of the positions of the
light sources, the camera poses, and the geometry (Fig. 4). Set the
initial �S associated with each hierarchical link to zero. We can
then recover an initial estimate of the BRDF parameters for each
surface independently by solving a series of nonlinear optimization
problems. The estimated specular parameters are used to update
all �S’s andLPiAj ’s associated with the hierarchical links. With
the updated incident radiances, we can go back and re-estimate the
BRDF parameters again. This optimization and update process is
iterated several times to obtain the final solution of the BRDFs for
all surfaces. The overall algorithm is shown in Fig. 5.

5.1 Estimation of �S

Suppose there is a hierarchical linklPiAj between a sample point
Pi and a patchAj which is visible to a cameraCk (Fig. 6). The�S
for lPiAj is defined to be the difference of the specular component

in directions ~AjPi and ~AjCk. To estimate this difference, we need
to obtain the specular component along these two directions given
the BRDF parameters of patchAj . A one-bounce approximation
of �S for link lPiAj can be obtained by using Monte Carlo ray-
tracing [32]. Because of off-specular components, multiple rays

2We choose the two sets of samples as follows. We first find the center
of the highlight area in the image plane and rotate a straight line around this
center to a number of different positions. The dense set of samples is the set
of points on the surface corresponding to all the pixels on these lines. We
choose the sparse set of samples on each line by separating two consecutive
samples by some fixed distance in the object space.



Detect specular highlight blobs on the surfaces.
Choose a set of sample points inside and around each highlight

area.
Build hierarchical links between sample points and patches in the

environment and use ray tracing to detect occlusion.
Assign to each patch one radiance image and one average radiance

value captured at the camera position.
Assign zero to�S at each hierarchical link.
For iter=1 to N

For each hierarchical link,
use its�S to update its associated radiance value;

For each surface,
optimize its BRDF parameters using the data

from its sample points;
For each hierarchical link,

estimate its�S with the new BRDF parameters.
End

Figure 5: TheInverse Global Illuminationalgorithm.
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Figure 6: Random rays are traced around the two cones to obtain a
one-bounce approximation of�S.

should be traced and the direction of the rays is randomized around
the mirror directions of ~AjPi and ~AjCk, respectively. For each
possible ray direction, the probability density of shooting a ray in
that direction is proportional toK(�j ;�) where� encodes the
incident and outgoing directions. Intuitively, most of the rays fall
inside the two conesQPiAj andQCkAj centered at the two mir-
ror directions. The width of each cone depends on the specular
roughness parameters�j of patchAj . The radiance along each
ray is obtained from the patch hit by the ray. SupposeLQPiAj and
LQCkAj are the average radiance values of the rays around the two
cones, respectively, and�sAj is the specular reflectance of patch
Aj . Because the average value of Monte Carlo sampling approxi-
mates the total irradiance modulated byK(�j ;�),�S can simply
be estimated as�sAj (LQPiAj � LQCkAj ). This calculation could
be extended to have multiple bounces by using path tracing [15];
we found that the one-bounce approximation was adequate for our
purposes.

5.2 Practical Issues

We do not have a formal characterization of the conditions under
which the inverse global illumination algorithm converges, or of
error bounds on the recovered BRDF parameter values. In practice,
we found it worked well (Section 7). Here we give some heuristic
advice on how to acquire images to obtain good performance.

� Use multiple light sources. A specular highlight directly
caused by one of the light sources should be captured on each
surface. Having multiple light sources increases the probabil-

ity that this can be achieved, and lets the whole scene receive
more uniform illumination. This also increases the relative
contribution of the diffuse component at any particular sam-
ple pointPi, and supports the�S = 0 initialization, since
highlights from different sources will usually occur at differ-
ent locations on the surface.

� Use concentrated light sources.If the incoming radiance dis-
tribution is not very directional, the specular highlights will be
quite extended and it will be difficult to distinguish the spec-
ular component from the diffuse one.

6 Recovering Diffuse Albedo Maps

In the previous sections, we modeled the reflectance properties as
being uniform for each surface. In this section, we continue to do so
for specular parameters because a small number of views of each
surface does not provide enough information to reliably estimate
specular parameters for each point individually. However, we relax
this constraint on diffuse albedo and model it as a spatially varying
function, analbedo map, on each surface. The diffuse albedo for
any pointx on a surface is computed as:

�d(x) = �D(x)=I(x) (5)

where�d(x) is the diffuse albedo map,D(x) is the diffuse radiance
map, andI(x) is the irradiance map.

Suppose there is an image covering the considered surface which
gives a radiance mapL(x) = D(x)+S(x)whereS(x) is the spec-
ular radiance map seen from the image’s camera position. Then the
diffuse radiance map in Eqn. (5) can be obtained by subtracting
the specular component from each pixel of the radiance mapL(x)
using the specular reflectance parameters already recovered. We
estimate the radiance due to specular reflection as the sum of spec-
ular reflection due to direct and indirect illumination. The specular
reflection due to direct illumination is computed from the knowl-
edge of the direct lighting and the estimated reflectance properties,
and we estimate the indirect specular reflectance by tracing a per-
turbed reflected ray into the environment in a manner similar to that
in Section 5.1.

The irradianceI(x) can be computed at any point on the surface
from the direct illumination and by using analytical point-to-patch
form-factors [2] as in previous sections of this paper. For efficiency,
we compute the irradiance due to the indirect illumination only at
certain sample points on the surfaces, and interpolate these indirect
irradiance estimates to generate estimates for all surface pointsx.
Of course, care must be taken to sufficiently sample the irradiance
in regions of rapidly changing visibility to the rest of the scene.

Something that complicates estimating diffuse albedos in this
manner is that in highlight regions the specular component of the
reflectanceS(x) will be much larger than the diffuse component
D(x). As a result, relatively small errors in the estimatedS(x)will
cause large relative errors inD(x) and thus�d(x). However, just as
a person might shift her view to avoid glare while reading a movie
poster, we make use of multiple views of the surface to solve this
problem.

Suppose at a pointx on a surface, we have multiple radiance val-
uesfLk(x)g

p
k=1 from different images. The highest value in this

set will exhibit the strongest specular component, so we simply re-
move this value from consideration. For the remaining values, we
subtract the corresponding specular estimatesSk(x) from the ra-
diance valuesLk(x), to obtain a set of diffuse radiance estimates
Dk(x). We compute a final diffuse radiance componentD(x) as a
weighted average of theDk(x), with weights inversely proportional
to the magnitude of the estimated specular componentsSk(x) to
minimize the relative error inD(x). We also weight theDk(x)



values proportionally to the cosine of the viewing angle of the cam-
era in order to reduce the influence of images at grazing angles;
such oblique images typically have poor texture resolution and ex-
hibit particularly strong specular reflection. Since we are combin-
ing information taken from different images, we smooth transitions
at image boundaries using the image blending technique in [9].

Once diffuse albedo maps are recovered, they could be used to
separate the diffuse and specular components in the specular high-
light areas. This would allow recovering more accurate specular pa-
rameters in the BRDF model. In practice, however, we have found
good estimates to be obtained without further refinements.

7 Results

7.1 Results for a Simulated Scene

We first tested our algorithm on a simple simulated cubical room
with mutual illumination. This allowed us to verify the accuracy
of the algorithm and compare its results to ground truth. All the
six surfaces of the room have monochromatic diffuse and specular
components, but each one has a distinct set of parameters. Each of
the surfaces has spatially uniform specularity. We assigned two sur-
faces to be anisotropically specular and added 10-20% zero mean
white noise to the uniform diffuse albedo of two surfaces to sim-
ulate spatial variations. We used the RADIANCE rendering sys-
tem [33] to produce synthetic photographs of this scene. Six of
the synthetic photographs were taken from the center of the cube
with each one covering one of the six surfaces. Another set of six
zoomed-in photographs were taken to capture the highlight areas.
The scene was illuminated by six point light sources so that specu-
lar highlights could be observed on each surface. These twelve im-
ages along with the light source intensity and positions were used
to solve the BRDF parameters. The images of the specular high-
lights are shown in Fig. 7. Some of the highlights are visually very
weak, but corresponding parameters can still be recovered numer-
ically. The original and recovered BRDF parameters are given in
Table 1. For the last two surfaces with noisy diffuse albedo, the
recovered albedo values are compared to the true average values.
The total running time for BRDF recovery is about half an hour on
a SGIO2 180MHz workstation.

The numerical errors shown in Table 1 are obtained by com-
paring the recovered parameters with the original ones. There are
three sources of error: BRDF modeling error, rendering error, and
BRDF recovery error. BRDF modeling error comes from the in-
ability of a given BRDF model to capture the behavior of a real
material. By using the same model for recovery that RADIANCE
uses for rendering, BRDF modeling error was eliminated for this
test. However, because RADIANCE computes light transport only
approximately, rendering error is present. We thus cannot deter-
mine the exact accuracy of our BRDF recovery. However, the test
demonstrates that the algorithm works well in practice.

7.2 Results for a Real Scene

In this section we demonstrate the results of running our algorithm
on a real scene. The scene we chose is a small meeting room with
some furniture and two whiteboards; we also decorated the room
with colored cards, posters, and three colored metallic spheres3.
Once the BRDFs of the materials were recovered, we were able to
re-render the scene under novel lighting conditions and with added
virtual objects.

3The spheres were obtained from Baker’s Lawn Ornaments, 570 Berlin
Plank Road, Somerset PA 15501, (814) 445-7028.

�d �s �x(�) �y 

True 0.3 0.08 0.6 0.03 0
Recovered 0.318296 0.081871 0.595764 0.030520 -0.004161
Error(%) 6.10 2.34 0.71 1.73

True 0.1 0.1 0.3
Recovered 0.107364 0.103015 0.300194
Error(%) 7.36 3.02 0.06

True 0.1 0.01 0.1
Recovered 0.100875 0.010477 0.101363
Error(%) 0.88 4.77 1.36

True 0.3 0.02 0.15
Recovered 0.301775 0.021799 0.152331
Error(%) 0.59 8.90 1.55

True 0.2 0.05 0.05
Recovered 0.206312 0.050547 0.050291
Error(%) 3.16 1.09 0.58

True 0.2 0.1 0.05 0.3 45
Recovered 0.209345 0.103083 0.050867 0.305740 44.997876
Error(%) 4.67 3.08 1.73 1.91

Table 1: Comparison between true and recovered BRDF parame-
ters for the six surfaces of a unit cube. The first and last surfaces
have anisotropic specular reflection. They have two more parame-
ters: second roughness parameter�y and the orientation of the
principal axes in a local coordinate system. The errors shown are
the combined errors from both rendering and recovering stages.

7.2.1 Data Acquisition

We illuminated the scene with three heavily frosted 3-inch diam-
eter tungsten light bulbs. Using high dynamic range photography,
we verified that the lights produced even illumination in all direc-
tions. A DC power source was used to eliminate 60Hz intensity
fluctuations from the alternating current power cycle.

We used a Kodak DCS520 color digital camera for image acqui-
sition. The radiance response curve of the camera was recovered
using the technique in [8]. We used a wide-angle lens with a 75
degree field of view so that we could photograph all the surfaces in
the scene from a few angles with a relatively small number of shots.
Forty high dynamic range radiance images, shown in Fig. 8, were
acquired from approximately 150 exposures. Twelve of the images
were taken specifically to capture specular highlights on surfaces.

The radiance images were processed to correct for radial light
falloff and radial image distortion. Each of these corrections was
modeled by fitting a polynomial of the form1 + ar2 + br4 to cali-
bration data captured with the same lens settings used for the scene
images. To reduce glare and lens flare, we shaded the lens from
directly viewing the light sources in several of the images. Re-
gions in the images corresponding to the light stands (which we
did not model) or where excessive remaining glare was apparent
were masked out of the images, and ignored by the algorithm. The
thin cylindrical light stands which appear in the synthetic render-
ings have been added to the recovered model explicitly.

The radiance images were used to recover the scene geometry
and the camera positions (Fig. 9) using the Fac¸ade [9] modeling
system. Segmentation into areas of uniform specular reflectance
was obtained by having each polygon of each block in the model
(e.g. the front of each poster, the surface of each whiteboard, the top
of each table) have its own uniform specular reflectance parameters.

The positions and intensities of the three light sources were re-
covered from the final three radiance images. During BRDF re-
covery, the area illumination from these spherical light sources was
computed by stochastically casting several rays to each source.

7.2.2 BRDF Recovery

Given the necessary input data, our program recovered the surface
BRDFs in two stages. In the first stage, it detected all the high-
light regions and recovered parametrized BRDFs for the surfaces.
In this stage, even if a surface had rich texture, only an average dif-



Figure 7: Synthetic grey-scale images of the interior of a unit cube in the presence of mutual illumination. These are used for recovering the
BRDF model of each surface. The top row shows the six images taken at the center of the cube with each one covering one of the six surfaces.
The bottom row shows the six zoomed-in images taken to capture one specular highlight area on each surface. The first and last surfaces have
anisotropic specular reflection. The last two surfaces have 20 and 10 percent zero mean white noise added to their diffuse albedo, respectively.

�d(red) �d(green) �d(blue) �s(red) �s(green) �s(blue) �

whiteboard 0.5794 0.5948 0.6121 0.0619 0.0619 0.0619 0.0137
roundtable top 0.7536 0.7178 0.7255 0.0366 0.0366 0.0366 0.0976

door 0.6353 0.5933 0.5958 0.0326 0.0326 0.0326 0.1271
wall 0.8543 0.8565 0.8036 0.0243 0.0243 0.0243 0.1456

poster 0.1426 0.1430 0.1790 0.0261 0.0261 0.0261 0.0818
red card 0.7507 0.2404 0.3977 0.0228 0.0228 0.0228 0.0714

yellow card 0.8187 0.7708 0.5552 0.0312 0.0312 0.0312 0.1515
teal card 0.4573 0.5951 0.5369 0.0320 0.0320 0.0320 0.1214

lavender card 0.3393 0.3722 0.4437 0.0077 0.0077 0.0077 0.1144
red ball 0 0 0 0.5913 0.1862 0.3112 0

green ball 0 0 0 0.2283 0.3694 0.3092 0
blue ball 0 0 0 0.2570 0.3417 0.4505 0

Table 2: BRDF parameters recovered for the materials in the test room. All of them are isotropic, and most of them are plastic. The balls are
metallic.

fuse albedo was recovered. Surfaces for which no highlights were
visible the algorithm considered diffuse. The second stage used
the recovered specular reflection models to generate diffuse albedo
maps for each surface by removing the specular components.

The running time for each of the two stages was about 3 hours
on a Pentium II 300MHz PC. The results show our algorithm can
recover accurate specular models and high-quality diffuse albedo
maps. Fig. 10 shows how specular highlights on the white board
were removed by combining the data from multiple images. Fig. 11
shows the albedo maps obtained for three identical posters placed at
different places in the room. Although the posters were originally
seen in different illumination, the algorithm successfully recovers
very similar albedo maps for them. Fig. 12 shows that the algorithm
can remove ”color bleeding” effects: colors reflected onto a white
wall from the cards on the table do not appear in the wall’s diffuse
albedo map. Table 2 shows the recovered specular parameters and
average diffuse albedo for a variety of the surfaces in the scene. We
indicated to the program that all the materials are isotropic, and that
the metallic spheres only have ideal specular components4.

4For surfaces that have only ideal specular reflection, such as mirrors,
there is no diffuse component and the roughness parameter is zero. We can
still recover their specular reflectance�s from a single image by noting that
the specular reflectance can be computed as the simple ratio between two
radiance values. One is the radiance value in the image corresponding to
the intersection between the surface and a ray shot from the camera position;
the other is the radiance value of the environment along the reflected ray. In
practice, we shoot a collection of rays from the camera position to obtain
the average reflectance.

7.2.3 Re-rendering Results

We directly compared synthetic images rendered with our recov-
ered BRDF models to real images. In Fig. 13, we show the com-
parison under the original lighting conditions in which we took the
images for BRDF recovery. In Fig. 14, we show the comparison
under a novel lighting condition obtained by removing two of the
lights and moving the third to a new location, and adding a new
object. There are a few differences between the real and synthetic
images. Some lens flare appears in the real images of both figures,
which we did not attempt to simulate in our renderings. We did
not model the marker trays under the whiteboards, so their shad-
ows do not appear in the synthetic images. In Fig. 14, a synthetic
secondary highlight caused by specular reflection from the adjacent
whiteboard appears darker than the one in the real image, which
is likely due to RADIANCE’s approximations for rendering sec-
ondary specularities. However, in both figures, real and synthetic
images appear quite similar.

Fig 15 shows four panoramic views of the rendered scene. (a)
shows the hierarchical mesh with the initial estimates of radiance
obtained from the images. (b) shows the entire room rendered
in the original illumination. (c) shows the entire scene rendered
with novel lighting. The original lights were removed and three
track lights were virtually installed on the ceiling to illuminate the
posters. Also, a strange chandelier was placed above the spheres
on the table. The new lights reflect specularly off of the posters
and the table. Since the chandelier contains a point light source, it
casts a hard shadow around the midsection of the room. The in-
terior of the chandelier shade is turquoise colored which results in
turquoise shadows under the spheres. A small amount of synthetic
glare was added to this image. (d) shows the result of adding syn-



thetic objects to various locations in the room, including two chairs,
a crystal ball, two metal boxes, and a floating diamond. In addition,
a very large orange sculpture, was placed at the back of the room.
All of the objects exhibit proper shadows, reflections, and caustics.
The sculpture is large enough to turn the ceiling noticeably orange
due to diffuse interreflection. The video for this paper shows a fly-
through of each of these scenes.

8 Conclusions and Future Work

In this paper we have presented a new technique for determining
reflectance properties of entire scenes taking into account mutual
illumination. The properties recovered include diffuse reflectance
that varies arbitrarily across surfaces, and specular reflectance pa-
rameters that are constant across regions. The technique takes as
input a sparse set of geometrically and photometrically calibrated
photographs taken under calibrated lighting conditions, as well as a
geometric model of the scene. The algorithm iteratively estimates
irradiances, radiances, and reflectance parameters. The result is a
characterization of surface reflectance properties that is highly con-
sistent with the observed radiances in the scene. We hope this work
will be a useful step towards bringing visual spaces from the real
world into the virtual domain, where they can be visualized from
any angle, with any lighting, and with additions, deletions, and
modifications according to our needs and imaginations.

There are a few directions for future research. We wish to apply
our technique to more general geometrical and photometric data,
such as multispectral radiance images and geometry accquired from
laser scanners. It would be of significant practical value to be able
to calibrate and use existing or natural illumination in recovering
reflectance properties. The algorithm should be more robust to er-
rors in the geometric model, misregistration of the photographs,
and errors in the light source measurements. It would also be of
theoretical value to obtain conditions under which the algorithm
converges.

Acknowledgments
The authors wish to thank David Culler and the Berkeley NOW (Network of Worksta-
tions, http://now.cs.berkeley.edu/) project, and Tal Garfinkel for his help in using the
NOW to render the video sequences. Thanks to Gregory Ward Larson for advice in us-
ing RADIANCE and estimating reflectance, Carlo S´equin for providing the sculpture
model, and the reviewers for their valuable comments. This research was supported
by a Multidisciplinary University Research Initiative on three dimensional direct visu-
alization from ONR and BMDO, grant FDN00014-96-1-1200, the California MICRO
program, Phillips Corporation, Interval Research Corporation, Pixar Animation Stu-
dios and Microsoft Graduate Fellowship.

Appendix 1. BRDF Model and Parameter
Recovery
In this appendix we present more details on the BRDF model, introduced in Section
4, and how its parameters are recovered. We use Ward’s [32] model for the specular
term in the BRDF, which could be modeled as either isotropic or anisotropic. In the
isotropic case,

K(�;�) =
1

p
cos �i cos �r

exp[� tan2 Æ=�2]

4��2
(6)

where� is a scalar surface roughness parameter,�i is the incident angle,�r is the
viewing angle, andÆ is the angle between the surface normal and the halfway vector
H between the lighting and viewing directions.�i, �r are two components (along
with �i, �r ) of the vector� which represents the incidence and viewing directions.

In the anisotropic case, we need two distinct roughness parameters�x, �y for
two principal axes on the surface and an azimuth angle to define the orientation of
these principal axes on the surface relative to a canonical coordinate system. Then, the
parameter vector� actually has three components(�x; �y; ) and we have:

K(�;�) =
1

p
cos �i cos �r

exp[� tan2 Æ(cos2 �=�x
2 + sin2 �=�y

2)]

4��x�y
(7)

whereÆ is the same as in the isotropic case, and� is the azimuth angle of the halfway
vectorH projected into the local 2D coordinate system on the surface patch defined

by the two principal axes. To compute�, , which relates this coordinate system to
the canonical coordinate system, is necessary.

Now to parameter recovery. We wish to find�d , �s and� that minimize the
squared error between the measured and predicted radiance,

e(�d; �s;�) =

mX

i=1

(Li �
�d

�
Ii � �sK(�;�i)Ii)

2 (8)

whereLi is the measured radiance andIi is the irradiance (computable from the
known light source position) at sample pointpi on the surface, andm is the number
of sample points.

Note that given a guess of�, K(�;�i) becomes a known quantity, and mini-
mizing the errore reduces to a standard linear least-squares problem for estimating�d
and�s. Plugging in these values in the right hand side of Eqn. (8) lets us computee as
a function of�. The optimization problem thus simplifies to a search for the optimum
value of� to minimizee(�). This is either a one-dimensional or three-dimensional
search depending on whether an isotropic or anisotropic model of the specular term is
being used. We use golden section search [26] for the isotropic case, and the down-
hill simplex method [26] in the anisotropic case. It is convenient that neither method
requires evaluating the derivativee0(�), and both methods are fairly robust.

To deal with colored materials, we estimate both diffuse and specular reflectance
in each of the red, green, blue color channels. The specular roughness parameters�

are the same for all color channels. The nonlinear optimization is still over 1 or 3
parameters, since given�, �d and�s estimation for each channel remains a linear
least squares problem.

To make the parameter estimation additionally robust, we make two simple exten-
sions to the basic strategy derived above. The first is to solve a weighted least squares
problem instead of the vanilla version in Eqn. (8). Radiance measurements from the
highlight area have much larger magnitude than those from the non-highlight area.
Correspondingly the error in those measurements is higher both because of noise in
imaging as well as error in the BRDF model. Giving all the terms in (8) equal weight
causes biased fitting and gives poor estimation of the diffuse reflectance. From a sta-
tistical point of view, the correct thing to do is to weight each term by the reciprocal
of the variance of expected error in that measurement. Not having a good model for
the error term, we chose a heuristic strategy in which the weightwi for thei-th term
in the summation in Eqn. (8) is set to 1

K(�c ;�i)
where�c is somead hocor iter-

atively improved roughness vector. Since the roughness of most isotropic materials is
less than 0.2, we used an initial value between 0.1 and 0.2 for scalar�c.

The second refinement to improve parameter recovery is to use specular color in-
formation. For instance, specular highlights on dielectric and plastic materials have the
same color as the light source, while the color of specular highlights on metals is the
same as their diffuse components, which is the color of the light modulated by the dif-
fuse albedo. For plastic objects, there would be one distinct variable�d for each color
channel, but the same variable�s for all color channels. For metallic objects, there
would be one variable�d for each channel and a common ratio between the specular
and diffuse reflectance in all channels. Thus, we can reduce the degree of freedom
from 2N toN+1 whereN is the number of color channels. For plastic, we can still
obtain both analytic and numerical linear least-squares solutions for theN+1 vari-
ables provided the other parameters are fixed. The program performs a heuristic test
to determine whether a material should be estimated with the metal or plastic specular
reflectance model. Our program first solves for the specular reflectance of each color
channel separately and then checks to see if they are larger than the estimated diffuse
components. If they are larger, then the material is considered metallic. Otherwise, the
plastic model is used. Then the smaller number of parameters corresponding to these
material types are solved.
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Figure 8: The complete set of forty radiance images of the room used to recover reflectance properties. Except for a few small areas, every
surface in the room was seen in at least one radiance image. Each radiance image was constructed from between one and ten digital pictures
depending on the dynamic range of the particular view. Black areas indicate regions which were saturated in all input images, and are not
used by the recovery algorithm. The last three radiance images, reproduced ten stops darker than the rest, intentionally image the light bulbs.
They were used to recover the positions and intensities of the sources.

Figure 9: The model of the room, photogrammetrically recovered from the photographs in Fig 8. The recovered camera positions of the forty
photographs are indicated.



Figure 10: The left picture is a radiance image of a whiteboard, showing strong specular highlights. The right picture shows the diffuse albedo
map of the whiteboard recovered from several images. Unlike the radiance image, the diffuse albedo map has a nearly uniform background,
and is independent of the illumination.

Figure 11: The diffuse albedo maps of three posters with the same texture. The posters were placed at different locations in the real scene
with different illumination. Nonetheless, the recovered albedo maps are nearly the same. For identification purposes, a small yellow square
was placed in a different location on the lower right of each poster.

Figure 12: The left image shows a part of a wall that becomes noticeably colored from light reflecting from the cards placed on the table
below, an effect known as ”color bleeding”. The right image shows the recovered albedo map of the same part of the wall. It is nearly
uniform, showing that the color bleeding was properly accounted for. The black line indicates where the table top aligned with the wall.



Figure 13: A comparison between real images (top) and synthetic renderings of our room with the recovered reflectance parameters (bottom).
The simulated lighting is the same as in the original pictures, and the synthetic viewpoints have been matched to the recovered camera
positions of the real images. The images show that good consistency was achieved.

Figure 14: A comparison between real and virtual, this time with novel lighting. Two of the lights were switched off and the third was
moved to a new location. In addition, a real mirrored ball was placed on the red card. The scene was photographed from two locations and
these real views are shown in the top row. To render the bottom row, we recovered the camera positions and light source position in the top
views, estimated the material properties and position of the ball, and added a virtual ball to the model. The main noticeable difference is
camera glare; however, some inaccuracies in the model (e.g. the whiteboard marker tray was not modeled) are also apparent. Otherwise, the
illumination of the scene and appearance and shadows of the synthetic object are largely consistent.



(a) Initial hierarchical polygon mesh, with radiances assigned from images.

(b) Synthetic rendering of recovered properties under original illumination.

(c) Synthetic rendering of room under novel illumination.

(d) Synthetic rendering of room with seven virtual objects added.

Figure 15: Panoramic renderings of the room, with various changes to lighting and geometry.



Paul Debevec's SIGGRAPH99 course no 39 on Image-Based Modeling and Rendering

Video Based Animation Techniques for Human Motion 

Chris Bregler, Stanford University

Most image based rendering techniques are applied to rigid domains: Static environment maps, indoor
scenes, or architectural scenes. Explicit geometric structures are combined with image data. Texture
mapping and view morphing are simple examples. We can generate new images from a collection of
recorded images. Simple geometry dictates coarse transformations of fine grained image texture. New
views of a scene can be generated in blending between the transformed example textures. This is a
trade-off between explicit structure (collection of views and geometric model) and implicit example data
(the image texture). 

Such trade-offs are applied to other domains as well. The most successful speech production systems
(text-to-speech, concatenative speech) follow a similar philosophy. A collection of annotated example
sounds are used to create new sounds. A sentence is build from phonemes (explicit structure). To blend
the phonemes together, the sound examples are pitch and time warped (implicit data). We will show how
this extends to video data and human motion animation. 

Structure vs Data for Animation: 

So far most graphical animation techniques do not exploit such trade-offs between explicit structure and
implicit data. Many facial and body animations are generated by 3D volumetric models and physical
simulations. Some facial animation systems texture map images onto the geometric model, or morph
between a few example images. The appearance and motion become increasingly realistic. We will survey
some of these systems. 

In contrast to physical simulations, motion capture based animation techniques become increasingly
popular. An actor performs the desired motion, and devices record body joint configurations or facial
configurations. This data is mapped onto graphical computer models. Motion editing techniques allow to
modify the motion data and create new motions. This has similarities to image morphing techniques.
Instead of warping image texture, spatio-temporal configurations are warped. 

Some systems allow to blend between different motion-capture data sets of different actions. New
animations are assembled using existing examples. 

Video Based Animation of People: 

In order to create animations, that have natural motion AND have photo-realistic appearance, we need to
combine motion-capture and image based (or video based) techniques. The goal is to build video based
representations of annotated example motions. 

Unlike standard motion capture techniques that are based on markers or other devices, we need to
annotate body and facial configurations directly in unconstrained video. In static scenes the user could
supply annotations by hand, but for video sequences, automatic techniques are crucial (10 min of video
has 18,000 images, no-one has the budged, patience, and consistency to do this by hand). We will survey
several visual tracking and annotation techniques that are tailored for full body movements and facial
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movements. We demonstrate these visual annotation techniques on lab recordings of people walking and
talking. We also demonstrate how to process historic footage. Examples are the famous Edweard
Muybridge Plates from over 100 years ago of walking people, and stock-footage of John F. Kennedy
giving a public speech. 

To build libraries of example motions, we also need techniques that annotate coarse motion categories
automatically. Again, this has to be done automatically. For example a 10 minute video of someone
talking could be transformed into a video-based library of more then 2,000 phonetic lip motions
(phonemes or visemes). 

Once they are annotated, we can re-animate the data or create new data. We will present
work-in-progress of photo-realistic animations of kinematic chain models, and we will cover in more
detail work presented at last years SIGGRAPH conference on photo-realistic animation of talking heads:
Video Rewrite. 

More technical details of such techniques can be found in following papers: 

Video Rewrite: C. Bregler, M. Covell, M. Slaney

Video Rewrite uses existing footage to create automatically new video of a person mouthing words
that she did not speak in the original footage. This technique is useful in movie dubbing, for
example, where the movie sequence can be modified to sync the actors' lip motions to the new
soundtrack. 
Video Rewrite automatically labels the phonemes in the training data and in the new audio track.
Video Rewrite reorders the mouth images in the training footage to match the phoneme sequence
of the new audio track. When particular phonemes are unavailable in the training footage, Video
Rewrite selects the closest approximations. The resulting sequence of mouth images is stitched into
the background footage. This stitching process automatically corrects for differences in head
position and orientation between the mouth images and the background footage. 
Video Rewrite uses computer-vision techniques to track points on the speaker's mouth in the
training footage, and morphing techniques to combine these mouth gestures into the final video
sequence. The new video combines the dynamics of the original actor's articulations with the
mannerisms and setting dictated by the background footage. 
Video Rewrite is the first facial-animation system to automate all the labeling and assembly tasks
required to resync existing footage to a new soundtrack. 

Video Motion Capture: C. Bregler, J. Malik

This paper demonstrates a new vision based motion capture technique that is able to recover high
degree-of-freedom articulated human body configurations in complex video sequences. It does not
require any markers, body suits, or other devices attached to the subject. The only input needed is a
video recording of the person whose motion is to be captured. For visual tracking we introduce the
use of a novel mathematical technique, the product of exponential maps and twist motions, and its
integration into a differential motion estimation. This results in solving simple linear systems, and
enables us to recover robustly the kinematic degrees-of-freedom in noise and complex self
occluded configurations. We demonstrate this on several image sequences of people doing
articulated full body movements, and visualize the results in re-animating an artificial 3D human
model. We are also able to recover and re-animate the famous movements of Eadweard
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Muybridge's motion studies from the last century. To the best of our knowledge, this is the first
computer vision based system that is able to process such challenging footage and recover complex
motions with such high accuracy. 

Preliminary slides in PDF 
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DATA based Modeling and Rendering
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Model / Data  Trade-off

Pure Model Pure Data

Models = • Geometric Models
• Kinematic Models
• Lighting Models
• Statistical Models

Model / Data  Trade-off
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Models = • Geometric Models
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Model / Data  Trade-off

Pure Model Pure Data

Subspaces
in High-Dimensional
Image Spaces

IBMR techniques for Animating People

• Image Morphing:
Beyer+Neely,  Seitz+Dyer, Litwinowicz+Williams

• 3D-Model + Images:
Terzopoulos+Waters, Pighin et al., Guenter et al.

• Images + Lighting:
Raviv+Shashua

• Audio-Data + Images:
Scott et al., Ezzat+Poggio,  Cossato+Graf, Chen et al.

• Most Progress in Facial Modeling and Animation:
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Visual Tracking

Visual Tracking

In General Very Challening

-> Make Generic “Model” Assumtions
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• Optical Flow:  no constraints

• Layered Motion:  rigid constraints

• Articulated:  kinematic chain constraints

Tracking: Motion Categories

• Nonrigid:  learned constraints

[Horn81,Lucas81]

[Bergen92,Jepson93,Adelson95, Weiss96]

[Yamamoto91,Rehg95,Kakadiaris96]

[Eigen-XXX]

• Optical Flow:  no constraints

• Layered Motion:  rigid constraints

• Articulated:  kinematic chain constraints

Tracking: Motion Categories

• Nonrigid:  learned constraints
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Example Track
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Eadweard Muybridge

Example Track
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Example Track -2-

By Charles Ying

• Optical Flow:  no constraints

• Layered Motion:  rigid constraints

• Articulated:  kinematic chain constraints

Tracking: Motion Categories

• Nonrigid:  learned constraints
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• Optical Flow:  no constraints

• Layered Motion:  rigid constraints

• Articulated:  kinematic chain constraints

Tracking: Motion Categories

• Nonrigid:  learned constraints
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Non-Rigid  Constrained Spaces

Linear Subspaces:

• Basis Set of Example
Images

Non-Rigid  Constrained Spaces

Linear Subspaces:

• Basis Set of Example
Images

• Principal Components 
Analysis
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Non-Rigid  Constrained Spaces

Nonlinear Manifolds:

Linear Subspaces:

• Example Basis Set

• Principal Components 
Analysis

Mixture Models
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Example Track -3-

Building 3D Nonrigid Face Models

Bregler, Hertzmann, Biermann,  NYU
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Image-Based Lighting for Faces
Riklin-Raviv + Shashua

Quotient-ImageBootstrap Database

Image-Based Lighting for Faces
Debevec et al.

See Light-Stage
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Video Rewrite  Bregler,  Covell,  Slaney, Interval Research
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background face
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Synthesis:
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ABSTRACT
Video Rewrite uses existing footage to create automatically new
video of a person mouthing words that she did not speak in the
original footage. This technique is useful in movie dubbing, for
example, where the movie sequence can be modified to sync the
actors’ lip motions to the new soundtrack.

Video Rewrite automatically labels the phonemes in the train-
ing data and in the new audio track. Video Rewrite reorders the
mouth images in the training footage to match the phoneme
sequence of the new audio track. When particular phonemes are
unavailable in the training footage, Video Rewrite selects the clos-
est approximations. The resulting sequence of mouth images is
stitched into the background footage. This stitching process auto-
matically corrects for differences in head position and orientation
between the mouth images and the background footage.

Video Rewrite uses computer-vision techniques to track points
on the speaker’s mouth in the training footage, and morphing tech-
niques to combine these mouth gestures into the final video
sequence. The new video combines the dynamics of the original
actor’s articulations with the mannerisms and setting dictated by
the background footage. Video Rewrite is the first facial-animation
system to automate all the labeling and assembly tasks required to
resync existing footage to a new soundtrack.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation—Morphing; I.4.6 [Image Processing]: Segmentation—Fea-
ture Detection; I.3.8 [Computer Graphics]: Applications—Facial
Synthesis; I.4.10 [Image Processing]: Applications—Feature
Transformations.

Additional Keywords: Facial Animation, Lip Sync.

1  WHY AND HOW WE REWRITE VIDEO
We are very sensitive to the synchronization between speech and
lip motions. For example, the special effects in Forest Gump are
compelling because the Kennedy and Nixon footage is lip synched
to the movie’s new soundtrack. In contrast, close-ups in dubbed
movies are often disturbing due to the lack of lip sync. Video
Rewrite is a system for automatically synthesizing faces with
proper lip sync. It can be used for dubbing movies, teleconferenc-
ing, and special effects.

Video Rewrite automatically pieces together from old footage
a new video that shows an actor mouthing a new utterance. The
results are similar to labor-intensive special effects in Forest
Gump. These effects are successful because they start from actual
film footage and modify it to match the new speech. Modifying
and reassembling such footage in a smart way and synchronizing it
to the new sound track leads to final footage of realistic quality.
Video Rewrite uses a similar approach but does not require labor-
intensive interaction.

Our approach allows Video Rewrite to learn from example
footage how a person’s face changes during speech. We learn what
a person’s mouth looks like from a video of that person speaking
normally. We capture the dynamics and idiosyncrasies of her artic-
ulation by creating a database of video clips. For example, if a
woman speaks out of one side of her mouth, this detail is recreated
accurately. In contrast, most current facial-animation systems rely
on generic head models that do not capture the idiosyncrasies of an
individual speaker.

To model a new person, Video Rewrite requires a small num-
ber (26 in this work) of hand-labeled images. This is the only
human intervention that is required in the whole process. Even this
level of human interaction is not a fundamental requirement: We
could use face-independent models instead [Kirby90, Covell96].

Video Rewrite shares its philosophy with concatenative speech
synthesis [Moulines90]. Instead of modeling the vocal tract, con-
catenative speech synthesis analyzes a corpus of speech, selects
examples of phonemes, and normalizes those examples. Phonemes
are the distinct sounds within a language, such as the /IY/ and /P/
in “teapot.” Concatenative speech synthesizes new sounds by con-
catenating the proper sequence of phonemes. After the appropriate
warping of pitch and duration, the resulting speech is natural
sounding. This approach to synthesis is data driven: The algo-
rithms analyze and resynthesize sounds using little hand-coded
knowledge of speech. Yet they are effective at implicitly capturing
the nuances of human speech.

Video Rewrite uses a similar approach to create new sequences
of visemes. Visemes are the visual counterpart to phonemes.
Visemes are visually distinct mouth, teeth, and tongue articulations
for a language. For example, the phonemes /B/ and /P/ are visually
indistinguishable and are grouped into a single viseme class.

Video Rewrite: Driving Visual Speech with Audio
Christoph Bregler, Michele Covell, Malcolm Slaney

Interval Research Corporation

1801 Page Mill Road, Building C, Palo Alto, CA, 94304. E-mail:
bregler@cs.berkeley.edu, covell@interval.com, malcolm@inter-
val.com. See the SIGGRAPH Video Proceedings or http://
www.interval.com/papers/1997-012/ for the latest animations.

Figure 1: Overview of analysis stage. Video Rewrite uses
the audio track to segment the video into triphones. Vision
techniques find the orientation of the head, and the shape
and position of the mouth and chin in each image. In the
synthesis stage, Video Rewrite selects from this video
model to synchronize new lip videos to any given audio.

Video Model

/EH-B-AA/ /IY-B-AA/ /OW-B-AA//AA-B-AA/Phoneme
Labeling

Visual
LabelingPermission to make digital/hard copy of all or part of this material

for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
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appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to redis-
tribute to lists, requires prior specific permission and/or a fee.
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Video Rewrite creates new videos using two steps: analysis of
a training database and synthesis of new footage. In the 

 

analysis

 

stage, Video Rewrite automatically segments into phonemes the
audio track of the training database. We use these labels to segment
the video track as well. We automatically track facial features in
this segmented footage. The phoneme and facial labels together
completely describe the visemes in the training database. In the

 

synthesis

 

 stage, our system uses this video database, along with a
new utterance. It automatically retrieves the appropriate viseme
sequences, and blends them into a background scene using mor-
phing techniques. The result is a new video with lip and jaw move-
ments that synchronize to the new audio. The steps used in the
analysis stage are shown in Figure 1; those of the synthesis stage
are shown in Figure 2.

In the remainder of this paper, we first review other approaches
to synthesizing talking faces (Section 2). We then describe the
analysis and synthesis stages of Video Rewrite. In the analysis
stage (Section 3), a collection of video is analyzed and stored in a
database that matches sounds to video sequences. In the synthesis
stage (Section 4), new speech is labeled, and the appropriate
sequences are retrieved from the database. The final sections of
this paper describe our results (Section 5), future work (Section 6),
and contributions (Section 7).

 

2  SYNTHETIC VISUAL SPEECH

 

Facial-animation systems build a model of what a person’s speech
sounds and looks like. They use this model to generate a new out-
put sequence, which matches the (new) target utterance. On the
model-building side (analysis), there are typically three distin-
guishing choices: how the facial appearance is learned or
described, how the facial appearance is controlled or labeled, and
how the viseme labels are learned or described. For output-
sequence generation (synthesis), the distinguishing choice is how
the target utterance is characterized. This section reviews a repre-
sentative sample of past research in these areas.

 

2.1   Source of Facial Appearance 

 

Many facial-animation systems use a generic 3D mesh model of a
face [Parke72, Lewis91, Guiard-Marigny94], sometimes adding
texture mapping to improve realism [Morshima91, Cohen93,
Waters95]. Another synthetic source of face data is hand-drawn
images [Litwinowicz94]. Other systems use real faces for their
source examples, including approaches that use 3D scans
[Williams90] and still images [Scott94]. We use video footage to
train Video Rewrite’s models.

 

2.2  Facial Appearance Control 

 

Once a facial model is captured or created, the control parameters
that exercise that model must be defined. In systems that rely on a
3D mesh model for appearance, the control parameters are the
allowed 3D mesh deformations. Most of the image-based systems
label the positions of specific facial locations as their control
parameters. Of the systems that use facial-location labels, most
rely on manual labeling of each example image [Scott94,
Litwinowicz94]. Video Rewrite creates its video model by auto-
matically labeling specific facial locations.

 

2.3  Viseme Labels

 

Many facial-animation systems label different visual configura-
tions with an associated 

 

phoneme

 

. These systems then match these
phoneme labels with their corresponding labels in the target utter-
ance. With synthetic images, the phoneme labels are artificial or
are learned by analogy [Morshima91]. For natural images, taken
from a video of someone speaking, the phonemic labels can be
generated manually [Scott94] or automatically. Video Rewrite
determines the phoneme labels automatically (Section 3.1).

 

2.4  Output-Sequence Generation

 

The goal of facial animation is to generate an image sequence that
matches a target utterance. When phoneme labels are used, those
for the target utterance can be entered manually [Scott94] or com-
puted automatically [Lewis91, Morshima91]. Another option for
phoneme labeling is to create the new utterance with synthetic
speech [Parke72, Cohen93, Waters95]. Approaches, that do not use
phoneme labels include motion capture of facial locations that are
artificially highlighted [Williams90, Guiard-Marigny94] and man-
ual control by an animator [Litwinowicz94]. Video Rewrite uses a
combination of phoneme labels (from the target utterance) and
facial-location labels (from the video-model segments). Video
Rewrite derives all these labels automatically.

Video Rewrite is the first facial-animation system to automate
all these steps and to generate realistic lip-synched video from nat-
ural speech and natural images.

 

3  ANALYSIS FOR VIDEO MODELING

 

As shown in Figure 1, the analysis stage creates an annotated data-
base of example video clips, derived from unconstrained footage.
We refer to this collection of annotated examples as a video model.
This model captures how the subject’s mouth and jaw move during
speech. These training videos are labeled automatically with the
phoneme sequence uttered during the video, and with the locations
of fiduciary points that outline the lips, teeth, and jaw.

As we shall describe, the phonemic labels are from a time-
aligned transcript of the speech, generated by a hidden Markov
model (HMM). Video Rewrite uses the phonemic labels from the
HMM to segment the input footage into short video clips, each
showing three phonemes or a triphone. These triphone videos, with
the fiduciary-point locations and the phoneme labels, are stored in
the video model.

In Sections 3.1 and 3.2, we describe the visual and acoustic
analyses of the video footage. In Section 4, we explain how to use
this model to synthesize new video.

 

3.1  Annotation Using Image Analysis

 

Video Rewrite uses any footage of the subject speaking. As her
face moves within the frame, we need to know the mouth position
and the lip shapes at all times. In the synthesis stage, we use this
information to warp overlapping videos such that they have the
same lip shapes, and to align the lips with the background face.

Video
Model

S
elect

V
isem

es

S
titch

S
peech

Labeling 

Figure 2: Overview of synthesis stage. Video Rewrite
segments new audio and uses it to select triphones from
the video model. Based on labels from the analysis stage,
the new mouth images are morphed into a new
background face.

 

Background
Video
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Manual labeling of the fiduciary points around the mouth and
jaw is error prone and tedious. Instead, we use computer-vision
techniques to label the face and to identify the mouth and its shape.
A major hurdle to automatic annotation is the low resolution of the
images. In a typical scene, the lip region has a width of only 40
pixels. Conventional contour-tracking algorithms [Kass87,
Yuille89] work well on high-contrast outer lip boundaries with
some user interaction, but fail on inner lip boundaries at this reso-
lution, due to the low signal-to-noise ratios. Grayscale-based algo-
rithms, such as eigenimages [Kirby90, Turk91], work well at low
resolutions, but estimate only the location of the lips or jaw, rather
than estimating the desired fiduciary points. Eigenpoints
[Covell96], and other extensions of eigenimages [Lanitis95], esti-
mate control points reliably and automatically, even in such low-
resolution images. As shown in Figure 3, eigenpoints learns how
fiduciary points move as a function of the image appearance, and
then uses this model to label new footage.

Video Rewrite labels each image in the training video using a
total of 54 eigenpoints: 34 on the mouth (20 on the outer boundary,
12 on the inner boundary, 1 at the bottom of the upper teeth, and 1
at the top of the lower teeth) and 20 on the chin and jaw line. There
are two separate eigenpoint analyses. The first eigenspace controls
the placement of the 34 fiduciary points on the mouth, using

 pixels around the nominal mouth location, a region that
covers the mouth completely. The second eigenspace controls the
placement of the 20 fiduciary points on the chin and jaw line, using

 pixels around the nominal chin-location, a region that
covers the upper neck and the lower part of the face.

We created the two eigenpoint models for locating the fidu-
ciary points from a small number of images. We hand annotated
only 26 images (of 14,218 images total; about 0.2%). We extended
the hand-annotated dataset by morphing pairs of annotated images
to form intermediate images, expanding the original 26 to 351
annotated images without any additional manual work. We then
derived eigenpoints models using this extended data set.

We use eigenpoints to find the mouth and jaw and to label their
contours. The derived eigenpoint models locate the facial features
using six basis vectors for the mouth and six different vectors for
the jaw. Eigenpoints then places the fiduciary points around the
feature locations: 32 basis vectors place points around the lips and
64 basis vectors place points around the jaw.

Eigenpoints assumes that the features (the mouth or the jaw)
are undergoing pure translational motion. It does a comparatively
poor job at modeling rotations and scale changes. Yet, Video
Rewrite is designed to use unconstrained footage. We expect rota-
tions and scale changes. Subjects may lean toward the camera or
turn away from it, tilt their heads to the side, or look up from under
their eyelashes.

To allow for a variety of motions, we warp each face image
into a standard reference plane, prior to eigenpoints labeling. We

50 40×

100 75×

find the global transform that minimizes the mean-squared error
between a large portion of the face image and a facial template. We
currently use an affine transform [Black95]. The mask shown in
Figure 4 defines the support of the minimization integral. Once the
best global mapping is found, it is inverted and applied to the
image, putting that face into the standard coordinate frame. We
then perform eigenpoints analysis on this pre-warped image to find
the fiduciary points. Finally, we back-project the fiduciary points
through the global warp to place them on the original face image.

The labels provided by eigenpoints allow us automatically to
(1) build the database of example lip configurations, and (2) track
the features in a background scene that we intend to modify.
Section 4.2 describes how we match the points we find in step 1 to
each other and to the points found in step 2.

3.2  Annotation Using Audio Analysis
All the speech data in Video Rewrite (and their associated video)
are segmented into sequences of phonemes. Although single pho-
nemes are a convenient representation for linguistic analysis, they
are not appropriate for Video Rewrite. We want to capture the
visual dynamics of speech. To do so correctly, we must consider
coarticulation, which causes the lip shapes for many phonemes to
be modified based on the phoneme’s context. For example, the 
in “beet” looks different from the  in “boot.”

Therefore, Video Rewrite segments speech and video into tri-
phones: collections of three sequential phonemes. The word “tea-
pot” is split into the sequence of triphones ,1 ,

, , and . When we synthesize a
video, we emphasize the middle of each triphone. We cross-fade
the overlapping regions of neighboring triphones. We thus ensure
that the precise transition points are not critical, and that we can
capture effectively many of the dynamics of both forward and
backward coarticulation.

Video Rewrite uses HMMs [Rabiner89] to label the training
footage with phonemes. We trained the HMMs using the TIMIT
speech database [Lamel86], a collection of 4200 utterances with
phonemic transcriptions that gives the uttered phonemes and their
timing. Each of the 61 phoneme categories in TIMIT is modeled
with a separate three-state HMM. The emission probabilities of
each state are modeled with mixtures of eight Gaussians with diag-
onal covariances. For robustness, we split the available data by
gender and train two speaker-independent, gender-specific sys-
tems, one based on 1300 female utterances, and one based on 2900
male utterances.

We used these gender-specific HMMs to create a fine-grained
phonemic transcription of our input footage, using forced Viterbi

1.  indicates silence. Two  in a row are used at the 
beginnings and ends of utterances to allow all segments—
including the beginning and end—to be treated as triphones.

/T/
/T/

/SIL-T-IY/ /T-IY-P/

/SIL/ /SIL/

/IY-P-AA/ /P-AA-T/ /AA-T-SIL/

Training Data

Output
Contours

Learn
Eigenpoint

Model

Apply
Eigenpoint

Model

Figure 3: Overview of eigenpoints. A small set of hand-
labeled facial images is used to train subspace models.
Given a new image, the eigenpoint models tell us the
positions of points on the lips and jaw.

Input Image

Figure 4: Mask used to estimate the global warp. Each
image is warped to account for changes in the head’s
position, size, and rotation. The transform minimizes the
difference between the transformed images and the face
template. The mask (left) forces the minimization to
consider only the upper face (right).
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search [Viterbi67]. Forced Viterbi uses unaligned sentence-level
transcriptions and a phoneme-level pronunciation dictionary to
create a time-aligned phoneme-level transcript of the speech. From
this transcript, Video Rewrite segments the video automatically
into triphone videos, labels them, and includes them in the video
model.

4  SYNTHESIS USING A VIDEO MODEL
As shown in Figure 2, Video Rewrite synthesizes the final lip-
synced video by labeling the new speech track, selecting a
sequence of triphone videos that most accurately matches the new
speech utterance, and stitching these images into a background
video.

The background video sets the scene and provides the desired
head position and movement. The background sequence in Video
Rewrite includes most of the subject’s face as well as the scene
behind the subject. The frames of the background video are taken
from the source footage in the same order as they were shot. The
head tilts and the eyes blink, based on the background frames. 

In contrast, the different triphone videos are used in whatever
order is needed. They simply show the motions associated with
articulation. For all the animations in this paper, the triphone
images include the mouth, chin, and part of the cheeks, so that the
chin and jaw move and the cheeks dimple appropriately as the
mouth articulates. We use illumination-matching techniques
[Burt83] to avoid visible seams between the triphone and back-
ground images.

The first step in synthesis (Figure 2) is labeling the new
soundtrack. We label the new utterance with the same HMM that
we used to create the video-model phoneme labels. In Sections 4.1
and 4.2, we describe the remaining steps: selecting triphone videos
and stitching them into the background.

4.1  Selection of Triphone Videos
The new speech utterance determines the target sequence of
speech sounds, marked with phoneme labels. We would like to find
a sequence of triphone videos from our database that matches this
new speech utterance. For each triphone in the new utterance, our
goal is to find a video example with exactly the transition we need,
and with lip shapes that match the lip shapes in neighboring tri-
phone videos. Since this goal often is not reachable, we compro-
mise by a choosing a sequence of clips that approximates the
desired transitions and shape continuity.

Given a triphone in the new speech utterance, we compute a
matching distance to each triphone in the video database. The
matching metric has two terms: the phoneme-context distance,

, and the distance between lip shapes in overlapping visual tri-
phones, . The total error is

where the weight, , is a constant that trades off the two factors.
The phoneme-context distance, , is based on categorical

distances between phoneme categories and between viseme
classes. Since Video Rewrite does not need to create a new
soundtrack (it needs only a new video track), we can cluster pho-
nemes into viseme classes, based on their visual appearance. 

We use 26 viseme classes. Ten are consonant classes: (1)
, , , ; (2) , , , ; (3) , ,

, ; (4) , , ; (5) , ; (6) , ; (7)
, ; (8) ; (9) ; and (10) . Fifteen are vowel

classes: one each for , , , , ,
, , , , , , , , .

One class is for silence, /SIL/.

Dp
Ds

error αDp 1 α–( )Ds,+=

α
Dp

/CH/ /JH/ /SH/ /ZH/ /K/ /G/ /N/ /L/ /T/ /D/
/S/ /Z/ /P/ /B/ /M/ /F/ /V/ /TH/ /DH/
/W/ /R/ /HH/ /Y/ /NG/

/EH/ /EY/ /ER/ /UH/ /AA/ /AO/
/AW/ /AY/ /UW/ /OW/ /OY/ /IY/ /IH/ /AE/ /AH/

The phoneme-context distance, , is the weighted sum of
phoneme distances between the target phonemes and the video-
model phonemes within the context of the triphone. If the phone-
mic categories are the same (for example,  and ), then this
distance is 0. If they are in different viseme classes (  and ),
then the distance is 1.   If they are in different phonemic categories
but are in the same viseme class (  and ), then the distance is
a value between 0 and 1. The intraclass distances are derived from
published confusion matrices [Owens85].

In , the center phoneme of the triphone has the largest
weight, and the weights drop smoothly from there. Although the
video model stores only triphone images, we consider the triph-
one’s original context when picking the best-fitting sequence. In
current animations, this context covers the triphone itself, plus one
phoneme on either side.

The second term, , measures how closely the mouth con-
tours match in overlapping segments of adjacent triphone videos.
In synthesizing the mouth shapes for “teapot” we want the con-
tours for the  and  in the lip sequence used for  to
match the contours for the  and  in the sequence used for

. We measure this similarity by computing the Euclid-
ean distance, frame by frame, between four-element feature vec-
tors containing the overall lip width, overall lip height, inner lip
height, and height of visible teeth.

The lip-shape distance ( ) between two triphone videos is
minimized with the correct time alignment. For example, consider
the overlapping contours for the  in  and .
The  phoneme includes both a silence, when the lips are
pressed together, and an audible release, when the lips move rap-
idly apart. The durations of the initial silence within the  pho-
neme may be different. The phoneme labels do not provide us with
this level of detailed timing. Yet, if the silence durations are differ-
ent, the lip-shape distance for two otherwise-well-matched videos
will be large. This problem is exacerbated by imprecision in the
HMM phonemic labels. 

We want to find the temporal overlap between neighboring tri-
phones that maximizes the similarity between the two lip shapes.
We shift the two triphones relative to each other to find the best
temporal offset and duration. We then use this optimal overlap both
in computing the lip-shape distance, , and in cross-fading the
triphone videos during the stitching step. The optimal overlap is
the one that minimizes  while still maintaining a minimum-
allowed overlap.

Since the fitness measure for each triphone segment depends
on that segment’s neighbors in both directions, we select the
sequence of triphone segments using dynamic programming over
the entire utterance. This procedure ensures the selection of the
optimal segments.

4.2  Stitching It Together
Video Rewrite produces the final video by stitching together the
appropriate entries from the video database. At this point, we have
already selected a sequence of triphone videos that most closely
matches the target audio. We need to align the overlapping lip
images temporally. This internally time-aligned sequence of vid-
eos is then time aligned to the new speech utterance. Finally, the
resulting sequences of lip images are spatially aligned and are
stitched into the background face. We describe each step in turn.

4.2.1  Time Alignment of Triphone Videos 
We have a sequence of triphone videos that we must combine to
form a new mouth movie. In combining the videos, we want to
maintain the dynamics of the phonemes and their transitions. We
need to time align the triphone videos carefully before blending

Dp

/P/ /P/
/P/ /IY/

/P/ /B/

Dp

Ds

/IY/ /P/ /T-IY-P/
/IY/ /P/

/IY-P-AA/

Ds

/P/ /T-IY-P/ /IY-P-AA/
/P/

/P/

Ds

Ds
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them. If we are not careful in this step, the mouth will appear to
flutter open and closed inappropriately.

We align the triphone videos by choosing a portion of the over-
lapping triphones where the two lips shapes are as similar as possi-
ble. We make this choice when we evaluate  to choose the
sequence of triphone videos (Section 4.1). We use the overlap
duration and shift that provide the minimum value of  for the
given videos.

4.2.2  Time Alignment of the Lips to the Utterance
We now have a self-consistent temporal alignment for the triphone
videos. We have the correct articulatory motions, in the correct
order to match the target utterance, but these articulations are not
yet time aligned with the target utterance. 

We align the lip motions with the target utterance by compar-
ing the corresponding phoneme transcripts. The starting time of
the center phone in the triphone sequence is aligned with the corre-
sponding label in the target transcript. The triphone videos are then
stretched or compressed such that they fit the time needed between
the phoneme boundaries in the target utterance.

4.2.3  Combining of the Lips and the Background
The remaining task is to stitch the triphone videos into the back-
ground sequence. The correctness of the facial alignment is critical
to the success of the recombination. The lips and head are con-
stantly moving in the triphone and background footage. Yet, we
need to align them all so that the new mouth is firmly planted on
the face. Any error in spatial alignment causes the mouth to jitter
relative to the face—an extremely disturbing effect.

We again use the mask from Figure 4 to help us find the opti-
mal global transform to register the faces from the triphone videos
with the background face. The combined tranforms from the
mouth and background images to the template face (Section 3.1)
give our starting estimate in this search. Re-estimating the global
transform by directly matching the triphone images to the back-
ground improves the accuracy of the mapping.

We use a replacement mask to specify which portions of the
final video come from the triphone images and which come from
the background video. This replacement mask warps to fit the new
mouth shape in the triphone image and to fit the jaw shape in the
background image. Figure 5 shows an example replacement mask,
applied to triphone and background images.

Local deformations are required to stitch the shape of the
mouth and jaw line correctly. These two shapes are handled differ-
ently. The mouth’s shape is completely determined by the triphone
images. The only changes made to these mouth shapes are
imposed to align the mouths within the overlapping triphone
images: The lip shapes are linearly cross-faded between the shapes
in the overlapping segments of the triphone videos.

Ds

Ds

The jaw’s shape, on the other hand, is a combination of the
background jaw line and the two triphone jaw lines. Near the ears,
we want to preserve the background video’s jaw line. At the center
of the jaw line (the chin), the shape and position are determined
completely by what the mouth is doing. The final image of the jaw
must join smoothly together the motion of the chin with the motion
near the ears. To do this, we smoothly vary the weighting of the
background and triphone shapes as we move along the jawline
from the chin towards the ears.

The final stitching process is a three-way tradeoff in shape and
texture among the fade-out lip image, the fade-in lip image, and
the background image. As we move from phoneme to phoneme,
the relative weights of the mouth shapes associated with the over-
lapping triphone-video images are changed. Within each frame, the
relative weighting of the jaw shapes contributed by the background
image and of the triphone-video images are varied spatially.

The derived fiduciary positions are used as control points in
morphing. All morphs are done with the Beier-Neely algorithm
[Beier92]. For each frame of the output image we need to warp
four images: the two triphones, the replacement mask, and the
background face. The warping is straightforward since we auto-
matically generate high-quality control points using the eigen-
points algorithm.

5  RESULTS
We have applied Video Rewrite to several different training data-
bases. We recorded one video dataset specifically for our evalua-
tions. Section 5.1 describes our methods to collect this data and
create lip-sync videos. Section 5.2 evaluates the resulting videos.

We also trained video models using truncated versions of our
evaluation database. Finally, we used old footage of John F.
Kennedy. We present the results from these experiments in Section
5.3.

5.1   Methods
We recorded about 8 minutes of video, containing 109 sentences,
of a subject narrating a fairy tale. During the reading, the subject
was asked to directly face the camera for some parts (still-head
video) and to move and glance around naturally for others (mov-
ing-head video). We use these different segments to study the
errors in local deformations separately from the errors in global
spatial registration. The subject was also asked to wear a hat during
the filming. We use this landmark to provide a quantitative evalua-
tion of our global alignment. The hat is strictly outside all our
alignment masks and our eigenpoints models. Thus, having the
subject wear the hat does not effect the magnitude or type of errors
that we expect to see in the animations—it simply provides us with
a reference marker for the position and movement of her head.

To create a video model, we trained the system on all the still-
head footage. Video Rewrite constructed and annotated the video
model with just under 3500 triphone videos automatically, using
HMM labeling of triphones and eigenpoint labeling of facial con-
tours.

Video Rewrite was then given the target sentence, and was
asked to construct the corresponding image sequence. To avoid
unduly optimistic results, we removed from the database the tri-
phone videos from training sentences similar to the target. A train-
ing sentence was considered similar to the target if the two shared
a phrase two or more words long. Note that Video Rewrite would
not normally pare the database in this manner: Instead, it would
take advantage of these coincidences. We remove the similar sen-
tences to avoid biasing our results. 

We evaluated our output footage both qualitatively and quanti-
tatively. Our qualitative evaluation was done informally, by a panel

Figure 5: Facial fading mask. This mask determines
which portions of the final movie frames come from the
background frame, and which come from the triphone
database. The mask should be large enough to include the
mouth and chin. These images show the replacement
mask applied to a triphone image, and its inverse applied
to a background image. The mask warps according to the
mouth and chin motions.
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of observers. There are no accepted metrics for evaluating lip-
synced footage. Instead, we were forced to rely on the qualitative
judgements listed in Section 5.2.

Only the (global) spatial registration is evaluated quantita-
tively. Since our subject wore a hat that moved rigidly with her
upper head, we were able to measure quantitatively our global-reg-
istration error on this footage. We did so by first warping the full
frame (instead of just the mouth region) of the triphone image into
the coordinate frame of the background image. If this global trans-
formation is correct, it should overlay the two images of the hat
exactly on top of one another. We measured the error by finding the
offset of the correlation peak for the image regions corresponding
to the front of the hat. The offset of the peak is the registration
error (in pixels). 

5.2  Evaluation
Examples of our output footage can be seen at http://www.inter-
val.com/papers/1997-012/. The top row of Figure 6 shows example
frames, extracted from these videos. This section describes our
evaluation criteria and the results.

5.2.1  Lip and Utterance Synchronization
How well are the lip motions synchronized with the audio? We
evaluate this measure on the still-head videos. There occasionally
are visible timing errors in plosives and stops.

5.2.2  Triphone-Video Synchronization
Do the lips flutter open and closed inappropriately? This artifact
usually is due to synchronization error in overlapping triphone vid-
eos. We evaluated this measure on the still-head videos. We do not
see any artifacts of this type.

5.2.3  Natural Articulation
Assuming that neither of the artifacts from Sections 5.2.1 or 5.2.2
appear, do the lip and teeth articulations look natural? Unnatural-
looking articulation can result if the desired sequence of phonemes
is not available in the database, and thus another sequence is used
in its place. In our experiments, this replacement occurred on 31
percent of the triphone videos. We evaluated this measure on the

still-head videos. We do not see this type of error when we use the
full video model. Additional experiments in this area are described
in Section 5.3.1.

5.2.4  Fading-Mask Visibility and Extent
Does the fading mask show? Does the animation have believable
texture and motion around the lips and chin? Do the dimples move
in sync with the mouth? We evaluated this measure on all the out-
put videos. The still-head videos better show errors associated with
the extent of the fading mask, whereas the moving-head videos
better show errors due to interactions between the fading mask and
the global transformation. Without illumination correction, we see
artifacts in some of the moving-head videos, when the subject
looked down so that the lighting on her face changed significantly.
These artifacts disappear with adaptive illumination correction
[Burt83].

5.2.5  Background Warping
Do the outer edges of the jaw line and neck, and the upper portions
of the cheeks look realistic? Artifacts in these areas are due to
incorrect warping of the background image or to a mismatch
between the texture and the warped shape of the background
image. We evaluated this measure on all the output videos. In some
segments, we found minor artifacts near the outer edges of the jaw.

5.2.6  Spatial Registration
Does the mouth seem to float around on the face? Are the teeth rig-
idly attached to the skull? We evaluated this measure on the mov-
ing-head videos. No registration errors are visible.

We evaluated this error quantitatively as well, using the hat-
registration metric described in Section 5.1. The mean, median,
and maximum errors in the still-head videos were 0.6, 0.5, and 1.2
pixels (standard deviation 0.3); those in the moving-head videos
were 1.0, 1.0, and 2.0 pixels (standard deviation 0.4). For compari-
son, the face covers approximately  pixels.

5.2.7  Overall Quality
Is the lip-sync believable? We evaluated this measure on all the
output videos. We judged the overall quality as excellent.

85 120×

Figure 6: Examples of synthesized output frames. These frames show the quality of our output after triphone segments have been
stitched into different background video frames.
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5.3  Other Experiments
In this section, we examine our performance using steadily smaller
training databases (Section 5.3.1) and using historic footage (Sec-
tion 5.3.2).

5.3.1  Reduction of Video Model Size
We wanted to see how the quality fell off as the number of data
available in the video model were reduced. With the 8 minutes of
video, we have examples of approximately 1700 different tri-
phones (of around 19,000 naturally occurring triphones); our ani-
mations used triphones other than the target triphones 31 percent
of the time. What happens when we have only 1 or 2 minutes of
data? We truncated our video database to one-half, one-quarter,
and one-eighth of its original size, and then reanimated our target
sentences. The percent of mismatched triphones increased by
about 15 percent with each halving of the database (that is, 46, 58,
and 74 percent of the triphones were replaced in the reduced
datasets). The perceptual quality also degraded smoothly as the
database size was reduced. The video from the reduced datasets are
shown on our web site.

5.3.2  Reanimation of Historic Footage
We also applied Video Rewrite to public-domain footage of John F.
Kennedy. For this application, we digitized 2 minutes (1157 tri-
phones) of Kennedy speaking during the Cuban missile crisis.
Forty-five seconds of this footage are from a close-up camera,
about 30 degrees to Kennedy's left. The remaining images are
medium shots from the same side. The size ratio is approximately
5:3 between the close-up and medium shots. During the footage,
Kennedy moves his head about 30 degrees vertically, reading his
speech from notes on the desk and making eye contact with a cen-
ter camera (which we do not have).

We used this video model to synthesize new animations of
Kennedy saying, for example, “Read my lips” and “I never met
Forrest Gump.” These animations combine the footage from both
camera shots and from all head poses. The resulting videos are
shown on our web site. The bottom row of Figure 6 shows example
frames, extracted from these videos.

In our preliminary experiments, we were able to find the cor-
rect triphone sequences just 6% of the time. The lips are reliably
synchronized to the utterance. The fading mask is not visible, nor
is the background warping. However, the overall animation quality
is not as good as our earlier results. The animations include some
lip fluttering, because of the mismatched triphone sequences.

Our quality is limited for two reasons. The available viseme
footage is distributed over a wide range of vertical head rotations.
If we choose triphones that match the desired pose, then we cannot
find good matches for the desired phoneme sequence. If we choose
triphones that are well matched to the desired phoneme sequence,
then we need to dramatically change the pose of the lip images. A
large change in pose is difficult to model with our global (affine)
transform. The lip shapes are distorted because we assumed,
implicitly in the global transform, that the lips lie on a flat plane.
Both the limited-triphone and pose problems can be avoided with
additional data.

6  FUTURE WORK
There are many ways in which Video Rewrite could be extended
and improved. The phonemic labeling of the triphone and back-
ground footage could consider the mouth- and jaw-shape informa-
tion, as well as acoustic data [Bregler95]. Additional lip-image
data and multiple eigenpoints models could be added, allowing
larger out-of-plane head rotations. The acoustic data could be used
in selecting the triphone videos, because facial expressions affect

voice qualities (you can hear a smile). The synthesis could be
made real-time, with low-latency.

In Sections 6.1 through 6.3, we explore extensions that we
think are most promising and interesting.

6.1  Alignment Between Lips and Target
We currently use the simplest approach to time aligning the lip
sequences with the target utterance: We rely on the phoneme
boundaries. This approach provides a rough alignment between the
motions in the lip sequence and the sounds in the target utterance.
As we mentioned in Section 4.1, however, the phoneme boundaries
are both imprecise (the HMM alignment is not perfect) and coarse
(significant visual and auditory landmarks occur within single pho-
nemes).

A more accurate way to time align the lip motions with the tar-
get utterance uses dynamic time warping of the audio associated
with each triphone video to the corresponding segment of the tar-
get utterance. This technique would allow us to time align the audi-
tory landmarks from the triphone videos with those of the target
utterance, even if the landmarks occur at subphoneme resolution.
This time alignment, when applied to the triphone image sequence,
would then align the visual landmarks of the lip sequence with the
auditory landmarks of the target utterance.

The overlapping triphone videos would provide overlapping
and conflicting time warpings. Yet we want to keep fixed the time
alignment of the overlapping triphone videos, as dictated by the
visual distances (Section 4.1 and 4.2). Research is needed in how
best to trade off these potentially conflicting time-alignment maps.

6.2  Animation of Facial Features
Another promising extension is animation of other facial parts,
based on simple acoustic features or other criteria. The simplest
version of this extension would change the position of the eye-
brows with pitch [Ohala94]. A second extension would index the
video model by both triphone and expression labels. Using such
labels, we would select smiling or frowning lips, as desired. Alter-
natively, we could impose the desired expression on a neutral
mouth shape, for those times when the appropriate combinations
of triphones and expression are not available. To do this imposition
correctly, we must separate which deformations are associated
with articulations, and which are associated with expressions, and
how the two interact. This type of factorization must be learned
from examples [Tenenbaum97].

6.3  Perception of Lip Shapes
In doing this work, we solved many problems—automatic label-
ing, matching, and stitching—yet we found many situations where
we did not have sufficient knowledge of how people perceive
speaking faces. We would like to know more about how important
the correct lip shapes and motions are in lip synching. For exam-
ple, one study [Owens85] describes the confusibility of consonants
in vowel–consonant–vowel clusters. The clustering of consonants
into viseme class depends on the surrounding vowel context.
Clearly, we need more sophisticated distance metrics within and
between viseme classes.

7  CONTRIBUTIONS
Video Rewrite is a facial animation system that is driven by audio
input. The output sequence is created from real video footage. It
combines background video footage, including natural facial
movements (such as eye blinks and head motions) with natural
footage of mouth and chin motions. Video Rewrite is the first
facial-animation system to automate all the audio- and video-label-
ing tasks required for this type of reanimation. 
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Video Rewrite can use images from unconstrained footage
both to create the video model of the mouth and chin motions and
to provide a background sequence for the final output footage. It
preserves the individual characteristics of the subject in the origi-
nal footage, even while the subject appears to mouth a completely
new utterance. For example, the temporal dynamics of John F.
Kennedy’s articulatory motions can be preserved, reorganized, and
reimposed on Kennedy’s face.

Since Video Rewrite retains most of the background frame,
modifying only the mouth area, it is well suited to applications
such as movie dubbing. The setting and action are provided by the
background video. Video Rewrite maintains an actor’s visual man-
nerisms, using the dynamics of the actor’s lips and chin from the
video model for articulatory mannerisms, and using the back-
ground video for all other mannerisms. It maintains the correct
timing, using the action as paced by the background video and
speech as paced by the new soundtrack. It undertakes the entire
process without manual intervention. The actor convincingly
mouths something completely new.
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ABSTRACT

We have created a system for capturing both the three-dimensional
geometry and color and shading information for human facial ex-
pressions. We use this data to reconstruct photorealistic, 3D ani-
mations of the captured expressions. The system uses a large set
of sampling points on the face to accurately track the three dimen-
sional deformations of the face. Simultaneously with the tracking
of the geometric data, we capture multiple high resolution, regis-
tered video images of the face. These images are used to create a
texture map sequence for a three dimensional polygonal face model
which can then be rendered on standard 3D graphics hardware. The
resulting facial animation is surprisingly life-like and looks very
much like the original live performance. Separating the capture of
the geometry from the texture images eliminates much of the vari-
ance in the image data due to motion, which increases compression
ratios. Although the primary emphasis of our work is not compres-
sion we have investigated the use of a novel method to compress
the geometric data based on principal components analysis. The
texture sequence is compressed using an MPEG4 video codec. An-
imations reconstructed from 512x512 pixel textures look good at
data rates as low as 240 Kbits per second.

CR Categories: I.3.7 [Computer Graphics]: Three Dimen-
sional Graphics and Realism: Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling

1 Introduction

One of the most elusive goals in computer animation has been the
realistic animation of the human face. Possessed of many degrees
of freedom and capable of deforming in many ways the face has
been difficult to simulate accurately enough to convince the average
person that a piece of computer animation is actually an image of a
real person.

We have created a system for capturing human facial expres-
sion and replaying it as a highly realistic 3D “talking head” con-
sisting of a deformable 3D polygonal face model with a changing
texture map. The process begins with video of a live actor’s face,
recorded from multiple camera positions simultaneously. Fluores-
cent colored 1/8” circular paper fiducials are glued on the actor’s
face and their 3D position reconstructed over time as the actor talks
and emotes. The 3D fiducial positions are used to distort a 3D
polygonal face model in mimicry of the distortions of the real face.
The fiducials are removed using image processing techniques and
the video streams from the multiple cameras are merged into a sin-
gle texture map. When the resulting fiducial-free texture map is ap-
plied to the 3D reconstructed face mesh the result is a remarkably

life-like 3D animation of facial expression. Both the time varying
texture created from the video streams and the accurate reproduc-
tion of the 3D face structure contribute to the believability of the
resulting animation.

Our system differs from much previous work in facial anima-
tion, such as that of Lee [10], Waters [14], and Cassel [3], in that
we are not synthesizing animations using a physical or procedu-
ral model of the face. Instead, we capture facial movements in
three dimensions and then replay them. The systems of [10], [14]
are designed to make it relatively easy to animate facial expression
manually. The system of [3] is designed to automatically create
a dialog rather than faithfully reconstruct a particular person’s fa-
cial expression. The work of Williams [15] is most similar to ours
except that he used a single static texture image of a real person’s
face and tracked points only in 2D. The work of Bregler et al [2]
is somewhat less related. They use speech recognition to locate
visemes1 in a video of a person talking and then synthesize new
video, based on the original video sequence, for the mouth and jaw
region of the face to correspond with synthetic utterances. They do
not create a three dimensional face model nor do they vary the ex-
pression on the remainder of the face. Since we are only concerned
with capturing and reconstructing facial performances out work is
unlike that of [5] which attempts to recognize expressions or that
of [4] which can track only a limited set of facial expressions.

An obvious application of this new method is the creation of
believable virtual characters for movies and television. Another
application is the construction of a flexible type of video compres-
sion. Facial expression can be captured in a studio, delivered via
CDROM or the internet to a user, and then reconstructed in real
time on a user’s computer in a virtual 3D environment. The user
can select any arbitrary position for the face, any virtual camera
viewpoint, and render the result at any size.

One might think the second application would be difficult to
achieve because of the huge amount of video data required for the
time varying texture map. However, since our system generates ac-
curate 3D deformation information, the texture image data is pre-
cisely registered from frame to frame. This reduces most of the
variation in image intensity due to geometric motion, leaving pri-
marily shading and self shadowing effects. These effects tend to
be of low spatial frequency and can be compressed very efficiently.
The compressed animation looks good at data rates of 240 kbits
per second for texture image sizes of 512x512 pixels, updating at
30 frames per second.

The main contributions of the paper are a method for robustly
capturing both a 3D deformation model and a registered texture im-
age sequence from video data. The resulting geometric and texture
data can be compressed, with little loss of fidelity, so that storage

1Visemes are the visual analog of phonemes.
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Figure 1: The six camera views of our actress’ face.

requirements are reasonable for many applications.
Section 2 of the paper explains the data capture stage of the

process. Section 3 describes the fiducial correspondence algorithm.
In Section 4 we discuss capturing and moving the mesh. Sections 5
and 6 describe the process for making the texture maps. Section 7
of the paper describes the algorithm for compressing the geometric
data.

2 Data Capture

We used six studio quality video cameras arranged in the pattern
shown in Plate 1 to capture the video data. The cameras were syn-
chronized and the data saved digitally. Each of the six cameras
was individually calibrated to determine its intrinsic and extrinsic
parameters and to correct for lens distortion. The details of the
calibration process are not germane to this paper but the interested
reader can find a good overview of the topic in [6] as well as an
extensive bibliography.

We glued 182 dots of six different colors onto the actress’ face.
The dots were arranged so that dots of the same color were as far
apart as possible from each other and followed the contours of the
face. This made the task of determining frame to frame dot corre-
spondence (described in Section 3.3) much easier. The dot pattern
was chosen to follow the contours of the face (i.e., outlining the
eyes, lips, and nasio-labial furrows), although the manual applica-
tion of the dots made it difficult to follow the pattern exactly.

The actress’ head was kept relatively immobile using a padded
foam box; this reduced rigid body motions and ensured that the
actress’ face stayed centered in the video images. Note that rigid
body motions can be captured later using a 3D motion tracker, if
desired.

The actress was illuminated with a combination of visible and
near UV light. Because the dots were painted with fluorescent pig-
ments the UV illumination increased the brightness of the dots sig-
nificantly and moved them further away in color space from the
colors of the face than they would ordinarily be. This made them
easier to track reliably. Before the video shoot the actress’ face was
digitized using a cyberware scanner. This scan was used to create
the base 3D face mesh which was then distorted using the positions
of the tracked dots.

3 Dot Labeling

The fiducials are used to generate a set of 3D points which act as
control points to warp the cyberware scan mesh of the actress’ head.
They are also used to establish a stable mapping for the textures
generated from each of the six camera views. This requires that
each dot have a unique and consistent label over time so that it is
associated with a consistent set of mesh vertices.
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Figure 2: The sequence of operations needed to produce the labeled
3D dot movements over time.

The dot labeling begins by first locating (for each camera view)
connected components of pixels which correspond to the fiducials.
The 2D location for each dot is computed by finding the two dimen-
sional centroid of each connected component. Correspondence be-
tween 2D dots in different camera views is established and potential
3D locations of dots reconstructed by triangulation. We construct
a reference set of dots and pair up this reference set with the 3D
locations in each frame. This gives a unique labeling for the dots
that is maintained throughout the video sequence.

A flowchart of the dot labeling process is shown in Figure 2.
The left side of the flowchart is described in Section 3.3.1, the
middle in Sections 3.1, 3.2, and 3.3.2, and the right side in Sec-
tion 3.1.1.

3.1 Two-dimensional dot location

For each camera view the 2D coordinates of the centroid of each
colored fiducial must be computed. There are three steps to this
process: color classification, connected color component genera-
tion, and centroid computation.

First, each pixel is classified as belonging to one of the six dot
colors or to the background. Then depth first search is used to lo-
cate connected blobs of similarly colored pixels. Each connected
colored blob is grown by one pixel to create a mask used to mark
those pixels to be included in the centroid computation. This pro-
cess is illustrated in Figure 4.

The classifier requires the manual marking of the fiducials for
one frame for each of the six cameras. From this data a robust color
classifier is created (exact details are discussed in Section 3.1.1).
Although the training set was created using a single frame of a 3330
frame sequence, the fiducial colors are reliably labeled throughout
the sequence. False positives are quite rare, with one major ex-
ception, and are almost always isolated pixels or two pixel clusters.
The majority of exceptions arise because the highlights on the teeth
and mouth match the color of the white fiducial training set. Fortu-
nately, the incorrect white fiducial labelings occur at consistent 3D
locations and are easily eliminated in the 3D dot processing stage.

The classifier generalizes well so that even fairly dramatic changes



in fiducial color over time do not result in incorrect classification.
For example, Figure 5(b) shows the same green fiducial in two dif-
ferent frames. This fiducial is correctly classified as green in both
frames.

The next step, finding connected color components, is com-
plicated by the fact that the video is interlaced. There is signif-
icant field to field movement, especially around the lips and jaw,
sometimes great enough so that there is no spatial overlap at all
between the pixels of a fiducial in one field and the pixels of the
same fiducial in the next field. If the two fields are treated as a sin-
gle frame then a single fiducial can be fragmented, sometimes into
many pieces.

One could just find connected color components in each field
and use these to compute the 2D dot locations. Unfortunately,
this does not work well because the fiducials often deform and
are sometimes partially occluded. Therefore, the threshold for the
number of pixels needed to classify a group of pixels as a fiducial
has to be set very low. In our implementation any connected com-
ponent which has more than three pixels is classified as a fiducial
rather than noise. If just the connected pixels in a single field are
counted then the threshold would have to be reduced to one pixel.
This would cause many false fiducial classifications because there
are typically a few 1 pixel false color classifications per frame and
2 or 3 pixel false clusters occur occasionally. Instead, we find con-
nected components and generate lists of potential 2D dots in each
field. Each potential 2D dot in field one is then paired with the
closest 2D potential dot in field two. Because fiducials of the same
color are spaced far apart, and because the field to field movement
is not very large, the closest potential 2D dot is virtually guaran-
teed to be the correct match. If the sum of the pixels in the two
potential 2D dots is greater than three pixels then the connected
components of the two 2D potential dots are merged, and the re-
sulting connected component is marked as a 2D dot.

The next step is to find the centroid of the connected compo-
nents marked as 2D dots in the previous step. A two dimensional
gradient magnitude image is computed by passing a one dimen-
sional first derivative of Gaussian along thex andy directions and
then taking the magnitude of these two values at each pixel. The
centroid of the colored blob is computed by taking a weighted sum
of positions of the pixel(x; y) coordinates which lie inside the gra-
dient mask, where the weights are equal to the gradient magnitude.

3.1.1 Training the color classifier

We create one color classifier for each of the camera views, since
the lighting can vary greatly between cameras. In the following
discussion we build the classifier for a single camera.

The data for the color classifier is created by manually marking
the pixels of frame zero that belong to a particular fiducial color.
This is repeated for each of the six colors. The marked data is
stored as 6color class images, each of which is created from the
original camera image by setting all of the pixelsnotmarked as the
given color to black (we use black as an out-of-class label because
pure black never occurred in any of our images). A typical color
class image for the yellow dots is shown in Figure 3. We generated
the color class images using the “magic wand” tool available in
many image editing programs.

A seventh color class image is automatically created for the
background color (e.g., skin and hair) by labeling as out-of-class
any pixel in the image which was previously marked as a fiducial
in any of the fiducial color class images. This produces an image
of the face with black holes where the fiducials were.

The color classifier is a discrete approximation to a nearest
neighbor classifier [12]. In a nearest neighbor classifier the item

Figure 3: An image of the actress’s face. A typical training set for
the yellow dots, selected from the image on the left.

to be classified is given the label of the closest item in the training
set, which in our case is the color data contained in the color class
images. Because we have 3 dimensional data we can approximate
the nearest neighbor classifier by subdividing the RGB cube uni-
formly into voxels, and assigning class labels to each RGB voxel.
To classify a new color you quantize its RGB values and then index
into the cube to extract the label.

To create the color classifier we use the color class images to
assign color classes to each voxel. Assume that the color class
image for color classCi hasn distinct colors,c1:::cn. Each of
the voxels corresponding to the colorcj is labeled with the color
classCi. Once the voxels for all of the known colors are labeled,
the remaining unlabeled voxels are assigned labels by searching
through all of the colors in each color classCi and finding the color
closest top in RGB space. The colorp is given the label of the
color class containing the nearest color. Nearness in our case is the
Euclidean distance between the two points in RGB space.

If colors from different color classes map to the same sub-cube,
we label that sub-cube with the background label since it is more
important to avoid incorrect dot labeling than it is to try to label
every dot pixel. For the results shown in this paper we quantized
the RGB color cube into a 32x32x32 lattice.

3.2 Camera to camera dot correspondence and
3D reconstruction

In order to capture good images of both the front and the sides of
the face the cameras were spaced far apart. Because there are such
extreme changes in perspective between the different camera views,
the projected images of the colored fiducials are very different. Fig-
ure 5 shows some examples of the changes in fiducial shape and
color between camera views. Establishing fiducial correspondence
between camera views by using image matching techniques such as
optical flow or template matching would be difficult and likely to
generate incorrect matches. In addition, most of the camera views
will only see a fraction of the fiducials so the correspondence has to
be robust enough to cope with occlusion of fiducials in some of the
camera views. With the large number of fiducials we have placed
on the face false matches are also quite likely and these must be
detected and removed. We used ray tracing in combination with
a RANSAC [7] like algorithm to establish fiducial correspondence
and to compute accurate 3D dot positions. This algorithm is robust
to occlusion and to false matches as well.

First, all potential point correspondences between cameras are
generated. If there arek cameras, andn 2D dots in each camera

view then
�

k

2

�
n2 point correspondences will be tested. Each

correspondence gives rise to a 3D candidate point defined as the
closest point of intersection of rays cast from the 2D dots in the
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Figure 4: Finding the 2D dots in the images.

two camera views. The 3D candidate point is projected into each
of the two camera views used to generate it. If the projection is
further than a user-defined epsilon, in our case two pixels, from the
centroid of either 2D point then the point is discarded as a potential
3D point candidate. All the 3D candidate points which remain are
added to the 3D point list.

Each of the points in the 3D point list is projected into a refer-
ence camera view which is the camera with the best view of all the
fiducials on the face. If the projected point lies within two pixels of
the centroid of a 2D dot visible in the reference camera view then
it is added to the list of potential 3D candidate positions for that 2D
dot. This is the list of potential 3D matches for a given 2D dot.

For each 3D point in the potential 3D match list,
�

n

3

�
possi-

ble combinations of three points in the 3D point list are computed
and the combination with the smallest variance is chosen as the true
3D position. Then all 3D points which lie within a user defined
distance, in our case the sphere subtended by a cone two pixels
in radius at the distance of the 3D point, are averaged to generate
the final 3D dot position. This 3D dot position is assigned to the
corresponding 2D dot in the reference camera view.

This algorithm could clearly be made more efficient because
many more 3D candidate points are generated then necessary. One
could search for potential camera to camera correspondences only
along the epipolar lines and use a variety of space subdivision tech-
niques to find 3D candidate points to test for a given 2D point.
However, because the number of fiducials in each color set is small
(never more than40) both steps of this simple and robust algorithm
are reasonably fast, taking less than a second to generate the 2D dot
correspondences and 3D dot positions for six camera views. The
2D dot correspondence calculation is dominated by the time taken
to read in the images of the six camera views and to locate the 2D
dots in each view. Consequently, the extra complexity of more ef-
ficient stereo matching algorithms does not appear to be justified.

3.3 Frame to frame dot correspondence and la-
beling

We now have a set of unlabeled 3D dot locations for each frame.
We need to assign, across the entire sequence, consistent labels to
the 3D dot locations. We do this by defining a reference set of
dotsD and matching this set to the 3D dot locations given for each
frame. We can then describe how the reference dots move over time
as follows: Letdj 2 D be the neutral location for the reference dot
j. We define the position ofdj at framei by an offset, i.e.,

d
i
j = dj + ~v

i
j (1)

Because there are thousands of frames and 182 dots in our data

Figure 5: Dot variation. Left: Two dots seen from three different
cameras (the purple dot is occluded in one camera’s view). Right:
A single dot seen from a single camera but in two different frames.

set we would like the correspondence computation to be automatic
and quite efficient. To simplify the matching we used a fiducial
pattern that separates fiducials of a given color as much as possi-
ble so that only a small subset of the unlabeled 3D dots need be
checked for a best match. Unfortunately, simple nearest neighbor
matching fails for several reasons: some fiducials occasionally dis-
appear, some 3D dots may move more than the average distance
between 3D dots of the same color, and occasionally extraneous 3D
dots appear, caused by highlights in the eyes or teeth. Fortunately,
neighboring fiducials move similarly and we can exploit this fact,
modifying the nearest neighbor matching algorithm so that it is still
efficient but also robust.

For each framei we first move the reference dots to the loca-
tions found in the previous frame. Next, we find a (possibly incom-
plete) match between the reference dots and the 3D dot locations
for framei. We then move each matched reference dot to the loca-
tion of its corresponding 3D dot. If a reference dot does not have
a match we “guess” a new location for it by moving it in the same
direction as its neighbors. We then perform a final matching step.

3.3.1 Acquiring the reference set of dots

The cyberware scan was taken with the dots glued onto the face.
Since the dots are visible in both the geometric and color informa-
tion of the scan, we can place the reference dots on the cyberware
model by manually clicking on the model. We next need to align
the reference dots and the model with the 3D dot locations found in
frame zero. The coordinate system for the cyberware scan differs
from the one used for the 3D dot locations, but only by a rigid body
motion plus a uniform scale. We find this transform as follows: we
first hand-align the 3D dots from frame zero with the reference dots
acquired from the scan, then call the matching routine described in
Section 3.3.2 below to find the correspondence between the 3D dot
locations,fi, and the reference dots,di. We use the method de-
scribed in [9] to find the exact transform,T , between the two sets
of dots. Finally, we replace the temporary locations of the reference
dots withdi = fi.
and useT�1 to transform the cyberware model into the coordinate
system of the video 3D dot locations.

3.3.2 The matching routine

The matching routine is run twice per frame. We first perform a
conservative match, move the reference dots (as described below in
Section 3.3.3), then perform a second, less conservative, match. By
moving the reference dots between matches we reduce the problem
of large 3D dot position displacements.
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Figure 7: Examples of extra and missing dots and the effect of
different values for�.

The matching routine can be thought of as a graph problem
where an edge between a reference dot and a frame dot indicates
that the dots are potentially paired (see Figure 6). The matching
routine proceeds in several steps; first, for each reference dot we
add an edge for every 3D dot of the same color that is within a given
distance�. We then search for connected components in the graph
that have an equal number of 3D and reference dots (most con-
nected components will have exactly two dots, one of each type).
We sort the dots in the vertical dimension of the plane of the face
and use the resulting ordering to pair up the reference dots with the
3D dot locations (see Figure 6).

In the video sequences we captured, the difference in the 3D dot
positions from frame to frame varied from zero to about1:5 times
the average distance separating closest dots. To adjust for this, we
run the matching routine with several values of� and pick the run
that generates the most matches. Different choices of� produce
different results (see Figure 7): if� is too small we may not find
matches for 3D dots that have moved a lot. If� is too large then
the connected components in the graph will expand to include too
many 3D dots. We try approximately five distances ranging from
0:5 to 1:5 of the average distance between closest reference dots.

If we are doing the second match for the frame we add an ad-
ditional step to locate matches where a dot may be missing (or ex-
tra). We take those dots which have not been matched and run the
matching routine on them with smaller and smaller� values. This
resolves situations such as the one shown on the right of Figure 7.

3.3.3 Moving the dots

We move all of the matched reference dots to their new locations
then interpolate the locations for the remaining, unmatched refer-
ence dots by using their nearest, matched neighbors. For each ref-
erence dot we define a valid set of neighbors using the routine in
Section 4.2.1, ignoring the blending values returned by the routine.

To move an unmatched dotdk we use a combination of the
offsets of all of its valid neighbors (refer to Equation 1). Letnk �
D be the set of neighbor dots for dotdk. Let n̂k be the set of
neighbors that have a match for the current framei. Provided̂nk 6=
;, the offset vector for dotdik is calculated as follows: let~vij =

dij � dj be the offset of dotj (recall thatdj is the initial position
for the reference dotj).

~v
i
k =

1

jjn̂kjj

X
di
j
2n̂k

~v
i
j

If the dot has no matched neighbors we repeat as necessary, treating
the moved, unmatched reference dots as matched dots. Eventually,
the movements will propagate through all of the reference dots.

4 Mesh construction and deformation

4.1 Constructing the mesh

To construct a mesh we begin with a cyberware scan of the head.
Because we later need to align the scan with the 3D video dot data,
we scanned the head with the fiducials glued on. The resulting scan
suffers from four problems:

� The fluorescent fiducials caused “bumps” on the mesh.

� Several parts of the mesh were not adequately scanned, namely,
the ears, one side of the nose, the eyes, and under the chin.
These were manually corrected.

� The mesh does not have an opening for the mouth.

� The scan has too many polygons.

The bumps caused by the fluorescent fiducials were removed by
selecting the vertices which were out of place (approximately 10-30
surrounding each dot) and automatically finding new locations for
them by blending between four correct neighbors. Since the scan
produces a rectangular grid of vertices we can pick the neighbors
to blend between in(u; v) space, i.e., the nearest valid neighbors in
the positive and negativeu andv direction.

The polygons at the mouth were split and then filled with six
rows of polygons located slightly behind the lips. We map the teeth
and tongue onto these polygons when the mouth is open.

We reduced the number of polygons in the mesh from approxi-
mately460; 000 to 4800 using Hoppe’s simplification method [8].

4.2 Moving the mesh

The vertices are moved by a linear combination of the offsets of
the nearest dots (refer to Equation 1). The linear combination for
each vertexvj is expressed as a set of blend coefficients,�

j
k, one

for each dot, such that
P

dk2D
�jk = 1 (most of the�jks will be

zero). The new locationpij of the vertexvj at framei is then

p
i
j = pj +

X
k

�
j
kjjd

i
k � dkjj

wherepj is the initial location of the vertexvj .
For most of the vertices the�jks are a weighted average of the

closest dots. The vertices in the eyes, mouth, behind the mouth,
and outside of the facial area are treated slightly differently since,
for example, we do not want the dots on the lower lip influencing
vertices on the upper part of the lip. Also, although we tried to keep
the head as still as possible, there is still some residual rigid body
motion. We need to compensate for this for those vertices that are
not directly influenced by a dot (e.g., the back of the head).

We use a two-step process to assign the blend coefficients to
the vertices. We first find blend coefficients for a grid of points
evenly distributed across the face, then use this grid of points to



Figure 8: Left: The original dots plus the extra dots (in white). The
labeling curves are shown in light green. Right: The grid of dots.
Outline dots are green or blue.

assign blend coefficients to the vertices. This two-step process is
helpful because both the fluorescent fiducials and the mesh vertices
are unevenly distributed across the face, making it difficult to get
smoothly changing blend coefficients.

The grid consists of roughly1400 points, evenly distributed and
placed by hand to follow the contours of the face (see Figure 8).
The points along the nasolabial furrows, nostrils, eyes, and lips are
treated slightly differently than the other points to avoid blending
across features such as the lips.

Because we want the mesh movement to go to zero outside of
the face, we add another set of unmoving dots to the reference set.
These new dots form a ring around the face (see Figure 8) enclosing
all of the reference dots. For each frame we determine the rigid
body motion of the head (if any) using a subset of those reference
dots which are relatively stable. This rigid body transformation is
then applied to the new dots.

We label the dots, grid points, and vertices as beingabove, be-
low, or neither with respect to each of the eyes and the mouth.
Dots which areabovea given feature can not be combined with
dots which arebelowthat same feature (or vice-versa). Labeling is
accomplished using three curves, one for each of the eyes and one
for the mouth. Dots directly above (or below) a curve are labeled
asabove(or below) that curve. Otherwise, they are labeledneither.

4.2.1 Assigning blends to the grid points

The algorithm for assigning blends to the grid points first finds the
closest dots, assigns blends, then filters to more evenly distribute
the blends.

Finding the ideal set of reference dots to influence a grid point
is complicated because the reference dots are not evenly distributed
across the face. The algorithm attempts to find two or more dots
distributed in a rough circle around the given grid point. To do
this we both compensate for the dot density, by setting the search
distance using the two closest dots, and by checking for dots which
will both “pull” in the same direction.

To find the closest dots to the grid pointpwe first find�1 and�2,
the distance to the closest and second closest dot, respectively. Let
Dn � D be the set of dots within1:8 �1+�2

2
distance ofp whose

labels do not conflict withp’s label. Next, we check for pairs of
dots that are more or less in the same direction fromp and remove
the furthest one. More precisely, letv̂i be the normalized vector
from p to the dotdi 2 Dn and letv̂j be the normalized vector from
p to the dotdj 2 Dn. If v̂1 � v̂2 > 0:8 then remove the furthest of
di anddj from the setDn.

We assign blend values based on the distance of the dots from
p. If the dot is not inDn then its corresponding� value is0. For

Figure 9: Masks surrounding important facial features. The gradi-
ent of a blurred version of this mask is used to orient the low-pass
filters used in the dot removal process.

the dots inDn let li = 1:0
jjdi�pjj

. Then the corresponding�’s are

�i =
li

(
P

di2Dn
li)

We next filter the blend coefficients for the grid points. For each
grid point we find the closest grid points – since the grid points
are distributed in a rough grid there will usually be4 neighboring
points – using the above routine (replacing the dots with the grid
points). We special case the outlining grid points; they are only
blended with other outlining grid points. The new blend coeffi-
cients are found by taking0:75 of the grid point’s blend coefficients
and0:25 of the average of the neighboring grid point’s coefficients.
More formally, letgi = [�0; : : : ; �n] be the vector of blend co-
efficients for the grid pointi. Then the new vectorg0i is found as
follows, whereNi is the set of neighboring grid points for the grid
point i:

g
0
i = 0:75gi +

0:25

jjNijj

X
j2Ni

gj

We apply this filter twice to simulate a wide low pass filter.
To find the blend coefficients for the vertices of the mesh we

find the closest grid point with the same label as the vertex and copy
the blend coefficients. The only exception to this is the vertices for
the polygons inside of the mouth. For these vertices we take� of
the closest grid point on the top lip and1:0 � � of the closest grid
point on the bottom lip. The� values are0:8, 0:6, 0:4, 0:25, and
0:1 from top to bottom of the mouth polygons.

5 Dot removal

Before we create the textures, the dots and their associated illumi-
nation effects have to be removed from the camera images. Inter-
reflection effects are surprisingly noticeable because some parts of
the face fold dramatically, bringing the reflective surface of some
dots into close proximity with the skin. This is a big problem along
the naso-labial furrow where diffuse interreflection from the col-
ored dots onto the face significantly alters the skin color.

First, the dot colors are removed from each of the six camera
image sequences by substituting skin texture for pixels which are
covered by colored dots. Next, diffuse interreflection effects and
any remaining color casts from stray pixels that have not been prop-
erly substituted are removed.

The skin texture substitution begins by finding the pixels which
correspond to colored dots. The nearest neighbor color classifier



Figure 10: Standard cylindrical texture map. Warped texture map
that focuses on the face, and particularly on the eyes and mouth.
The warp is defined by the line pairs shown in white.

described in Section 3.1.1 is used to mark all pixels which have
any of the dot colors. A special training set is used since in this
case false positives are much less detrimental than they are for the
dot tracking case. Also, there is no need to distinguish between dot
colors, only between dot colors and the background colors. The
training set is created to capture as much of the dot color and the
boundary region between dots and the background colors as possi-
ble.

A dot mask is generated by applying the classifier to each pixel
in the image. The mask is grown by a few pixels to account for any
remaining pixels which might be contaminated by the dot color.
The dot mask marks all pixels which must have skin texture substi-
tuted.

The skin texture is broken into low spatial frequency and high
frequency components. The low frequency components of the skin
texture are interpolated by using a directional low pass filter ori-
ented parallel to features that might introduce intensity discontinu-
ities. This prevents bleeding of colors across sharp intensity bound-
aries such as the boundary between the lips and the lighter colored
regions around the mouth. The directionality of the filter is con-
trolled by a two dimensional mask which is the projection into the
image plane of a three dimensional polygon mask lying on the 3D
face model. Because the polygon mask is fixed on the 3D mesh,
the 2D projection of the polygon mask stays in registration with
the texture map as the face deforms.

All of the important intensity gradients have their own polygon
mask: the eyes, the eyebrows, the lips, and the naso-labial furrows
(see 9). The 2D polygon masks are filled with white and the re-
gion of the image outside the masks is filled with black to create an
image. This image is low-pass filtered. The intensity of the result-
ing image is used to control how directional the filter is. The filter
is circularly symmetric where the image is black, i.e., far from in-
tensity discontinuities, and it is very directional where the image
is white. The directional filter is oriented so that its long axis is
orthogonal to the gradient of this image.

The high frequency skin texture is created from a rectangular
sample of skin texture taken from a part of the face that is free
of dots. The skin sample is highpass filtered to eliminate low fre-
quency components. At each dot mask pixel location the highpass
filtered skin texture is first registered to the center of the 2D bound-
ing box of the connected dot region and then added to the low fre-
quency interpolated skin texture.

The remaining diffuse interreflection effects are removed by
clamping the hue of the skin color to a narrow range determined
from the actual skin colors. First the pixel values are converted
from RGB to HSV space and then any hue outside the legal range
is clamped to the extremes of the range. Pixels in the eyes and

mouth, found using the eye and lip masks shown in Figure 9, are
left unchanged.

Some temporal variation remains in the substituted skin texture
due to imperfect registration of the high frequency texture from
frame to frame. A low pass temporal filter is applied to the dot mask
regions in the texture images, because in the texture map space
the dots are relatively motionless. This temporal filter effectively
eliminates the temporal texture substitution artifacts.

6 Creating the texture maps

Figure 11 is a flowchart of the texture creation process. We create
texture maps for every frame of our animation in a four-step pro-
cess. The first two steps are performed only once per mesh. First
we define a parameterization of the mesh. Second, using this pa-
rameterization, we create ageometry mapcontaining a location on
the mesh for each texel. Third, for every frame, we create six pre-
liminary texture maps, one from each camera image, along with
weight maps. The weight maps indicate the relative quality of the
data from the different cameras. Fourth, we take a weighted aver-
age of these texture maps to make our final texture map.

We create an initial set of texture coordinates for the head by
tilting the mesh back 10 degrees to expose the nostrils and pro-
jecting the mesh vertices onto a cylinder. A texture map generated
using this parametrization is shown on the left of Figure 10. We
specify a set of line pairs and warp the texture coordinates using
the technique described by Beier and Neely[1]. This parametriza-
tion results in the texture map shown on the right of Figure 10.
Only the front of the head is textured with data from the six video
streams.

Next we create the geometry map containing a mesh location
for each texel. A mesh location is a triple(k; �1; �2) specifying
a trianglek and barycentric coordinates in the triangle (�1, �2,
1 � �1 � �2). To find the triangle identifierk for texel (u; v) we
exhaustively search through the mesh’s triangles to find the one that
contains the texture coordinates(u; v). We then set the�is to be
the barycentric coordinates of the point(u; v) in the texture coordi-
nates of the trianglek. When finding the mesh location for a pixel
we already know in which triangles its neighbors above and to the
left lie. Therefore, we speed our search by first searching through
these triangles and their neighbors. However, the time required for
this task is not critical as the geometry map need only be created
once.

Next we create preliminary texture maps for framef one for
each camera. This is a modified version of the technique described
in [11]. To create the texture map for camerac, we begin by de-
forming the mesh into its framef position. Then, for each texel,
we get its mesh location,(k; �1; �2), from the geometry map. With
the 3D coordinates of trianglek’s vertices and the barycentric coor-
dinates�i, we compute the texel’s 3D locationt. We transformt by
camerac’s projection matrix to obtain a location,(x; y), on camera
c’s image plane. We then color the texel with the color from cam-
erac’s image at(x; y). We set the texel’s weight to the dot product
of the mesh normal att, n̂, with the direction back to the camera,
d̂ (see Figure 12). Negative values are clamped to zero. Hence,
weights are low where the camera’s view is glancing. However,
this weight map is not smooth at triangle boundaries, so we smooth
it by convolving it with a Gaussian kernel.

Last, we merge the six preliminary texture maps. As they do
not align perfectly, averaging them blurs the texture and loses de-
tail. Therefore, we use only the texture map of our bottom, center
camera for the center 46 % of the final texture map. We smoothly
transition (over 23 pixels) to using a weighted average of each pre-
liminary texture map at the sides.
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Figure 11: Creating the texture maps.

We texture the parts of the head not covered by the aforemen-
tioned texture maps with the captured reflectance data from our Cy-
berware scan, modified in two ways. First, because we replaced the
mesh’s ears with ears from a stock mesh (Section 4.1), we moved
the ears in the texture to achieve better registration. Second, we
set the alpha channel to zero (with a soft edge) in the region of the
texture for the front of the head. Then we render in two passes to
create an image of the head with both texture maps applied.

7 Compression

7.1 Principal Components Analysis

The geometric and texture map data have different statistical char-
acteristics and are best compressed in different ways. There is sig-
nificant long-term temporal correlation in the geometric data since
similar facial expressions occur throughout the sequence. The short
term correlation of the texture data is significantly increased over
that of the raw video footage because in the texture image space
the fiducials are essentially motionless. This eliminates most of the
intensity changes associated with movement and leaves primarily
shading changes. Shading changes tend to have low spatial fre-
quencies and are highly compressible. Compression schemes such
as MPEG, which can take advantage of short term temporal corre-
lation, can exploit this increase in short term correlation.

For the geometric data, one way to exploit the long term corre-
lation is to use principal component analysis. If we represent our
data set as a matrixA, where framei of the data maps columni of
A, then the first principal component ofA is

max
u

(AT
u)T (AT

u) (2)

Theu which maximizes Equation 2 is the eigenvector associated
with the largest eigenvalue ofAAT , which is also the value of the
maximum. Succeeding principal components are defined similarly,
except that they are required to be orthogonal to all preceding prin-
cipal components, i.e.,uTi uj = 0 for j 6= i. The principal com-
ponents form an orthonormal basis set represented by the matrixU
where the columns ofU are the principal components ofA ordered
by eigenvalue size with the most significant principal component in
the first column ofU .

The data in theA matrix can be projected onto the principal
component basis as follows:

W = U
T
A

Rowi of W is the projection of columnAi onto the basis vectorui.
More precisely, thejth element in rowi of W corresponds to the
projection of framej of the original data onto theith basis vector.
We will call the elements of theW matrix projectioncoefficients.

Similarly,A can be reconstructed exactly fromW by multipli-
cation by the basis set, i.e.,A = UW .
The most important property of the principal components for our
purposes is that they are the best linear basis set for reconstruction
in thel2 norm sense. For any given matrixUk, wherek is the num-
ber of columns of the matrix andk < rank(A), the reconstruction
error

e = jjA� UkU
T
k Ajj

2

F (3)

wherejjBjj2F is the Frobenius norm defined to be

jjBjj2F =

mX
i=1

nX
j=1

b
2
ij (4)

will be minimized ifUk is the matrix containing thek most signif-
icant principal components ofA.

We can compress a data setA by quantizing the elements of its
correspondingW andU matrices and entropy coding them. Since
the compressed data cannot be reconstructed without the principal
component basis vectors both theW andU matrices have to be
compressed. The basis vectors add overhead that is not present
with basis sets that can be computed independent of the original
data set, such as the DCT basis.

For data sequences that have no particular structure the extra
overhead of the basis vectors would probably out-weigh any gain in
compression efficiency. However, for data sets with regular frame
to frame structure the residual error for reconstruction with the
principal component basis vectors can be much smaller than for
other bases. This reduction in residual error can be great enough to
compensate for the overhead bits of the basis vectors.

The principal components can be computed using the singular
value decomposition (SVD) [13]. Efficient implementations of this
algorithm are widely available. The SVD of a matrixA is



Figure 12: Creating the preliminary texture map.

A = U�V T (5)

where the columns ofU are the eigenvectors ofAAT , the singular
values,�i, along the diagonal matrix� are the square roots of the
eigenvalues ofAAT , and the columns ofV are the eigenvectors
of ATA. The ith column ofU is the ith principal component of
A. Computing the firstk left singular vectors ofA is equivalent to
computing the firstk principal components.

7.2 Geometric Data

The geometric data has the long term temporal coherence proper-
ties mentioned above since the motion of the face is highly struc-
tured. The overhead of the basis vectors for the geometric data is
fixed because there are only182 fiducials on the face. The maxi-
mum number of basis vectors is182 � 3 since there are three num-
bers,x, y, andz, associated with each fiducial. Consequently, the
basis vector overhead steadily diminishes as the length of the ani-
mation sequence increases.

The geometric data is mapped to matrix form by taking the 3D
offset data for theith frame and mapping it theith column of the
data matrixAg. The firstk principal components,Ug , of Ag are
computed andAg is projected into theUg basis to give the projec-
tion coefficientsWg.

There is significant correlation between the columns of projec-
tion coefficients because the motion of the dots is relatively smooth
over time. We can reduce the entropy of the quantized projection
coefficients by temporally predicting the projection coefficients in
columni from columni�1, i.e.,ci = ci�1+�i where we encode
�i.

For our data set, only the projection coefficients associated with
the first 45 principal components, corresponding to the first 45 rows
of Wg, have significant temporal correlation so only the first 45
rows are temporally predicted. The remaining rows are entropy
coded directly. After the temporal prediction the entropy is reduced
by about 20 percent (Figure 13).

The basis vectors are compressed by choosing a peak error rate
and then varying the number of quantization levels allocated to each
vector based on the standard deviation of the projection coefficients
for each vector.

We visually examined animation sequences withWg andUg
compressed at a variety of peak error rates and chose a level which
resulted in undetectable geometric jitter in reconstructed animation.
The entropy ofWg for this error level is 26 Kbits per second and
the entropy ofUg is 13 kbits per second for a total of 40 kbits per
second for all the geometric data. These values were computed for
our 3330 frame animation sequence.

8 Results

Figure 16 shows some typical frames from a reconstructed sequence
of 3D facial expressions. These frames are taken from a 3330 frame
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Figure 13: Reduction in entropy after temporal prediction.

animation in which the actress makes random expressions while
reading from a script2.

The facial expressions look remarkably life-like. The anima-
tion sequence is similarly striking. Virtually all evidence of the
colored fiducials and diffuse interreflection artifacts is gone, which
is surprising considering that in some regions of the face, especially
around the lips, there is very little of the actress’ skin visible – most
of the area is covered by colored fiducials.

Both the accurate 3D geometry and the accurate face texture
contribute to the believability of the reconstructed expressions. Oc-
clusion contours look correct and the subtle details of face geom-
etry that are very difficult to capture as geometric data show up
well in the texture images. Important examples of this occur at
the nasolabial furrow which runs from just above the nares down
to slightly below the lips, eyebrows, and eyes. Forehead furrows
and wrinkles also are captured. To recreate these features using
geometric data rather than texture data would require an extremely
detailed 3D capture of the face geometry and a resulting high poly-
gon count in the 3D model. In addition, shading these details prop-
erly if they were represented as geometry would be difficult since it
would require computing shadows and possibly even diffuse inter-
reflection effects in order to look correct. Subtle shading changes
on the smooth parts of the skin, most prominent at the cheekbones,
are also captured well in the texture images.

There are still visible artifacts in the animation, some of which
are polygonization or shading artifacts, others of which arise be-
cause of limitations in our current implementation.

Some polygonization of the face surface is visible, especially
along the chin contour, because the front surface of the head con-
tains only4500 polygons. This is not a limitation of the algorithm –
we chose this number of polygons because we wanted to verify that
believable facial animation could be done at polygon resolutions
low enough to potentially be displayed in real time on inexpensive
( $200) 3D graphics cards3. For film or television work, where real
time rendering is not an issue, the polygon count can be made much
higher and the polygonization artifacts will disappear. As graphics
hardware becomes faster the differential in quality between offline
and online rendered face images will diminish.

Several artifacts are simply the result of our current implemen-
tation. For example, occasionally the edge of the face, the tips
of the nares, and the eyebrows appear to jitter. This usually oc-
curs when dots are lost, either by falling below the minimum size
threshold or by not being visible to three or more cameras. When
a dot is lost the algorithm synthesizes dot position data which is

2The rubber cap on the actress’ head was used to keep her hair out of her face.
3 In this paper we have not addressed the issue of real time texture decompression

and rendering of the face model, but we plan to do so in future work



usually incorrect enough that it is visible as jitter. More cameras,
or better placement of the cameras, would eliminate this problem.
However, overall the image is extremely stable.

In retrospect, a mesh constructed by hand with the correct ge-
ometry and then fit to the cyberware data [10] would be much sim-
pler and possibly reduce some of the polygonization artifacts.

Another implementation artifact that becomes most visible when
the head is viewed near profile is that the teeth and tongue appear
slightly distorted. This is because we do not use correct 3D models
to represent them. Instead, the texture map of the teeth and tongue
is projected onto a sheet of polygons stretching between the lips. It
is possible that the teeth and tongue could be tracked using more
sophisticated computer vision techniques and then more correct ge-
ometric models could be used.

Shading artifacts represent an intrinsic limitation of the algo-
rithm. The highlights on the eyes and skin remain in fixed positions
regardless of point of view, and shadowing is fixed at the time the
video is captured. However, for many applications this should not
be a limitation because these artifacts are surprisingly subtle. Most
people do not notice that the shading is incorrect until it is pointed
out to them, and even then frequently do not find it particularly ob-
jectionable. The highlights on the eyes can probably be corrected
by building a 3D eye model and creating synthetic highlights ap-
propriate for the viewing situation. Correcting the skin shading and
self shadowing artifacts is more difficult. The former will require
very realistic and efficient skin reflectance models while the lat-
ter will require significant improvements in rendering performance,
especially if the shadowing effect of area light sources is to be ade-
quately modeled. When both these problems are solved then it will
no longer be necessary to capture the live video sequence – only the
3D geometric data and skin reflectance properties will be needed.

The compression numbers are quite good. Figure 14 shows
a single frame from the original sequence, the same frame com-
pressed by the MPEG4 codec at 460 Kbps and at 260 KBps. All
of the images look quite good. The animated sequences also look
good, with the 260 KBps sequence just beginning to show notice-
able compression artifacts. The 260 KBps video is well within the
bandwidth of single speed CDROM drives. This data rate is proba-
bly low enough that decompression could be performed in real time
in software on the fastest personal computers so there is the poten-
tial for real time display of the resulting animations. We intend to
investigate this possibility in future work.

There is still room for significant improvement in our compres-
sion. A better mesh parameterization would significantly reduce
the number of bits needed to encode the eyes, which distort signif-
icantly over time in the texture map space. Also the teeth, inner
edges of the lips, and the tongue could potentially be tracked over
time and at least partially stabilized, resulting in a significant re-
duction in bit rate for the mouth region. Since these two regions
account for the majority of the bit budget, the potential for further
reduction in bit rate is large.

9 Conclusion

The system produces remarkably lifelike reconstructions of facial
expressions recorded from live actors’ performances. The accurate
3D tracking of a large number of points on the face results in an
accurate 3D model of facial expression. The texture map sequence
captured simultaneously with the 3D deformation data captures de-
tails of expression that would be difficult to capture any other way.
By using the 3D deformation information to register the texture
maps from frame to frame the variance of the texture map sequence
is significantly reduced which increases its compressibility. Image
quality of 30 frame per second animations, reconstructed at approx-

imately 300 by 400 pixels, is still good at data rates as low as 240
Kbits per second, and there is significant potential for lowering this
bit rate even further. Because the bit overhead for the geometric
data is low in comparison to the texture data one can get a 3D talk-
ing head, with all the attendant flexibility, for little more than the
cost of a conventional video sequence. With the true 3D model of
facial expression, the animation can be viewed from any angle and
placed in a 3D virtual environment, making it much more flexible
than conventional video.
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Abstract

This paper demonstrates a new vision based motion capture tech-
nique that is able to recover high degree-of-freedom articulated hu-
man body configurations in complex video sequences. It does not
require any markers, body suits, or other devices attached to the
subject. The only input needed is a video recording of the per-
son whose motion is to be captured. For visual tracking we in-
troduce the use of a novel mathematical technique, the product of
exponential maps and twist motions, and its integration into a dif-
ferential motion estimation. This results in solving simple linear
systems, and enables us to recover robustly the kinematic degrees-
of-freedom in noise and complex self occluded configurations. We
demonstrate this on several image sequences of people doing articu-
lated full body movements, and visualize the results in re-animating
an artificial 3D human model. We are also able to recover and re-
animate the famous movements of Eadweard Muybridge’s motion
studies from the last century. To the best of our knowledge, this is
the first computer vision based system that is able to process such
challenging footage and recover complex motions with such high
accuracy.

CR Categories:

Keywords: Computer Vision, Animation, Motion Capture, Visual
Tracking, Twist Kinematics, Exponential Maps, Muybridge

1 Introduction

In this paper, we offer a new approach to motion capture based
just on ordinary video recording of the actor performing naturally.
The approach does not require any markers, body suits or any other
devices attached to the body of the actor. The actor can move
about wearing his or her regular clothes. This implies that one can
use historical footage–motion capture Charlie Chaplin’s inimitable
walk, for instance. Indeed in this paper we shall go even further
back historically and show motion capture results from Muybridge
sequences–the first examples of photographically recorded motion
[15].

Motion capture occupies an important role in the creation of spe-
cial effects. Its application to CG character animation has been
much more controversial; SIGGRAPH 97 featured a lively panel
debate[4] between its proponents and opponents. Our goal in this
paper is not to address that debate. Rather we take it as a given
that motion capture, like any other technology, can be correctly or
incorrectly applied and we are merely extending its possibilities.

Our approach, from a user’s point of view, is rather straightfor-
ward. The user marks limb segments in an initial frame; if multiple
video streams are available from synchronized cameras, then the
limb segments are marked in the corresponding initial frames in all
of them. The computer program does the rest–tracking the multiple
degrees of freedom of the human body configuration from frame to
frame.

Attempts to track the human body without special markers go
back quite a few years – we review past work in Sec. 2. However
in spite of many years of work in computer vision on this problem,
it is fair to describe it as not yet solved. There are many reasons
why human body tracking is very challenging, compared to track-
ing other objects such as footballs, robots or cars. These include

1. High Accuracy Requirements. Especially in the context of
motion capture applications, one desires to record all the de-
grees of freedom of the configuration of arms, legs, torso,
head etc accurately from frame to frame. At playback time,
any error will be instantly noticed by a human observer.

2. Frequent inter-part occlusion During normal motion, from
any camera angle some parts of the body are occluded by
other parts of the body

3. Lack of contrast Distinguishing the edge of a limb from, say
the torso underneath, is made difficult by the fact that typically
the texture or color of the shirt is usually the same in both
regions.

Our contribution to this problem is the introduction of a novel
mathematical technique, the product of exponential maps and twist
motions, and its integration into a differential motion estimation
scheme. This formalism will be explained fully in Section 3. The
advantage of this particular formulation is that it results in the equa-
tions that need to be solved to update the kinematic chain param-
eters from frame to frame being linear. Also the only parameters
that need to be solved for are the true degrees of freedom and pose
parameters–there are no intermediate stages which may be unneces-
sarily hard. For instance recovering the local affine motion param-
eters of each and every limb segment separately is harder than the
final goal of knowing the configuration of all the joints from frame
to frame–the fact that the joints are constrained to move together
reduces considerably the number of degrees of freedom. This in
turn provides robustness to self-occlusions, loss of contrast, large
motions etc.

We applied this technique to several video recordings of walk-
ing people and to the famous photo plates of Edweard Muybridge.
We achieved accurate tracking results with high degree-of-freedom
full body models and could successfully re-animate the data. The
accompanying video shows the tracking results and the naturalness
of the animated motion capture data.

Section 2 reviews previous video tracking techniques, section 3
introduces the new motion tracking framework and its mathemati-
cal formulation, section 4 details our experiments, and we discuss
the results and future directions in section 5.

2 Review

The earliest computer vision attempt to recognize human move-
ments was reported by O’Rouke and Badler [16] working on syn-
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thetic images using a 3D structure of rigid segments, joints, and
constraints between them.

Marker-free visual tracking on video recordings of human bodies
goes back to work by Hogg and by Rohr [8, 18]. Both systems are
specialized to one degree-of-freedom walking models. Edge and
line features are extracted from images and matched to a cylindri-
cal 3D human body model. Higher degree-of-freedom articulated
hand configurations are tracked by Regh and Kanade [17], full body
configurations by Gravrila and Davis [7], and arm configurations
by Kakadiaris and Metaxas [11] and by Goncalves and Perona [5].
All these approaches are demonstrated in constrained environments
with high contrast edge boundaries. In most cases this is achieved
by uniform backgrounds, and skintight clothing of uniform color.
Also, in order to estimate 3D configurations, a camera calibration
is needed. Alternatively, Weng et. al demonstrated how to track full
bodies with color features [20], and Ju et. al showed motion based
tracking of leg configurations [10]. No 3D kinematic chain models
were used in the last two cases.

To the best of our knowledge, there is no system reported so far,
which would be able to successfully track accurate high-degree-of
freedom human body configurations in the challenging footage that
we will demonstrate here.

3 Articulated Tracking

There exist a wide range of visual tracking techniques in the litera-
ture ranging from edge feature based to region based tracking, and
brute-force search methods to differential approaches.

Edge feature based tracking techniques usually require clean
data with high contrast object boundaries. Unfortunately on hu-
man bodies such features are very noisy. Clothes have many folds.
Also if the left and right leg have the same color and they overlap,
they are separated only by low contrast boundaries.

Region based techniques can track objects with arbitrary tex-
ture. Such techniques attempt to match areas between consecutive
frames. For example if the area describes a rigid planar object, a 2D
affine deformation of this area has to be found. This requires the
estimation of 6 free parameters that describe this deformation (x/y
translation, x/y scaling, rotation, and shear). Instead of exhaustively
searching over these parameters, differential methods link local in-
tensity changes to parameter changes, and allow for Newton-step
like optimizations.

In the following we will introduce a new region based differen-
tial technique that is tailored to articulated objects modeled by kine-
matic chains. We will first review a commonly used motion estima-
tion framework [2, 19], and then show how this can be extended
for our task, using the twist and product of exponential formulation
[14].

3.1 Preliminaries

Assuming that changes in image intensity are only due to transla-
tion of local image intensity, a parametric image motion between
consecutive time frames and can be described by the follow-
ing equation:

(1)

is the image intensity. The motion model
describes the pixel displacement de-

pendent on location and model parameters . For
example, a 2D affine motion model with parameters

is defined as

(2)

The first-order Taylor series expansion of (1) leads to the com-
monly used gradient formulation [12]:

(3)

is the temporal image gradient and
is the spatial image gradient at location . Assuming a motion
model of degrees of freedom (in case of the affine model )
and a region of pixels, we can write an over-constrained
set of equations. For the case that the motion model is linear (as
in the affine case), we can write the set of equations in matrix form
(see [2] for details):

(4)

where , and . The least squares solution to
(3) is:

(5)

Because (4) is the first-order Taylor series linearization of (1),
we linearize around the new solution and iterate. This is done by
warping the image using the motion model parameters

found by (5). Based on the re-warped image we compute the
new image gradients (3). Repeating this process is equivalent to a
Newton-Raphson style minimization.

A convenient representation of the shape of an image region is a
probability mask . declares that pixel

is part of the region. Equation (5) can be modified, such
that it weights the contribution of pixel location according to

:

(6)

is an diagonal matrix, with .
We assume for now that we know the exact shape of the region.
For example, if we want to estimate the motion parameters for a
human body part, we supply a weight matrix that defines the
image support map of that specific body part, and run this estima-
tion technique for several iterations. Section 3.4 describes how we
can estimate the shape of the support maps as well.

Tracking over multiple frames can be achieved by applying this
optimization technique successively over the complete image se-
quence.

3.2 Twists and the Product of Exponential For-
mula

In the following we develop a motion model for a 3D
kinematic chain under scaled orthographic projection and show
how these domain constraints can be incorporated into one linear
system similar to (6). will represent the 3D pose and angle con-
figuration of such a kinematic chain and can be tracked in the same
fashion as already outlined for simpler motion models.

3.2.1 3D pose

The pose of an object relative to the camera frame can be repre-
sented as a rigid body transformation in using homogeneous
coordinates (we will use the notation from [14]):

with (7)

2
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is a point in the object frame and
is the corresponding point in the camera frame. Us-

ing scaled orthographic projection with scale , the point in the
camera frame gets projected into the image point

.
The 3D translation can be arbitrary, but the rotation

matrix:

(8)

has only 3 degrees of freedom. Therefore the rigid body transfor-
mation has a total of 6 degrees of freedom.

Our goal is to find a model of the image motion that is param-
eterized by 6 degrees of freedom for the 3D rigid motion and the
scale factor for scaled orthographic projection. Euler angles are
commonly used to constrain the rotation matrix to , but they
suffer from singularities and don’t lead to a simple formulation in
the optimization procedure (for example [1] propose a 3D ellip-
soidal tracker based on Euler angles). In contrast, the twist repre-
sentation provides a more elegant solution [14] and leads to a very
simple linear representation of the motion model. It is based on the
observation that every rigid motion can be represented as a rotation
around a 3D axis and a translation along this axis. A twist has
two representations: (a) a 6D vector, or (b) a matrix with the
upper component as a skew-symmetric matrix:

or (9)

is a 3D unit vector that points in the direction of the rotation
axis. The amount of rotation is specified with a scalar angle that
is multiplied by the twist: . The component determines the lo-
cation of the rotation axis and the amount of translation along this
axis. See [14] for a detailed geometric interpretation. For simplic-
ity, we drop the constraint that is unit, and discard the coeffi-
cient. Therefore .

It can be shown [14] that for any arbitrary there
exists a twist representation.

A twist can be converted into the representation with follow-
ing exponential map:

(10)

3.2.2 Twist motion model

At this point we would like to track the 3D pose of a rigid object un-
der scaled orthographic projection. We will extend this formulation
in the next section to a kinematic chain representation. The pose
of an object is defined as .
A point in the object frame is projected to the image location

with:

(11)

The image motion of point from time to time
is:

(12)

with

Using the first order Taylor expansion from (10) we can approx-
imate:

(13)

and can rewrite (12) as:

(14)

with

codes the relative scale and twist
motion from time to . Note that (14) does not include .
Translation in the direction of the camera frame is not measurable
under scaled orthographic projection.

Equation (14) describes the image motion of a point in
terms of the motion parameters and the corresponding 3D point

in the camera frame. The 3D point is computed by in-
tersecting the camera ray of the image point with the 3D
model. In this paper we assume that the body segments can be ap-
proximated by ellipsoidal 3D blobs. Therefore is the solution of
a quadratic equation. This computation has to be done only once
for each new image. It is outside the Newton-Raphson iterations.
It could be replaced by more complex models and rendering algo-
rithms.

Inserting (14) into (3) leads to:

(15)

with

For pixel positions we have equations of the form (15).
This can be written in matrix form:

(16)

with

and

Finding the least-squares solution (3D twist motion ) for this
equation is done using (6).

3
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Figure 1: Kinematic chain defined by twists

3.2.3 Kinematic chain as a Product of Exponentials

So far we have parameterized the 3D pose and motion of a body
segment by the parameters of a twist . Points on this body
segment in a canonical object frame are transformed into a cam-
era frame by the mapping . Assume that a second body
segment is attached to the first segment with a joint. The joint can
be defined by an axis of rotation in the object frame. We define
this rotation axis in the object frame by a 3D unit vector along
the axis, and a point on the axis (figure 1). This is a so called
revolute joint, and can be modeled by a twist ([14]):

(17)

A rotation of angle around this axis can be written as:

(18)

(19)

The global mapping from object frame points on the first body seg-
ment into the camera frame is described by the following product:

(20)

If we have a chain of segments linked with joints (kine-
matic chain) and describe each joint by a twist , a point on seg-
ment is mapped from the object frame into the camera frame de-
pendent on and angles , , ..., :

(21)

This is called the product of exponential maps for kinematic
chains.

The velocity of a segment can be described with a twist
that is a linear combination of twists and the angular
velocities (see [14] for the derivations):

(22)

is the adjoint transformation associated with .1

Given a point on the ’th segment of a kinematic chain, its
motion vector in the image is related to the angular velocities by:

(23)
Recall (15) relates the image motion of a point to changes in

pose . We combine (15) and (23) to relate the image motion
to the combined vector of pose change and angular change

:

(24)

(25)

with

and as before

if pixel is on a segment that
is not affected by joint

The least squares solution to (25) is:

(26)

is the new estimate of the pose and angular change between
two consecutive images. As outlined earlier, this solution is based
on the assumption that the local image intensity variations can be
approximated by the first-order Taylor expansion (3). We linearize
around this new solution and iterate. This is done in warping the
image using the solution . Based on the re-warped image
we compute the new image gradients. Repeating this process of
warping and solving (26) is equivalent to a Newton-Raphson style
minimization.

3.3 Multiple Camera Views

In cases where we have access to multiple synchronized cameras,
we can couple the different views in one equation system. Let’s
assume we have different camera views at the same time. View

corresponds to following equation system (from (25)):

(27)

describes the pose seen
from view . All views share the same angular parameters, because

1 , and

4



UCB//CSD-97-973, http://www.cs.berkeley.edu/˜bregler/digmuy.html

the cameras are triggered at the same time. We can simply combine
all equation systems into one large equation system:

(28)
Operating with multiple views has three main advantages. The

estimation of the angular parameters is more robust: (1) the number
of measurements and therefore the number of equations increases
with the number of views, (2) some angular configurations might be
close to a singular pose in one view, whereas they can be estimated
in a orthogonal view much better. (3) With more camera views, the
chance decreases that one body part is occluded in all views.

3.4 Adaptive Support Maps using EM

As in (3), the update can be constrained to estimate the motion only
in a weighted support map for each segment using:

(29)

We approximate the shape of the body segments as ellipsoids,
and can compute the support map as the projection of the ellipsoids
into the image. Such a support map usually covers a larger region,
including pixels from the environment. That distracts the exact mo-
tion measurement. Robust statistics would be one solution to this
problem [3]. Another solution is an EM-based layered represen-
tation [6, 9]. It is beyond the scope of this paper to describe this
method in detail, but we would like to outline the method briefly:
We start with an initial guess of the support map (ellipsoidal pro-
jection in this case). Given the initial , we compute the motion
estimate (M-step). Given such a we can compute for each pixel
location the probability that it complies with the motion model de-
fined by . We do this for each blob and the background (dominant
motion) and normalize the sum of all probabilities per pixel loca-
tion to . This results in new maps that are better “tuned” to
the real shape of the body segment. In this paper we repeat the EM
iteration only once.

3.5 Tracking Recipe

We summarize the algorithm for tracking the pose and angles of a
kinematic chain in an image sequence:

Input: , ,

(Two images and the pose and angles for
the first image).

Output: .

(Pose and angles for second image).

1. Compute for each image location in
the 3D point (using ellipsoids

or more complex models and rendering
algorithm).

2. Compute for each body segment the
support map .

3. Set , .

4. Iterate:

(a) Compute spatiotemporal image
gradients: .

(b) Estimate using (29)

(c) Update

(d) Update .

(e) Warp the region inside of
by .

3.6 Initialization

The visual tracking is based on an initialized first frame. We have
to know the initial pose and the initial angular configuration. If
more than one view is available, all views for the first time step
have to be known. A user clicks on the 2D joint locations in all
views at the first time step. Given that, the 3D pose and the im-
age projection of the matching angular configuration is found in
minimizing the sum of squared differences between the projected
model joint locations and the user supplied model joint locations.
The optimization is done over the poses, angles, and body dimen-
sions. Example body dimensions are “upper-leg-length”, “lower-
leg-length”, or “shoulder-width”. The dimensions and angles have
to be the same in all views, but the pose can be different. Symmetry
constraints, that the left and right body lengths are the same, are en-
forced as well. Minimizing only over angles, or only over model di-
mensions results in linear equations similar to what we have shown
so far. Unfortunately the global minimization criteria over all pa-
rameters is a tri-linear equation system, that cannot be easily solved
by simple matrix inversions. There are several possible techniques
for minimizing such functions. We achieved good results with a
Quasi-Newton method and a mixed quadratic and cubic line search
procedure.

4 Results

We applied this technique to video recordings in our lab and to
photo-plate sequence of Eadweard Muybdrige’s motion studies.

4.1 Single camera recordings

Our lab video recordings were done with a single camera. There-
fore the 3D pose and some parts of the body can not be estimated
completely. Figure 2 shows one example sequences of a person
walking in a frontoparallel plane. We defined a DOF kinematic
structure: One blob for the body trunk, three blobs for the frontal
leg and foot, connected with a hip joint, knee joint, and ankle joint,
and two blobs for the arm connected with a shoulder and elbow
joint. All joints have an axis orientation parallel to the -axis in
the camera frame. The head blob was connected with one joint to
the body trunk. The first image in figure 2 shows the initial blob
support maps.

After the hand-initialization we applied the motion tracker to a
sequence of image frames. We could successfully track all body
parts in this video sequence (see video). The video shows that the
appearance of the upper leg changes significantly due to moving
folds on the subject’s jeans. The lower leg appearance does not
change to the same extent. The constraints were able to enforce
compatible motion vectors for the upper leg, based on more reliable
measurements on the lower leg.

We can compare the estimated angular configurations with mo-
tion capture data reported in the literature. Murray, Brought, and
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Figure 2: Example configurations of the estimated kinematic struc-
ture. First image shows the support maps of the initial configura-
tion. In subsequent images the white lines show blob axes. The
joint is the position on the intersection of two axes.
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Figure 3: Comparison of a) data from [Murray et al] (left) and b)
our motion tracker (right).

Kory published [13] such measurements for the hip, knee, and an-
gle joints. We compared our motion tracker measurements with the
published curves and found good agreement. Figure 4.1a shows
the curves for the knee and ankle reported in [13], and figure 4.1b
shows our measurements.

We also experimented with a walking sequence of a subject seen
from an oblique view with a similar kinematic model. As seen in
figure 4, we tracked the angular configurations and the pose suc-
cessfully over the complete sequence of image frames. Because
we use a scaled orthographic projection model, the perspective ef-
fects of the person walking closer to the camera had to be compen-
sated by different scales. The tracking algorithm could successfully
estimate the scale changes.

4.2 Digital Muybridge

The final set of experiments was done on historic footage recorded
by Eadweard Muybridge in 1884. His methods are of independent
interest, as they predate motion pictures. Muybridge had his mod-
els walk in an open shed. Parallel to the shed was a fixed battery of
24 cameras. Two portable batteries of 12 cameras each were posi-
tioned at both ends of the shed, either at an angle of 90 deg relative
to the shed or an angle of 60 deg. Three photographs were take

Figure 5: Eadweard Muybridge, The Human Figure in Motion,
Plate 97: Woman Walking. The first 5 frames show part of a walk
cycle from one example view, and the second 5 frames show the
same time steps from a different view

simultaneously, one from each battery. The effective ‘framerate’
of his technique is about two times lower then current video frame
rates; a fact which makes tracking a harder problem.. It is to our ad-
vantage that he took for each time step three pictures from different
viewpoints.

Figure 4.2 and figure 4.2 shows example photo plates. We could
initialize the 3D pose by labeling all three views of the first frame
and running the minimization procedure over the body dimensions
and poses. Figure 4.2 shows one example initialization. Every body
segment was visible in at least one of the three camera views, there-
fore we could track the left and the right side of the person. We
applied this technique to a walking woman and a walking man. For
the walking woman we had 10 time steps available that contained
60 % of a full walk cycle (figure 4.2). For this set of experiments we
extended our kinematic model to DOFs. The two hip joints, the
two shoulder joints, and the neck joint, were modeled by DOFs.
The two knee joints and two elbow joints were modeled just by
one rotation axis. Figure 4.2 shows the tracking results with the
model overlayed. As you see, we could successfully track the com-
plete sequence. To animate the tracking results we mirrored the left
and right side angles to produce the remaining frames of a com-
plete walk cycle. We animated the 3D motion capture data with a
stick figure model and a volumetric model (figure 10), and it looks
very natural. The video shows some of the tracking and animation
sequences from several novel camera views, replicating the walk
cycle performed over a century ago on the grounds of University of
Pennsylvania.

For the visualization of the walking man sequence, we did not
apply the mirroring, because he was carrying a boulder on his
shoulder. This made the walk asymmetric. We re-animated the
original tracked motion (figure 4.2) capture data for the man, and it
also looked very natural.

Given the successful application of our tracking technique to
multi-view data, we are planning to record with higher frame-rates
our own multi-view video footage. We also plan to record a wider
range of gestures.
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Figure 4: Example configurations of the estimated kinematic structure of a person seen from an oblique view.

Figure 6: Eadweard Muybridge, The Human Figure in Motion,
Plate 7: Man walking and carrying 75-LB boulder on shoulder. The
first 5 frames show part of a walk cycle from one example view, and
the second 5 frames show the same time steps from a different view

Figure 7: Initialization of Muybridge’s Woman Walking: This vi-
sualizes the initial angular configuration projected to 3 example
views.

Figure 8: Muybridge’s Woman Walking: Motion Capture results.
This shows the tracked angular configurations and its volumetric
model projected to 2 example views.

5 Conclusion

In this paper, we have developed and demonstrated a new technique
for video motion capture. The approach does not require any mark-
ers, body suits or any other devices attached to the body of the actor.
The actor can move about wearing his or her regular clothes. We
demonstrated results on video recordings of people walking both
in frontoparallel and oblique views, as well as on the classic Muy-
bridge photographic sequences recorded more than a century ago.

Visually tracking human motion at the level of individual joints
is a very challenging problem. Our results are due, in large measure,
to the introduction of a novel mathematical technique, the product
of exponential maps and twist motions, and its integration into a
differential motion estimation scheme. The advantage of this par-
ticular formulation is that it results in the equations that need to
be solved to update the kinematic chain parameters from frame to
frame being linear, and that it is not necessary to solve for any re-
dundant or unnecessary variables.

Future work will concentrate on dealing with very large motions,
as may happen, for instance, in videotapes of high speed running.
The approach developed in this paper is a differential method, and
therefore may be expected to fail when the motion from frame-to-
frame is very large. We propose to augment the technique by the
use of an initial coarse search stage. Given a close enough starting
value, the differential method will converge correctly.
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Figure 9: Muybridge’s Man Walking: Motion Capture results. This
shows the tracked angular configurations and its volumetric model
projected to 2 example views.

Figure 10: Computer models used for the animation of the Muy-
bridge motion capture. Please check out the video to see the quality
of the animation.
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Abstract

We present new techniques for creating photorealistic textured 3D
facial models from photographs of a human subject, and for creat-
ing smooth transitions between different facial expressions by mor-
phing between these different models. Starting from several uncali-
brated views of a human subject, we employ a user-assisted tech-
nique to recover the camera poses corresponding to the views as
well as the 3D coordinates of a sparse set of chosen locations on the
subject’s face. A scattered data interpolation technique is then used
to deform a generic face mesh to fit the particular geometry of the
subject’s face. Having recovered the camera poses and the facial ge-
ometry, we extract from the input images one or more texture maps
for the model. This process is repeated for several facial expressions
of a particular subject. To generate transitions between these facial
expressions we use 3D shape morphing between the corresponding
face models, while at the same time blending the corresponding tex-
tures. Using our technique, we have been able to generate highly re-
alistic face models and natural looking animations.

CR Categories: I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing — Modeling and recovery of physical attributes; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics — Animation; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics — Color, shading, shadowing and
texture.

Additional Keywords: facial modeling, facial expression generation, facial
animation, photogrammetry, morphing, view-dependent texture-mapping

1 Introduction

There is no landscape that we know as well as the human
face. The twenty-five-odd square inches containing the fea-
tures is the most intimately scrutinized piece of territory
in existence, examined constantly, and carefully, with far
more than an intellectual interest. Every detail of the nose,
eyes, and mouth, every regularity in proportion, every vari-
ation from one individual to the next, are matters about
which we are all authorities.

— Gary Faigin [14],
from The Artist’s Complete Guide to Facial Expression

Realistic facial synthesis is one of the most fundamental problems in
computer graphics — and one of the most difficult. Indeed, attempts
to model and animate realistic human faces date back to the early
70’s [34], with many dozens of research papers published since.

The applications of facial animation include such diverse fields as
character animation for films and advertising, computer games [19],
video teleconferencing [7], user-interface agents and avatars [44],
and facial surgery planning [23, 45]. Yet no perfectly realistic facial
animation has ever been generated by computer: no “facial anima-
tion Turing test” has ever been passed.

There are several factors that make realistic facial animation so elu-
sive. First, the human face is an extremely complex geometric form.
For example, the human face models used in Pixar’s Toy Story had
several thousand control points each [10]. Moreover, the face ex-
hibits countless tiny creases and wrinkles, as well as subtle varia-
tions in color and texture — all of which are crucial for our compre-
hension and appreciation of facial expressions. As difficult as the
face is to model, it is even more problematic to animate, since fa-
cial movement is a product of the underlying skeletal and muscu-
lar forms, as well as the mechanical properties of the skin and sub-
cutaneous layers (which vary in thickness and composition in dif-
ferent parts of the face). All of these problems are enormously mag-
nified by the fact that we as humans have an uncanny ability to read
expressions — an ability that is not merely a learned skill, but part
of our deep-rooted instincts. For facial expressions, the slightest de-
viation from truth is something any person will immediately detect.

A number of approaches have been developed to model and ani-
mate realistic facial expressions in three dimensions. (The reader is
referred to the recent book by Parke and Waters [36] for an excel-
lent survey of this entire field.) Parke’s pioneering work introduced
simple geometric interpolation between face models that were dig-
itized by hand [34]. A radically different approach is performance-
based animation, in which measurements from real actors are used
to drive synthetic characters [4, 13, 47]. Today, face models can also
be obtained using laser-based cylindrical scanners, such as those
produced by Cyberware [8]. The resulting range and color data can
be fitted with a structured face mesh, augmented with a physically-
based model of skin and muscles [29, 30, 43, 46]. The animations
produced using these face models represent the state-of-the-art in
automatic physically-based facial animation.

For sheer photorealism, one of the most effective approaches to date
has been the use of 2D morphing between photographic images [3].
Indeed, some remarkable results have been achieved in this way —
most notably, perhaps, the Michael Jackson video produced by PDI,
in which very different-looking actors are seemingly transformed
into one another as they dance. The production of this video, how-
ever, required animators to painstakingly specify a few dozen care-
fully chosen correspondences between physical features of the ac-
tors in almost every frame. Another problem with 2D image morph-
ing is that it does not correctly account for changes in viewpoint or
object pose. Although this shortcoming has been recently addressed
by a technique called “view morphing” [39], 2D morphing still lacks
some of the advantages of a 3D model, such as the complete free-
dom of viewpoint and the ability to composite the image with other
3D graphics. Morphing has also been applied in 3D: Chen et al. [6]
applied Beier and Neely’s 2D morphing technique [3] to morph be-
tween cylindrical laser scans of human heads. Still, even in this case
the animator must specify correspondences for every pair of expres-
sions in order to produce a transition between them. More recently,
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Bregler et al. [5] used morphing of mouth regions to lip-synch ex-
isting video to a novel sound-track.

In this paper, we show how 2D morphing techniques can be com-
bined with 3D transformations of a geometric model to automati-
cally produce 3D facial expressions with a high degree of realism.
Our process consists of several basic steps. First, we capture multi-
ple views of a human subject (with a given facial expression) using
cameras at arbitrary locations. Next, we digitize these photographs
and manually mark a small set of initial corresponding points on
the face in the different views (typically, corners of the eyes and
mouth, tip of the nose, etc.). These points are then used to automat-
ically recover the camera parameters (position, focal length, etc.)
corresponding to each photograph, as well as the 3D positions of the
marked points in space. The 3D positions are then used to deform
a generic 3D face mesh to fit the face of the particular human sub-
ject. At this stage, additional corresponding points may be marked
to refine the fit. Finally, we extract one or more texture maps for the
3D model from the photos. Either a single view-independent tex-
ture map can be extracted, or the original images can be used to
perform view-dependent texture mapping. This whole process is re-
peated for the same human subject, with several different facial ex-
pressions. To produce facial animations, we interpolate between two
or more different 3D models constructed in this way, while at the
same time blending the textures. Since all the 3D models are con-
structed from the same generic mesh, there is a natural correspon-
dence between all geometric points for performing the morph. Thus,
transitions between expressions can be produced entirely automati-
cally once the different face models have been constructed, without
having to specify pairwise correspondences between any of the ex-
pressions.

Our modeling approach is based on photogrammetric techniques
in which images are used to create precise geometry [31, 40]. The
earliest such techniques applied to facial modeling and animation
employed grids that were drawn directly on the human subject’s
face [34, 35]. One consequence of these grids, however, is that the
images used to construct geometry can no longer be used as valid
texture maps for the subject. More recently, several methods have
been proposed for modeling the face photogrammetrically without
the use of grids [20, 24]. These modeling methods are similar in
concept to the modeling technique described in this paper. How-
ever, these previous techniques use a small predetermined set of fea-
tures to deform the generic face mesh to the particular face being
modeled, and offer no mechanism to further improve the fit. Such
an approach may perform poorly on faces with unusual features or
other significant deviations from the normal. Our system, by con-
trast, gives the user complete freedom in specifying the correspon-
dences, and enables the user to refine the initial fit as needed. An-
other advantage of our technique is its ability to handle fairly arbi-
trary camera positions and lenses, rather than using a fixed pair that
are precisely oriented. Our method is similar, in concept, to the work
done in architectural modeling by Debevec et al. [9], where a set of
annotated photographs are used to model buildings starting from a
rough description of their shape. Compared to facial modeling meth-
ods that utilize a laser scanner, our technique uses simpler acquisi-
tion equipment (regular cameras), and it is capable of extracting tex-
ture maps of higher resolution. (Cyberware scans typically produce
a cylindrical grid of 512 by 256 samples). The price we pay for these
advantages is the need for user intervention in the modeling process.

We employ our system not only for creating realistic face models,
but also for performing realistic transitions between different ex-
pressions. One advantage of our technique, compared to more tra-
ditional animatable models with a single texture map, is that we can
capture the subtle changes in illumination and appearance (e.g., fa-
cial creases) that occur as the face is deformed. This degree of re-
alism is difficult to achieve even with physically-based models, be-

cause of the complexity of skin folding and the difficulty of simu-
lating interreflections and self-shadowing [18, 21, 32].

This paper also presents several new expression synthesis tech-
niques based on extensions to the idea of morphing. We develop a
morphing technique that allows for different regions of the face to
have different “percentages” or “mixing proportions” of facial ex-
pressions. We also introduce a painting interface, which allows users
to locally add in a little bit of an expression to an existing compos-
ite expression. We believe that these novel methods for expression
generation and animation may be more natural for the average user
than more traditional animation systems, which rely on the manual
adjustments of dozens or hundreds of control parameters.

The rest of this paper is organized as follows. Section 2 describes
our method for fitting a generic face mesh to a collection of si-
multaneous photographs of an individual’s head. Section 3 de-
scribes our technique for extracting both view-dependent and view-
independent texture maps for photorealistic rendering of the face.
Section 4 presents the face morphing algorithm that is used to an-
imate the face model. Section 5 describes the key aspects of our
system’s user interface. Section 6 presents the results of our experi-
ments with the proposed techniques, and Section 7 offers directions
for future research.

2 Model fitting

The task of the model-fitting process is to adapt a generic face model
to fit an individual’s face and facial expression. As input to this pro-
cess, we take several images of the face from different viewpoints
(Figure 1a) and a generic face model (we use the generic face model
created with AliasjWavefront [2] shown in Figure 1c). A few fea-
tures points are chosen (13 in this case, shown in the frames of Fig-
ure 1a) to recover the camera pose. These same points are also used
to refine the generic face model (Figure 1d). The model can be fur-
ther refined by drawing corresponding curves in the different views
(Figure 1b). The output of the process is a face model that has been
adapted to fit the face in the input images (Figure 1e), along with
a precise estimate of the camera pose corresponding to each input
image.

The model-fitting process consists of three stages. In the pose re-
covery stage, we apply computer vision techniques to estimate the
viewing parameters (position, orientation, and focal length) for each
of the input cameras. We simultaneously recover the 3D coordinates
of a set of feature points on the face. These feature points are se-
lected interactively from among the face mesh vertices, and their
positions in each image (where visible) are specified by hand. The
scattered data interpolation stage uses the estimated 3D coordinates
of the feature points to compute the positions of the remaining face
mesh vertices. In the shape refinement stage, we specify additional
correspondences between facial vertices and image coordinates to
improve the estimated shape of the face (while keeping the camera
pose fixed).

2.1 Pose recovery

Starting with a rough knowledge of the camera positions (e.g.,
frontal view, side view, etc.) and of the 3D shape (given by the
generic head model), we iteratively improve the pose and the 3D
shape estimates in order to minimize the difference between the pre-
dicted and observed feature point positions. Our formulation is
based on the non-linear least squares structure-from-motion algo-
rithm introduced by Szeliski and Kang [41]. However, unlike the
method they describe, which uses the Levenberg-Marquardt algo-
rithm to perform a complete iterative minimization over all of the
unknowns simultaneously, we break the problem down into a series
of linear least squares problems that can be solved using very simple
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(a)

(b) (c) (d) (e)

Figure 1 Model-fitting process: (a) a set of input images with marked feature points, (b) facial features annotated using a set of curves, (c)
generic face geometry (shaded surface rendering), (d) face adapted to initial 13 feature points (after pose estimation) (e) face after 99 additional
correspondences have been given.

and numerically stable techniques [16, 37].

To formulate the pose recovery problem, we associate a rotation ma-
trix Rk and a translation vector tk with each camera pose k. (The
three rows of Rk are rk

x, rk
y, and rk

z , and the three entries in tk are tk
x ,

tk
y , tk

z .) We write each 3D feature point as pi, and its 2D screen coor-
dinates in the k-th image as (xk

i , yk
i ).

Assuming that the origin of the (x, y) image coordinate system lies
at the optical center of each image (i.e., where the optical axis inter-
sects the image plane), the traditional 3D projection equation for a
camera with a focal length f k (expressed in pixels) can be written as

xk
i = f k rk

x � pi + tk
x

rk
z � pi + tk

z
yk

i = f k rk
y � pi + tk

y

rk
z � pi + tk

z
(1)

(This is just an explicit rewriting of the traditional projection equa-
tion xk

i / Rkpi + tk where xk
i = (xk

i , yk
i , f k).)

Instead of using (1) directly, we reformulate the problem to estimate
inverse distances to the object [41]. Let �k = 1=tk

z be this inverse dis-
tance and sk = f k�k be a world-to-image scale factor. The advantage
of this formulation is that the scale factor sk can be reliably estimated
even when the focal length is long, whereas the original formulation
has a strong coupling between the f k and tk

z parameters.

Performing these substitution, we obtain

xk
i = sk rk

x � pi + tk
x

1 + �krk
z � pi

yk
i = sk rk

y � pi + tk
y

1 + �krk
z � pi

.

If we let wk
i = (1 + �k(rk

z � pi))
�1 be the inverse denominator, and

collect terms on the left-hand side, we get

wk
i

�
xk

i + xk
i �

k(rk
z � pi) � sk(rk

x � pi + tk
x)
�

= 0 (2)

wk
i

�
yk

i + yk
i �

k(rk
z � pi) � sk(rk

y � pi + tk
y)
�

= 0

Note that these equations are linear in each of the unknowns that we
wish to recover, i.e., pi, tk

x, tk
y, �k, sk, and Rk, if we ignore the vari-

ation of wk
i with respect to these parameters. (The reason we keep

the wk
i term, rather than just dropping it from these equations, is so

that the linear equations being solved in the least squares step have
the same magnitude as the original measurements (xk

i , yk
i ). Hence,

least-squares will produce a maximum likelihood estimate for the
unknown parameters [26].)

Given estimates for initial values, we can solve for different sub-
sets of the unknowns. In our current algorithm, we solve for the un-
knowns in five steps: first sk, then pi, Rk, tk

x and tk
y, and finally �k.

This order is chosen to provide maximum numerical stability given
the crude initial pose and shape estimates. For each parameter or set
of parameters chosen, we solve for the unknowns using linear least
squares (Appendix A). The simplicity of this approach is a result of
solving for the unknowns in five separate stages, so that the parame-
ters for a given camera or 3D point can be recovered independently
of the other parameters.

2.2 Scattered data interpolation

Once we have computed an initial set of coordinates for the fea-
ture points pi, we use these values to deform the remaining vertices
on the face mesh. We construct a smooth interpolation function that
gives the 3D displacements between the original point positions and
the new adapted positions for every vertex in the original generic
face mesh. Constructing such an interpolation function is a standard
problem in scattered data interpolation. Given a set of known dis-
placements ui = pi � p(0)

i away from the original positions p(0)
i at

every constrained vertex i, construct a function that gives the dis-
placement uj for every unconstrained vertex j.

There are several considerations in choosing the particular data in-
terpolant [33]. The first consideration is the embedding space, that
is, the domain of the function being computed. In our case, we use
the original 3D coordinates of the points as the domain. (An alterna-
tive would be to use some 2D parameterization of the surface mesh,
for instance, the cylindrical coordinates described in Section 3.) We
therefore attempt to find a smooth vector-valued function f (p) fitted
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to the known data ui = f (pi), from which we can compute uj = f (pj).

There are also several choices for how to construct the interpolating
function [33]. We use a method based on radial basis functions, that
is, functions of the form

f (p) =
X

i

ci�(kp � pik),

where �(r) are radially symmetric basis functions. A more general
form of this interpolant also adds some low-order polynomial terms
to model global, e.g., affine, deformations [27, 28, 33]. In our sys-
tem, we use an affine basis as part of our interpolation algorithm, so
that our interpolant has the form:

f (p) =
X

i

ci�(kp � pik) + Mp + t, (3)

To determine the coefficients ci and the affine components M and t,
we solve a set of linear equations that includes the interpolation
constraints ui = f (pi), as well as the constraints

P
i ci = 0 andP

i cipi
T = 0, which remove affine contributions from the radial ba-

sis functions.

Many different functions for �(r) have been proposed [33]. After
experimenting with a number of functions, we have chosen to use
�(r) = e�r=64, with units measured in inches.

Figure 1d shows the shape of the face model after having inter-
polated the set of computed 3D displacements at 13 feature points
shown in Figure 1 and applied them to the entire face.

2.3 Correspondence-based shape refinement

After warping the generic face model into its new shape, we can fur-
ther improve the shape by specifying additional correspondences.
Since these correspondences may not be as easy to locate correctly,
we do not use them to update the camera pose estimates. Instead,
we simply solve for the values of the new feature points pi using a
simple least-squares fit, which corresponds to finding the point near-
est the intersection of the viewing rays in 3D. We can then re-run
the scattered data interpolation algorithm to update the vertices for
which no correspondences are given. This process can be repeated
until we are satisfied with the shape.

Figure 1e shows the shape of the face model after 99 additional cor-
respondences have been specified. To facilitate the annotation pro-
cess, we grouped vertices into polylines. Each polyline corresponds
to an easily identifiable facial feature such as the eyebrow, eyelid,
lips, chin, or hairline. The features can be annotated by outlining
them with hand-drawn curves on each photograph where they are
visible. The curves are automatically converted into a set of feature
points by stepping along them using an arc-length parametrization.
Figure 1b shows annotated facial features using a set of curves on
the front view.

3 Texture extraction

In this section we describe the process of extracting the texture maps
necessary for rendering photorealistic images of a reconstructed
face model from various viewpoints.

The texture extraction problem can be defined as follows. Given a
collection of photographs, the recovered viewing parameters, and
the fitted face model, compute for each point p on the face model
its texture color T(p).

Each point p may be visible in one or more photographs; therefore,
we must identify the corresponding point in each photograph and
decide how these potentially different values should be combined

kI

(x ,y )k k

(u,v)

p

Figure 2 Geometry for texture extraction

(blended) together. There are two principal ways to blend values
from different photographs: view-independent blending, resulting in
a texture map that can be used to render the face from any viewpoint;
and view-dependent blending, which adjusts the blending weights at
each point based on the direction of the current viewpoint [9, 38].
Rendering takes longer with view-dependent blending, but the re-
sulting image is of slightly higher quality (see Figure 3).

3.1 Weight maps

As outlined above, the texture value T(p) at each point on the face
model can be expressed as a convex combination of the correspond-
ing colors in the photographs:

T(p) =

P
k mk(p) Ik(xk, yk)P

k mk(p)
.

Here, Ik is the image function (color at each pixel of the k-th photo-
graph,) and (xk, yk) are the image coordinates of the projection of p
onto the k-th image plane. The weight map mk(p) is a function that
specifies the contribution of the k-th photograph to the texture at
each facial surface point.

The construction of these weight maps is probably the trickiest and
the most interesting component of our texture extraction technique.
There are several important considerations that must be taken into
account when defining a weight map:

1. Self-occlusion: mk(p) should be zero unless p is front-facing with
respect to the k-th image and visible in it.

2. Smoothness: the weight map should vary smoothly, in order to
ensure a seamless blend between different input images.

3. Positional certainty: mk(p) should depend on the “positional cer-
tainty” [24] of p with respect to the k-th image. The positional
certainty is defined as the dot product between the surface nor-
mal at p and the k-th direction of projection.

4. View similarity: for view-dependent texture mapping, the weight
mk(p) should also depend on the angle between the direction of
projection of p onto the j-th image and its direction of projection
in the new view.

Previous authors have taken only a subset of these considerations
into account when designing their weighting functions. For ex-
ample, Kurihara and Arai [24] use positional certainty as their
weighting function, but they do not account for self-occlusion. Aki-
moto et al. [1] and Ip and Yin [20] blend the images smoothly,
but address neither self-occlusion nor positional certainty. De-
bevec et al. [9], who describe a view-dependent texture mapping
technique for modeling and rendering buildings from photographs,
do address occlusion but do not account for positional certainty. (It
should be noted, however, that positional certainty is less critical in
photographs of buildings, since most buildings do not tend to curve
away from the camera.)

4



To facilitate fast visibility testing of points on the surface of the face
from a particular camera pose, we first render the face model us-
ing the recovered viewing parameters and save the resulting depth
map from the Z-buffer. Then, with the aid of this depth map, we
can quickly classify the visibility of each facial point by applying
the viewing transformation and comparing the resulting depth to the
corresponding value in the depth map.

3.2 View-independent texture mapping

In order to support rapid display of the textured face model from
any viewpoint, it is desirable to blend the individual photographs to-
gether into a single texture map. This texture map is constructed on
a virtual cylinder enclosing the face model. The mapping between
the 3D coordinates on the face mesh and the 2D texture space is de-
fined using a cylindrical projection, as in several previous papers
[6, 24, 29].

For view-independent texture mapping, we will index the weight
map mk by the (u, v) coordinates of the texture being created. Each
weight mk(u, v) is determined by the following steps:

1. Construct a feathered visibility map Fk for each image k. These
maps are defined in the same cylindrical coordinates as the tex-
ture map. We initially set Fk(u, v) to 1 if the corresponding facial
point p is visible in the k-th image, and to 0 otherwise. The result
is a binary visibility map, which is then smoothly ramped (feath-
ered) from 1 to 0 in the vicinity of the boundaries [42]. A cubic
polynomial is used as the ramping function.

2. Compute the 3D point p on the surface of the face mesh whose
cylindrical projection is (u, v) (see Figure 2). This computation
is performed by casting a ray from (u, v) on the cylinder towards
the cylinder’s axis. The first intersection between this ray and the
face mesh is the point p. (Note that there can be more than one
intersection for certain regions of the face, most notably the ears.
These special cases are discussed in Section 3.4.) Let Pk(p) be the
positional certainty of p with respect to the k-th image.

3. Set weight mk(u, v) to the product Fk(u, v) Pk(p).

For view-independent texture mapping, we will compute each pixel
of the resulting texture T(u, v) as a weighted sum of the original im-
age functions, indexed by (u, v).

3.3 View-dependent texture mapping

The main disadvantage of the view-independent cylindrical texture
map described above is that its construction involves blending to-
gether resampled versions of the original images of the face. Be-
cause of this resampling, and also because of slight registration er-
rors, the resulting texture is slightly blurry. This problem can be al-
leviated to a large degree by using a view-dependent texture map [9]
in which the blending weights are adjusted dynamically, according
to the current view.

For view-dependent texture mapping, we render the model several
times, each time using a different input photograph as a texture
map, and blend the results. More specifically, for each input photo-
graph, we associate texture coordinates and a blending weight with
each vertex in the face mesh. (The rendering hardware performs
perspective-correct texture mapping along with linear interpolation
of the blending weights.)

Given a viewing direction d, we first select the subset of pho-
tographs used for the rendering and then assign blending weights to
each of these photographs. Pulli et al. [38] select three photographs
based on a Delaunay triangulation of a sphere surrounding the ob-
ject. Since our cameras were positioned roughly in the same plane,

Figure 3 Comparison between view-independent (left) and view-
dependent (right) texture mapping. Higher frequency details are vis-
ible in the view-dependent rendering.

we select just the two photographs whose view directions d` and
d`+1 are the closest to d and blend between the two.

In choosing the view-dependent term Vk(d) of the blending weights,
we wish to use just a single photo if that photo’s view direction
matches the current view direction precisely, and to blend smoothly
between the nearest two photos otherwise. We used the simplest
possible blending function having this effect:

Vk(d) =

�
d � dk � d` � d`+1 if ` � k � ` + 1

0 otherwise

For the final blending weights mk(p, d), we then use the product of
all three terms Fk(xk , yk) Pk(p) Vk(d).

View-dependent texture maps have several advantages over cylin-
drical texture maps. First, they can make up for some lack of de-
tail in the model. Second, whenever the model projects onto a cylin-
der with overlap, a cylindrical texture map will not contain data for
some parts of the model. This problem does not arise with view-
dependent texture maps if the geometry of the mesh matches the
photograph properly. One disadvantage of the view-dependent ap-
proach is its higher memory requirements and slower speed due to
the multi-pass rendering. Another drawback is that the resulting im-
ages are much more sensitive to any variations in exposure or light-
ing conditions in the original photographs.

3.4 Eyes, teeth, ears, and hair

The parts of the mesh that correspond to the eyes, teeth, ears, and
hair are textured in a separate process. The eyes and teeth are usually
partially occluded by the face; hence it is difficult to extract a tex-
ture map for these parts in every facial expression. The ears have an
intricate geometry with many folds and usually fail to project with-
out overlap on a cylinder. The hair has fine-detailed texture that is
difficult to register properly across facial expressions. For these rea-
sons, each of these facial elements is assigned an individual texture
map. The texture maps for the eyes, teeth, and ears are computed by
projecting the corresponding mesh part onto a selected input image
where that part is clearly visible (the front view for eyes and teeth,
side views for ears).

The eyes and the teeth are usually partially shadowed by the eye-
lids and the mouth respectively. We approximate this shadowing by
modulating the brightness of the eye and teeth texture maps accord-
ing to the size of the eyelid and mouth openings.
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Figure 4 A global blend between “surprised” (left) and “sad” (cen-
ter) produces a “worried” expression (right).

Figure 5 Combining the upper part of a “neutral” expression (left)
with the lower part of a “happy” expression (center) produces a
“fake smile” (right).

4 Expression morphing

A major goal of this work is the generation of continuous and re-
alistic transitions between different facial expressions. We achieve
these effects by morphing between corresponding face models.

In general the problem of morphing between arbitrary polygonal
meshes is a difficult one [22], since it requires a set of correspon-
dences between meshes with potentially different topology that can
produce a reasonable set of intermediate shapes. In our case, how-
ever, the topology of all the face meshes is identical. Thus, there is
already a natural correspondence between vertices. Furthermore, in
creating the models we attempt to mark facial features consistently
across different facial expressions, so that the major facial features
correspond to the same vertices in all expressions. In this case, a sat-
isfactory 3D morphing sequence can be obtained using simple linear
interpolation between the geometric coordinates of corresponding
vertices in each of the two face meshes.

Together with the geometric interpolation, we need to blend the as-
sociated textures. Again, in general, morphing between two images
requires pairwise correspondences between images features [3]. In
our case, however, correspondences between the two textures are
implicit in the texture coordinates of the two associated face meshes.
Rather than warping the two textures to form an intermediate one,
the intermediate face model (obtained by geometric interpolation)
is rendered once with the first texture, and again with the second.
The two resulting images are then blended together. This approach
is faster than warping the textures (which typically have high resolu-
tion), and it avoids the resampling that is typically performed during
warping.

4.1 Multiway blend and localized blend

Given a set of facial expression meshes, we have explored ways to
enlarge this set by combining expressions. The simplest approach
is to use the morphing technique described above to create new fa-
cial expressions, which can be added to the set. This idea can be
generalized to an arbitrary number of starting expressions by tak-
ing convex combinations of them all, using weights that apply both
to the coordinates of the mesh vertices and to the values in the tex-
ture map. (Extrapolation of expressions should also be possible by
allowing weights to have values outside of the interval [0, 1]; note,
however, that such weights might result in colors outside of the al-
lowable gamut.)

We can generate an even wider range of expressions using a local-
ized blend of the facial expressions. Such a blend is specified by a
set of blend functions, one for each expression, defined over the ver-
tices of the mesh. These blend functions describe the contribution of
a given expression at a particular vertex.

Although it would be possible to compute a texture map for each
new expression, doing so would result in a loss of texture quality.
Instead, the weights for each new blended expression are always
factored into weights over the vertices of the original set of expres-

sions. Thus, each blended expression is rendered using the texture
map of an original expression, along with weights at each vertex,
which control the opacity of that texture. The opacities are linearly
interpolated over the face mesh using Gouraud shading.

4.2 Blend specification

In order to design new facial expressions easily, the user must be
provided with useful tools for specifying the blending functions.
These tools should satisfy several requirements. First, it should be
possible to edit the blend at different resolutions. Moreover, we
would like the specification process to be continuous so that small
changes in the blend parameters do not trigger radical changes in
the resulting expression. Finally, the tools should be intuitive to the
user; it should be easy to produce a particular target facial expres-
sion from an existing set.

We explored several different ways of specifying the blending
weights:

� Global blend. The blending weights are constant over all vertices.
A set of sliders controls the mixing proportions of the contribut-
ing expressions. Figure 4 shows two facial expressions blended
in equal proportions to produce a halfway blend.

� Regional blend. According to studies in psychology, the face can
be split into several regions that behave as coherent units [11].
Usually, three regions are considered: one for the forehead (in-
cluding the eyebrows), another for the eyes, and another for the
lower part of the face. Further splitting the face vertically down
the center results in six regions and allows for asymmetric ex-
pressions. We similarly partition the face mesh into several (softly
feathered) regions and assign weights so that vertices belonging
to the same region have the same weights. The mixing proportions
describing a selected region can be adjusted by manipulating a set
of sliders. Figure 5 illustrates the blend of two facial expressions
with two regions: the upper part of the face (including eyes and
forehead) and the lower part (including nose, mouth, and chin.)

� Painterly interface. The blending weights can be assigned to the
vertices using a 3D painting tool. This tool uses a palette in which
the “colors” are facial expressions (both geometry and color), and
the “opacity” of the brush controls how much the expression con-
tributes to the result. Once an expression is selected, a 3D brush
can be used to modify the blending weights in selected areas of
the mesh. The fraction painted has a gradual drop-off and is con-
trolled by the opacity of the brush. The strokes are applied directly
on the rendering of the current facial blend, which is updated in
real-time. To improve the rendering speed, only the portion of the
mesh that is being painted is re-rendered. Figure 7 illustrates the
design of a debauched smile: starting with a neutral expression,
the face is locally modified using three other expressions. Note
that in the last step, the use of a partially transparent brush with
the “sleepy” expression results in the actual geometry of the eye-
lids becoming partially lowered.
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Figure 6 Animation interface. On the left is the “expression
gallery”; on the right an expression is being designed. At the bottom
expressions and poses are scheduled on the timeline.

Combining different original expressions enlarges the repertoire of
expressions obtained from a set of photographs. The expressions in
this repertoire can themselves be blended to create even more ex-
pressions, with the resulting expression still being representable as
a (locally varying) linear combination of the original expressions.

5 User interface

We designed an interactive tool to fit a 3D face mesh to a set of im-
ages. This tool allows a user to select vertices on the mesh and mark
where these curves or vertices should project on the images. After a
first expression has been modeled, the set of annotations can be used
as an initial guess for subsequent expressions. These guesses are au-
tomatically refined using standard correlation-based search. Any re-
sulting errors can be fixed up by hand. The extraction of the texture
map does not require user intervention, but is included in the inter-
face to provide feedback during the modeling phase.

We also designed a keyframe animation system to generate facial
animations. Our animation system permits a user to blend facial ex-
pressions and to control the transitions between these different ex-
pressions (Figure 6). The expression gallery is a key component
of our system; it is used to select and display (as thumbnails) the
set of facial expressions currently available. The thumbnails can be
dragged and dropped onto the timeline (to set keyframes) or onto
the facial design interface (to select or add facial expressions). The
timeline is used to schedule the different expression blends and the
changes in viewing parameters (pose) during the animation. The
blends and poses have two distinct types of keyframes. Both types
of keyframes are linearly interpolated with user-controlled cubic
Bézier curves. The timeline can also be used to display intermedi-
ate frames at low resolution to provide a quick feedback to the ani-
mator. A second timeline can be displayed next to the composition
timeline. This feature is helpful for correctly synchronizing an ani-
mation with live video or a soundtrack. The eyes are animated sepa-
rately from the rest of the face, with the gaze direction parameterized
by two Euler angles.

6 Results

In order to test our technique, we photographed both a man (J. R.)
and a woman (Karla) in a variety of facial expressions. The photog-

Figure 7 Painterly interface: design of a debauched smile. The right
column shows the different stages of the design; the left column
shows the portions of the original expressions used in creating the
final expression. The “soft brush” used is shown at the bottom-right
corner of each contributing expression.
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raphy was performed using five cameras simultaneously. The cam-
eras were not calibrated in any particular way, and the lenses had
different focal lengths. Since no special attempt was made to illu-
minate the subject uniformly, the resulting photographs exhibited
considerable variation in both hue and brightness. The photographs
were digitized using the Kodak PhotoCD process. Five typical im-
ages (cropped to the size of the subject’s head) are shown in Fig-
ure 1a.

We used the interactive modeling system described in Sections 2
and 3 to create the same set of eight face models for each subject:
“happy,” “amused,” “angry,” “surprised,” “sad,” “sleepy,” “pained,”
and “neutral.”

Following the modeling stage, we generated a facial animation for
each of the individuals starting from the eight original expressions.
We first created an animation for J. R. We then applied the very same
morphs specified by this animation to the models created for Karla.
For most frames of the animation, the resulting expressions were
quite realistic. Figure 8 shows five frames from the animation se-
quence for J. R. and the purely automatically generated frames in
the corresponding animation for Karla. With just a small amount
of additional retouching (using the blending tools described in Sec-
tion 4.2), this derivative animation can be made to look as good as
the original animation for J. R.

7 Future work

The work described in this paper is just the first step towards build-
ing a complete image-based facial modeling and animation system.
There are many ways to further enhance and extend the techniques
that we have described:

Color correction. For better color consistency in facial textures ex-
tracted from photographs, color correction should be applied to si-
multaneous photographs of each expression.

Improved registration. Some residual ghosting or blurring artifacts
may occasionally be visible in the cylindrical texture map due to
small misregistrations between the images, which can occur if ge-
ometry is imperfectly modeled or not detailed enough. To improve
the quality of the composite textures, we could locally warp each
component texture (and weight) map before blending [42].

Texture relighting. Currently, extracted textures reflect the light-
ing conditions under which the photographs were taken. Relighting
techniques should be developed for seamless integration of our face
models with other elements.

Automatic modeling. Our ultimate goal, as far as the facial model-
ing part is concerned, is to construct a fully automated modeling sys-
tem, which would automatically find features and correspondences
with minimal user intervention. This is a challenging problem in-
deed, but recent results on 2D face modeling in computer vision [25]
give us cause for hope.

Modeling from video. We would like to be able to create face mod-
els from video or old movie footage. For this purpose, we would
have to improve the robustness of our techniques in order to syn-
thesize face meshes and texture maps from images that do not cor-
respond to different views of the same expression. Adding anthro-
pomorphic constraints to our face model might make up for the lack
of coherence in the data [48].

Complex animations. In order to create complex animations, we
must extend our vocabulary for describing facial movements be-
yond blending between different expressions. There are several po-
tential ways to attack this problem. One would be to adopt an
action-unit-based system such as the Facial Action Coding System

(a) (b)

Figure 8 On the left are frames from an original animation, which
we created for J. R. The morphs specified in these frames were then
directly used to create a derivative animation for Karla, shown on the
right.
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(FACS) [12]. Another possibility would be to apply modal analysis
(principal component analysis) techniques to describe facial expres-
sion changes using a small number of motions [25]. Finding natural
control parameters to facilitate animation and developing realistic-
looking temporal profiles for such movements are also challenging
research problems.

Lip-synching. Generating speech animation with our keyframe an-
imation system would require a large number of keyframes. How-
ever, we could use a technique similar to that of Bregler et al. [5] to
automatically lip-synch an animation to a sound-track. This would
require the synthesis of face models for a wide range of visemes. For
example, such database of models could be constructed using video
footage to reconstruct face models automatically [17].

Performance-driven animation. Ultimately, we would also like to
support performance-driven animation, i.e., the ability to automati-
cally track facial movements in a video sequence, and to automat-
ically translate these into animation control parameters. Our cur-
rent techniques for registering images and converting them into
3D movements should provide a good start, although they will
probably need to be enhanced with feature-tracking techniques and
some rudimentary expression-recognition capabilities. Such a sys-
tem would enable not only very realistic facial animation, but also a
new level of video coding and compression techniques (since only
the expression parameters would need to be encoded), as well as
real-time control of avatars in 3D chat systems.
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A Least squares for pose recovery

To solve for a subset of the parameters given in Equation (2), we use linear
least squares. In general, given a set of linear equations of the form

aj � x� bj = 0, (4)

we solve for the vector x by minimizingX
j

(aj � x� bj)
2. (5)

Setting the partial derivative of this sum with respect to x to zero, we obtainX
j

(aja
T
j )x� bjaj = 0, (6)

i.e., we solve the set of normal equations [16] X
j

ajaT
j

!
x =
X

j

bjaj . (7)

More numerically stable methods such as QR decomposition or Singular
Value Decomposition [16] can also be used to solve the least squares prob-
lem, but we have not found them to be necessary for our application.

To update one of the parameters, we simply pull out the relevant linear co-
efficient aj and scalar value bj from Equation (2). For example, to solve for
pi, we set

a2k+0 = wk
i (xk

i �
krk

z � skrk
x), b2k+0 = wk

i (sktkx � xk
i )

a2k+1 = wk
i (yk

i �
krk

z � skrk
y), b2k+1 = wk

i (sktky � yk
i ).

For a scalar variable like sk, we obtain scalar equations

a2k+0 = wk
i (rk

x � pi + tkx), b2k+0 = wk
i

�
xk

i + xk
i �

k(rk
z � pi)

�
a2k+1 = wk

i (rk
y � pi + tky), b2k+1 = wk

i

�
yk

i + yk
i �

k(rk
z � pi)

�
.

Similar equations for aj and bj can be derived for the other parameters tkx , tky ,

and �k . Note that the parameters for a given camera k or 3D point i can be
recovered independently of the other parameters.

Solving for rotation is a little trickier than for the other parameters, since R
must be a valid rotation matrix. Instead of updating the elements in Rk di-
rectly, we replace the rotation matrix Rk with R̃Rk [42], where R̃ is given by
Rodriguez’s formula [15]:

R̃(n̂, �) = I + sin �X(n̂) + (1� cos �)X2(n̂), (8)

where � is an incremental rotation angle, n̂ is a rotation axis, and X(v) is the
cross product operator

X(v) =

"
0 �vz vy
vz 0 �vx
�vy vx 0

#
. (9)

A first order expansion of R̃ in terms of the entries in v = �n̂ = (vx, vy, vz) is
given by I + X(v).

Substituting into Equation (2) and letting qi = Rkpi, we obtain

wk
i

�
xk

i + xk
i �

k(r̃k
z � qi)� sk(r̃k

x � qi + tkx)
�

= 0 (10)

wk
i

�
yk

i + yk
i �

k(r̃k
z � qi)� sk(r̃k

y � qi + tky)
�

= 0,

where r̃k
x = (1,�vz, vy), r̃k

y = (vz , 1,�vx), r̃k
z = (�vy, vx, 1), are the rows

of [I + X(v)]. This expression is linear in (vx, vy, vz), and hence leads to a
3�3 set of normal equations in (vx , vy, vz). Once the elements of v have been
estimated, we can compute � and n̂, and update the rotation matrix using

Rk  R̃(n̂k, �k)Rk.
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Abstract
Thispaperaddressestheproblemof recovering3D non-

rigid shapemodelsfrom image sequences.For example,
givena videorecording of a talking person,wewouldlike
to estimatea 3D modelof thelips andthefull faceandits
internal modesof variation. Many solutionsthat recover
3D shapefrom 2D image sequenceshavebeenproposed;
theseso-calledstructure-from-motiontechniquesusually
assumethat the 3D object is rigid. For exampleTomasi
and Kanade’s factorizationtechniqueis basedon a rigid
shapematrix, which producesa tracking matrix of rank3
underorthographicprojection. We proposea novel tech-
niquebasedon a non-rigid model,where the3D shapein
each frameis a linear combinationof a setof basisshapes.
Under this model, the tracking matrix is of higher rank,
andcanbefactoredin a threestepprocessto yield to pose,
configuration and shape. We demonstrate this simplebut
effectivealgorithmon videosequencesof peopleandani-
mals.We were ableto recover 3D non-rigid facial models
with highaccuracy.

1 Intr oduction
This paperdemonstratesa new techniquefor recover-

ing 3D non-rigidshapemodelsfrom 2D imagesequences
recordedwith asinglecamera.For example,this technique
canbe appliedto video recordingsof a talking person.It
extractsa3D modelof thehumanface,includingall facial
expressionsandlip movements.

Previous work hastreatedthe two problemsof recov-
ering3D shapesfrom 2D imagesequencesandof discov-
ering a parameterizationof non-rigid shapedeformation-
s separately. Most techniquesthat addressthe structure-
from-motionproblemarelimited to rigid objects.For ex-
ample,TomasiandKanade’s factorizationtechnique[13]
recoversa shapematrix from imagesequences.Underor-
thographicprojection,it canbeshown thatthe2D tracking
datamatrixhasrank3 andcanbefactoredinto 3D poseand

3D shapewith theuseof thesingularvaluedecomposition
(SVD). Unfortunatelythesetechniquescannot beapplied
to nonrigiddeformingobjects,sincethey arebasedon the
rigidity assumption.

Most techniquesthat learnmodelsof shapevariations
do soon the2D appearance,anddo not recover 3D struc-
ture. Popularmethodsarebasedon PrincipalComponents
Analysis. If the objectdeformswith K linear degreesof
freedom,thecovariancematrixof theshapemeasurements
hasrankK. Theprincipalmodesof variationcanberecov-
eredwith theuseof SVD.

Weshow how 3D non-rigidshapemodelscanberecov-
eredunderscaledorthographicprojection. The 3D shape
in eachframe is a linear combinationof a set of K ba-
sis shapes.Under this model, the 2D tracking matrix is
of rank 3K andcanbe factoredinto 3D pose,objectcon-
figurationand3D basisshapeswith the useof SVD. We
demonstratedtheeffectivenessof this techniqueonseveral
datasets,includingchallengingrecordingsof humanfaces
during speechandvarying facial expressionsandanimal
bodymotions.

Section2 summarizesrelatedapproaches,Section3 de-
scribesour algorithm,andSection4 discussesour experi-
ments.

2 PreviousWork
Many methods have been proposed to solve the

Structure-from-motionproblem. Oneof the mostinfluen-
tial of thesewasproposedby TomasiandKanade[13] who
demonstratedthefactorizationmethodfor rigid objectsand
orthographicprojections.Many extensionshavebeenpro-
posed,suchasthemulti-bodyfactorizationmethodof Co-
seiraand Kanade[5] that relaxes the rigidity constraint.
In this method,K independentlymoving objectsare al-
lowed,which resultsin a trackingmatrix of rank3K anda
permutationalgorithmthat identifiesthe submatrixcorre-
spondingto eachobject. More recently, BascleandBlake



[1] proposedasolutionfor factoringfacialexpressionsand
poseduring tracking. Although it exploits the bilinearity
of 3D poseandnonrigid object configuration,it requires
a setof basisimagesselectedbeforefactorizationis per-
formed.Thediscoveryof thesebasisimagesis not partof
their algorithm.

Variousauthorshave demonstratedestimationof non-
rigid appearancein 2D usingPrincipalComponentsAnal-
ysis[14, 9, 3].

Themostimpressivework for 3D reconstructionof hu-
man faceswas presentedby [4]. A high-resolution3D
modelof theshapespacewasobtainedby laserscanninga
largefacedatabasea-priori. Usingahandinitializationand
iterative matchingof shape,texture, and lighting, a very
detailed3D faceshapecouldberecoveredfrom onesingle
image. Basedon 2D imagesequences,[6] and[10] were
trackingtheposeandconfigurationof humanfaces.A 3D
facemodelwasgiven a-priori aswell. Basu[2] demon-
strateshow the parameterscan be iteratively fitted to a
videosequence,startingfrom an initial lip model. [11, 7]
proposemethodsfor recoveringthe3D facialmodelitself
usingmultipleviews.

To the bestof our knowledge,all existing methodsfor
nonrigid3D shapeseitherneedana-priori model,or need
multiple views. In the next section,we demonstratehow
a 3D nonrigidshapemodelcanberecoveredfrom single-
view recordingsin solvingmultiple factorizationsteps.No
a-priorishapemodelis required.Wedemonstratethistech-
niqueon variousrecordingsof humanfacesandanimals.

3 Factorization Algorithm
We describetheshapeof thenon-rigidobjectasa key-

framebasissetS1 � S2 �������Sk. Eachkey-frameSi is a 3 � P
matrixdescribingP points.Theshapeof aspecificconfig-
urationis a linearcombinationof this basisset:

S � K

∑
i � 1

l i � Si S� Si
� IR3 	 P � l i � IR (1)

Undera scaledorthographicprojection,the P pointsof a
configurationSareprojectedinto 2D imagepoints 
 ui � vi � :�

u1 u2 ����� uP

v1 v2 ����� vP  � R ��� K

∑
i � 1

l i � Si ��� T (2)

R � �
r1 r2 r3

r4 r5 r6  (3)

R containsthe first 2 rows of the full 3D camerarotation
matrix, andT is the cameratranslation.The scaleof the
projectionis codedin l1 ������� lK . As in Tomasi-Kanade,we
eliminateT by subtractingthemeanof all 2D points,and
henceforthcanassumethatS is centeredat theorigin.

Wecanrewrite thelinearcombinationin (2)asamatrix-
matrixmultiplication:�

u1 ����� uP

v1 ����� vP  ��� l1R ����� lKR � ������ S1

S2�����
SK

����� (4)

We adda temporalindex to each2D point, anddenote

thetrackedpointsin framet as 
 u  t !i � v  t !i � . We assumewe
have 2D point trackingdataover N framesandcodethem
in thetrackingmatrixW:

W � ������������
u  1!1 ����� u  1!P

v  1!1
����� v  1!P

u  2!1
����� u  2!P

v  2!1
����� v  2!P�����

u  N !1
����� u  N !P

v  N !1
����� v  N !P

� �����������
Using(4) we canwrite:

W � ����� l  1!1 R 1! ����� l  1!K R 1!
l  2!1 R 2! ����� l  2!K R 2!�����
l  N !1 R N ! ����� l  N !K R N !

������" #%$ &
Q

� ���� S1

S2�����
SK

�����" #%$ &
B

(5)

3.1 BasisShapeFactorization
Equation(5) shows that the tracking matrix hasrank

3K and can be factoredinto 2 matrixes: Q containsfor
eachtime framet theposeR t ! andconfigurationweights

l  t !1
��������� l  t !K . B codesthe K key-framebasisshapesSi . The

factorizationcanbedoneusingsingularvaluedecomposi-
tion (SVD) by only consideringthe first 3K singularvec-
torsandsingularvalues(first 3K columnsin U , D, V):

SVD: W2N 	 P � Û � D̂ � V̂T � Q̂2N 	 3K � B̂3K 	 P (6)

3.2 Factoring Posefrom Configuration
In thesecondstep,we extract thecamerarotationsR t !

andshapebasisweightsl  t !i from thematrix Q̂. Although
Q̂ is a2N � 3K matrix, it only containsN 
 K � 6� freevari-
ables. Considerthe 2 rows of Q̂ that correspondto one
singletime frame t, namelyrows 2t ' 1 androw 2t ( for
conveniencewedropthetime index 
 t � ):
q  t ! � ( l  t !1 R t ! ����� l  t !K R t !*)� �

l1r1 l1r2 l1r3 ����� lKr1 lKr2 lKr3

l1r4 l1r5 l1r6 ����� lKr4 lKr5 lKr6 
2



We canreordertheelementsof q  t ! into anew matrix q̄  t ! :
q̄  t ! � ���� l1r1 l1r2 l1r3 l1r4 l1r5 l1r6

l2r1 l2r2 l2r3 l2r4 l2r5 l2r6�����
lKr1 lKr2 lKr3 lKr4 lKr5 lKr6

� ���
� ���� l1

l2�����
lK

����� � � r1 r2 r3 r4 r5 r6 �
which shows that q̄  t ! is of rank1 andcanbefactoredinto

the poseR̂ t ! andconfigurationweights l  t !i by SVD. We
successively apply the reorderingand factorizationto all
timeblocksof Q̂.
3.3 Adjusting Poseand Shape

In the final step,we needto enforcethe orthonormal-
ity of the rotationmatrices.As in [13], a linear transfor-
mation G is found by solving a leastsquaresproblem1.
The transformationG mapsall R̂ t ! into an orthonormal
R t ! � R̂ t ! � G. Theinversetransformationmustbeapplied
to the key-framebasisB̂ to keepthe factorizationconsis-
tent:Si � G+ 1 � Ŝi.

We arenow done. Given 2D trackingdataW, we can
estimatea non-rigid 3D shapematrix with K degreesof
freedom,andthecorrespondingcamerarotationsandcon-
figurationweightsfor eachtime frame.

4 Experiments
Part of this work is motivatedby our efforts in image-

basedfacialanimation,but the techniqueis not limited to
thefacialdomainonly. Wecollectedseveralvideosof peo-
plespeakingsentenceswith variousfacialexpressions.We
alsocollectedvideosof animalsin motion,to demonstrate
thegeneralityof thisapproach.Thehumanfacerecordings
containrigid headmotions,andnon-rigidlip, eye,andoth-
erfacialmotions.Wetrackedimportantfacialfeatureswith
anappearance-based2D trackingtechnique2. Figure1 and
7 shows exampletracking resultsfor video-1 andvideo-
2. For facial animation,we want explicit control over the
rigid headposeand the implicit facial variations. In the
following,weshow how wewereableto extracta3D non-
rigid facemodel parameterizedby thesedegreesof free-
dom. Video-3containsa walking giraffe (Figure9). This
videowastrackedby a point featuretracker3.

We appliedour methodto all threevideo sequences.
Thefirst is apublicbroadcastoriginally recordedonfilm in
theearly1960’s(video-1)andcontains1213videoframes.

1The least squares
problemenforcesorthonormalityof all R, t - : . r1r2r3 / GGT . r1r2r3 / T 0 1,. r4r5r6 / GGT . r4r5r6 / T 0 1, . r1r2r3 / GGT . r4r5r6 / T 0 0

2Weuseda learnedPCA-basedtracker similar to [9]
3Weusedfor this experimenta trackingapproachreportedin [12]

Figure 1: Exampleimagesfrom video-1 with overlayed
trackingpoints. We track theeye brows, upperandlower
eyelids,5 nosepoints,outerandinnerboundaryof thelips,
andthechin contour.
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Figure2: Averagepixel SSDerrorof back-projectedface
modelfor differentdegreesof freedom:K

The secondvideo was recordedin our lab (video-2)and
contains1000videoframes.Thethird videowasrecorded
in a public zoo andonly contains60 frames. All record-
ings are challengingfor 3D reconstructions,since they
containvery few out-of-planeheador body motions. In
a first experiment,we computedthe reconstructionerror
basedon thenumberof degreesof freedom(K) for video-
1. Wefactorizedthetrackingdata,andcomputedtheback-
projectionof theestimatedmodel,configuration,andpose
into the image. Figure 2 shows the SSD error between
the back-projectedpoints and imagemeasurements.For
K � 16 theerrorvanishes.For theremainderof thepaper,
we setK � 16. Figure3 and4 shows for exampleframes
of video-1andthereconstructed3D Smatrixrotatedby the
correspondingR t ! . To illustratethe3D databetter, we fit
a shadedsmoothsurfaceto the3D shapepoints.

We also investigatedthe discovered modesof varia-
tion. We computedthe meanandstandarddeviationsof1
l t1 ��������� l tK 2 in video-1. Figure5 and6 shows 4 standardde-
viationsof thesecondandthird modes(S1 � S2 � S3). Mode1
coversscalechange,mode2 cover someaspectof mouth
opening,andmode3 coverseye opening.The remaining
modespick up moresubtleandlessintuitivevariations.

Figure8 shows thereconstructionresultsfor video-2.

Figure9 shows exampleframesof thewalking giraffe.
Trackingthe completesurfaceof suchan animalis much
moredifficult. Although it hasvery distinct featuresthat
makesit easierto track thanotheranimals,therearestill
many local ambiguitiesto resolve. The reportedexperi-
mentswork in progress.For instance,we couldonly track
featureson the trunk, neck,andheadwith the technique
in [12], but not the legs. We envision a combinationof
severaldifferenttrackingstrategieswould bemorerobust.

Figure3: 3D reconstructedshapeandposefor first frame
of Figure1

Figure4: 3D reconstructedshapeandposefor last frame
of Figure1

Figure5: Variationalongmode2 of thenonrigidfacemod-
el. Themouthdeforms.
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Figure6: Variationalongmode3 of thenonrigidfacemod-
el. Theeyesclose.

Figure 7: Exampleimagesfrom video-2 with overlayed
trackingpoints.

Figure8: Frontandsideview for thereconstructionsfrom
video-2.

Figure9: Exampleframesof thegiraffe sequence

Another short-comingis that our techniquecan not deal
with missingtracksyet (seediscussionon our futureplan-
s). Thereforewe could only track 161 featuresin a se-
quenceof 60 framestotal. Figure10 and11 shows the3D
reconstruction.Figure12illustratesthefirst modeof varia-
tion. The2 differentcoloredsurfacesrepresent2 opposing
extremes.As you cansee,this modecoverssomeof the
headrotationsanda deformationof thetrunk dueto inter-
nal bonemotion. The secondmodeof variation is much
moresubtleandlessintuitive(Figure13).

Theresultson these3 videodatabasesarevery encour-
aging. Given the limited rangeof out-of-planefaceand
body orientations,the 3D details that we could recover
from the lip shapesandskin deformationsare quite sur-
prising.

5 Discussion
Wehavepresentedasimplebut effectivenew technique

for recovering3D non-rigidshapemodelsfrom 2D image
streamswithout theuseof any a-priori model. It is a three
stepprocedureusingmultiplefactorizations.Wewereable
to recover3D modelsfor videorecordingsof humanfaces
andanimals.Although thesearevery encouragingresult-
s,we planto evaluatethis techniqueandits limitationson
largerdatasets.Wealsoplanto extendthis techniquesuch
that occludedfeaturetrackscan be handled. For exam-

5



Figure10: 3D reconstructionof thegiraffe surface.

Figure11: Otherview of the3D reconstructionof thegi-
raffe surface.

Figure12: First modeof shapevariationof giraffe model.

Figure13: Secondmodeof shapevariationof giraffe mod-
el.
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ple, [8] demonstrateda techniquethat dealswith missing
featuretracksfor rigid 3D reconstruction.It projectsa in-
completemeasurementmatrix into amatrixof rank3. The
sametechniquecanbeusedto projecttheincompletema-
trix W into acompletematrixof rank3K. With suchexten-
sions,we anticipateto track longersequencesthatcontain
many moreview anglesof theobject.

Reconstructingnon-rigid models from single-view
videorecordingshasmany potentialapplications.In addi-
tion, we intendto applythis techniqueto our image-based
facialandfull-body animationsystemandto amodelbased
trackingsystem.
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pattern over Bay Area

• Camera kept pointed toward
Golden Gate Bridge

• Film transferred to videodisc

• Trackball interface allows 
real-time fly-over of San 
Francisco

• Helicopter flown in 2D grid 
pattern over Bay Area

• Camera kept pointed toward
Golden Gate Bridge

• Film transferred to videodisc

• Trackball interface allows 
real-time fly-over of San 
Francisco
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Matte PaintingMatte Painting

• Instead of building a set, just create an 
image!

• Used since the early days of the film 
industry
• Gone With the Wind (1939)

• Add actors, etc.

• Can pan and zoom
to simulate motion

• Now done digitally
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Star Wars Trench Sequence
Industrial Light and Magic, 1977

Star Wars Trench Sequence
Industrial Light and Magic, 1977

Images courtesy of Lucas Digital, Lucasfilm, and Industrial Light and MagicImages courtesy of Lucas Digital, Lucasfilm, and Industrial Light and Magic
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Image

Model

Tour into the PictureTour into the Picture

• An approximate 3D model is constructed 
interactively with easy-to-use tools

• Foreground objects modeled as flat cut-outs

• User fills in the occluded areas

• Animations from the single photograph reveal 
depth as well as visual detail

• Software at:
http://koigakubo.hitachi.co.jp/little/DL_TipE.html

• An approximate 3D model is constructed 
interactively with easy-to-use tools

• Foreground objects modeled as flat cut-outs

• User fills in the occluded areas

• Animations from the single photograph reveal 
depth as well as visual detail

• Software at:
http://koigakubo.hitachi.co.jp/little/DL_TipE.html

(Horry, Anjyo, Arai, Hitachi SIGGRAPH 97)
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Displacements
Michael Naimark, San Francisco Museum of Modern 
Art, 1984

Displacements
Michael Naimark, San Francisco Museum of Modern 
Art, 1984

• Image-based modeling and rendering with 
real geometry and real light

• Living room filmed with rotating movie 
camera

• Room painted white
• Film reprojected with rotating movie 

projector

• Image-based modeling and rendering with 
real geometry and real light

• Living room filmed with rotating movie 
camera

• Room painted white
• Film reprojected with rotating movie 

projector

“Interface” 
Lance Williams, Carter Burwell, Ned Greene
SIGGRAPH 85 Film Show

“Interface” 
Lance Williams, Carter Burwell, Ned Greene
SIGGRAPH 85 Film Show

• First use of Image-Based Reflection 
Mapping in an Animation

• First use of Image-Based Reflection 
Mapping in an Animation

http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/
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Reflection Mapping in FilmsReflection Mapping in Films

Flight of the Navigator
Randal Kleiser

1986

Flight of the Navigator
Randal Kleiser

1986

Terminator II
James Cameron

1991

Terminator II
James Cameron

1991

http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/http://www.CS.Berkeley.EDU/~debevec/ReflectionMapping/

Rouen RevisitedRouen Revisited (Golan Levin and Paul 
Debevec, SIGGRAPH 

96 Art Show)

(Golan Levin and Paul 
Debevec, SIGGRAPH 

96 Art Show)

Synthetic View:Synthetic View:
19961996

Synthetic View:Synthetic View:
18961896

Synthetic View:Synthetic View:
Monet PaintingMonet Painting
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Like a Rolling StoneLike a Rolling Stone

• View interpolation based on stereo reconstruction
between two views of the same scene
(Software by Arnauld Lamorlette)

• Free-style morphing between sparsely sampled 
frames

- Artifacts serve artistic effect

• View interpolation based on stereo reconstruction
between two views of the same scene
(Software by Arnauld Lamorlette)

• Free-style morphing between sparsely sampled 
frames

- Artifacts serve artistic effect

Buf Compagnie, SIGGRAPH 96 Electronic Theatre

3D computer effects: Buf Compagnie
Producer: Partizan-midi-minuit
Director: Michel Gondry
See Also: City of Lost Children,
commercials for Reebok, Chanel, Gap, 
and Fight Club

3D computer effects: Buf Compagnie
Producer: Partizan-midi-minuit
Director: Michel Gondry
See Also: City of Lost Children,
commercials for Reebok, Chanel, Gap, 
and Fight Club

Mona Lisa View Morph
Steve Seitz, SIGGRAPH 96

Mona Lisa View Morph
Steve Seitz, SIGGRAPH 96

Seitz, S. and C. Dyer.  View Morphing.  SIGGRAPH 96.Seitz, S. and C. Dyer.  View Morphing.  SIGGRAPH 96.
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Mona Lisa View Morph
Steve Seitz, SIGGRAPH 96

Mona Lisa View Morph
Steve Seitz, SIGGRAPH 96

Seitz, S. and C. Dyer.  View Morphing.  SIGGRAPH 96.Seitz, S. and C. Dyer.  View Morphing.  SIGGRAPH 96.

The Prince of Egypt
IBR for NPR!

The Prince of Egypt
IBR for NPR!

“ Exposure”

• Geometry constructed in 3D

• Shaded renderings given to artists to paint
• Digital paintings used as 3D textures

“ Exposure”

• Geometry constructed in 3D

• Shaded renderings given to artists to paint
• Digital paintings used as 3D textures

Video courtesy of Dreamworks, LLCVideo courtesy of Dreamworks, LLC
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More use of IBR for NPR in 
Films
More use of IBR for NPR in 
Films
• Tarzan – “ Deep Canvas”

• What Dreams May Come
Pierre Jasmin and Pete Litwinowicz, RE:Vision

• Tarzan – “ Deep Canvas”

• What Dreams May Come
Pierre Jasmin and Pete Litwinowicz, RE:Vision

Dayton Taylor’ s Virtual Camera
http://www.virtualcamera.com/
Dayton Taylor’ s Virtual Camera
http://www.virtualcamera.com/

• Array of pictures taken onto same roll of 
film

• Playback achieves “ frozen time”  effect

• Array of pictures taken onto same roll of 
film

• Playback achieves “ frozen time”  effect
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The Campanile Movie
SIGGRAPH 97 Electronic Theatre

- Model of Campus Built from 20 images

- Real-time virtual animation created w/ projective texture-mapping

The MatrixThe Matrix

George 
Borshukov,

Dan Piponi, Kim 
Libreri, and John
Gaeta, MANEX 
Entertainment

George 
Borshukov,

Dan Piponi, Kim 
Libreri, and John
Gaeta, MANEX 
Entertainment

www.mvfx.comwww.mvfx.com

www.whatisthematrix.comwww.whatisthematrix.com
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Conclusion
IBMR in Art and Cinema
Conclusion
IBMR in Art and Cinema

• Image-based techniques have a long lineage

• Allow reinterpretation of existing imagery

• Enable many new effects
• Artifacts can be interesting

• IBMR techniques will likely become 
standard tools in filmmaking
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Synthetic views of the Rouen Cathedral derived (respectively) from:
photographs taken in January 1996; a painting by Claude Monet, made in 1894-95;

and photographs taken in the mid-1890's. All are shown from the same point of view. 
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Between 1892 and 1894, the French Impressionist Claude Monet produced nearly 30 oil paintings of
the main façade of the Rouen Cathedral in Normandy. Fascinated by the play of light and atmosphere
over the Gothic church, Monet systematically painted the cathedral at different times of day, from
slightly different angles, and in varied weather conditions. Each painting, quickly executed, offers a
glimpse into a narrow slice of time and mood.

We are interested in widening these slices, extending and connecting the dots occupied by Monet's
paintings in the multidimensional space of turn-of-the-century Rouen. In Rouen Revisited, we
present an interactive kiosk in which users are invited to explore the façade of the Rouen Cathedral,
as Monet might have painted it, from any angle, time of day, and degree of atmospheric haze. Users
can contrast these re-rendered paintings with similar views synthesized from century-old archival
photographs, as well as from recent photographs that reveal the scars of a century of weathering and
war.

Rouen Revisited is our homage to the hundredth anniversary of Monet's cathedral paintings. Like
Monet's series, our installation is a constellation of impressions, a document of moments and
percepts played out over space and time. In our homage, we extend the scope of Monet's study to
where he could not go, bringing forth his object of fascination from a hundred feet in the air and
across a hundred years of history.

The Technology

To produce renderings of the cathedral's façade from arbitrary angles, we needed an accurate,
three-dimensional model of the cathedral. For this purpose, we made use of new modeling and
rendering techniques, developed by Paul Debevec at the University of California at Berkeley, that
allow three-dimensional models of architectural scenes to be constructed from a small number of
ordinary photographs. We traveled to Rouen in January 1996, where, in addition to taking a set of
photographs from which we could generate the model, we obtained reproductions of Monet's
paintings as well as antique photographs of the cathedral as it would have been seen by Monet.

Once the 3D model was built, the photographs and Monet paintings were registered with and
projected onto the 3D model. Re-renderings of each of the projected paintings and photographs were
then generated from hundreds of points of view; renderings of the cathedral in different atmospheric
conditions and at arbitrary times of day were derived from our own time-lapse photographs of the
cathedral and by interpolating between the textures of Monet's original paintings. The model
recovery and image rendering was accomplished with custom graphics software on a Silicon
Graphics Indigo2. The Rouen Revisited interface runs in Macromedia Director on a 166-MHz
Pentium PC, and allows unencumbered exploration of more than 12,000 synthesized renderings.

The execution of Rouen Revisited entailed more than half a dozen novel technical achievements. The
most basic of these were the techniques of view-dependent texture-mapping, photogrammetric
modeling, and model-based stereo that Paul Debevec developed in his Berkeley Ph.D. thesis. Other
achievements, however, were more specific to the Rouen Revisited installation itself. A brief survey
of the technological accomplishments in Rouen Revisited can be found here.

Further information about the modeling and rendering algorithms used in Rouen Revisited can be
found in: 

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering Architecture
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Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering Architecture
from Photographs. In SIGGRAPH '96 Proceedings, August 1996. 

The Presentation

Rouen Revisited is presented in an arch-shaped maple cabinet, seven feet three
inches tall. Its front face is articulated by three features: Near the top, a backlit
stained-glass rosette (whose design is based on the rosette of the Rouen Cathedral)
acts as a beacon for passers-by. Below that, a 17-inch color monitor, configured on
its side, provides users with a view onto the cathedral's surface. Finally, a
projecting wedge-shaped block at waist-level provides the interface controls for
operating the kiosk.

Users explore the surface of the Rouen Cathedral by touching one of three
force-sensitive regions exposed within a brass plate mounted on the interface
wedge. Each region affords the user with control of a different dimension of the
façade:

Touching the corners of the upper, triangular region of the brass plate allows
users to select between renderings of Monet paintings, archival photographs
from the 1890's, or new photographs from 1996. Dragging one's finger along
this groove creates a blend between these modes.

Moving one's finger left and right inside the central, upside-down-T-shaped
region of the brass control plate allows users to change the time of day.
Moving one's finger up and down the vertical groove of this control changes
the level of fog. This control is disabled for the archival photographs, for
which time-series and fog-series source stills were unavailable. Nevertheless,
this control is active for the new photographs and Monet paintings, and
permits users to draw comparisons between the actual appearance of the
cathedral (given certain lighting conditions) and Monet's interpretation of the
cathedral so lit.

Dragging one's finger across the rectangular, bottom region of the brass plate
allows users to change their point of view around the Rouen Cathedral.

The Experience
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The Rouen Revisited interactive kiosk allows its users to explore eight dimensions of the façade of
the Rouen Cathedral in Normandy. We can examine the cathedral in various levels of fog; at
different times of day; from different points of view on a three-dimensional viewing surface—and
lastly, along three dimensions of interpretation and media: namely, as the cathedral appeared to
photographers a hundred years ago, as it appears today, and as it would appear if Monet's
impressionist paintings of it were aligned with and projected onto its surface.

Many more ways of exploring and understanding the Gothic cathedral are afforded by moving
between and around these modes. We can observe the many ways in which the cathedral has
changed in the past century, for example, by moving between the re-renderings of the old
photographs and those of the new photographs. We can come to an understanding of which
geometric details Monet chose to focus on, by moving between views of his paintings and the
historic photographs from the same time period. We can come to understand how the play of light at
a given time of day may have inspired Monet to paint the colors and textures he did—by moving
between a painting and the new photograph which shares the same time of day. And, when we scrub
through the time-series of Monet paintings, we have a unique opportunity to access the entire set of
Monet's Cathedral paintings, and gain an appreciation for the both the range of Monet's exploration
as well as the constraints within which he chose to work. Finally, by changing the time of day and
our point of view around the cathedral, we may derive a sense of place—a feeling for the Rouen
Cathedral as a real physical artifact, and a sense of the passage of a day in Rouen. 

Rouen Revisited is an artifact about artifacts about an artifact—an interactive and open-ended
interpretation of paintings and photographs, which are themselves interpretations of an ancient
Gothic artwork. Ultimately, the interpretation which Rouen Revisited affords is a dynamic one,
forged in the mind of the user when she creates, using the multidimensional interface, her own
Rouen Cathedral composition. 

Renderings from Rouen Revisited

The unwieldy size of the Rouen Revisited image database (nearly 3 gigabytes of renderings) prohibits
us from creating an interactive, web-based version of the project at this time. In this section of the
Rouen site, we instead attempt to convey the experience made possible by Rouen Revisited in a
compact, easily-transmissable and (for now) non-interactive form. In addition to presenting still
images, we have also converted select paths through the multidimensional space of possible
renderings into short animations and digital videos. The animations are presented as animated gifs,
reduced to one-ninth of their original size and dithered from 24-bit color down to a browser-safe
8-bit palette. Viewing these animations requires a Netscape 2.0 or better browser. The Quicktime
and AVI videos are similarly reduced in size, and additionally compressed with the Apple Video or
Microsoft Video compression formats.

To the animations and stills. 

Artist Biographies
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Golan Levin is an artist and designer of artifacts and experiences. Before he joined Interval
Research in 1994, Golan completed his self-made undergraduate degree in Media Arts and Sciences
at the Massachusetts Institute of Technology. Since then, he has focused on the design of expressive
instruments, tools and toys for producing and playing with media.

Paul Debevec received degrees in Math and Computer Engineering from the University of Michigan
in 1992, and recently completed his Ph.D. in Computer Science at the University of California at
Berkeley. For his thesis, Paul developed a method of modeling and rendering architectural scenes
photorealistically from ordinary photographs by synthesizing techniques from computer vision with
those of computer graphics. With no current commitments after graduate school, Paul is interested in
continuing to capture, visualize, and interpret the world in new and creative ways through novel
photographic techniques.

A photograph of the authors with the Rouen Revisited kiosk, August 1996.
A photograph of the authors in front of the Rouen Cathedral, January 1996.

Exhibition Information

Rouen Revisited is available for public exhibition on an expenses-only basis. When it is not on loan
to outside exhibitors, Rouen Revisited may be seen by appointment at the Interval Research
Corporation Gallery. For further information about the Rouen Revisited installation, Please email
gallery@interval.com or contact the Interval Gallery at (650) 842-6222 [phone], (650) 354-0872
[fax].

Credits

Rouen Revisited was conceived and developed by Golan Levin and Paul Debevec. The kiosk's maple
cabinet was constructed by Warren H. Shaw, furniture-maker, of South San Francisco. The
stained-glass rosette was hand-made by David Kaczor, glass artist, of Mountain View, California.
The brass interface gate was machined by Shane Levin, president of the HAP Engraving Company,
New York City. Invaluable suggestions and assistance with the presentation design were provided by
Joe Ansel of Ansel Associates, and Charles "Bud" Lassiter of Interval Research Corporation. Scott
Snibbe and Geoff Smith provided key software assistance; additional hardware, electronics and
construction support were lent by Scott Wallters, Chris $eguine and Bernie Lubell.

Rouen Revisited would not have been possible without the generous support of Paul Allen, David
Liddle, and Noel Hirst; Michael Naimark, Bud Lassiter, Sally Rosenthal, Carol Moran, Marc Davis,
Frank Crow, Stephan Gehring, Marie-Dominique Baudot, Laurence Shelvin, and Mark Keen;
Jitendra Malik and Camillo J. Taylor; Shane Levin; and Joe Ansel.

Golan Levin
Interval Research Corporation

1801-C Page Mill Road
Palo Alto, CA 94304

+1.650.424.0722
levin@interval.com

Paul Debevec
Computer Science Division

University of California at Berkeley
545 Soda Hall

Berkeley, CA 94720-1776
debevec@cs.berkeley.edu
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