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Preface

This book gives a practical approach to understanding implementations of non-strict functional
languages using lazy graph reduction. The book is intended to be a source of practical labwork
material, to help make functional-language implementations ‘come alive’, by helping the reader
to develop, modify and experiment with some non-trivial compilers.

The unusual aspect of the book is that it is meant to be executed as well as read. Rather than
merely presenting an abstract description of each implementation technique, we present the
code for a complete working prototype of each major method, and then work through a series
of improvements to it. All of the code is available in machine-readable form.

Overview of the book

The principal content of the book is a series of implementations of a small functional language
called the Core language. The Core language is designed to be as small as possible, so that it is
easy to implement, but still rich enough to allow modern non-strict functional languages to be
translated into it without losing efficiency. It is described in detail in Chapter 1, in which we
also develop a parser and pretty-printer for the Core language.

Appendix B contains a selection of Core-language programs for use as test programs thoughout
the book.

The main body of the book consists of four distinct implementations of the Core language.

• Chapter 2 describes the most direct implementation, based on template instantiation.

• Chapter 3 introduces the G-machine, and shows how to compile the program to sequences
of instructions (G-code) which can be further translated to machine code.

• Chapter 4 repeats the same exercise for a different abstract machine, the Three Instruction
Machine (TIM), whose evaluation model is very different from that of the G-machine. The
TIM was developed more recently than the G-machine, so there is much less other literature
about it. Chapter 4 therefore contains a rather more detailed development of the TIM’s
evaluation model than that given for the G-machine.

• Finally, Chapter 5 adds a new dimension by showing how to compile functional programs
for a parallel G-machine.

For each of these implementations we discuss two main parts, the compiler and the machine
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Figure 1: Overview of the implementations

interpreter. The compiler takes a Core-language program and translates it into a form suitable
for execution by the machine interpreter.

The machine interpreter simulates the execution of the compiled program. In each case the
interpreter is modelled as a state transition system so that there is a very clear connection
between the machine interpreter and a ‘real’ implementation. Figure 1 summarises the structure
of our implementations.

One important way in which the Core language is restrictive is in its lack of local function
definitions. There is a well-known transformation, called lambda lifting, which turns local func-
tion definitions into global ones, thus enabling local function definitions to be written freely
and transformed out later. In Chapter 6 we develop a suitable lambda lifter. This chapter is
more than just a re-presentation of standard material. Full laziness is a property of functional
programs which had previously been seen as inseparable from lambda lifting. In Chapter 6 we
show that they are in fact quite distinct, and show how to implement full laziness in a separate
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pass from lambda lifting.

Throughout the book we use a number of utility functions and data types which are defined in
Appendix A.

Some sections and exercises are a little more advanced, and can be omitted without major loss.
They are identified with a dagger, thus: †.

The prototyping language

The question arises of what language to use for writing our implementations. We have chosen to
use an existing functional language, Miranda1. One of the major uses of functional languages is
for rapid prototyping, because they allow us to express the fundamental aspects of the prototype
without getting bogged down in administrative detail. We hope that this book can serve as a
large example to substantiate this claim. In addition, working through this book should provide
useful experience of writing substantial functional programs.

This book is not an introduction to functional programming. We assume that you have done
some programming in a functional language already. (Suitable introductions to functional pro-
gramming include [Bird and Wadler 1988] and [Holyer 1991].) Nevertheless, the programs de-
veloped in this book are quite substantial, and we hope they will serve as a role model, to stretch
and develop your ability to write clear, modular functional programs.

Miranda code is written in typewriter fount using the ‘inverse comment convention’. For exam-
ple, here is a definition of a function which takes the length of a list:

> length [] = 0
> length (x:xs) = 1 + length xs

The > mark in the left margin indicates that this is a line of executable Miranda code. Not
only does this distinguish Miranda code from Core-language programs (which are also written
in typewriter fount), but Miranda itself recognises this convention, so the text of each chapter
of this book is executable Miranda code! Indeed, it has all been executed. (Actually, a small
amount of pre-processing is required before feeding the text to Miranda, because we sometimes
write several versions of the same function, as we refine the implementation, and Miranda
objects to such multiple definitions. The pre-processing is simply a selection process to pick the
particular version we are interested in.)

The text contains all the code required for the initial version of each implementation. Occasion-
ally, this becomes rather tiresome, because we have to present chunks of code which are not very
interesting. Such chunks could have been omitted from the printed text (though not from the
executable version), but we have chosen to include them, so that you can always find a definition
for every function. (The index contains an entry for every Miranda function definition.)

Like most functional languages, Miranda comes with a collection of pre-declared functions,
which are automatically in scope. We make use of these throughout the text, referring to them
as standard functions. You can find details of all the standard functions in Miranda’s online
manual.

1Miranda is a trade mark of Research Software Ltd.
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What this book does not cover

We focus exclusively in this book on the ‘back end’ of functional-language compilers. We make
no attempt to discuss how to translate programs written in a fully fledged functional language,
such as Miranda, into the Core language, or how to type-check such programs.

The development throughout is informal. It would be nice to give a formal proof of the equiva-
lence between the meaning of a Core program and its implementation, but this is quite a hard
task. Indeed, the only full proof of such an equivalence which we know of is [Lester 1988].

Relationship to The implementation of functional programming languages

An earlier book by one of us, [Peyton Jones 1987], covers similar material to this one, but in a
less practically oriented style. Our intention is that a student should be able to follow a course
on functional-language implementations using the present book alone, without reference to the
other.

The scope of this book is somewhat more modest, corresponding to Parts 2 and 3 of [Peyton Jones 1987].
Part 1 of the latter, which discusses how a high-level functional language can be translated into
a core language, is not covered here at all.

Getting the machine-readable sources

You can get all the source code for this book, by network file transfer (FTP) from the several
sites. In each case, you need only get the file

pjlester-n.m.tar.Z

where n.m is the current version number of the book. There is always only one such file, but
the n.m may vary as we correct errors and otherwise improve the material. Once you have got
the file, run the command

zcat pjlester-n.m.tar.Z | tar xf -

and then read or print the README file, and the DVI file installation.dvi. If you don’t have
zcat, do the following instead:

uncompress pjlester-n.m.tar.Z
tar xf pjlester-n.m.tar

The sites where the sources are held are as follows.

Site Host name Host address Directory
Glasgow ftp.dcs.glasgow.ac.uk 130.209.240.50 pub/pj-lester-book
Yale nebula.cs.yale.edu 128.36.13.1 pub/pj-lester-book
Chalmers animal.cs.chalmers.se 129.16.2.27 pub/pj-lester-book

Log in as anonymous, and use your electronic mail address as password. Here is a sample Internet
FTP session:
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% ftp nebula.cs.yale.edu
Connected to NEBULA.SYSTEMSZ.CS.YALE.EDU.
220 nebula FTP server (SunOS 4.0) ready.
Name (nebula.cs.yale.edu:guestftp): anonymous
331 Guest login ok, send ident as password.
Password: simonpj@dcs.glasgow.ac.uk
230 Guest login ok, access restrictions apply.
ftp> type binary
200 Type set to I.
ftp> cd pub/pj-lester-book
250 CWD command successful.
ftp> get pjlester-1.2.tar.Z
<messages about a successful transfer would come here>
ftp> bye

Within the UK, you may get the above file from uk.ac.glasgow.dcs by anonymous UK NIFTP
(binary mode; user: guest; password: your e-mail address); request:

<FP>/pj-lester-book/filename

A typical command you might use on at least some Unix machines is:

cpf -b ’<FP>/pj-lester-book/pjlester-1.2.tar.Z@uk.ac.glasgow.dcs’
pjlester-1.2.tar.Z

Errors

We would greatly appreciate your help in eliminating mistakes in the text. If you uncover any
errors, please contact one of us at the addresses given below.
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Chapter 1

The Core language

All our implementations take some program written in a simple Core language and execute it.
The Core language is quite impoverished, and one would not want to write a large program in
it. Nevertheless it has been carefully chosen so that it is possible to translate programs in a
rich functional language (such as Miranda) into the Core language without losing expressiveness
or efficiency. The Core language thus serves as a clean interface between the ‘front end’ of the
compiler, which is concerned with high-level language constructs, and the ‘back end’, which is
concerned with implementing the Core language in various different ways.

We begin with an informal introduction to the Core language (Section 1.1). Following this, we
define the Core language more formally, by giving:

• Its syntax (Section 1.2).

• Miranda data types coreProgram and coreExpr for Core-language programs and expres-
sions respectively (Section 1.3). These will serve as the input data types for the compilers
we build.

• Definitions for a small standard prelude of Core-language functions, which will be made
available in any Core program (Section 1.4).

• A pretty-printer, which transforms a Core-language program into a character string which,
when printed, is a formatted version of the program (Section 1.5).

• A parser, which parses a character string to produce a Core-language program (Sec-
tion 1.6).

This chapter has a second purpose: it introduces and uses many of the features of Miranda which
we will use throughout the book before we get involved with any of our functional-language
implementations.
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1.1 An overview of the Core language

Here is an example Core program1, which evaluates to 42:

main = double 21
double x = x + x

A Core program consists of a set of supercombinator definitions, including a distinguished one,
main. To execute the program, we evaluate main. Supercombinators can define functions, such
as the definition of double. double is a function of one argument, x, which returns twice
its argument. The program looks quite similar to the top level of a Miranda script, except
that no pattern matching is permitted for function arguments. Pattern matching is performed
by a separate Core language construct, the case expression, which is discussed below. Each
supercombinator is defined by a single equation whose arguments are all simple variables.

Notice that not all supercombinators have arguments. Some, such as main, take no arguments.
Supercombinators with no arguments are also called constant applicative forms or CAFs and,
as we shall see, often require special treatment in an implementation.

1.1.1 Local definitions

Supercombinators can have local definitions, using the let construct of the Core language:

main = quadruple 20 ;
quadruple x = let twice_x = x+x

in twice_x + twice_x

Here twice_x is defined locally within the body of quadruple to be x+x, and quadruple re-
turns twice_x + twice_x. Like Miranda where clauses, local definitions are useful both to
name intermediate values, and to save recomputing the same value twice; the programmer can
reasonably hope that only two additions are performed by quadruple.

A let expression is non-recursive. For recursive definitions, the Core language uses the letrec
construct, which is exactly like let except that its definitions can be recursive. For example:

infinite n = letrec ns = cons n ns
in ns

The reason that we distinguish let from letrec in the Core language (rather than providing
only letrec) is that let is a bit simpler to implement than letrec, and we may get slightly
better code.

let and letrec are similar to the Miranda where clause, but there are a number of important
differences:

• The where clause always defines a recursive scope. There is no non-recursive form.
1We use typewriter fount for Core programs, but without the initial > sign which distinguishes executable

Miranda code.

12



• A where clause can be used to define local functions, and to perform pattern matching:

... where f x = x+y
(p,q) = zip xs ys

Neither of these facilities is provided by the Core language let and letrec expressions.
Functions can only be defined at the top level, as supercombinators, and pattern matching
is done only by case expressions.

In short, the left-hand side of a let or letrec binding must be a simple variable.

• The let/letrec construct is an expression. It is therefore quite legal to write (for exam-
ple):

quad_plus_one x = 1 + (let tx = x+x in tx+tx)

In contrast a where clause in Miranda can only be attached to definitions. (One reason
for this is that it allows the definitions in a Miranda where clause to range over several
guarded right-hand sides.)

1.1.2 Lambda abstractions

Functions are usually expressed in the Core language using top-level supercombinator definitions,
and for most of the book this is the only way in which functions can be denoted. However, it is
sometimes convenient to be able to denote functions using explicit lambda abstractions, and the
Core language provides a construct to do so. For example, in the program

double_list xs = map (\ x. 2*x) xs

the lambda abstraction (\ x. 2*x) denotes the function which doubles its argument.

It is possible to transform a program involving explicit lambda abstractions into an equivalent
one which uses only top-level supercombinator definitions. This process is called lambda lifting,
and is discussed in detail in Chapter 6. Throughout the other chapters we assume that this
lambda lifting process has been done, so they make no use of explicit lambda abstractions.

The final major construct in the Core language is the case expression, which expresses pattern
matching. There are several ways of handling pattern matching, so we begin with a review of
structured data types.

1.1.3 Structured data types

A universal feature of all modern functional programming languages is the provision of structured
types, often called algebraic data types. For example, here are a few algebraic type definitions,
written in Miranda:

colour ::= Red | Green | Blue

13



complex ::= Rect num num | Polar num num

numPair ::= MkNumPair num num

tree * ::= Leaf * | Branch (tree *) (tree *)

Each definition introduces a new type (such as colour), together with one or more constructors
(such as Red, Green). They can be read as follows: ‘A value of type colour is either Red or
Green or Blue’, and ‘A complex is either a Rect containing two nums, or a Polar containing
two nums’.

The type tree is an example of a parameterised algebraic data type; the type tree is parame-
terised with respect to the type variable *. It should be read as follows: ‘a tree of *’s is either
a Leaf containing a *, or a Branch containing two tree of *’s’. Any particular tree must have
leaves of uniform type; for example, the type tree num is a tree with nums at its leaves, and the
type tree colour is a tree with colours at its leaves.

Structured values are built with these constructors; for example the following expressions denote
structured values:

Green
Rect 3 4
Branch (Leaf num) (Leaf num)

Structured values are taken apart using pattern matching. For example:

isRed Red = True
isRed Green = False
isRed Blue = False

first (MkNumPair n1 n2) = n1

depth (Leaf n) = 0
depth (Branch t1 t2) = 1 + max (depth t1) (depth t2)

Several data types usually thought of as ‘built in’ are just special cases of structured types.
For example, booleans are a structured type: they can be defined by the algebraic data type
declaration

bool ::= False | True

Apart from their special syntax, the lists and tuples provided by Miranda are further examples
of structured types. If we use Cons and Nil as constructors rather than the special syntax of :
and [], we could define lists like this:

list * ::= Nil | Cons * (list *)

Chapter 4 of [Peyton Jones 1987] gives a fuller discussion of structured types.
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The question arises, therefore: how are we to represent and manipulate structured types in our
small Core language? In particular, our goal is to avoid having data type declarations in the
Core language altogether. The approach we take breaks into two parts:

• Use a simple, uniform representation for constructors.

• Transform pattern matching into simple case expressions.

1.1.4 Representing constructors

Instead of allowing user-defined constructors such as Red and Branch in our Core language, we
provide a single family of constructors

Pack{tag , arity}

Here, tag is an integer which uniquely identifies the constructor, and arity tells how many
arguments it takes. For example, we could represent the constructors of colour, complex, tree
and numPair as follows:

Red = Pack{1,0}
Green = Pack{2,0}
Blue = Pack{3,0}

Rect = Pack{4,2}
Polar = Pack{5,2}

Leaf = Pack{6,1}
Branch = Pack{7,2}

MkNumPair = Pack{8,2}

So in the Core language one writes

Pack{7,2} (Pack{6,1} 3) (Pack{6,1} 4)

instead of

Branch (Leaf 3) (Leaf 4)

The tag is required so that objects built with different constructors can be distinguished from one
another. In a well-typed program, objects of different type will never need to be distinguished
at run-time, so tags only need to be unique within a data type. Hence, we can start the tag at
1 afresh for each new data type, giving the following representation:

15



Red = Pack{1,0}
Green = Pack{2,0}
Blue = Pack{3,0}

Rect = Pack{1,2}
Polar = Pack{2,2}

Leaf = Pack{1,1}
Branch = Pack{2,2}

MkNumPair = Pack{1,2}

1.1.5 case expressions

In general, the pattern matching allowed by modern functional programming languages can be
rather complex, with multiple nested patterns, overlapping patterns, guards and so on. For
the Core language, we eliminate these complications by outlawing all complex forms of pattern
matching! We do this by providing only case expressions in the Core language. Their formal
syntax is given in Section 1.2, but here are some examples:

isRed c = case c of
<1> -> True ;
<2> -> False ;
<3> -> False

depth t = case t of
<1> n -> 0 ;
<2> t1 t2 -> 1 + max (depth t1) (depth t2)

The important thing about case expressions is that each alternative consists only of a tag
followed by a number of variables (which should be the same as the arity of the constructor).
No nested patterns are allowed.

case expressions have a very simple operational interpretation, rather like a multi-way jump:
evaluate the expression to be analysed, get the tag of the constructor it is built with and evaluate
the appropriate alternative.

1.2 Syntax of the Core language

Figure 1.1 gives the syntax for the Core language. The grammar allows infix binary operators,
but (for brevity) is not explicit about their precedence. Instead we give the following table of
precedences, where a higher precedence means tighter binding:
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Precedence Associativity Operator
6 Left Application
5 Right *

None /
4 Right +

None -
3 None == ˜= > >= < <=
2 Right &
1 Right |

An operator’s associativity determines when parentheses may be omitted around repetitions of
the operator. For example, + is right-associative, so x+y+z means the same as x+(y+z). On the
other hand, / is non-associative, so the expression x/y/z is illegal.

There is no special operator symbol for unary negation. Instead, the negate function is provided,
which behaves syntactically like any normal function. For example:

f x = x + (negate x)

The boolean negation operator, not, is handled in the same way.

1.3 Data types for the Core language

For each of the implementations discussed in this book we will build a compiler and a machine
interpreter. The compiler takes a Core program and translates it into a form suitable for
execution by the machine interpreter. To do this we need a Miranda data type to represent
Core programs, and that is what we will define in this section. In fact we will define a type for
Core programs, one for Core expressions and a few other auxiliary types.

The data type of Core-language expression, expr, is defined as follows:

> module Language where
> import Utils

> data Expr a
> = EVar Name -- Variables
> | ENum Int -- Numbers
> | EConstr Int Int -- Constructor tag arity
> | EAp (Expr a) (Expr a) -- Applications
> | ELet -- Let(rec) expressions
> IsRec -- boolean with True = recursive,
> [(a, Expr a)] -- Definitions
> (Expr a) -- Body of let(rec)
> | ECase -- Case expression
> (Expr a) -- Expression to scrutinise
> [Alter a] -- Alternatives
> | ELam [a] (Expr a) -- Lambda abstractions
> deriving (Text)
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Programs program → sc1; . . . ; scn n ≥ 1

Supercombinators sc → var var1 . . . varn = expr n ≥ 0

Expressions expr → expr aexpr Application
| expr1 binop expr2 Infix binary application
| let defns in expr Local definitions
| letrec defns in expr Local recursive definitions
| case expr of alts Case expression
| \ var1 . . . varn . expr Lambda abstraction (n ≥ 1)
| aexpr Atomic expression

aexpr → var Variable
| num Number
| Pack{num,num} Constructor
| ( expr ) Parenthesised expression

Definitions defns → defn1; . . . ; defnn n ≥ 1
defn → var = expr

Alternatives alts → alt1; . . . ; altn n ≥ 1
alt → <num> var1 . . . varn-> expr n ≥ 0

Binary operators binop → arithop | relop | boolop
arithop → + | - | * | / Arithmetic
relop → < | <= | == | ˜= | >= | > Comparison
boolop → & | | Boolean

Variables var → alpha varch1 . . . varchn n ≥ 0
alpha → an alphabetic character
varch → alpha | digit | _

Numbers num → digit1 . . . digitn n ≥ 1

Figure 1.1: BNF syntax for the Core language
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We choose to parameterise the data type of expr with respect to its binders. A binder is the
name used at the binding occurrence of a variable; that is, on the left-hand side of a let(rec)
definition, or in a lambda abstraction. The declaration can be read ‘An expr of * is either an
EVar containing a name, or . . . , or an ELam containing a list of values of type * and an expr of
*’.

For the most of the book we always use name in these binding positions, so we use a type synonym
to define the type of coreExpr, which is the type we will normally use:

> type CoreExpr = Expr Name

The ability to use types other than name in binding positions is only used in Chapter 6.

Apart from this, the data type follows fairly directly from the syntax given in the previous
section, except that various superficial differences are discarded. The biggest difference is that
infix operators are expressed in prefix form in the data type. For example, the expression

x + y

is represented by

EAp (EAp (EVar "+") (EVar "x")) (EVar "y")

Variables are represented by an EVar constructor containing the variable’s name. A variable’s
name is represented simply by a list of characters, which we express using another type synonym:

> type Name = String

Constructors are identified by their arity and tag, as described in Section 1.1.4.

let and letrec expressions are represented by an ELet constructor containing: a flag of type
isRec to distinguish the recursive case from the non-recursive one; a list of definitions; and
the expression which is the body of the let(rec). We choose to represent isRec as a boolean
variable, and we define the two boolean values as follows:

> type IsRec = Bool
> recursive, nonRecursive :: IsRec
> recursive = True
> nonRecursive = False

Each definition is just a pair of the variable name being bound and the expression to which it
is bound. We define two useful functions which each take a list of definitions: bindersOf picks
out the list of variables bound by the definitions, and rhssOf (short for ‘right-hand sides of’)
extracts the list of right-hand sides to which they are bound.

> bindersOf :: [(a,b)] -> [a]
> bindersOf defns = [name | (name, rhs) <- defns]
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> rhssOf :: [(a,b)] -> [b]
> rhssOf defns = [rhs | (name, rhs) <- defns]

case expressions have an expression to analyse, and a list of alternatives. Each alternative
contains a tag, a list of the bound variables and the expression to the right of the arrow.

> type Alter a = (Int, [a], Expr a)
> type CoreAlt = Alter Name

We take the opportunity to define a useful function on expressions, a boolean-valued function,
isAtomicExpr, which identifies ‘atomic’ expressions; that is, expressions with no internal struc-
ture:

> isAtomicExpr :: Expr a -> Bool
> isAtomicExpr (EVar v) = True
> isAtomicExpr (ENum n) = True
> isAtomicExpr e = False

Finally, a Core-language program is just a list of supercombinator definitions:

> type Program a = [ScDefn a]
> type CoreProgram = Program Name

A supercombinator definition contains the name of the supercombinator, its arguments and its
body:

> type ScDefn a = (Name, [a], Expr a)
> type CoreScDefn = ScDefn Name

The argument list might be empty, in the case of a supercombinator with no arguments.

We conclude with a small example. Consider the following small program.

main = double 21 ;
double x = x+x

This program is represented by the following Miranda expression, of type coreProgram:

[("main", [], (EAp (EVar "double") (ENum 21))),
("double", ["x"], (EAp (EAp (EVar "+") (EVar "x")) (EVar "x")))

]

1.4 A small standard prelude

Miranda has a standard prelude which contains definitions of various useful functions (such as
map, foldr and so on) which are always available. We will do the same for the Core language,
by providing the following standard definitions:
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I x = x ;
K x y = x ;
K1 x y = y ;
S f g x = f x (g x) ;
compose f g x = f (g x) ;
twice f = compose f f

This ‘standard prelude’ is necessarily rather small, because we want it to work for all of our
implementations, including the most primitive ones which will lack arithmetic and facilities for
manipulating data structures. All that is available in the simplest implementations is function
application!

The following definition for preludeDefs, which will be used throughout the book, embodies
these definitions:

> preludeDefs :: CoreProgram
> preludeDefs
> = [ ("I", ["x"], EVar "x"),
> ("K", ["x","y"], EVar "x"),
> ("K1",["x","y"], EVar "y"),
> ("S", ["f","g","x"], EAp (EAp (EVar "f") (EVar "x"))
> (EAp (EVar "g") (EVar "x"))),
> ("compose", ["f","g","x"], EAp (EVar "f")
> (EAp (EVar "g") (EVar "x"))),
> ("twice", ["f"], EAp (EAp (EVar "compose") (EVar "f")) (EVar "f")) ]

1.5 A pretty-printer for the Core language

Once we have a value of type coreProgram it is often convenient to be able to display it.
Miranda’s built-in features are not much help here. For example, if one types preludeDefs in
response to the Miranda prompt, the output produced is rather hard to understand. (Try it.)

What we require is a ‘pretty-printing’ function pprint, with type

> pprint :: CoreProgram -> String

Then we could type pprint preludeDefs, and expect to get a list of characters which, when
printed, looks like a nicely formatted version of preludeDefs. Our goal in this section is to
write such a function.

When the result of a program is a list, Miranda usually prints out the list items separated by
commas and surrounded by brackets. But in the special case when the result of the program is of
type [char], Miranda displays the list ‘all squashed up’, without square brackets and commas.
For example, the value "Hi\nthere" is displayed as

Hi
there
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and not as

[’H’, ’i’, ’\n’, ’t’, ’h’, ’e’, ’r’, ’e’]

In this way, pprint can have complete control over the output format.

We will need some of the utility functions defined in Appendix A, so we import them using the
%include directive:

1.5.1 Pretty-printing using strings

Let us first concentrate on Core-language expressions. It looks as though we require a pretty-
printing function, pprExpr, defined something like this:

> pprExpr :: CoreExpr -> String
> pprExpr (ENum n) = show n
> pprExpr (EVar v) = v
> pprExpr (EAp e1 e2) = pprExpr e1 ++ " " ++ pprAExpr e2

(We have deliberately left out many of the cases for pprExpr for the moment.) pprAExpr has the
same type as pprExpr, but differs from it by placing parentheses around the expression unless
it is a variable or number.

> pprAExpr :: CoreExpr -> String
> pprAExpr e = isAtomicExpr e | pprExpr e
> pprAExpr e = otherwise | "(" ++ pprExpr e ++ ")"

One can proceed in this fashion, but there is a serious problem with doing so. The pretty-printer
uses the list append function, ++, a great deal. This can give very nasty performance, as the
following example shows. Consider the expression

(xs1 ++ xs2) ++ xs3

The inner ++ takes time proportional to #xs12, but then the outer ++ takes time proportional
to the length of xs1++xs2, so the total time taken is (2 ∗ #xs1) + #xs2. In general, if we added
more lists to this nested append, the cost can be quadratic in the length of the result! Of course,
if we bracket the expression the other way, the cost is linear in the length of the result, but
unfortunately we cannot guarantee this in a pretty-printer.

To demonstrate this effect, we will first write a function mkMultiAp, which makes it easy for us
to build sample expressions of a given size. The call (mkMultiAp n e1 e2) generates a coreExpr
representing the expression

e1 e2 e2 . . . e2︸ ︷︷ ︸
n

2The # function is a standard Miranda function for taking the length of a list.
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Figure 1.2: An illustration of foldll ⊗ acc [x1, . . . , xn ]

> mkMultiAp :: Int -> CoreExpr -> CoreExpr -> CoreExpr
> mkMultiAp n e1 e2 = foldll EAp e1 (take n e2s)
> where
> e2s = e2 : e2s

In this definition, take is a Miranda standard function which takes the first n elements of
a list, discarding the rest of the list. The function foldll is a standard function, defined in
Appendix A3. Given a dyadic function⊗, a value acc and a list xs = [x1, ..., xn ], foldll⊗ acc xs
computes acc′, where

acc′ = (. . . ((acc ⊗ x1) ⊗ x2) ⊗ . . . xn)

This is illustrated by Figure 1.2. In mkMultiAp, foldll is used to build a left-branching chain
of EAp nodes. The initial accumulator acc is e1, and the combining function ⊗ is the EAp
constructor. Finally, e2s is the infinite list [e2, e2, . . . ]; only its first n elements are used by
take.

Exercise 1.1. Measure the number of Miranda steps required to compute

# (pprExpr (mkMultiAp n (EVar "f") (EVar "x")))

for various values of n. (You can use the Miranda directive /count to tell Miranda to print
execution statistics. We take the length of the result so that the screen does not fill up with a huge
printout.) Sketch a graph which shows how the execution cost rises with n and check that it is
roughly quadratic in n.

1.5.2 An abstract data type for pretty-printing

A pretty-printer whose cost is quadratic in the size of the program to be printed is clearly
unacceptable, so we had better find a way around it.

We can separate this problem into two parts: ‘what operations do we want to perform?’, and
‘what is an efficient way to perform them?’. In common with other languages, Miranda provides
a way to make this distinction clear by introducing an abstract data type.

3We use foldll rather than the Miranda standard function foldl because different versions of Miranda have
different definitions for foldl.
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> iNil :: Iseq -- The empty iseq
> iStr :: String -> Iseq -- Turn a string into an iseq
> iAppend :: Iseq -> Iseq -> Iseq -- Append two iseqs
> iNewline :: Iseq -- New line with indentation
> iIndent :: Iseq -> Iseq -- Indent an iseq
> iDisplay :: Iseq -> String -- Turn an iseq into a string

The abstype keyword introduces an abstract data type, iseq. It is followed by the interface of
the data type; that is, the operations which can be performed on the data type iseq and their
type of each operation.

Given such a data type, we rewrite pprExpr to return an iseq instead of a list of characters:

> pprExpr :: CoreExpr -> Iseq
> pprExpr (EVar v) = iStr v
> pprExpr (EAp e1 e2) = (pprExpr e1) ‘iAppend‘ (iStr " ") ‘iAppend‘ (pprAExpr e2)

We have simply replaced ++ by iAppend4, and added an iStr around literal strings.

What are the differences between an iseq and a list of characters? Firstly, we aim to produce
an implementation of iAppend which does not have the unexpected quadratic behaviour of list
append. Secondly, iseq provides new operations iIndent and iNewline which will be useful
for controlling indentation. The idea is that iIndent indents its argument to line up with the
current column; it should work even if its argument spreads over many lines, and itself contains
calls to iIndent. iNewline stands for a newline followed by a number of spaces determined by
the current level of indentation.

As an example of how iIndent and iNewline might be used, let us extend pprExpr to handle
let and letrec expressions:

> pprExpr (ELet isrec defns expr)
> = iConcat [ iStr keyword, iNewline,
> iStr " ",iIndent (pprDefns defns),iNewline,
> iStr "in ",pprExpr expr ]
> where
> keyword | not isrec = "let"
> | isrec = "letrec"

> pprDefns :: [(Name,CoreExpr)] -> Iseq
> pprDefns defns = iInterleave sep (map pprDefn defns)
> where
> sep = iConcat [ iStr ";", iNewline ]

> pprDefn :: (Name, CoreExpr) -> Iseq
> pprDefn (name, expr)
> = iConcat [ iStr name, iStr " = ", iIndent (pprExpr expr) ]

4In Miranda, writing a dollar sign in front of an identifier turns it into an infix operator, allowing us to write
iAppend between its arguments, instead of in front of them. Such infix operators are right-associative.
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To make the definitions more legible, we have used two new functions, iConcat and iInterleave,
with the types

> iConcat :: [Iseq] -> Iseq
> iInterleave :: Iseq -> [Iseq] -> Iseq

iConcat takes a list of iseqs and uses iAppend to concatenate them into a single iseq. iInterleave
is similar to iConcat except that it interleaves a specified iseq between each adjacent pair.

Exercise 1.2. Define iConcat and iInterleave in terms of iAppend and iNil.

In general, all our pretty-printing functions will return an iseq, and we apply iDisplay just
once at the top level, to the iseq representing the entire thing we want to display:

> pprint prog = iDisplay (pprProgram prog)

Exercise 1.3. Add a further equation to pprExpr to handle case and lambda expressions, and write
definitions for pprAExpr and pprProgram in the same style.

1.5.3 Implementing iseq

Now we come to the implementation of the iseq type. We begin by making an implementation
that ignores all indentation. To implement the abstract data type we must say what type is
used to represent an iseq:

> data Iseq = INil
> | IStr String
> | IAppend Iseq Iseq

The first declaration says that the type iseqRep is used to represent an iseq, while the second
declares iseqRep to be an algebraic data type with the three constructors INil, IStr and
IAppend.

The general idea of this particular representation is to postpone all the work until the eventual
call of iDisplay. The operations iNil, iStr and iAppend all just use the relevant constructor:

> iNil = INil
> iAppend seq1 seq2 = IAppend seq1 seq2
> iStr str = IStr str

Since we are ignoring indentation, iIndent and iNewline are defined trivially. We will improve
them in the next section.

> iIndent seq = seq
> iNewline = IStr "\n"
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All the interest lies in the operation iDisplay which turns an iseq into a list of characters. The
goal is that it should only take time linear in the size of the iseq. It turns out to be convenient
to define iDisplay in terms of a more general function, flatten:

> flatten :: [Iseq] -> String
>
> iDisplay seq = flatten [seq]

The function flatten takes a list of iseqReps, and returns the result of concatenating each of
the iseqReps in the list. The reason for having this list is that is allows us to accumulate a list
of pending work, as we will soon see. Notice that flatten manipulates the representation type
iseqRep, rather than the abstract type iseq.

We define flatten by case analysis on its argument, which we call the work-list. If the work-list
is empty, we are done:

> flatten [] = ""

Otherwise, we work by doing case analysis on the first element of the work-list. The INil case
just pops an item from the work-list:

> flatten (INil : seqs) = flatten seqs

The IStr case works by appending the specified string with the result of flattening the rest of
the work-list:

> flatten (IStr s : seqs) = s ++ (flatten seqs)

So far, the fact that flatten takes a list has not helped us much. The justification for the list
argument can be seen more clearly when we deal with IAppend; all that need be done is to push
one more item onto the front of the work-list:

> flatten (IAppend seq1 seq2 : seqs) = flatten (seq1 : seq2 : seqs)

Exercise 1.4. What is the cost of flatten in terms of the size of the iseq?
Change pprExpr to use iseq as indicated above, and measure the effect of the new implementation
using the same experiment as in the previous exercise. Remember to apply iDisplay to the result
of pprExpr.

Exercise 1.5. The key advantage of using an abstract data type is that one can change the implemen-
tation of the ADT without affecting its interface. As an example of this, redefine iAppend so that
it returns a simplified result if either of its arguments is INil.

1.5.4 Layout and indentation

So far we have only given a rather trivial interpretation to the iIndent operation, and we now
turn to improving it. In the same spirit as before, we first expand the iseqRep type with
an extra two constructors, IIndent and INewline, and redefine their operations to use these
constructors:
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> data Iseq = INil
> | IStr String
> | IAppend Iseq Iseq
> | IIndent Iseq
> | INewline
>
> iIndent seq = IIndent seq
> iNewline = INewline

We must then make flatten more powerful. Firstly, it needs to keep track of the current
column, and secondly, its work-list must consist of (iseq, num) pairs, where the number gives
the indentation required for the corresponding iseq:

> flatten :: Int -- Current column; 0 for first column
> -> [(Iseq, Int)] -- Work list
> -> String -- Result

We need to change iDisplay to initialise flatten appropriately:

> iDisplay seq = flatten 0 [(seq,0)]

The interesting case for flatten is when we deal with INewline, because this is where we need
to perform indentation5:

> flatten col ((INewline, indent) : seqs)
> = ’\n’ : (space indent) ++ (flatten indent seqs)

Notice that the recursive call to flatten has a current-column argument of indent since we have
now moved on to a new line and added indent spaces.

The IIndent case simply sets the current indentation from the current column:

> flatten col ((IIndent seq, indent) : seqs)
> = flatten col ((seq, col) : seqs)

Exercise 1.6. Add equations for flatten for IAppend, IStr and INil.
Try pprExpr on an expression involving an ELet, and check that the layout works properly.

Exercise 1.7. The pretty-printer will go wrong if a newline character ’\n’ is embedded in a string given
to IStr. Modify iStr to check for this, replacing the newline character by a use of INewline.

1.5.5 Operator precedence

As discussed in Section 1.3, the coreExpr type has no construct for infix operator applications.
Instead, such applications are expressed in prefix form, just like any other function application.
It would be nice if our pretty-printer recognised such applications, and printed them in infix
form. This is easily done by adding extra equations to pprExpr of the form

5spaces is a standard Miranda function which returns a list of a specified number of space characters.
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pprExpr (EAp (EAp (EVar "+") e1) e2)
= iConcat [ pprAExpr e1, iStr " + ", pprAExpr e2 ]

This still does not do a very good job, because it inserts too many parentheses. Would you
prefer to see the expression

x + y > p * length xs

or the fully parenthesised version?

(x + y) > (p * (length xs))

The easiest way to achieve this is to give pprExpr an extra argument which indicates the
precedence level of its context, and then use this to decide whether to add parentheses around
the expression it produces. (The function pprAExpr now becomes redundant.)

Exercise 1.8. Make these changes to pprExpr and test them.

1.5.6 Other useful functions on iseq

Later on it will be useful to have a few more functions which work on iseqs. They are all defined
in terms of the iseq interface functions, so the implementation can be changed without altering
any of these definitions.

iNum maps a number to an iseq and iFWNum does the same except that the result is left-padded
with spaces to a specified width:

> iNum :: Int -> Iseq
> iNum n = iStr (show n)

> iFWNum :: Int -> Int -> Iseq
> iFWNum width n
> = iStr (space (width - length digits) ++ digits)
> where
> digits = show n

(If the number is wider than the width required, a negative number will be passed to spaces,
which then returns the empty list. So the net effect is to return a field just wide enough to contain
the number.) iLayn lays out a list, numbering the items and putting a newline character after
each, just as the standard function layn does.

> iLayn :: [Iseq] -> Iseq
> iLayn seqs = iConcat (map lay_item (zip [1..] seqs))
> where
> lay_item (n, seq)
> = iConcat [ iFWNum 4 n, iStr ") ", iIndent seq, iNewline ]
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1.5.7 Summary

Our pretty-printer still has its shortcomings. In particular, a good pretty-printer will lay things
out on one line if they fit, and over many lines if they do not. It is quite possible to elaborate
the iseq data type so that it can do this, but we will not do so here.

The iseq type is useful for pretty-printing data other than programs, and we will use it for a
variety of purposes throughout the book.

There are two general points we would like to bring out from this section:

• It is very often helpful to separate the interface of an abstract data type from its imple-
mentation. Miranda provides direct support for this abstraction, by ensuring the functions
over the abstract type do not inspect the representation.

• The definition of iDisplay in terms of flatten exemplifies a very common technique
called generalisation. We often define the function we really want in terms of a simple
call to a more general function. This is usually because the more general function carries
around some extra arguments which it needs to keep the book-keeping straight.

It is hard to make general statements about when generalisation is an appropriate tech-
nique; indeed, working out a good generalisation is often the main creative step in writing
any program. However, there are plenty of examples of generalisation in this book, which
we hope will help to convey the idea.

1.6 A parser for the Core language

We will want to run each of our implementations on a variety of Core programs. This means
that we want a way of taking a file containing the Core program in its concrete syntax, and
parsing it to a value of type coreProgram.

Writing parsers is generally rather tiresome, so much so that great effort has been devoted to
building tools which accept a grammar and write a parser for you. The Unix Yacc utility is an
example of such a parser generator. In a functional language, however, it is quite easy to write
a simple parser, and we will do so in this section for the Core language. We split the task into
three stages:

• First, we obtain the contents of the named file, as a list of characters. This is done by the
built-in Miranda function read.

• Next, the lexical analysis function lex breaks the input into a sequence of small chunks,
such as identifiers, numbers, symbols and so on. These small chunks are called tokens:

> clex :: String -> [Token]

• Finally, the syntax analysis function syntax consumes this sequence of tokens and produces
a coreProgram:

> syntax :: [Token] -> CoreProgram
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The full parser is just the composition of these three functions:

> parse :: String -> CoreProgram
> parse = syntax . clex
> -- In Gofer I propose to compose this with some function
> -- CoreProgram -> String, which will illustrate some sort of
> -- execution machine, and then give this composition to catWith
> -- from my utils

The symbol ‘.’ is Miranda’s infix composition operator, which can be defined thus:

(f . g) x = f (g x)

We could equivalently have defined parse without using composition, like this:

parse filename = syntax (lex (read filename))

but it is nicer style to use composition, because it makes it particularly easy to see that we are
defining parse as a pipeline of three functions.

1.6.1 Lexical analysis

We begin with the lexical analyser. We have not yet defined the type of a token. The easiest
thing to begin with is to do no processing at all on the tokens, leaving them as (non-empty)
strings:

> type Token = String -- A token is never empty

Now the lexical analysis itself. It should throw away white space (blanks, tabs, newlines):

> clex (c:cs) | isWhiteSpace c = clex cs

It should recognise numbers as a single token:

> clex (c:cs) | isDigit c = num_token : clex rest_cs
> where
> num_token = c : takeWhile isDigit cs
> rest_cs = dropWhile isDigit cs

The standard function digit takes a character and returns True if and only if the character is
a decimal digit. takewhile and dropwhile are both also standard functions; takewhile takes
elements from the front of a list while a predicate is satisfied, and dropwhile removes elements
from the front of a list while the predicate is satisfied. For example,

takewhile digit "123abc456"
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is the list "123".

The lexical analyser should also recognise variables, which begin with an alphabetic letter, and
continue with a sequence of letters, digits and underscores:

> clex (c:cs) | isAlpha c = var_tok : clex rest_cs
> where
> var_tok = c : takeWhile isIdChar cs
> rest_cs = dropWhile isIdChar cs

Here letter is a standard function like digit which returns True on alphabetic characters, and
isIdChar is defined below.

If none of the above equations applies, the lexical analyser returns a token containing a single
character.

> clex (c:cs) = [c] : clex cs

Lastly, when the input string is empty, lex returns an empty token list.

> clex [] = []

We conclude with the definitions of the auxiliary functions used above. (The operator ‘\/’ is
Miranda’s boolean ‘or’ operation.)

> isIdChar, isWhiteSpace :: Char -> Bool
> isIdChar c = isAlpha c || isDigit c || (c == ’_’)
> isWhiteSpace c = c ‘elem‘ " \t\n"

Exercise 1.9. Modify the lexical analyser so that it ignores comments as well as white space. Use the
same convention that a comment is introduced by a double vertical bar, ||, and extend to the end
of the line.

Exercise 1.10. The lexical analyser does not currently recognise two-character operators, such as <=
and ==, as single tokens. We define such operators by giving a list of them:

> twoCharOps :: [String]
> twoCharOps = ["==", "˜=", ">=", "<=", "->"]

Modify lex so that it recognises members of twoCharOps as tokens. (The standard function member
may be useful.)

Exercise 1.11. Since the lexical analysis throws away white space, the parser cannot report the line
number of a syntax error. One way to solve this problem is to attach a line number to each token;
that is, the type token becomes

token == (num, [char])

Alter the lexical analyser so that it does this. To do this you will need to add an extra parameter
to lex, being the current line number.
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1.6.2 Basic tools for parsing

In preparation for writing a parser for the Core language, we now develop some general-
purpose functions to use when writing parsers. The techniques described below are well known
[Fairbairn 1986, Wadler 1985], but make a rather nice demonstration of what can be done with
functional programming. As a running example, we will use the following small grammar:

greeting → hg person !
hg → hello

| goodbye

where person is any token beginning with a letter.

Our general approach, which is very common in functional programming, is to try to build a
big parser by glueing together smaller parsers. The key question is: what should the type of a
parser be? It is a function which takes a list of tokens as its argument, and at first it appears
that it should just return the parsed value. But this is insufficiently general, for two reasons.

1. Firstly, it must also return the remaining list of tokens. If, for example, we want to parse
two items from the input, one after the other, we can apply the first parser to the input,
but we must then apply the second parser to the remaining input returned by the first.

2. Secondly, the grammar may be ambiguous, so there is more than one way to parse the
input; or the input may not conform to the grammar, in which case there is no way to
successfully parse the input. An elegant way to accommodate these possibilities is to
return a list of possible parses. This list is empty if there is no way to parse the input,
contains one element if there is a unique way to parse it, and so on.

We can summarise our conclusion by defining the type of parsers using a type synonym, like
this:

> type Parser a = [Token] -> [(a, [Token])]

That is, a parser for values of type * takes a list of tokens and returns a list of parses, each of
which consists of a value of type * paired with the remaining list of tokens.

Now we are ready to define some small parsers. The function pLit (‘lit’ is short for ‘literal’)
takes a string and delivers a parser which recognises only tokens containing that string, returning
the string as the value of the parse:

> pLit :: String -> Parser String

How does pLit work? It looks at the first token on the input and compares it with the desired
string. If it matches, pLit returns a singleton list, indicating a single successful parse; if it does
not match, pLit returns an empty list, indicating failure to parse6:

6This definition of pLit assumes that a token is just a string. If you have added line numbers to your tokens,
as suggested in Exercise 1.11, then pLit will need to strip off the line number before making the comparison.
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> pLit s (tok:toks) = s == tok | [(s, toks)]
> = otherwise | []
> pLit s [] = []

The second equation takes care of the case where the input stream is empty. We can use pLit
to define parsers which look for particular tokens in the input. For example, the expression

pLit "hello" ["hello", "John", "!"]

evaluates to

[("hello", ["John", "!"])]

Similarly, we define a parser pVar to parse a variable from the beginning of the input:

> pVar :: Parser String
> pVar [] = []

pVar decides whether a token is a variable or not by looking at its first character. (The lexical
analyser ensures that no token is empty.) Actually, this is not quite right, because it should not
treat keywords as variables, but we will fix this problem later (Exercise 1.17).

The whole point of this development is to build bigger parsers by gluing together smaller ones,
and we are now ready to do so. We will define a function pAlt (‘alt’ is short for ‘alternative’)
which combines two parsers, say p1 and p2. First it uses p1 to parse the input, and then it uses
p2 to parse the same input; it returns all the successful parses returned by either p1 or p2. So
the type of pAlt is

> pAlt :: Parser a -> Parser a -> Parser a

The actual definition of pAlt is delightfully simple. All it needs to is append the lists of parses
returned by p1 and p2:

> pAlt p1 p2 toks = (p1 toks) ++ (p2 toks)

For example, pHelloOrGoodbye is a parser which recognises either the token "hello" or "goodbye":

> pHelloOrGoodbye :: Parser String
> pHelloOrGoodbye = (pLit "hello") ‘pAlt‘ (pLit "goodbye")

It is easy to see that pAlt corresponds directly to the vertical bar, |, of a BNF grammar (see
Figure 1.1, for example). We need one other fundamental parser-combining function, pThen,
which corresponds to the sequencing of symbols in a BNF grammar.

Like pAlt, pThen combines two parsers, say p1 and p2, returning a bigger parser which behaves
as follows. First, it uses p1 to parse a value from the input, and then it uses p2 to parse a
second value from the remaining input. What value should pThen return from a successful
parse? Presumably some combination of the values returned by p1 and p2, so the right thing
to do is to give pThen a third argument which is the value-combining function. So the type of
pThen is:
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> pThen :: (a -> b -> c) -> Parser a -> Parser b -> Parser c

The definition of pThen makes use of a list comprehension:

> pThen combine p1 p2 toks
> = [ (combine v1 v2, toks2) | (v1,toks1) <- p1 toks,
> (v2,toks2) <- p2 toks1]

The right-hand side of this equation should be read as follows:

‘the list of pairs (combine v1 v2, toks2),
where (v1,toks1) is drawn from the list p1 toks,
and (v2,toks2) is drawn from the list p2 toks1’.

With the aid of pThen we can make a parser for greetings:

> pGreeting :: Parser (String, String)
> pGreeting = pThen mk_pair pHelloOrGoodbye pVar
> where
> mk_pair hg name = (hg, name)

For example, the expression

pGreeting ["goodbye", "James", "!"]

would evaluate to

[(("goodbye", "James"), ["!"])]

Notice that when writing pGreetingwe did not need to think about the fact that pHelloOrGoodbye
was itself a composite parser. We simply built pGreeting out of its component parsers, each
of which has the same standard interface. We could subsequently change pHelloOrGoodbye
without having to change pGreeting as well.

1.6.3 Sharpening the tools

We have now completed the basic tools for developing parsers. In this section we will develop
them in a number of ways.

The definition of pGreeting given above is not quite right, because the grammar demands an
exclamation mark after the person’s name. We could fix the problem like this:

pGreeting = pThen keep_first
(pThen mk_pair pHelloOrGoodbye pVar)
(pLit "!")

where
keep_first hg_name exclamation = hg_name
mk_pair hg name = (hg, name)
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Since the final exclamation mark is always present, we have chosen not to return it as part of
the parsed value; it is discarded by keep_first. This definition is rather clumsy, however. It
would be more convenient to define a new function pThen3, so that we could write:

pGreeting = pThen3 mk_greeting
pHelloOrGoodbye
pVar
(pLit "!")

where
mk_greeting hg name exclamation = (hg, name)

Exercise 1.12. Give the type of pThen3, write down its definition, and test the new version of pGreeting.
Similarly, write pThen4, which we will need later.

Another very common feature of grammars is to require zero or more repetitions of a symbol. To
reflect this we would like a function, pZeroOrMore, which takes a parser, p, and returns a new
parser which recognises zero or more occurrences of whatever p recognises. The value returned
by a successful parse can be the list of the values returned by the successive uses of p. So the
type of pZeroOrMore is

> pZeroOrMore :: Parser a -> Parser [a]

For example, a parser to recognise zero or more greetings is

> pGreetings :: Parser [(String, String)]
> pGreetings = pZeroOrMore pGreeting

We can define pZeroOrMore by observing that it must either see one or more occurrences, or
zero occurrences:

> pZeroOrMore p = (pOneOrMore p) ‘pAlt‘ (pEmpty [])

Here, pEmpty is a parser which always succeeds, removing nothing from the input, returning the
value it is given as its first argument:

> pEmpty :: a -> Parser a

The function pOneOrMore has the same type as pZeroOrMore.

> pOneOrMore :: Parser a -> Parser [a]

Exercise 1.13. Write definitions for pOneOrMore and pEmpty. (Hint: you will find it convenient to call
pZeroOrMore from pOneOrMore.) Test your definitions by using them to define a parser to recognise
one or more greetings.

It is often convenient to process the values returned by successful parses. For example, suppose
we wanted pGreetings to return the number of greetings rather than their content. To do this
we would like to apply the length function, #, to the value returned by pZeroOrMore:
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> pGreetingsN :: Parser Int
> pGreetingsN = (pZeroOrMore pGreeting) ‘pApply‘ length

Here pApply is a new parser-manipulation function, which takes a parser and a function, and
applies the function to the values returned by the parser:

> pApply :: Parser a -> (a -> b) -> Parser b

Exercise 1.14. Write a definition for pApply, and test it. (Hint: use a list comprehension.)

Another very common pattern in grammars is to look for one or more occurrences of a symbol,
separated by some other symbol. For example, a program in Figure 1.1 is a sequence of one or
more supercombinator definitions, separated by semicolons. We need yet another parser-building
function, pOneOrMoreWithSep, whose type is

> pOneOrMoreWithSep :: Parser a -> Parser b -> Parser [a]

The second argument is the parser which recognises the separators, which are not returned as
part of the result; that is why there is only one occurrence of ** in the type.

Exercise 1.15. Define and test pOneOrMoreWithSep. It may help to think of the following grammar for
program:

program → sc programRest
programRest → ; program

| ε

where ε is the empty string (corresponding to the pEmpty parser).

The parsers pLit and pVar are quite similar to each other: they both test for some property of
the first token, and either fail (if it does not have the property) or succeed, returning the string
inside the token (if it does have the property). We could generalise this idea by writing a parser
pSat (where ‘sat’ is short for ‘satisfies’), with the type

> pSat :: (String -> Bool) -> Parser String

pSat takes a function which tells whether or not the string inside the token has the desired
property, and returns a parser which recognises a token with the property. Now we can write
pLit in terms of pSat7:

> pLit s = pSat (== s)

Exercise 1.16. Define pSat and test it. Write pVar in terms of pSat in a similar way to pLit.
7The expression (= s) is called a section. It is the partial application of the equality operator = to one argument

s, producing a function which tests whether its argument is equal to s.
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pSat adds a useful level of modularity. For example, pVar currently recognises all alphabetic
tokens as variables, but ultimately we might want it not to recognise language keywords (such
as let and case) as variables.

Exercise 1.17. Modify the function passed to pSat in the definition of pVar above so that it does not
treat strings in the list keywords as variables.

> keywords :: [String]
> keywords = ["let", "letrec", "case", "in", "of", "Pack"]

Exercise 1.18. As another example, use pSat to define a parser for numbers, with the type

> pNum :: Parser Int

pNum should use pSat to identify numeric tokens, and then pApply to convert the string to a
number. (Miranda provides a standard function numval with type [char] -> num which can be
used to do the hard work.)

There is an interesting performance problem associated with pOneOrMore and its related func-
tions. Consider the following Core program:

f x = let x1 = x; x2 = x; ...; xn = x
of x1

The idea is that we have a big let expression with definitions for x1, x2, . . . , xn (the definitions
are rather trivial, but they serve the purpose). This program has a syntax error: we have written
‘of’ instead of ‘in’ after the let expression.

Exercise 1.19. †Count how many Miranda steps it takes before the syntax error is reported, for n =
5, 10, 15, 20 and so on. (Use Miranda’s /count directive to get a display of execution statistics.)
How fast does the parsing cost rise, in terms of n?
To get an idea why this happens, try evaluating:

pOneOrMore (pLit "x") ["x", "x", "x", "x", "x", "x"]

You should get a list of six possible parses. Based on this, can you work out why the parsing cost
in the previous example rises so fast?
How can this problem be solved? (Hint: apart from the first one, are any of the parses returned
by pOneOrMore useful? How could the extra ones be eliminated?)

1.6.4 Parsing the Core language

We are finally ready to define a parser for the Core language. First we deal with the ‘wrapper’
function, syntax. Recall that it takes a list of tokens and delivers a result of type coreProgram.
It can do this by calling the parser pProgramwhich parses the non-terminal program (Figure 1.1),
and then selecting the first complete parse it returns. If it returns no complete parse — that is,
one in which the sequence of tokens remaining after the parse is empty — syntax produces a
(horribly uninformative) error message.
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> syntax = take_first_parse . pProgram
> where
> take_first_parse ((prog,[]) : others) = prog
> take_first_parse (parse : others) = take_first_parse others
> take_first_parse other = error "Syntax error"

The beauty of our parsing tools is that we can write parsers by merely transliterating the grammar
into Miranda. For example, consider the productions for program and sc in Figure 1.1:

program → sc1; . . . ; scn (n ≥ 1)
sc → var var1 . . . varn = expr (n ≥ 0)

We can transliterate these directly into Miranda:

> pProgram :: Parser CoreProgram
> pProgram = pOneOrMoreWithSep pSc (pLit ";")

> pSc :: Parser CoreScDefn
> pSc = pThen4 mk_sc pVar (pZeroOrMore pVar) (pLit "=") pExpr

Exercise 1.20. Write the function mk_sc. It takes four arguments returned by the four parsers used in
pSc, and builds a value of type:

(name, [name], coreExpr)

It is a straightforward matter to complete the definitions for the rest of the grammar, apart
from the productions for application and infix operators.

Exercise 1.21. Leaving these two productions out, complete the parser. A little care is needed for the
parser pAexpr, which should have type parser coreExpr. The pApply function is required to
wrap an EVar constructor around the value returned by pVar, and an ENum constructor around
that returned by pNum.
Test your parser on the following program

f = 3 ;
g x y = let z = x in z ;
h x = case (let y = x in y) of

<1> -> 2 ;
<2> -> 5

You will find that the output becomes illegible as you run the parser on larger programs. To solve
this, use the pretty-printing function pprint to format the output of your parser.

Exercise 1.22. Consider the program

f x y = case x of
<1> -> case y of

<1> -> 1;
<2> -> 2

Does the alternative starting with <2> attach to the inner case or the outer one? Work out your
answer, and see if your parser behaves as you expect. This is known as the ‘dangling else’ question.

Now we turn our attention to the two problems mentioned above.
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1.6.5 Left recursion

The problem with applications is relatively easy to solve. The production for applications looks
like this:

expr → expr aexpr

If we simply transliterate this to

pExpr = pThen EAp pExpr pAexpr

then unfortunately pExpr will never terminate, because it keeps calling itself indefinitely. The
problem is that expr appears as the first symbol in a production of expr ; this is called left
recursion. Our parsing tools simply cannot cope with left-recursive grammars. Fortunately, it
is usually possible to transform the grammar so that it is no longer left-recursive, though the
resulting grammar does not then reflect the structure of the result we are trying to construct.
In this case, for example, we can simply use repetition, transforming the offending production
to

expr → aexpr1 . . . aexprn (n ≥ 1)

and now the parser (pOneOrMore pAexpr) can be used. The trouble is that this returns a list
of expressions, rather than a single expression built with EAp constructors. We can solve this
using pApply, giving the parser

(pOneOrMore pAexpr) $pApply mk_ap_chain

Exercise 1.23. Define the appropriate function mk_ap_chainwith type [coreExpr] -> coreExpr. Ad-
d the production for applications to your parser and test it.

1.6.6 Adding infix operators

The first problem with infix operators is that their precedence is implicit in the grammar of
Figure 1.1. The standard way to make this explicit is to have several sorts of expression, as
shown in Figure 1.3.

Notice the way that this grammar expresses the fact that | and & are right-associative, whereas
relational operators are non-associative. Having to write out so many rules is rather tiresome,
but we are only making explicit what we meant all along. But now the second problem arises:
a parser implemented directly from these rules would be horribly inefficient! Consider the
productions for expr1. A naive parser would attempt to recognise an expr2, and then look for
a vertical bar |. If it did not find one (as will often be the case), it will laboriously reparse the
original input to look for an expr2 again. Worse, each attempt to parse an expr2 may involve
two attempts to parse an expr3, and hence four attempts to parse an expr4, and so on.

We want to share the parsing of the expr2 between the two productions, and this is not hard to
do, by splitting the expr1 production into two:

expr1 → expr2 expr1c
expr1c → | expr1

| ε
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expr → let defns in expr
| letrec defns in expr
| case expr of alts
| \ var1 . . . varn . expr
| expr1

expr1 → expr2 | expr1
| expr2

expr2 → expr3 & expr2
| expr3

expr3 → expr4 relop expr4
| expr4

expr4 → expr5 + expr4
| expr5 - expr5
| expr5

expr5 → expr6 * expr5
| expr6 / expr6
| expr6

expr6 → aexpr1 . . . aexprn (n ≥ 1)

Figure 1.3: Grammar expressing operator precedence and associativity

Here ε stands for the empty string; the productions for expr1c say that an expr1c is either a
vertical bar, |, followed by an expr1, or it is empty. We are almost there! The last question
is: what is the type of a parser for expr1c. It cannot be of type parser coreExpr, because the
phrase | expr1 is only part of an expression, and the empty string ε is not an expression either.
As usual, transforming the grammar has destroyed the structure.

The solution is fairly easy. We define a new data type partialExpr, like this

> data PartialExpr = NoOp | FoundOp Name CoreExpr

Now we can define the parser for expr1c like this:

> pExpr1c :: Parser PartialExpr
> pExpr1c = (pThen FoundOp (pLit "|") pExpr1) ‘pAlt‘ (pEmpty NoOp)

The parser for expr1 takes apart the intermediate result returned by pExpr1c:

> pExpr1 :: Parser CoreExpr
> pExpr1 = pThen assembleOp pExpr2 pExpr1c

> assembleOp :: CoreExpr -> PartialExpr -> CoreExpr
> assembleOp e1 NoOp = e1
> assembleOp e1 (FoundOp op e2) = EAp (EAp (EVar op) e1) e2

Exercise 1.24. Transform the grammar along the lines suggested, transliterate the changes into Miranda
code, and test the resulting parser.
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1.6.7 Summary

The grammars that can be handled efficiently by our library of parser-building functions are
called LL(1) grammars, exactly the same class that can be dealt with by conventional recursive-
descent parsers [Aho et al. 1986].

Using the library we can easily write very concise parsers. This is an important and useful
property, because almost any program has an input language of some sort, which has to be
parsed by the program.

There are various things we have to take care about (left recursion, operator precedence, sharing),
but exactly the same issues arise in any recursive-descent parser, regardless of the language in
which it is implemented.
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> module Template where
> import Language
> import Utils
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Chapter 2

Template instantiation

This chapter introduces the simplest possible implementation of a functional language: a graph
reducer based on template instantiation.

The complete source code for an initial version (Mark 1) is given, followed by a series of im-
provements and variations on the basic design. We begin with a review of graph reduction and
template instantiation.

2.1 A review of template instantiation

We begin with a brief overview of template instantiation. This material is covered in more detail
in Chapters 11 and 12 of [Peyton Jones 1987].

We recall the following key facts:

• A functional program is ‘executed’ by evaluating an expression.

• The expression is represented by a graph.

• Evaluation takes place by carrying out a sequence of reductions.

• A reduction replaces (or updates) a reducible expression in the graph by its reduced form.
The term ‘reducible expression’ is often abbreviated to ‘redex’.

• Evaluation is complete when there are no more redexes; we say that the expression is in
normal form.

• At any time there may be more than one redex in the expression being evaluated, so there
is a choice about which one to reduce next. Fortunately, whatever reduction sequence we
choose, we will always get the same answer (that is, normal form). There is one caveat:
some reduction sequences may fail to terminate.

• However, if any choice of redexes makes evaluation terminate, then the policy of always
selecting the outermost redex will also do so. This choice of reduction order is called
normal order reduction, and it is the one we will always use.
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Thus the process of evaluation can be described as follows:

until there are no more redexes
select the outermost redex
reduce it
update the (root of the) redex with the result

end

2.1.1 An example

As an example, consider the following Core-language program:

square x = x * x ;
main = square (square 3)

The program consists of a set of definitions, called supercombinators; square and main are both
supercombinators. By convention, the expression to be evaluated is the supercombinator main.
Hence, to begin with the expression to be evaluated is represented by the following rather trivial
tree (remember that a tree is just a special sort of graph):

main

Now, since main has no arguments, it itself is a redex, so we replace it by its body:

main reduces to @
/ \

square @
/ \

square 3

Applications are represented by @ signs in these pictures and all subsequent ones.

Now the outermost redex is the outer application of square. To reduce a function application
we replace the redex with an instance of the body of the function, substituting a pointer to the
argument for each occurrence of the formal parameter, thus:

@! reduces to @!
/ \ / \

square @ @ \
/ \ / \___@

square 3 * / \
square 3

The root of the redex, which is overwritten with the result, is marked with a !. Notice that the
inner square 3 redex has become shared, so that the tree has become a graph.

In the definition of square the expression x*x (in which the * is written infix) is just short for
((* x) x), the application of * to two arguments. We use currying to write functions of several
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arguments in terms of one-argument applications: * is a function which, when applied to an
argument p, gives a function which, when applied to another argument q, returns the product
of p and q.

Now the only redex is the inner application of square to 3. The application of * is not reducible
because * requires its arguments to be evaluated. The inner application is reduced like this:

@ reduces to @
/ \ / \

@ \ @ \
/ \___@! / \___@
* / \ * / \
square 3 @ \

/ \___3
*

There is still only one redex, the inner multiplication. We replace the redex with the result of
the multiplication, 9:

@ reduces to @
/ \ / \

@ \ @ \
/ \___@! / \___9
* / \ *

@ \
/ \___3

*

Notice that by physically updating the root of the redex with the result, both arguments of the
outer multiplication ‘see’ the result of the inner multiplication. The final reduction is simple:

@ reduces to 81
/ \

@ \
/ \___9
*

2.1.2 The three steps

As we saw earlier, graph reduction consists of repeating the following three steps until a normal
form is reached:

1. Find the next redex.

2. Reduce it.

3. Update the (root of the) redex with the result.
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As can be seen from the example in the previous section, there are two sorts of redex, which are
reduced in different ways:

Supercombinators. If the outermost function application is a supercombinator application,
then it is certainly also a redex, and it can be reduced as described below (Section 2.1.4).

Built-in primitives. If the outermost function application is the application of a built-in prim-
itive, then the application may or may not be a redex, depending on whether the arguments
are evaluated. If not, then the arguments must be evaluated. This is done using exactly
the same process: repeatedly find the outermost redex of the argument and reduce it.
Once this is done, we can return to the reduction of the outer application.

2.1.3 Unwinding the spine to find the next redex

The first step of the reduction cycle is to find the site of the next reduction to be performed;
that is, the outermost reducible function application. It is easy to find the outermost function
application (though it may not be reducible) as follows:

1. Follow the left branch of the application nodes, starting at the root, until you get to a
supercombinator or built-in primitive. This left-branching chain of application nodes is
called the spine of the expression, and this process is called unwinding the spine. Typically
a stack is used to remember the addresses of the nodes encountered on the way down.

2. Now, check how many arguments the supercombinator or primitive takes and go back up
that number of application nodes; you have now found the root of the outermost function
application.

For example, in the expression (f E1 E2 E3), where f takes two arguments, say, the outermost
function application is (f E1 E2). The expression and stack would look like this:

Stack
-----------

| ---|-------> @
------- / \
| ---|-----> @! E3
------- / \
| ---|---> @ E2
------- / \
| ---|-> f E1
-------

The (root of the) outermost function application is marked with a !.

If the result of an evaluation could be a partial application, as would be the case if f took four
arguments instead of two, then step 2 above needs to be preceded by a check there are enough
application nodes in the spine. If not, the expression has reached weak head normal form
(WHNF). The sub-expressions E1, E2 and E3 might still contain redexes, but most evaluators
will stop when they reach WHNF rather than trying to reduce the sub-expressions also. If the
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program has been type-checked, and the result is guaranteed to be a number, say, or a list, then
this underflow check can be omitted.

Notice that we have only found the root of the outermost function application. It may or may
not be a redex as well. If the function is a supercombinator, then it will certainly be a redex,
but if it is a primitive, such as +, then it depends on whether its arguments are evaluated. If
they are, we have found the outermost redex. If not, we have more work to do.

If a primitive requires the value of a currently unevaluated argument, we must evaluate the
argument before the primitive reduction can proceed. To do this, we must put the current stack
on one side, and begin with a new stack to reduce the argument, in the same way as before.
This was the situation in the example of the previous section when we reached the stage

@
/ \

@ \
/ \___@
* / \
square 3

We need to evaluate the argument (square 3) on a new stack. During this evaluation, we
might again encounter a primitive with an unevaluated argument, so we would need to start a
new evaluation again. We need to keep track of all the ‘old’ stacks, so that we come back to
them in the right order. This is conveniently done by keeping a stack of stacks, called the dump.
When we need to evaluate an argument, we push the current stack onto the dump; when we
have finished an evaluation we pop the old stack off the dump.

Of course, in a real implementation we would not copy whole stacks! Since the ‘new’ stack will
be finished with before the ‘old’ one is again required, the ‘new’ one could be built physically on
top of the ‘old’ one. The dump stack would then just keep track of where the boundary between
‘new’ and ‘old’ was. Conceptually, though, the dump is a stack of stacks, and we will model it
in this way.

2.1.4 Supercombinator redexes

A supercombinator redex is reduced by substituting the arguments into its body. More precisely:

Supercombinator reduction. A supercombinator redex is reduced by replacing the
redex with an instance of the supercombinator body, substituting pointers to the actual
arguments for corresponding occurrences of the formal parameters. Notice that the
arguments are not copied; rather, by the device of using pointers to them, they are
shared.

A supercombinator body may contain let and letrec expressions. For example:

f x = let y = x*x
in y+y
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let and letrec expressions are treated as textual descriptions of a graph. Here, for example, is
a possible use of the definition of f:

@ reduces to @
/ \ / \

f 3 @ \
/ \___@y

+ / \
@ \

/ \___3
*

The let expression defines a sub-expression x*x, which is named y. The body of the let
expression, y+y, uses pointers to the sub-expression in place of y. Thus ordinary expressions
describe trees; let expressions describe acyclic graphs; and letrec expressions describe cyclic
graphs.

2.1.5 Updates

After performing a reduction, we must update the root of the redex with the result, so that if
the redex is shared (as it was in the example (square (square 3))) the reduction is only done
once. This updating is the essence of lazy evaluation. A redex may not be evaluated at all but,
if it is evaluated, the update ensures that the cost of doing so is incurred at most once.

Omitting the updates does not cause any errors; it will just mean that some expressions may be
evaluated more than once, which is inefficient.

There is one case that requires a little care when performing updates. Consider the program

id x = x
f p = (id p) * p
main = f (sqrt 4)

After the f reduction has taken place, the graph looks like this:

@
/ \

@ \
/ \ \
* @ \

/ \___@
id / \

sqrt 4

We assume sqrt is a built-in primitive for taking square roots. Now, suppose that the next
redex selected is the first argument of the *, namely the application of id. (It might equally
well be the second argument of *, since neither argument is in normal form, but we will suppose
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it is the first.) What should we overwrite the root of the redex with after performing the id
reduction? We should certainly not overwrite it with a copy of the (sqrt 4) application node,
because then (sqrt 4) would be evaluated twice!

The easiest way out of this dilemma is to add a new sort of graph node, an indirection node,
which will be depicted as a # sign. An indirection node can be used to update the root of a
redex to point to the result of the reduction:

@ reduces to @
/ \ / \

@ \ @ \
/ \ \ / \ \
* @ \ * # \

/ \___@ \___@
id / \ / \

sqrt 4 sqrt 4

Section 12.4 of [Peyton Jones 1987] contains further discussion of the issues involved in updates.

2.1.6 Constant applicative forms†

Some supercombinators have no arguments; they are called constant applicative forms, or CAFs.
For example, fac20 is a CAF:

fac20 = factorial 20

The interesting thing about CAFs is that the supercombinator itself is a redex. We do not want
to instantiate a new copy of factorial 20 whenever fac20 is called, because that would mean
repeating the computation of factorial 20. Rather, the supercombinator fac20 is the root of
the fac20-reduction, and should be overwritten with the result of instantiating its body.

The practical consequence is that supercombinators should be represented by graph nodes, in
order that they can be updated in the usual way. We will see this happening in practice in each
of our implementations.

This concludes our review of graph reduction.

2.2 State transition systems

We now turn our attention to implementing graph reduction. We will describe each of our
implementations using a state transition system. In this section we introduce state transition
systems.

A state transition system is a notation for describing the behaviour of a sequential machine. At
any time, the machine is in some state, beginning with a specified initial state. If the machine’s
state matches one of the state transition rules, the rule fires and specifies a new state for the
machine. When no state transition rule matches, execution halts. If more than one rule matches,
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then one is chosen arbitrarily to fire; the machine is then non-deterministic. All our machines
will be deterministic.

Here is a simple example of a state transition system used to specify a (rather inefficient)
multiplication machine. The state is a quadruple (n,m, d , t). The numbers to be multiplied are
n and m, and the running total is t , and the machine is initialised to the state (n,m, 0, 0).

The operation of the machine is specified by two transition rules. The d component is repeatedly
decremented towards zero while simultaneously incrementing t , as specified by the first rule:

n m d t
=⇒ n m d − 1 t + 1

where d > 0

We always write transition rules with each component of the new state directly underneath the
same component of the old state, so that it is easy to see which components have changed.

When d reaches zero it is initialised again to n, and m is decremented, until m reaches zero.
This is specified by the second rule:

n m 0 t
=⇒ n m − 1 n t

where m > 0

The machine terminates when no rule applies. At this point it will be in a state (n, 0, 0, t),
where t is the product of n and m from the initial state.

Exercise 2.1. Run the machine by hand starting with initial state (2, 3, 0, 0), specifying which rule fires
at each step. Verify that the final state is (2, 0, 0, 6).

Exercise 2.2. An invariant of a sequence of states is a predicate which is true of all of the states. Find
an invariant which expresses the relationship between the initial value of n and m (call them N and
M ), and the current values of m, d and t . Hence prove the conjecture that the machine performs
multiplication. To do the proof you need to show that

1. The invariant is true for the initial state.

2. If the invariant is true for a particular state, then it is true for its successor state.

3. Given the invariant and the termination condition (m = d = 0), then t = N ∗M .

4. The machine terminates.

State transition systems are convenient for our purposes, because:

• They are sufficiently abstract that we do not get tangled up in very low-level details.

• They are sufficiently concrete that we can be sure we are not ‘cheating’ by hiding a lot of
complexity in the rules.

• We can transliterate a state transition system directly into Miranda to give an executable
implementation of the system.
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To illustrate the last point, we will transliterate the multiplication machine into Miranda. We
begin by giving a type synonym to define the type of a state in this machine:

> type MultState = (Int, Int, Int, Int) -- (n, m, d, t)

Next, the function evalMult takes a state and returns the list consisting of that state followed
by all the states which follow it:

> evalMult :: MultState -> [MultState]
> evalMult state = if multFinal state
> then [state]
> else state : evalMult (stepMult state)

The function stepMult takes a non-final state and returns the next state. There is one equation
for stepMult for each transition rule:

> stepMult (n, m, d, t) | d > 0 = (n, m, d-1, t+1)
> stepMult (n, m, d, t) | d == 0 = (n, m-1, n, t)

The function multFinal takes a state and tests whether the state is a final state:

> multFinal :: MultState -> Bool

Exercise 2.3. Define the function multFinal, and run the resulting machine on the initial state (2, 3, 0, 0),
checking that the last state of the result list is (2, 0, 0, 6). You may find the standard function layn
is useful to help lay out the results more legibly.

2.3 Mark 1: A minimal template instantiation graph reducer

We are now ready to begin the definition of a rather simple graph reducer. Even though it is
simple, it contains many of the parts that more sophisticated graph reducers have, so it takes a
few pages to explain.

2.3.1 Transition rules for graph reduction

The state of the template instantiation graph reduction machine is a quadruple

(stack, dump, heap, globals)

or (s,d,h,f) for short.

• The stack is a stack of addresses, each of which identifies a node in the heap. These nodes
form the spine of the expression being evaluated. The notation a1 : s denotes a stack
whose top element is a1 and the rest of which is s.
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• The dump records the state of the spine stack prior to the evaluation of an argument of a
strict primitive. The dump will not be used at all in the Mark 1 machine, but it will be
useful for subsequent versions.

• The heap is a collection of tagged nodes. The notation h[a : node] means that in the heap
h the address a refers to the node node.

• For each supercombinator (and later for each primitive), globals gives the address of heap
node representing the supercombinator (or primitive).

A heap node can take one of three forms (for our most primitive machine):

• NAp a1 a2 represents the application of the node whose address is a1 to that whose address
is a2.

• NSupercomb args body represents a supercombinator with arguments args and body body .

• NNum n represents the number n.

There are only two state transition rules for this primitive template instantiation machine. The
first one describes how to unwind a single application node onto the spine stack:

(2.1)
a : s d h[a : NAp a1 a2] f

=⇒ a1 : a : s d h f

(The heap component of the second line of this rule still includes the mapping of address a to
NAp a1 a2, but we do not write it out again, to save clutter.) Repeated application of this rule
will unwind the entire spine of the expression onto the stack, until the node on top of the stack
is no longer a NAp node.

The second rule describes how to perform a supercombinator reduction.

(2.2)
a0 : a1 : . . . : an : s d h[a0 : NSupercomb [x1, . . . , xn ] body ] f

=⇒ ar : s d h′ f
where (h′, ar ) = instantiate body h f [x1 �→ a1, . . . , xn �→ an ]

Most of the interest in this rule is hidden inside the function instantiate. Its arguments are:

• the expression to instantiate,

• a heap,

• the global mapping of names to heap addresses, f , augmented by the mapping of argument
names to their addresses obtained from the stack.

It returns a new heap and the address of the (root of the) newly constructed instance. Such a
powerful operation is really at variance with the spirit of state transition systems, where each
step is meant to be a simple atomic action, but that is the nature of the template instantiation
machine. The implementations of later chapters will all have truly atomic actions!
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Notice that the root of the redex is not itself affected by this rule; it is merely replaced on the
stack by the root of the result. In other words, these rules describe a tree-reduction machine,
which does not update the root of the redex, rather than a graph-reduction machine. We will
improve on this later in Section 2.5.

2.3.2 Structure of the implementation

Now that we have a specification of our machine, we are ready to embark on its implementation.

Since we are writing the implementation in a functional language, we must write a function run,
say, to do the job. What should its type be? It should take a filename, run the program therein,
and print out the results, which might be either the final result or some kind of execution trace.
So the type of run is given by the following type signature:

> runProg :: [Char] -> [Char] -- name changed to not conflict

Now we can think about how run might be built up. Running a program consists of four stages:

1. Parse the program from the expression found in a specified file. The parse function takes
a filename and returns the parsed program.

> parse :: [Char] -> CoreProgram

2. Translate the program into a form suitable for execution. The compile function, which
performs this task, takes a program and produces the initial state of the template instan-
tiation machine:

> compile :: CoreProgram -> TiState

tiState is the type of the state of the template instantiation machine. (The prefix ‘ti’ is
short for template instantiation.)

3. Execute the program, by performing repeated state transitions until a final state is reached.
The result is a list of all the states passed through; from this we can subsequently either
extract the final state, or get a trace of all the states. For the present we will restrict
ourselves to programs which return a number as their result, so we call this execution
function eval.

> eval :: TiState -> [TiState]

4. Format the results for printing. This is done by the function showResults, which selects
which information to print, and formats it into a list of characters.

> showResults :: [TiState] -> [Char]

The function run is just the composition of these four functions:

> runProg = showResults . eval . compile . parse -- "run": name conflict

We will devote a subsection to each of these phases.
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2.3.3 The parser

The source language, including the parse function, is defined in a separate module language,
defined in Chapter 1. We make it available using the %include directive to import the module:

> -- import Language

2.3.4 The compiler

In this section we define the compile function. We will need the data types and functions
defined in the utils module, so we use %include to make it available.

> -- import Utils

Now we need to consider the representation of the data types the compiler manipulates.

Data types

The compiler produces the initial state of the machine, which has type tiState, so the next
thing to do is to define how machine states are represented, using a type synonym:

> type TiState = (TiStack, TiDump, TiHeap, TiGlobals, TiStats)

The state of the machine is a quintuple whose first four components correspond exactly to those
given in Section 2.3.1, and whose fifth component is used to accumulate statistics.

Next, we need to consider the representation of each of these components.

• The spine stack is just a stack of heap addresses:

> type TiStack = [Addr]

We choose to represent the stack as a list. The elements of the stack are members of the
abstract data type addr defined in the utilsmodule (Appendix A.1). They represent heap
addresses, and by making them abstract we ensure that we can only use the operations
provided on them by the utils module. Thus it is impossible for us to add one to an
address, say, by mistake.

• The dump is not required until Section 2.6, but we make it part of the state already
because adding it later would require many tiresome alterations to the state transition
rules. For now we give it a trivial type definition, consisting of just a single constructor
with no arguments.

> data TiDump = DummyTiDump
> initialTiDump = DummyTiDump
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• The heap is represented by the heap abstract data type defined in the utils module. We
have to say what the heap contains, namely objects of type node (yet to be defined):

> type TiHeap = Heap Node

Heap nodes are represented by the following algebraic data type declaration, which corre-
sponds to the list of possibilities given in Section 2.3.1:

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- A number

The only difference is that we have added an extra field of type name to the NSupercomb
constructor, which is used to hold the name of the supercombinator. This is used only for
documentation and debugging purposes.

• The globals component associates each supercombinator name with the address of a heap
node containing its definition:

> type TiGlobals = ASSOC Name Addr

The assoc type is defined in the utils module, along with its operations (Appendix A.2).
It is actually defined there as a type synonym (not an abstract data type) because it is so
convenient to be able to manipulate associations using the built-in syntax for lists. There
is a tension here between abstraction and ease of programming.

• The tiStats component of the state is not mentioned in the transition rules, but we will
use it to collect run-time performance statistics on what the machine does. So that we
can easily change what statistics are collected, we will make it an abstract type. To begin
with, we will record only the number of steps taken:

> tiStatInitial :: TiStats
> tiStatIncSteps :: TiStats -> TiStats
> tiStatGetSteps :: TiStats -> Int

The implementation is rather simple:

> type TiStats = Int
> tiStatInitial = 0
> tiStatIncSteps s = s+1
> tiStatGetSteps s = s

A useful function applyToStats applies a given function to the statistics component of
the state:

> applyToStats :: (TiStats -> TiStats) -> TiState -> TiState
> applyToStats stats_fun (stack, dump, heap, sc_defs, stats)
> = (stack, dump, heap, sc_defs, stats_fun stats)

This completes our definition of the data types involved.
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The compiler itself

The business of the compiler is to take a program, and from it create the initial state of the
machine:

> compile program
> = (initial_stack, initialTiDump, initial_heap, globals, tiStatInitial)
> where
> sc_defs = program ++ preludeDefs ++ extraPreludeDefs
>
> (initial_heap, globals) = buildInitialHeap sc_defs
>
> initial_stack = [address_of_main]
> address_of_main = aLookup globals "main" (error "main is not defined")

Let us consider each of the definitions in the where clause in turn. The first, sc_defs, is just a
list of all the supercombinator definitions involved in the program. Recall that preludeDefs was
defined in Section 1.4 to be the list of standard supercombinator definitions which are always
included in every program. extraPreludeDefs is a list of any further standard functions we
may want to add; for the present it is empty:

> extraPreludeDefs = []

The second definition uses an auxiliary function, buildInitialHeap, to construct an initial
heap containing an NSupercomb node for each supercombinator, together with an association
list globals which maps each supercombinator name onto the address of its node.

Lastly, initial_stack is defined to contain just one item, the address of the node for the
supercombinator main, obtained from globals.

Now we need to consider the definition of buildInitialHeap, which is a little tricky. We need
to do something for each element of the list sc_defs, but what makes it awkward is that the
‘something’ involves heap allocation. Since each heap allocation produces a new heap, we need
to find a way of passing the heap along from one element of sc_defs to the next. This process
starts with the empty heap, hInitial (Appendix A.1).

We encapsulate this idea in a higher-order function mapAccuml, which we will use quite a lot in
this book. mapAccuml takes three arguments: f , the ‘processing function’; acc, the ‘accumulator’;
and a list [x1, . . . , xn ]. It takes each element of the input list, and applies f to it and the current
accumulator. f returns a pair of results, an element of the result list and a new value for the
accumulator. mapAccuml passes the accumulator along from one call of f to the next, and
eventually returns a pair of results: acc′, the final value of the accumulator; and the result
list [y1, . . . , yn ]. Figure 2.1 illustrates this plumbing. The definition of mapAccuml is given in
Appendix A.5.

In our case, the ‘accumulator’ is the heap, with initial value hInitial. The list [x1, . . . , xn ] is the
supercombinator definitions, sc_defs, while the result list [y1, . . . , yn ] is the association of super-
combinator names and addresses, sc_addrs. Here, then, is the definition of buildInitialHeap.

> buildInitialHeap :: [CoreScDefn] -> (TiHeap, TiGlobals)
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Figure 2.1: A picture of mapAccuml f acc [x1, . . . , xn ]

> buildInitialHeap sc_defs = mapAccuml allocateSc hInitial sc_defs

The ‘processing function’, which we will call allocateSC, allocates a single supercombinator,
returning a new heap and a member of the sc_addrs association list.

> allocateSc :: TiHeap -> CoreScDefn -> (TiHeap, (Name, Addr))
> allocateSc heap (name, args, body)
> = (heap’, (name, addr))
> where
> (heap’, addr) = hAlloc heap (NSupercomb name args body)

That completes the definition of the compiler. Next, we turn our attention to the evaluator.

2.3.5 The evaluator

The evaluator eval takes an initial machine state, and runs the machine one step at a time,
returning the list of all states it has been through.

eval always returns the current state as the first element of its result. If the current state is
a final state, no further states are returned; otherwise, eval is applied recursively to the next
state. The latter is obtained by taking a single step (using step), and then calling doAdmin to
do any administrative work required between steps.

> eval state = state : rest_states
> where
> rest_states | tiFinal state = []
> | otherwise = eval next_state
> next_state = doAdmin (step state)
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> doAdmin :: TiState -> TiState
> doAdmin state = applyToStats tiStatIncSteps state

Testing for a final state

The function tiFinal detects the final state. We are only finished if the stack contains a single
object, and it is either a number or a data object.

> tiFinal :: TiState -> Bool
>
> tiFinal ([sole_addr], dump, heap, globals, stats)
> = isDataNode (hLookup heap sole_addr)
>
> tiFinal ([], dump, heap, globals, stats) = error "Empty stack!"
> tiFinal state = False -- Stack contains more than one item

Notice that the stack element is an address, which we need to look up in the heap before we
can check whether it is a number or not. We should also produce a sensible error message if the
stack should be empty (which should never happen).

Finally, we can define isDataNode:

> isDataNode :: Node -> Bool
> isDataNode (NNum n) = True
> isDataNode node = False

Taking a step

The function step maps one state into its successor:

> step :: TiState -> TiState

It has to do case analysis on the node on top of the spine stack, so it extracts this node from
the heap, and uses dispatch to call an appropriate function to do the hard work for each form
of node.

> step state
> = dispatch (hLookup heap (hd stack))
> where
> (stack, dump, heap, globals, stats) = state
>
> dispatch (NNum n) = numStep state n
> dispatch (NAp a1 a2) = apStep state a1 a2
> dispatch (NSupercomb sc args body) = scStep state sc args body
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We can deal with the cases for numbers and applications with very little trouble. It is an error
for there to be a number on top of the stack, since a number should never be applied as a
function. (If it was the only object on the stack, execution will have been halted by tiFinal.)

> numStep :: TiState -> Int -> TiState
> numStep state n = error "Number applied as a function!"

Dealing with an application node is described by the unwind rule (Rule 2.1), which can be
translated directly into Miranda:

> apStep :: TiState -> Addr -> Addr -> TiState
> apStep (stack, dump, heap, globals, stats) a1 a2
> = (a1 : stack, dump, heap, globals, stats)

Applying a supercombinator

To apply a supercombinator, we must instantiate its body, binding the argument names to the
argument addresses found in the stack (Rule 2.2). Then we discard the arguments from the
stack, including the root of the redex, and push the (root of the) result of the reduction onto the
stack instead. (Remember, in this first version of the machine we are not performing updates.)

> scStep :: TiState -> Name -> [Name] -> CoreExpr -> TiState
> scStep (stack, dump, heap, globals, stats) sc_name arg_names body
> = (new_stack, dump, new_heap, globals, stats)
> where
> new_stack = result_addr : (drop (length arg_names+1) stack)
>
> (new_heap, result_addr) = instantiate body heap env
> env = arg_bindings ++ globals
> arg_bindings = zip2 arg_names (getargs heap stack)

In order to apply supercombinators and primitives, we need an auxiliary function. The function
getArgs takes a stack (which must consist of a supercombinator on top of a stack of application
nodes), and returns a list formed from the argument of each of the application nodes on the
stack.

> -- now getargs since getArgs conflicts with Gofer standard.prelude
> getargs :: TiHeap -> TiStack -> [Addr]
> getargs heap (sc:stack)
> = map get_arg stack
> where get_arg addr = arg where (NAp fun arg) = hLookup heap addr

The instantiate function takes an expression, a heap and an environment associating names
with addresses. It creates an instance of the expression in the heap, and returns the new heap
and address of the root of the instance. The environment is used by instantiate to specify the
addresses to be substituted for supercombinators and local variables.
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> instantiate :: CoreExpr -- Body of supercombinator
> -> TiHeap -- Heap before instantiation
> -> ASSOC Name Addr -- Association of names to addresses
> -> (TiHeap, Addr) -- Heap after instantiation, and
> -- address of root of instance

The case for numbers is quite straightforward.

> instantiate (ENum n) heap env = hAlloc heap (NNum n)

The case for applications is also simple; just instantiate the two branches, and build the appli-
cation node. Notice how we ‘thread’ the heap though the recursive calls to instantiate. That
is, the first call to instantiate is given a heap and produces a new heap; the latter is given to
the second call to instantiate, which produces yet another heap; the latter is the heap in which
the new application node is allocated, producing a final heap which is returned to the caller.

> instantiate (EAp e1 e2) heap env
> = hAlloc heap2 (NAp a1 a2) where (heap1, a1) = instantiate e1 heap env
> (heap2, a2) = instantiate e2 heap1 env

For variables, we simply look up the name in the environment we are given, producing a suitable
error message if we do not find a binding for it.

> instantiate (EVar v) heap env
> = (heap, aLookup env v (error ("Undefined name " ++ show v)))

aLookup, which is defined in Appendix A.2, looks up a variable in an association list, but returns
its third argument if the lookup fails.

We postpone the question of instantiating constructors and let(rec) expressions by calling
auxiliary functions instantiateConstr and instantiateLet, which each give errors for the
present; later we will replace them with operational definitions. Lastly, the template machine is
unable to handle case expressions at all, as we will see.

> instantiate (EConstr tag arity) heap env
> = instantiateConstr tag arity heap env
> instantiate (ELet isrec defs body) heap env
> = instantiateLet isrec defs body heap env
> instantiate (ECase e alts) heap env = error "Can’t instantiate case exprs"

> instantiateConstr tag arity heap env
> = error "Can’t instantiate constructors yet"
> instantiateLet isrec defs body heap env
> = error "Can’t instantiate let(rec)s yet"
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2.3.6 Formatting the results

The output from eval is a list of states, which are rather voluminous if printed in their entirety.
Furthermore, since the heaps and stacks are abstract objects, Miranda will not print them at all.
So the showResults function formats the output for us, using the iseq data type introduced in
Section 1.5.

> showResults states
> = iDisplay (iConcat [ iLayn (map showState states),
> showStats (last states)
> ])

We display the state just by showing the contents of the stack. It is too tiresome to print the
heap in its entirety after each step, so we will content ourselves with printing the contents of
nodes referred to directly from the stack. The other components of the state do not change, so
we will not print them either.

> showState :: TiState -> Iseq
> showState (stack, dump, heap, globals, stats)
> = iConcat [ showStack heap stack, iNewline ]

We display the stack, topmost element first, by displaying the address on the stack, and the
contents of the node to which it points. Most of these nodes are application nodes, and for each
of these we also display the contents of its argument node.

> showStack :: TiHeap -> TiStack -> Iseq
> showStack heap stack
> = iConcat [
> iStr "Stk [",
> iIndent (iInterleave iNewline (map show_stack_item stack)),
> iStr " ]"
> ]
> where
> show_stack_item addr
> = iConcat [ showFWAddr addr, iStr ": ",
> showStkNode heap (hLookup heap addr)
> ]

> showStkNode :: TiHeap -> Node -> Iseq
> showStkNode heap (NAp fun_addr arg_addr)
> = iConcat [ iStr "NAp ", showFWAddr fun_addr,
> iStr " ", showFWAddr arg_addr, iStr " (",
> showNode (hLookup heap arg_addr), iStr ")"
> ]
> showStkNode heap node = showNode node
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showNode displays the value of a node. It prints only the name stored inside NSupercomb nodes,
rather than printing the complete value; indeed this is the only reason the name is stored inside
these nodes.

> showNode :: Node -> Iseq
> showNode (NAp a1 a2) = iConcat [ iStr "NAp ", showAddr a1,
> iStr " ", showAddr a2
> ]
> showNode (NSupercomb name args body) = iStr ("NSupercomb " ++ name)
> showNode (NNum n) = (iStr "NNum ") ‘iAppend‘ (iNum n)

> showAddr :: Addr -> Iseq
> showAddr addr = iStr (show addr)
>
> showFWAddr :: Addr -> Iseq -- Show address in field of width 4
> showFWAddr addr = iStr (space (4 - length str) ++ str)
> where
> str = show addr

showStats is responsible for printing out the accumulated statistics:

> showStats :: TiState -> Iseq
> showStats (stack, dump, heap, globals, stats)
> = iConcat [ iNewline, iNewline, iStr "Total number of steps = ",
> iNum (tiStatGetSteps stats)
> ]

Exercise 2.4. Test the implementation given so far. Here is a suitable test program:

main = S K K 3

The result should be the number 3. Invent a couple more test programs and check that they work.
Remember, we have not yet defined any arithmetic operations!

Exercise 2.5. Modify showState so that it prints out the entire contents of the heap. (Hint: use
hAddresses to discover the addresses of all the nodes in the heap.) In this way you can see how
the heap evolves from one step to the next.

Exercise 2.6. scStep will fail if the supercombinator or primitive is applied to too few arguments. Add
a suitable check and error message to scStep to detect this case.

Exercise 2.7. Modify your interpreter to collect more execution statistics. For example, you could
accumulate:

• The number of reductions, perhaps split into supercombinator reductions and primitive re-
ductions.

• The number of each kind of heap operation, especially allocations. The most convenient way
to do this is to modify the heap abstract data type to accumulate this information itself,
though this only works for heap operations which return a new heap as part of the result.
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• The maximum stack depth.

Exercise 2.8. In the definition of scStep, the environment env which is passed to instantiate is
defined as

env = arg_bindings ++ globals

What difference would it make if the arguments to ++ were reversed?

Exercise 2.9. (Slightly tricky.) You might think that the following definition for eval would be more
obvious than the one given:

eval state = [state], tiFinal state
= state : eval next_state, otherwise

(where next_state is defined as before). Why is this an inferior definition? (Hint: think about
what would happen if all the states were being formatted by showResults, and some error occurred
when evaluating tiFinal state, such as an attempt to access a non-existent heap node. Would
the state which caused the error be printed? If not, why not?)

2.4 Mark 2: let(rec) expressions

Our first enhancement is to make the machine capable of dealing with let and letrec expres-
sions. As discussed in Section 2.1.4, the bodies of supercombinators may contain let(rec)
expressions, which are regarded as textual descriptions of a graph.

It follows that the only change we have to make to our implementation is to enhance instantiate,
so that it has an equation for the ELet constructor.

Exercise 2.10. Add an equation to instantiate for non-recursive let expressions. What you will need
to do to instantiate (ELet nonRecursive defs body) is:

1. instantiate the right-hand side of each of the definitions in defs;

2. augment the environment to bind the names in defs to the addresses of the newly constructed
instances;

3. call instantiate passing the augmented environment and the expression body.

This still only takes care of let expressions. The result of instantiating a letrec expression is
a cyclic graph, whereas let expressions give rise to acyclic graphs.

Exercise 2.11. Copy your equation for the non-recursive ELet of instantiate, and modify it to work
for the recursive case (or modify your definition to deal with both).
(Hint: do everything exactly as in the let case, except that in Step 1 pass the augmented environ-
ment (constructed in Step 2) to instantiate, instead of the existing environment.)

The hint in this exercise seems curious, because it requires the name-to-address bindings pro-
duced in Step 2 to be used as an input to Step 1. If you try this in Miranda it all works perfectly
because, as in any non-strict functional language, the inputs to a function do not have to be
evaluated before the function is called. In a real implementation we would have to do this trick
‘by hand’, by working out the addresses at which each of the (root) nodes in the letrec will be
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allocated, augmenting the environment to reflect this information, and then instantiating the
right-hand sides.

Here is a test program, to see if your implementation works:

pair x y f = f x y ;
fst p = p K ;
snd p = p K1 ;
f x y = letrec

a = pair x b ;
b = pair y a

in
fst (snd (snd (snd a))) ;

main = f 3 4

The result should be 4. Can you figure out how this program works? (All will be revealed in
Section 2.8.3.)

Exercise 2.12. Consider the program

main = letrec f = f x in f

What happens if you run this program? Could this problem ever arise in a strongly typed language
such as Miranda?

2.5 Mark 3: Adding updating

So far our reduction machine does not perform any updates, so shared sub-expressions may be
evaluated many times. As explained in Section 2.1.5 the easiest way to fix the problem is to
update the root of the redex with an indirection node pointing to the result.

We can express this by modifying the state transition rule (2.2) for supercombinator redexes:

(2.3)
a0 : a1 : . . . : an : s d h[a0 : NSupercomb [x1, . . . , xn ] body ] f

=⇒ ar : s d h′[an : NInd ar ] f
where (h′, ar ) = instantiate body h f [x1 �→ a1, . . . , xn �→ an ]

The difference is that the heap h′ returned by the instantiate function is further modified by
overwriting the node an (the root of the redex) with an indirection to ar (the root of the result,
returned by instantiate). Notice that if the supercombinator is a CAF (see Section 2.1.6), then
n = 0 and the node to be modified is the supercombinator node itself.

One further modification is required. Since we may now encounter indirections during unwinding
the spine, we need to add a new rule to cope with this case:

(2.4)
a : s d h[a : NInd a1] f

=⇒ a1 : s d h f
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The address of the indirection node, a, is removed from the stack, just as if it had never been
there.

There are several things we need to do to implement these new rules:

• Add a new node constructor, NInd, to the node data type. This gives the following revised
definition:

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- Number
> | NInd Addr -- Indirection

We need to add a new equation to showNode to take account of this extra constructor.

• Modify scStep to use hUpdate to update the root of the redex with an indirection to the
result (Rule 2.3).

• Add an equation to the definition of dispatch to cope with indirections (Rule 2.4).

Exercise 2.13. Make the modifications to perform updates with indirection nodes. Try out the effect
of your changes by running the following program on both the Mark 1 and Mark 3 versions of your
reduction machine:

id x = x ;
main = twice twice id 3

(Recall that twice is defined in preludeDefs – Section 1.4.) Try to figure out what would happen
by reducing it by hand first. What happens if you define main to be twice twice twice id 3?

2.5.1 Reducing the number of indirections

Often we will be updating the root of the redex with an indirection to a node newly created by
instantiate (or, as we shall see, by a primitive). Under these circumstances, rather than use
an indirection, it would be safe to build the root node of the result directly on top of the root
of the redex. Because the root of the result is newly created, no sharing can be lost by doing
this, and it saves building (and subsequently traversing) an extra indirection node.

We can do this by defining a new instantiation function, instantiateAndUpdate, which is just
like instantiate except that it takes an extra argument, the address of the node to be updated
with the result, and it does not return the address of the resulting graph.

> instantiateAndUpdate
> :: CoreExpr -- Body of supercombinator
> -> Addr -- Address of node to update
> -> TiHeap -- Heap before instantiation
> -> ASSOC Name Addr -- Associate parameters to addresses
> -> TiHeap -- Heap after instantiation

Here, for example, is the definition of instantiateAndUpdate in the case when the expression
is an application:
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> instantiateAndUpdate (EAp e1 e2) upd_addr heap env
> = hUpdate heap2 upd_addr (NAp a1 a2)
> where
> (heap1, a1) = instantiate e1 heap env
> (heap2, a2) = instantiate e2 heap1 env

Notice that the recursive instantiations are still performed by the old instantiate; only the
root node needs to be updated.

Exercise 2.14. Complete the definition of instantiateAndUpdate. The following points need a little
care:

• When the expression to be instantiated is a simple variable, you will still need to use an
indirection. Why?

• Think carefully about the recursive instantiations in the equations for let(rec) expressions.

Modify scStep to call instantiateAndUpdate instead of instantiate, passing the root of the
redex as the address of the node to be updated. Remove the update code from scStep itself.
Measure the effect of this modification on the number of reductions and the number of heap nodes
allocated.

2.6 Mark 4: Adding arithmetic

In this section we will add arithmetic primitives. This will involve using the dump for the first
time.

2.6.1 Transition rules for arithmetic

First of all we develop the state transition rules for arithmetic. We begin with negation, because
it is a simple unary operation. The rules for other arithmetic operations are similar. Here is a
plausible-looking rule when the argument is evaluated:

(2.5)
a : a1 : [] d h


 a : NPrim Neg
a1 : NAp a b
b : NNum n


 f

=⇒ a1 : [] d h[a1 : NNum (−n)] f

Notice that the rule specifies that the stack should contain only the argument to the negation
operator, because anything else would be a type error.

Suppose that the argument is not evaluated: what should happen then? We need to evaluate
the argument on a fresh stack (so that the evaluations do not get mixed up with each other)
and, when this is complete, restore the old stack and try again. We need a way to keep track of
the old stack, so we introduce the dump for the first time. The dump is just a stack of stacks.

The Neg rule to start an evaluation is like this:
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(2.6)
a : a1 : [] d h

[
a : NPrim Neg
a1 : NAp a b

]
f

=⇒ b : [] (a : a1 : []) : d h f

This rule is used only if the previous one (which is a special case of this one, with the node at
address b being an NNum node) does not apply.

Once the evaluation is complete, we need a rule to restore the old stack:

(2.7)
a : [] s : d h[a : NNum n] f

=⇒ s d h f

Once the old stack has been restored, the negation primitive will be found on top of the stack
again, but this time the argument will be in normal form.

But we need to take care! The argument will indeed have been reduced to normal form, but the
root node of the argument will have been updated, so it may now be an indirection node. Hence,
the first rule for Neg will not see the NNum node directly. (For example, consider the expression
(negate (id 3)).)

The easiest way around this is to add an extra transition rule just before the rule which unwinds
an application node (Rule 2.1). In the special case where the argument of the application is an
indirection, the rule updates the application with a new one whose argument points past the
indirection:

(2.8)
a : s d h

[
a : NAp a1 a2
a2 : NInd a3

]
f

=⇒ a : s d h[a : NAp a1 a3] f

In order to bring this rule into play, we need to modify Rule 2.6 so that it unwinds anew from
the root of the redex after the evaluation is completed:

(2.9)
a : a1 : [] d h

[
a : NPrim Neg
a1 : NAp a b

]
f

=⇒ b : [] (a1 : []) : d h f

This is rather tiresome; the implementations developed in subsequent chapters will do a better
job.

Exercise 2.15. Write the state transition rules for addition. (The other dyadic arithmetic operations
are practically identical.)

2.6.2 Implementing arithmetic

To implement arithmetic we need to make a number of changes. First, we need to redefine the
type tiDump to be a stack of stacks, whose initial value is empty.

> type TiDump = [TiStack]
> initialTiDump = []
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Next, we need to add a new kind of heap node: NPrim n p represents a primitive whose name
is n and whose value is p, where p is of type primitive. As in the case of NSupercomb nodes,
the name is present in the NPrim node solely for debugging and documentation reasons.

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- Number
> | NInd Addr -- Indirection
> | NPrim Name Primitive -- Primitive

As usual, showNode needs to be augmented as well, to display NPrim nodes. The transition rules
given in the previous section suggest that the data type primitive should be defined like this:

> data Primitive = Neg | Add | Sub | Mul | Div

with one constructor for each desired primitive.

Now, just as we needed to allocate an NSupercomb node in the initial heap for each supercom-
binator, so we need to allocate an NPrim node in the initial heap for each primitive. Then we
can add extra bindings to the globals component of the machine state, which map the name of
each primitive to the address of its node, just as we did for supercombinators. We can do this
easily by modifying the definition of buildInitialHeap, like this:

> buildInitialHeap :: [CoreScDefn] -> (TiHeap, TiGlobals)
> buildInitialHeap sc_defs
> = (heap2, sc_addrs ++ prim_addrs)
> where
> (heap1, sc_addrs) = mapAccuml allocateSc hInitial sc_defs
> (heap2, prim_addrs) = mapAccuml allocatePrim heap1 primitives

We define an association list giving the mapping from variable names to primitives, thus:

> primitives :: ASSOC Name Primitive
> primitives = [ ("negate", Neg),
> ("+", Add), ("-", Sub),
> ("*", Mul), ("/", Div)
> ]

To add further primitives, just add more constructors to the primitive type, and more elements
to the primitives association list.

We can then define allocatePrim, very much as we defined allocateSc:

> allocatePrim :: TiHeap -> (Name, Primitive) -> (TiHeap, (Name, Addr))
> allocatePrim heap (name, prim)
> = (heap’, (name, addr))
> where
> (heap’, addr) = hAlloc heap (NPrim name prim)
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Next, we need to augment the dispatch function in step to call primStep when it finds a
NPrim node. primStep performs case analysis on the primitive being used, and then calls one
of a family of auxiliary functions, primNeg, primAdd and so on, which actually perform the
operation. For the present we content ourselves with negation.

> primStep state Neg = primNeg state

primNeg needs to do the following:

• Use getArgs to extract the address of the argument from the stack, and hLookup to get
the node pointed to by this address.

• Use the auxiliary function isDataNode to check if the argument node is evaluated.

• If it is not evaluated, use Rule 2.9 to set up the new state ready to evaluate the argument.
This involves pushing the current stack on the dump, and making a new stack whose only
element is the argument to negate.

• If it is evaluated, use hUpdate to overwrite the root of the redex with an NNum node
containing the result, and return, having modified the stack appropriately.

Next, we need to implement the new rules for unwinding and for numbers. The definition of
numStepmust be changed to implement Rule 2.7. If the stack contains just one item, the address
of an NNum node, and the dump is non-empty, numStep should pop the top element of the dump
and make it into the new stack. If these conditions do not apply, it should signal an error.
Similarly, the definition of apStep must be changed to implement Rule 2.8. It can do this by
checking for an indirection in the argument, and using hUpdate to update the heap if so.

Lastly, we need to make a change to tiFinal. At present it halts execution when the stack
contains a single NNum; but it must now only do this if the dump is empty, otherwise the new
Rule 2.7 will never get a chance to execute!

Exercise 2.16. Implement all these changes to add negation, and test some programs involving negation.
For example,

main = negate 3

or

main = twice negate 3

You should also test the following program, to show that the handling of indirections is working:

main = negate (I 3)

The obvious extension now is to implement addition, subtraction and the other arithmetic
primitives. If we rush ahead blindly we will find that all these dyadic arithmetic primitives have
a rather stereotyped form; indeed they are identical except for the fact that at one point we use
* or / rather than +.

To avoid this duplication, we can instead define a single generic function primArith and pass
to it the required operation as an argument, thus:
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> primStep state Add = primArith state (+)
> primStep state Sub = primArith state (-)
> primStep state Mul = primArith state (*)
> primStep state Div = primArith state (div)

> primArith :: TiState -> (Int -> Int -> Int) -> TiState

This is a simple example of the way in which higher-order functions can enable us to make
programs more modular.

Exercise 2.17. Implement primArith, and test your implementation.

2.7 Mark 5: Structured data

In this section we will add structured data types to our reduction machine. It would be nice
to give an implementation for the case expressions of our core language, but it turns out that
it is rather hard to do so within the framework of a template instantiation machine. (Our
later implementations will not have this problem.) Instead we will use a collection of built-in
functions, such as if, casePair and caseList, which allow us to manipulate certain structured
types. The template machine will remain unable to handle general structured objects.

Exercise 2.18. Why is it hard to introduce case expressions into the template instantiation machine?
(Hint: think about what instantiate would do with a case expression.)

2.7.1 Building structured data

Structured data is built with the family of constructors Pack{t , a} where t gives the tag of
the constructor, and a gives its arity (Section 1.1.4), so we need a representation for these
constructor functions in the graph. They are really a new form of primitive, so we can do
this by adding a new constructor PrimConstr to the primitive type. Now in the equa-
tion for instantiateConstr, we can instantiate an expression EConstr t a to the heap node
NPrim "Pack" (PrimConstr t a).

Next the question arises of how this primitive is implemented. We need to add a case to primStep
to match the PrimConstr constructor, which calls a new auxiliary function primConstr. This
should check that it is given enough arguments, and if so build a structured data object in the
heap.

To do this we need to add a new constructor, NData, to the node type to represent structured
data objects. The NData constructor contains the tag of the object, and its components.

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- Number
> | NInd Addr -- Indirection
> | NPrim Name Primitive -- Primitive
> | NData Int [Addr] -- Tag, list of components
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We can now give the rule for NPrim (PrimConstr t n):

(2.10)
a : a1 : . . . : an : [] d h



a : NPrim (PrimConstr t n)
a1 : NAp a b1
. . .
an : NAp an−1 bn


 f

=⇒ an : [] d h[an : NData t [b1, . . . , bn ]] f

So much for building structured objects. The next question is how to take them apart, which
is expressed by case expressions in the Core language. As already mentioned, it is hard to
implement case expressions directly, so we content ourselves with a few special cases, beginning
with booleans.

2.7.2 Conditionals

The boolean type might be declared in Miranda like this:

boolean ::= False | True

There are two constructors, True and False. Each has arity zero, and we arbitrarily assign a
tag of one to False and two to True. So we can give the following Core-language definitions:

False = Pack{1,0}
True = Pack{2,0}

Since we cannot have general case expressions, it will suffice to add a conditional primitive,
with the reduction rules:

if Pack{2,0} t e = t
if Pack{1,0} t e = e

Operationally, if evaluates its first argument, which it expects to be a data object, examines its
tag, and selects either its second or third argument depending on whether the tag is 2 (True)
or 1 (False) respectively.

Exercise 2.19. Write the state transition rules for the conditional primitive. You need three rules: two
to perform the reduction if the boolean condition is already evaluated; and one to start evaluation
if the condition is not evaluated, by pushing the old stack on the dump, and pushing the address
of the condition on the new empty stack (cf. Rule 2.9). You should find that you need to use an
indirection in the update for the first two rules.
One further rule is missing. What is it? (Hint: when evaluation of the condition is complete, how
does the conditional get re-tried?)

Once you have if, you can give Core-language definitions for the other boolean operators in
terms of it and False and True. For example:

and x y = if x y False
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Exercise 2.20. Give Core-language definitions for or, xor and not. Add all of these Core-language
definitions to extraPreludeDefs.

Finally, we need some way of comparing numeric values, which requires new primitives >, >=
and so on.

2.7.3 Implementing structured data

Here is a list of the changes required to the implementation to add structured data objects,
conditionals and comparison operations.

• Add the NData constructor to the node data type. Extend showNode to display NData
nodes.

• Add PrimConstr, If, Greater, GreaterEq, Less, LessEq, Eq, NotEq to the primitive
type. For all except the first, add suitable pairs to the primitives association list, so that
the names of these primitives can be mapped to their values by instantiateVar.

• Add a definition for instantiateConstr (and instantiateAndUpdateConstr if neces-
sary).

• The isDataNode function should identify NData nodes as well as NNum nodes.

• The dispatch code in step needs an extra case for NData nodes, calling a new auxiliary
function dataStep.

• Define dataStep; it is very similar to numStep.

• Extend primStep to cope with the new primitives PrimConstr, If, Greater and so on.
For PrimConstr and If it should call new auxiliary functions primConstr and primIf.
The comparison primitives can almost, but not quite, use primArith. What we need is a
slight generalisation of primArith:

> primDyadic :: TiState -> (Node -> Node -> Node) -> TiState

which takes a node-combining function instead of a number-combining one. It is simple
to define primArith, and a similar function primComp for comparison primitives, in terms
of primDyadic; and to define primDyadic by generalising the definition of primArith.

Exercise 2.21. Make all these changes. Now, at last, we can write sensible recursive functions, because
we have a conditional to terminate the recursion. Try, for example, the factorial function

fac n = if (n == 0) 1 (n * fac (n-1)) ;
main = fac 3

2.7.4 Pairs

The constructors for booleans both have arity zero. Next, we will add the data type of pairs,
which might be declared in Miranda like this:
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pair * ** ::= MkPair * **

We can build pairs using the Pack{1,2} constructor:

MkPair = Pack{1,2}

How about taking them apart, still without using case expressions? For example, consider the
following Core-language program involving a case expression:

f p = case p of
<1> a b -> b*a*a end

Lacking case expressions, we can translate it instead as follows:

f p = casePair p f’
f’ a b = b*a*a

Here, f’ is an auxiliary function, and casePair is a built-in primitive defined like this:

casePair (Pack{1,2} a b) f = f a b

Operationally, casePair evaluates its first argument, which it expects to yield a pair; it then
applies its second argument to the two components of the pair. You can implement this by
adding yet another constructor PrimCasePair to the primitive type, and writing some more
code to handle it.

We can, for example, define fst and snd which extract the first and second components of a
pair, with the following Core-language definitions:

fst p = casePair p K
snd p = casePair p K1

Exercise 2.22. Write the state transition rules for casePair. As usual, you will need two rules: one to
perform the reduction if the first argument is evaluated, and one to start its evaluation if not.
Make the necessary changes to implement pairs, as described above.
Test your implementation with the following program (and others of your own):

main = fst (snd (fst (MkPair (MkPair 1 (MkPair 2 3)) 4)))

2.7.5 Lists

Now that you have done pairs and booleans, lists should be easy. The list data type might be
defined in Miranda like this:

list * ::= Nil | Cons * (list *)
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We assign the tag 1 to Nil and 2 to Cons.

The only question is what exactly the caseList primitive, which takes a list apart, should do.
We recall that the casePair has one ‘continuation’, a function which takes the components of
the pair as its arguments. if has two ‘continuations’, and selects one or other depending on the
value of its first argument. So caseList is just a combination of both these ideas:

caseList Pack{1,0} cn cc = cn
caseList (Pack{2,2} x xs) cn cc = cc x xs

It takes three arguments, and evaluates the first one. If it is an empty list (i.e. has a tag of 1
and no components) then caseList simply selects its second argument cn. Otherwise it must
be a list cell (i.e. a tag of 2 and two components), and caseList applies its third argument cc
to these components.

For example, suppose we wanted to implement the length function, which in Miranda would
be written

length [] = 0
length (x:xs) = 1 + length xs

With the aid of caseList we could write length like this:

length xs = caseList xs 0 length’
length’ x xs = 1 + length xs

Exercise 2.23. Write Core-language definitions for Cons, Nil, head and tail. To define head and tail,
you will need to introduce a new primitive abort, which is returned if you take the head or tail
of an empty list. abort can conveniently be implemented by calling Miranda’s error primitive to
stop the program.

Exercise 2.24. Write the state transition rules for caseList, implement it and abort, and add defini-
tions to preludeDefs for Cons, Nil, head and tail.
Write some programs to test your implementation.

You should now be able to write a suitable case primitive for any structured data type you care
to think of.

Exercise 2.25. What is the main disadvantage of taking apart structured data types with case primi-
tives, rather than implementing full case expressions?

2.7.6 Printing lists

So far we have been implicitly assuming that the result of the whole program is a number.
What would we have to do to allow a list of numbers to be the result? If this was the case, after
evaluating main for a while, we would eventually expect to find the address of a list object on
top of the stack. If it is an empty list, the program terminates. If it is a Cons cell, and its head
is not evaluated we need to begin a recursive evaluation of its head; if the head is evaluated we
need to print the head, and then repeat the whole exercise on the tail.
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As soon as we start to write state transition rules to describe this, we have to decide how to
express the idea of ‘printing a number’ in our state transition world. The neatest solution is
to add a new component to the state, called the output, and model ‘printing a number’ by
‘appending a number to the output’. We will also add two new primitives, Print and Stop.

The Stop primitive is easy: it makes the stack empty. (tiFinal will be altered to stop the
machine when it sees an empty stack, rather than giving an error, which is what it does now.)
Stop expects the dump to be empty.

(2.11)
o a : [] [] h[a : NPrim Stop] f

=⇒ o [] [] h f

The Print primitive evaluates its first argument to an integer, and attaches its value to the
output list; then it returns its second argument as its result. It also expects the dump to be
empty. The first rule applies if the first argument is already evaluated:

(2.12)
o a : a1 : a2 : [] [] h



a : NPrim Print
a1 : NAp a b1
a2 : NAp a1 b2
b1 : NNum n


 f

=⇒ o ++ [n] b2 : [] [] h f

Print is a rather weird supercombinator, because it has a side-effect on the output o. Print
must obviously be used with care! The second rule applies if Print’s first argument is not
evaluated: it starts an evaluation in the usual way.

(2.13)
o a : a1 : a2 : [] [] h


 a : NPrim Print
a1 : NAp a b1
a2 : NAp a1 b2


 f

=⇒ o b1 : [] (a2 : []) : [] h f

Now, we define the following extra functions in extraPreludeDefs:

printList xs = caseList xs stop printCons
printCons h t = print h (printList t)

where "print" is bound by primitives to the Print primitive, and "stop" is bound to Stop.

Finally, we modify the compile function so that the stack initially contains the address of the
expression (printList main). It should not take long to convince yourself that this does the
right thing.

Exercise 2.26. Implement these changes, and test your implementation by writing a program which
returns a list of numbers.

2.8 Alternative implementations†

These exercises explore some alternative implementations for things we have done.
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2.8.1 An alternative representation for primitives

Since the only thing we ever do to a primitive is execute it, we can play the following trick:
instead of making primitive be an enumeration type on which we perform case analysis, we
could make it a function which takes a tiState to a tiState, like this:

> Type Primitive = TiState -> TiState

The constructors Add, Sub and so on have vanished altogether. Now the ‘case analysis’ done by
primStep is rather easy: just apply the function! Here are the revised definitions for primStep
and primitives.

> primStep state prim = prim state
> primitives = [ ("negate", primNeg),
> ("+", primArith (+)), ("-", primArith (-)),
> ("*", primArith (*)), ("/", primArith (/))
> ]

This has a direct counterpart in real implementations: instead of storing a small integer tag in a
NPrim node to distinguish among primitives, we store a code pointer, and jump to it to execute
the primitive.

Exercise 2.27. Implement and test this change.

2.8.2 An alternative representation of the dump

At present we have implemented the dump as a stack of stacks, but in a real implementation
we would doubtless build the new stack directly on top of the old one. The dump would then
contain offsets from the base of the spine stack, telling where one sub-stack ends and the next
begins.

We can model this directly in our machine with the following type declaration:

> type TiDump = Stack Num

Exercise 2.28. Implement and test this change. You will need to modify the equations that deal with
beginning and ending an evaluation of an argument, and the definition of tiFinal.

2.8.3 An alternative representation for data values

There is another way to implement booleans which is quite instructive. The reduction rules
given in Section 2.7.2 for if simply select one or other of the second or third arguments. Now,
suppose that instead of representing a boolean value as a structured data object, we represented
it as a function, which selects one or other of its arguments. That is, True and False are
redefined like this:
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True t f = t
False t f = f

Now boolean operators can be defined like this:

if = I
and b1 b2 t f = b1 (b2 t f) f
or b1 b2 t f = b1 t (b2 t f)
not b t f = b f t

These definitions can all be included in extraPreludeDefs. Now the only primitives required
are the arithmetic comparison operators! There is no need to define a primitive if, or to add
NData to the node type.

We can apply exactly the same trick for pairs. A pair is represented as a function which takes
a single argument and applies it to the two components of the pair:

pair a b f = f a b
casePair = I
fst p = p K
snd p = p K1

The same trick works for lists, but now we need two ‘extra’ arguments, one to use if the list is
a Cons cell, and the other to use if it is empty:

cons a b cn cc = cc a b
nil cn cc = cn
caseList = I

Exercise 2.29. Implement booleans, pairs and lists in this way, and measure their performance. What
advantages and disadvantages can you see relative to the previous implementation?

2.9 Garbage collection†

As execution proceeds, more and more nodes will be allocated in the heap, so the Miranda data
structure representing the heap will become larger and larger. Eventually, Miranda will run out
of space. This comes as no surprise, because it corresponds directly to real implementations.
As nodes are allocated, the heap becomes larger and larger, and eventually fills up. We need to
perform garbage collection to free up some space.

More specifically, we need to define a function gc, with type

whose result state behaves exactly like its input state, except that it has a (hopefully) smaller
heap. This smaller heap contains all the nodes which are accessible from the other components
of the machine state, directly or indirectly. gc makes the heap smaller by calling hFree on the
addresses of nodes which are no longer required (see Appendix A.1 for a description of hFree).

The doAdmin function can check the heap size (using hSize) after each step, and call the garbage
collector if it is larger than some given size.
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2.9.1 Mark-scan collection

To begin with, we will develop a mark-scan collector. This works in three phases:

1. The first phase identifies all the roots; that is, all the heap addresses contained in the
machine state. Where can such addresses be lurking? We can easily find out by looking
at the types involved in the machine state for occurrences of addr. The answer is that
addresses can occur in the stack, the dump and the globals. So we need the following
functions:

> findStackRoots :: TiStack -> [Addr]
> findDumpRoots :: TiDump -> [Addr]
> findGlobalRoots :: TiGlobals -> [Addr]

2. In the mark phase, each node whose address is in the machine state is marked. When a
node is marked, all its descendants are also marked, and so on recursively. The markFrom
function takes a heap and an address, and returns a new heap in which all the nodes
accessible from the address have been marked.

> markFrom :: TiHeap -> Addr -> TiHeap

3. In the scan phase, all the nodes in the heap (whether marked or not) are examined.
Unmarked nodes are freed, and marked nodes are unmarked.

> scanHeap :: TiHeap -> TiHeap

Exercise 2.30. Write a definition for gc in terms of findRoots, markFrom and scanHeap, and call it
appropriately from doAdmin.

Exercise 2.31. Write a definition for findRoots.

Before we can implement markFrom and scanHeap we need to have a way to mark a node. In a
real implementation this is done by using a bit in the node to indicate whether or not the node
is marked. We will model this by adding a new constructor, the node type, as follows:

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- Number
> | NInd Addr -- Indirection
> | NPrim Name Primitive -- Primitive
> | NData Int [Addr] -- Tag, list of components
> | NMarked Node -- Marked node

The new kind of node is an NMarked node, and it contains inside it the node which was there
before the marking happened. The node inside an NMarked node is never another NMarked node.

Now we are ready to define markFrom. Given an address a and a heap h, it does the following:
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Figure 2.2: Eliminating indirections during garbage collection

1. It looks up a in h, giving a node n. If it is already marked, markFrom returns immediately.
This is what prevents the marking process from going on forever when it encounters a
cyclic structure in the heap.

2. It marks the node by using hUpdate to replace it with NMarked n.

3. It extracts any addresses from inside n (there may be zero or more such addresses), and
calls markFrom on each of them.

All that remains is scanHeap. It uses hAddresses to extract the list of all the addresses used
in the heap, and examines each in turn. If the node to which it refers is unmarked (that is, not
an NMarked node), it calls hFree to free the node. Otherwise, it unmarks the node by using
hUpdate to replace it with the node found inside the NMarked constructor.

Exercise 2.32. Write definitions for markFrom and scanHeap.

That completes the mark-scan garbage collector.

Mark-scan is not the only way to perform garbage collection, and we now suggest some directions
for further exploration. A brief survey of garbage-collection techniques can be found in Chapter
17 of [Peyton Jones 1987]; a more comprehensive review is [Cohen 1981].

2.9.2 Eliminating indirections

We begin with an optimisation to the collector we have just developed. During evaluation we
may introduce indirection nodes, and it would be nice to eliminate them, by readjusting pointers
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as suggested in Figure 2.2. To do this, we need to change the functionality of markFrom a bit.
It should now take an address and a heap, mark all the nodes accessible from the address, and
return a new heap together with a new address which should be used instead of the old one.

> markFrom :: TiHeap -> Addr -> (TiHeap, Addr)

In the picture, calling markFrom with the address of node (a) should mark node (c) (but not
node (b)), and return the address of node (c).

How do we make use of the address returned by markFrom? It must be inserted in place of
the address with which markFrom was called. The easiest way to do this is to merge the first
two phases, so that as each root is identified in the machine state, markFrom is called, and
the returned address is used to replace the original root in the machine state. So we replace
findStackRoots and its companions with:

> markFromStack :: TiHeap -> TiStack -> (TiHeap,TiStack)
> markFromDump :: TiHeap -> TiDump -> (TiHeap,TiDump)
> markFromGlobals :: TiHeap -> TiGlobals -> (TiHeap,TiGlobals)

Exercise 2.33. Implement the revised version of markFrom, making it ‘skip over’ indirections without
marking them, and update the addresses inside each node as it calls itself recursively. Then
implement the other marking functions in terms of markFrom, and glue them together with a new
version of gc. Measure the improvement, by comparing the heap sizes obtained with this new
collector to the ones you obtained before. (You can easily revert to the one before by removing the
special handling of NInd from markFrom.)

2.9.3 Pointer reversal

If all the N nodes in the heap happened to be linked together into a single long list, then
markFrom would call itself recursively N times. In a real implementation this would build up
a stack which is as deep as the heap is large. It is very tiresome to have to allocate a stack as
large as the heap to account for a very unlikely situation!

There is a neat trick called pointer reversal, which can eliminate the stack by linking together
the very nodes which are being marked [Schorr and Waite 1967]. The only extra requirement
placed by the algorithm is that marked nodes need a few extra bits of state information. We
can express this by expanding the NMarked constructor somewhat:

> data Node = NAp Addr Addr -- Application
> | NSupercomb Name [Name] CoreExpr -- Supercombinator
> | NNum Int -- Number
> | NInd Addr -- Indirection
> | NPrim Name Primitive -- Primitive
> | NData Int [Addr] -- Tag, list of components
> | NMarked MarkState Node -- Marked node

> data markState = Done -- Marking on this node finished
> | Visits Int -- Node visited n times so far
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The meaning of the constructors for markState will be explained shortly.

We can describe the pointer-reversal algorithm with the aid of another (quite separate) state
transition system. The state of the marking machine has three components (f , b, h), the forward
pointer, the backward pointer and the heap. Each call to markFrom initiates a new run of the
machine. When markFrom is called with address a and heap hinit the machine is started from
the state

(a, hNull, hinit)

(hNull is a distinguished value of type addr which does not address any object in the heap, and
which can be distinguished from ordinary addresses.) The machine terminates when it is in a
state

(f , hNull, h[f : NMarked Done n])

that is, when f points to a marked node, and b = hNull. (It is possible that the initial state is
also a final state, if the node pointed to by f is already marked.)

We begin the transition rules by describing how the machine handles unmarked nodes. NData
nodes will be ignored for the present. First, we deal with the case of applications. When we
encounter an unmarked application, we ‘go down’ into its first sub-graph, recording the old
back-pointer in the first field of the NAp node. The new forward-pointer addresses the first sub-
graph, and the new back-pointer addresses the application node itself. The state information,
Visits 1, records the fact that the back-pointer is kept in the first field of the NAp node.

f b h[f : NAp a1 a2]
=⇒ a1 f h[f : NMarked (Visits 1) (NAp b a2)]

This is illustrated in Figure 2.3(a) and (b). In this figure the marks are abbreviated to ‘V1’
for ‘Visits 1’, ‘V2’ for ‘Visits 2’ and ‘D’ for ‘Done’. Notice the way that a chain of reversed
pointers builds up in the application nodes which have been visited.

The next rule says that unmarked NPrim nodes should be marked as completed, using the
NMarked Done constructor (Figure 2.3(c)):

f b h[f : NPrim p]
=⇒ f b h[f : NMarked Done (NPrim p)]

NSupercomb and NNum nodes are treated similarly, since they do not contain any further address-
es.

So much for unmarked nodes. When the machine finds that f points to a marked node, it
inspects the node which b points to. If it is hNull, the machine terminates. Otherwise, it
must be a marked NAp node. Let us deal first with the case where the state information is
(Visits 1), saying that the node has been visited once. We have therefore completed marking
the first sub-graph of the NAp node, and should now mark the second, which we do by making f
point to it, leaving b unchanged, moving the back-pointer saved in the node (b′) from the first
field to the second, and changing the state information (Figure 2.3(d)):

f b h

[
f : NMarked Done n
b : NMarked (Visits 1) (NAp b ′ a2)

]
=⇒ a2 b h[b : NMarked (Visits 2) (NAp f b′)]
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Some time later, the machine will complete marking the second sub-graph, in which case it
can restore the node to its original form, and back up the chain of back-pointers one stage
(Figure 2.3(e)):

f b h

[
f : NMarked Done n
b : NMarked (Visits 2) (NAp a1 b ′)

]
=⇒ b b ′ h[b : NMarked Done (NAp a1 f )]

Lastly, we deal with indirections. They are skipped over by changing f but not b. The heap is
left unchanged, so the indirection itself is not marked. When garbage collection is completed,
all indirections will therefore be reclaimed. As you can see, ‘shorting out’ indirections during
garbage collection is very easy with this marking algorithm.

f b h[f : NInd a]
=⇒ a b h

That completes the state transitions for the pointer-reversal algorithm.

Exercise 2.34. Add rules for the NData node.

Exercise 2.35. Implement the algorithm. The main changes required are to the node type and to
the markFrom function. scan needs to change in a trivial way, because the format of NMarked
constructors has changed.

2.9.4 Two-space garbage collection

Another very popular way of performing garbage collection is to copy all the live data from one
heap to another, the so-called two-space collector invented by [Fenichel and Yochelson 1969] (see
also [Baker 1978, Cheney 1970]). The collector works in two stages:

1. All the nodes pointed to by the machine state (stack, dump, etc.) are evacuated from the
old heap (called from-space) into the initially empty new heap (called to-space). A node is
evacuated by allocating a copy of it in to-space, and overwriting the from-space copy with
a forwarding pointer containing the to-space address of the new node. Like markFrom, the
evacuation routine returns the to-space address of the new node, which is used to replace
the old address in the machine state.

2. Then all the nodes in to-space are scanned linearly, starting at the first, and each is
scavenged. A node n is scavenged by evacuating any nodes to which it points, replacing
their addresses in n with their new to-space addresses. Scanning stops when the scanning
pointer catches up with the allocation pointer.

To implement this, we have to add yet another variant of the node type, this time with an
NForward constructor, which contains a single adddress (the to-space address). (NMarked is not
needed for this collector.) Instead of markFromStack we need evacuateStack with type:

> evacuateStack :: TiHeap -> TiHeap -> TiStack -> (TiHeap, TiStack)
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The call (evacuateStack fromheap toheap stk) evacuates all the nodes in fromheap referred to
from stk into toheap, returning the new toheap and the new stk . Similar functions are required
for the dump and globals.

Lastly, we need a function

> scavengeHeap :: TiHeap -> TiHeap -> TiHeap

where the call (scavengeHeap fromheap toheap) scavenges nodes in toheap, evacuating when
necessary nodes from fromheap into toheap.

Exercise 2.36. Implement this garbage collector.
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> module GM where
> import Language
> import Utils
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Chapter 3

The G-machine

In this chapter we introduce our first compiler-based implementation, the G-machine, which
was developed at the Chalmers Institute of Technology, Göteborg, Sweden, by Augustsson and
Johnsson. The material in this chapter is based on their series of papers [Augustsson 1984,
Johnsson 1984] culminating in their Ph.D. theses [Augustsson 1987, Johnsson 1987].

3.1 Introduction to the G-machine

The fundamental operation of the template instantiation machine was to construct an instance
of a supercombinator body, implemented by the instantiate function. This is a rather slow op-
eration, because instantiate must recursively traverse the template each time an instantiation
is performed. When we think of the machine instructions that are executed by instantiate,
we see that they will be of two kinds: those concerned with traversing the template, and those
concerned with actually constructing the instance.

The ‘Big Idea’ of the G-machine, and other compiled implementations, is this:

Before running the program, translate each supercombinator body to a sequence of
instructions which, when executed, will construct an instance of the supercombinator
body.

Executing this code should be faster than calling an instantiation function, because all the
instructions are concerned with constructing the instance. There are no instructions required to
traverse the template, because all that has been done during the translation process. Running
a program is thereby split into two stages. In the first stage a compiler is used to produce some
intermediate form of the program; this is referred to as compile-time. In the second stage the
intermediate form is executed; this is called run-time.

Since all we ever do to a supercombinator is to instantiate it, we can discard the original
supercombinators once the translation is done, keeping only the compiled code.

In principle, then, we use a G-machine compiler to turn a program in our source language into
a sequence of machine language instructions. Because we may wish to implement our language
on many different pieces of hardware (68000 based, or VAX, etc.) it is useful to have an abstract
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machine. A good abstract machine has two properties: firstly, it can be easily translated into
any concrete machine code (for example 68000 assembler); secondly, it is easy to generate the
abstract machine code from the source.

Notice that we are faced with a trade-off here. We can ideally satisfy the first property (easy
concrete code generation) by making the abstract machine the same as the real machine. But
this makes the second property much harder to fulfil. An abstract machine is therefore a
stepping-stone between the source language and a particular machine code.

3.1.1 An example

Here is a small example of the G-machine compiler in action. Consider the function

f g x = K (g x)

This would be compiled to the sequence of G-code instructions:

Push 1
Push 1
Mkap
Pushglobal K
Mkap
Slide 3
Unwind

In Figure 3.1, we show how this code will execute. On the left-hand side of each diagram is the
stack, which grows downwards. The remainder of each diagram is the heap. The application
nodes are represented by an @ character, expressions are labelled with lower-case letters, and
supercombinators are labelled with upper-case letters.

In Figure 3.1, diagram (a), we see the state of the machine before executing the sequence of
instructions for f. The spine has been unwound, just as it was in the template machine. The
top two items on the stack are pointers to the application nodes, whose right-hand parts are the
expressions to be bound for g and x.

The Push instruction uses addressing relative to the top of the stack. Ignoring the pointer to
the supercombinator node f, the first stack item is numbered 0, the next is numbered 1 and so
on. The next diagram (b) shows the changed stack, after executing a Push 1 instruction. This
pushes a pointer to the expression x onto the stack, x being two stack items down the stack.
After another Push 1 we have a pointer to g on top of the stack; again this is two stack items
down the stack, because the previous instruction pushed a new pointer onto the stack. The new
diagram is (c).

Diagram (d) shows what happens when a Mkap instruction is executed. It takes two pointers
from the stack and makes an application node from them; leaving a pointer to the result on
the stack. In diagram (e) we execute a Pushglobal K instruction, with the effect of pushing a
pointer to the K supercombinator. Another Mkap instruction completes the instantiation of the
body of f, as shown in diagram (f).
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Figure 3.1: Execution of code for the f supercombinator

We can now replace the original expression, f g x, with the newly instantiated body: K (g x).
In the first version of the G-machine – which is not lazy – we simply slide the body down three
places on the stack, discarding the three pointers that were there. This is achieved by using
a Slide 3 instruction, as shown in diagram (g). The final Unwind instruction will cause the
machine to continue to evaluate.

This concludes a brief overview of the execution of the G-machine.

3.1.2 Further optimisations

A modest performance gain can be achieved by eliminating the interpretive overhead of travers-
ing the template, as we have discussed. However, it turns out that compilation also opens
the door to a whole host of short-cuts and optimisations which are simply not available to the
template instantiation machine. For example, consider the following definition:

f x = x + x

The template machine would evaluate x twice; on the second occasion it would of course find
that it was already evaluated. A compiled implementation can spot at compile-time that x will
already be evaluated, and omit the evaluation step.
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3.2 Code sequences for building templates

We recall that the template instantiator operates in the following way:

• The machine has terminated when the single item on top of the stack is a pointer to an
integer.

• If this is not the case then we unwind any application nodes we come across until we reach
a supercombinator node. We then instantiate a copy of the supercombinator body, making
substitutions for its arguments.

At the heart of the Mark 1 template machine are the two functions scStep and instantiate,
which are defined on pages 58 and 58. If we take a look at the definitions of scStep and
instantiate, we can give the following description to the operation of instantiating a super-
combinator:

1. Construct a local environment of variable names to addresses in the heap.

2. Using this local environment, make an instance of the supercombinator body in the heap.
Variables are not copied; instead the corresponding address is used.

3. Remove the pointers to the application nodes and the supercombinator node from the
stack.

4. Push the address of the newly created instance of the supercombinator onto the stack.

In the template instantiator, making an instance of a supercombinator involves traversing the
tree structure of the expression which is the body of the supercombinator. Because expressions
are defined recursively, the tree-traversal function instantiate is defined recursively. For ex-
ample, look at the definition of instantiate – on page 58 – for the case of EAp e1 e2. First
we call instantiate for e1 and then for e2, holding on to the addresses of the graph for each
sub-expression. Finally we combine the two addresses by building an application node in the
graph.

We would like to compile a linear sequence of instructions to perform the operation of instanti-
ating an expression.

3.2.1 Postfix evaluation of arithmetic

The desire to construct a linear sequence of instructions to instantiate an expression is reminis-
cent of the postfix evaluation of arithmetic expressions. We explore this analogy further before
returning to the G-machine.

The language of arithmetic expressions consists of: numbers, addition and multiplication. We
can represent this language as the type aExpr.

> data AExpr = Num Int
> | Plus AExpr AExpr
> | Mult AExpr AExpr
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It is intended that the language should have an ‘obvious’ meaning; we can give this using the
function aInterpret.

> aInterpret :: AExpr -> Int
> aInterpret (Num n) = n
> aInterpret (Plus e1 e2) = aInterpret e1 + aInterpret e2
> aInterpret (Mult e1 e2) = aInterpret e1 * aInterpret e2

Alternatively, we can compile the expression into a postfix sequence of operators (or instruc-
tions). To evaluate the expression we use the compiled operators and a stack of values. For
example, the arithmetic expression 2 + 3× 4 would be represented as the sequence

[INum 2, INum 3, INum 4, IMult, IPlus]

We can give the instructions for our postfix machine as the type aInstruction.

> data AInstruction = INum Int
> | IPlus
> | IMult

The state of the evaluator is a pair, which is a sequence of operators and a stack of numbers.
The meaning of a code sequence is then given in the following transition rules.

(3.1)
[] [n]

=⇒ n

(3.2)
INum n : i ns

=⇒ i n : ns

(3.3)
IPlus : i n0 : n1 : ns

=⇒ i (n1 + n0) : ns

(3.4)
IMult : i n0 : n1 : ns

=⇒ i (n1 × n0) : ns

Translating these transition rules into Miranda gives:

> aEval :: ([AInstruction], [Int]) -> Int
> aEval ([], [n]) = n
> aEval (INum n:is, s) = aEval (is, n: s)
> aEval (IPlus: is, n0:n1:s) = aEval (is, n1+n0:s)
> aEval (IMult: is, n0:n1:s) = aEval (is, n1*n0:s)

To generate the sequence of postfix code for an expression we must define a compiler. This takes
an expression and delivers a sequence of instructions, which when executed will compute the
value of the expression.
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> aCompile :: AExpr -> [AInstruction]
> aCompile (Num n) = [INum n]
> aCompile (Plus e1 e2) = aCompile e1 ++ aCompile e2 ++ [IPlus]
> aCompile (Mult e1 e2) = aCompile e1 ++ aCompile e2 ++ [IMult]

The key idea from this is given by the type of the aCompile function. It returns a list of
instructions.

The postfix representation of expressions is a way of flattening or linearising an ex-
pression tree, so that the expression can be represented by a flat sequence of operators.

Exercise 3.1. Using structural induction, or otherwise, prove that the postfix evaluation of arithmetic
expressions results in the same answer as the tree evaluation of expressions. That is: prove that
for all expressions e of type aExpr,

aInterpret e = aEval (aCompile e, [])

This is an example of a congruence proof.

Exercise 3.2. Extend the functions aInterpret, aCompile and aEval to handle let expressions. Prove
that for all expressions in e of type aExpr, these new functions satisfy the relation:

aInterpret e = aEval (aCompile e, [])

Can you extend the language to even more complicated expressions, e.g. letrec expressions? Can
you prove that you have correctly implemented these extensions?

3.2.2 Using postfix code to construct graphs

We can use the same technique to create an instance of a supercombinator body. In this case
the ‘values’ on the stack will be addresses of parts of the expression being instantiated.

The operations of the template construction instructions will be different from those we saw in
the arithmetic example above, in that the instructions generally have the side-effect of allocating
nodes in the heap. As an example, consider introducing an Mkap instruction. This instruction
makes an application node, in the heap, from the top two addresses on the stack. It leaves a
pointer to this new node on the stack upon completion.

There is no reason to invent a new evaluation stack of addresses, as our template instantiation
machine already has such a stack. However, there is an important point to remember if we do
make use of this stack:

The map of the stack locations corresponding to variable names will change as we
pop and push objects from the stack. We must therefore keep track of this when we
are compiling expressions.

Our access to items in the stack is relative to the top of the stack. So, if an item is added, the
offset to reach that item is increased by one; similarly, when an item is popped, the offset is
decreased by one.
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Figure 3.2: The stack layout for the Mark 1 machine

3.2.3 What happens after an instantiation has been made?

Once the instantiation of the supercombinator body has been made we must tidy up the stack,
and arrange the continuation of the evaluation process. On completing the evaluation of the
postfix sequence for a supercombinator with n arguments, the stack will have the following form:

• On top there will be the address in heap of the newly instantiated body, e.

• Next there are the n + 1 pointers. From these we can access the arguments used in the
instantiation process.

• The last of the n+1 pointers points to the root of the expression we have just instantiated.

This is shown in Figure 3.2.

We must replace the redex with the newly instantiated body, and pop off n items from the stack,
using the Slide instruction. To find the next supercombinator we must now start unwinding
again, using the Unwind instruction. By adding operations to do the tidying and unwinding to
the postfix operator sequence, we have transformed the template instantiator into our Mark 1
G-machine.

The code for the function f x1 ... xn = e is:

<code to construct an instance of e>
Slide n+1
Unwind
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3.3 Mark 1: A minimal G-machine

We now present the code for a complete G-machine and its compiler. It does not perform
updates (which are introduced in Section 3.4) or arithmetic (which is introduced in Section 3.6).

3.3.1 Overall structure

At the top level the G-machine is very similar to the template instantiator; as usual the whole
system is knitted together with a run function.

> -- The function run is already defined in gofers standard.prelude
> runProg :: [Char] -> [Char]
> runProg = showResults . eval . compile . parse

The parser data structures and functions are included because we will need access to them.

> -- :a language.lhs -- parser data types

3.3.2 Data type definitions

Fundamental to graph reduction implementation techniques is the graph. We use the heap data
type, amongst others, from the utilities provided in Appendix A.

> -- :a util.lhs -- heap data type and other library functions

The Mark 1 G-machine uses the five-tuple, gmState, as its state. A gmState holds all the
information that we need during the execution of the compiled program.

> type GmState
> = (GmCode, -- Current instruction stream
> GmStack, -- Current stack
> GmHeap, -- Heap of nodes
> GmGlobals, -- Global addresses in heap
> GmStats) -- Statistics

In describing the G-machine, we will make use of state access functions to access the components
of a state. The advantage of this approach is that when we modify the state to accommodate
new components, we may reuse most of the original code we have written. We will use the
prefix get to denote an access function that gets a component from a state, and the prefix put
to replace a component in a state.

We consider the type definitions of each of the five components of the state, and their access
functions, in turn.

• The instruction stream is of type gmCode and is simply a list of instructions.
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> type GmCode = [Instruction]

To get convenient access to the code, when the state is later augmented with extra com-
ponents, we define two functions: getCode and putCode.

> getCode :: GmState -> GmCode
> getCode (i, stack, heap, globals, stats) = i

> putCode :: GmCode -> GmState -> GmState
> putCode i’ (i, stack, heap, globals, stats)
> = (i’, stack, heap, globals, stats)

There are only six instructions initially. We will describe these in more detail in subsec-
tion 3.3.3.

> data Instruction
> = Unwind
> | Pushglobal Name
> | Pushint Int
> | Push Int
> | Mkap
> | Slide Int
> instance Eq Instruction
> where
> Unwind == Unwind = True
> Pushglobal a == Pushglobal b = a == b
> Pushint a == Pushint b = a == b
> Push a == Push b = a == b
> Mkap == Mkap = True
> Slide a == Slide b = a == b
> _ == _ = False

• The G-machine stack gmStack is a list of addresses in the heap.

> type GmStack = [Addr]

To get convenient access to the stack, when the state is later augmented with extra com-
ponents, we define two functions getStack and putStack

> getStack :: GmState -> GmStack
> getStack (i, stack, heap, globals, stats) = stack

> putStack :: GmStack -> GmState -> GmState
> putStack stack’ (i, stack, heap, globals, stats)
> = (i, stack’, heap, globals, stats)
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• Just as we did in the case of the template instantiator, we use the heap data structure
from utils to implement heaps.

> type GmHeap = Heap Node

Again, to access this component of the state we define access functions.

> getHeap :: GmState -> GmHeap
> getHeap (i, stack, heap, globals, stats) = heap

> putHeap :: GmHeap -> GmState -> GmState
> putHeap heap’ (i, stack, heap, globals, stats)
> = (i, stack, heap’, globals, stats)

In the minimal G-machine there are only three types of nodes: numbers, NNum; applications,
NAp; and globals, NGlobal.

> data Node
> = NNum Int -- Numbers
> | NAp Addr Addr -- Applications
> | NGlobal Int GmCode -- Globals

Number nodes contain the relevant number; application nodes apply the function at the
first address to the expression at the second address. The NGlobal node contains the
number of arguments that the global expects and the code sequence to be executed when
the global has enough arguments. This replaces the NSupercomb nodes of the template
instantiator, which held a template instead of the arity and code.

• Because we will later be making a lazy implementation it is important that there is only
one node for each global. The address of a global can be determined by looking up its
value in the association list gmGlobals. This corresponds to the tiGlobals component of
the template machine.

> type GmGlobals = ASSOC Name Addr

The access function we use is getGlobals; in the Mark 1 machine, this component is
constant so we do not need a corresponding put function.

> getGlobals :: GmState -> GmGlobals
> getGlobals (i, stack, heap, globals, stats) = globals

• The statistics component of the state is implemented as an abstract data type.

> statInitial :: GmStats
> statIncSteps :: GmStats -> GmStats
> statGetSteps :: GmStats -> Int

The implementation of gmStats is now given.
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> type GmStats = Int
> statInitial = 0
> statIncSteps s = s+1
> statGetSteps s = s

To access this component we define getStats and putStats:

> getStats :: GmState -> GmStats
> getStats (i, stack, heap, globals, stats) = stats

> putStats :: GmStats -> GmState -> GmState
> putStats stats’ (i, stack, heap, globals, stats)
> = (i, stack, heap, globals, stats’)

3.3.3 The evaluator

The G-machine evaluator, eval, is defined to produce a list of states. The first one is the one
constructed by the compiler. If there is a last state, then the result of the evaluation will be on
the top of the stack component of the last state.

> eval :: GmState -> [GmState]
> eval state = state: restStates
> where
> restStates | gmFinal state = []
> | otherwise = eval nextState
> nextState = doAdmin (step state)

The function doAdmin uses statIncSteps to modify the statistics component of the state.

> doAdmin :: GmState -> GmState
> doAdmin s = putStats (statIncSteps (getStats s)) s

The important parts of the evaluator are the functions gmFinal and step which we will now
look at.

Testing for a final state

The G-machine interpreter has finished when the code sequence that it is executing is empty.
We express this condition in the gmFinal function.

> gmFinal :: GmState -> Bool
> gmFinal s = case (getCode s) of
> [] -> True
> otherwise -> False

96



Taking a step

The step function is defined so that it makes a state transition based on the instruction it is
executing.

> step :: GmState -> GmState
> step state = dispatch i (putCode is state)
> where (i:is) = getCode state

We dispatch on the current instruction i and replace the current code sequence with the code
sequence is; this corresponds to advancing the program counter in a real machine.

> dispatch :: Instruction -> GmState -> GmState
> dispatch (Pushglobal f) = pushglobal f
> dispatch (Pushint n) = pushint n
> dispatch Mkap = mkap
> dispatch (Push n) = push n
> dispatch (Slide n) = slide n
> dispatch Unwind = unwind

As we can see, the dispatch function simply selects a state transition to execute.

Let us begin by looking at the transition rules for the postfix instructions. There will be one for
each syntactic object in instruction. We begin with the Pushglobal instruction, which uses
the globals component of the state to find the unique NGlobal node in the heap that holds the
global f . If it cannot find one, it prints a suitable error message.

(3.5)
Pushglobal f : i s h m[f : a]

=⇒ i a : s h m

We implement this rule using the pushglobal function.

> pushglobal :: Name -> GmState -> GmState
> pushglobal f state
> = putStack (a: getStack state) state
> where a = aLookup (getGlobals state) f (error ("Undeclared global " ++ f))

The remaining transitions are for constructing the body of a supercombinator. The transition
for Pushint places an integer node into the heap.

(3.6)
Pushint n : i s h m

=⇒ i a : s h[a : NNum n] m

The corresponding function is pushint. The number is placed in the new heap heap’ with
address a. We then place the heap and stack back into the state.
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> pushint :: Int -> GmState -> GmState
> pushint n state
> = putHeap heap’ (putStack (a: getStack state) state)
> where (heap’, a) = hAlloc (getHeap state) (NNum n)

The Mkap instruction uses the two addresses on the top of the stack to construct an application
node in the heap. It has the following transition rule.

(3.7)
Mkap : i a1 : a2 : s h m

=⇒ i a : s h[a : NAp a1 a2] m

This transition becomes mkap. Again heap’ and a are respectively the new heap and the address
of the new node.

> mkap :: GmState -> GmState
> mkap state
> = putHeap heap’ (putStack (a:as’) state)
> where (heap’, a) = hAlloc (getHeap state) (NAp a1 a2)
> (a1:a2:as’) = getStack state

The Push instruction is used to take a copy of an argument which was passed to a function. To
do this it has to ‘look through’ the application node which is pointed to from the stack. We
must also remember to skip over the supercombinator node which is on the stack.

(3.8)
Push n : i a0 : . . . : an+1 : s h[an+1 : NAp an a ′

n ] m
=⇒ i a ′

n : a0 : . . . : an+1 : s h m

> push :: Int -> GmState -> GmState
> push n state
> = putStack (a:as) state
> where as = getStack state
> a = getArg (hLookup (getHeap state) (as !! (n+1)))

This uses the auxiliary function getArg to select the required expression from an application
node.

> getArg :: Node -> Addr
> getArg (NAp a1 a2) = a2

Because of the stack structure we have changed the addressing mode of the Push
instruction from that used in [Peyton Jones 1987].

Next, the tidying up of the stack, which occurs after a supercombinator has been instantiated
and before continuing unwinding, is performed by the Slide instruction.
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(3.9)
Slide n : i a0 : . . . : an : s h m

=⇒ i a0 : s h m

> slide :: Int -> GmState -> GmState
> slide n state
> = putStack (a: drop n as) state
> where (a:as) = getStack state

Unwind is the most complex instruction because it replaces the outer loop of our template
instantiator. The Unwind instruction is always the last instruction of a sequence, as we shall see
in the next section. The newState constructed depends on the item on top of the stack; this
depends on the transition rule that is fired, which also depends on the item on top of the stack.

> unwind :: GmState -> GmState
> unwind state
> = newState (hLookup heap a)
> where
> (a:as) = getStack state
> heap = getHeap state

We first consider the case where there is a number on top of the stack. In this case, we are
finished; the G-machine has terminated, and we place [] in the code component to signify this
fact.

(3.10)
[Unwind] a : s h[a : NNum n] m

=⇒ [] a : s h m

> newState (NNum n) = state

If there is an application node on top of the stack then we must continue to unwind from the
next node.

(3.11)
[Unwind] a : s h[a : NAp a1 a2] m

=⇒ [Unwind] a1 : a : s h m

> newState (NAp a1 a2) = putCode [Unwind] (putStack (a1:a:as) state)

The most complicated rule occurs when there is a global node on top of the stack. There
are two cases to consider, depending on whether there are enough arguments to reduce the
supercombinator application.

Firstly, if there are not enough arguments to reduce the supercombinator application then the
program was ill-typed. We will ignore this case for the Mark 1 G-machine. Alternatively,
when there are enough arguments, it is possible to reduce the supercombinator, by ‘jumping
to’ the code for the supercombinator. In the transition rule this is expressed by moving the
supercombinator code into the code component of the machine.
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SC[[d ]] is the G-machine code for the supercombinator definition d .

SC[[f x1 . . . xn = e]] = R[[e]] [x1 �→ 0, . . . , xn �→ n − 1] n

R[[e]] ρ d generates code which instantiates the expression e in environ-
ment ρ, for a supercombinator of arity d , and then proceeds to unwind
the resulting stack.

R[[e]] ρ d = C[[e]] ρ ++ [Slide d + 1, Unwind]

C[[e]] ρ generates code which constructs the graph of e in environment ρ,
leaving a pointer to it on top of the stack.

C[[f ]] ρ = [Pushglobal f ] where f is a supercombinator
C[[x ]] ρ = [Push (ρ x )] where x is a local variable
C[[i ]] ρ = [Pushint i ]

C[[e0 e1]] ρ = C[[e1]] ρ ++ C[[e0]] ρ+1 ++ [Mkap] where ρ+n x = (ρ x ) + n

Figure 3.3: The SC, R and C compilation schemes

(3.12)
[Unwind] a0 : . . . : an : s h[a0 : NGlobal n c] m

=⇒ c a0 : . . . : an : s h m

> newState (NGlobal n c)
> | length as < n = error "Unwinding with too few arguments"
> | otherwise = putCode c state

We have now seen how the instructions are defined, but we have not seen how to generate the
postfix sequences of operators, or instruction sequences as we shall refer to them from now on.
This is the subject of the next subsection.

3.3.4 Compiling a program

We describe the compiler using a set of compilation schemes. Each supercombinator definition
is compiled using the compilation scheme SC. The compiled code generated for each supercom-
binator is defined in Figure 3.3. Corresponding to the compilation schemes SC, R and C are
compiler functions compileSc, compileR and compileC. We consider each of these in turn.

The compile function turns a program into an initial state for the G-machine. The initial code
sequence finds the global main and then evaluates it. The heap is initialised so that it contains
a node for each global declared. globals contains the map from global names to the NGlobal
nodes provided for them.

> compile :: CoreProgram -> GmState
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> compile program
> = (initialCode, [], heap, globals, statInitial)
> where (heap, globals) = buildInitialHeap program

To construct the initial heap and to provide the map of the global nodes for each global defined
we use buildInitialHeap. This is just as it was in the template machine.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)
> buildInitialHeap program
> = mapAccuml allocateSc hInitial compiled
> --where compiled = map compileSc (preludeDefs ++ program) ++
> -- compiledPrimitives
> where compiled = map compileSc program

The buildInitialHeap function uses mapAccuml to allocate nodes for each compiled global; the
compilation occurring (where necessary) in compiled, which has type [gmCompiledSC].

> type GmCompiledSC = (Name, Int, GmCode)

The function allocateSc allocates a new global for its compiled supercombinator argument,
returning the new heap and the address where the global is stored.

> allocateSc :: GmHeap -> GmCompiledSC -> (GmHeap, (Name, Addr))
> allocateSc heap (name, nargs, instns)
> = (heap’, (name, addr))
> where (heap’, addr) = hAlloc heap (NGlobal nargs instns)

In the initial state, we want the machine to evaluate the value of the program. We recall that
this is just the value of the global main.

> initialCode :: GmCode
> initialCode = [Pushglobal "main", Unwind]

Each supercombinator is compiled using compileSc, which implements the SC scheme of Fig-
ure 3.3. It returns a triple containing the supercombinator name, the number of arguments
the supercombinator needs before it can be reduced, and the code sequence associated with the
supercombinator.

> compileSc :: (Name, [Name], CoreExpr) -> GmCompiledSC
> compileSc (name, env, body)
> = (name, length env, compileR body (zip2 env [0..]))

This in turn uses compileR, which corresponds to the R scheme of Figure 3.3.

> compileR :: GmCompiler
> compileR e env = compileC e env ++ [Slide (length env + 1), Unwind]
> compileR e env = compileC e env ++ [Slide (length env + 1), Unwind]
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Each of the compiler schemes has the same type: gmCompiler.

> type GmCompiler = CoreExpr -> GmEnvironment -> GmCode

We use the fact that we can represent the map ρ from the compilation scheme as an association
list. Not only can we look up the offsets for a variable from this list, but we may also calculate
how many arguments there are on the stack. This is used in compileR to find out how many
stack elements to squeeze out with a Slide instruction. The list has type gmEnvironment, which
is defined as:

> type GmEnvironment = ASSOC Name Int

This constructs the instantiation of the supercombinator body using compileC, which corre-
sponds to the C scheme of Figure 3.3.

> compileC :: GmCompiler
> compileC (EVar v) env
> | elem v (aDomain env) = [Push n]
> | otherwise = [Pushglobal v]
> where n = aLookup env v (error "Can’t happen")
> compileC (ENum n) env = [Pushint n]
> compileC (EAp e1 e2) env = compileC e2 env ++
> compileC e1 (argOffset 1 env) ++
> [Mkap]

We can change the stack offsets using the function argOffset. If env implements ρ, then
(argOffset n env) implements ρ+n .

> argOffset :: Int -> GmEnvironment -> GmEnvironment
> argOffset n env = [(v, n+m) | (v,m) <- env]

An example compilation

Let us look at the compilation of the K combinator. When compiling this function, we will begin
by evaluating the following expression.

compileSc ("K", ["x", "y"], EVar "x")

The first element of the tuple is the name (K in this case); the second is the argument list (in
this case we have two variables: x and y); and the third component of the tuple is the body of
the supercombinator (which for this example is just the variable x).

When we rewrite this expression, we get:

("K", 2, compileR (EVar "x") [("x", 0), ("y", 1)])
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The resulting triple consists of the name (K), the number of arguments we need to reduce the
supercombinator (two in this case), and the code sequence to perform the instantiation. When
we rewrite this expression we will generate the code sequence for this supercombinator. Notice
that the environment is represented by the expression [("x", 0), ("y", 1)]; this tells us that
when we instantiate the body, a pointer to x will be on top of the argument stack and a pointer
to y will be immediately below x on the stack.

("K", 2, compileC (EVar "x") [("x", 0), ("y", 1)] ++ [Slide 3, Unwind])

The compileR function is defined to compile the body using compileC, and to add a Slide and
an Unwind instruction at the end.

To compile the body we look up x and find that it is on top of the stack. We generate code to
make a copy of the top of the stack, using Push 0.

("K", 2, [Push 0, Slide 3, Unwind])

Exercise 3.3. Write out the equivalent sequence of transformations for the S combinator from the
prelude definitions. Recall that S is defined as:

S f g x = f x (g x)

Check the final result by running the compiler and machine with any of the simple programs given
in Appendix B. (S is in the standard prelude.)

Primitives

In this minimal G-machine there are no primitives, so there is nothing to implement!

> compiledPrimitives :: [GmCompiledSC]
> compiledPrimitives = []

3.3.5 Printing the results

Because a number of the state components are abstract data types (and are therefore not directly
printable) we must define a pretty-printer for the states that the machine produces. It is also a
fact that the output is voluminous and not very informative if it is all displayed at once. The
printing is controlled by showResults. It produces three pieces of output: the super-combinator
code sequences, the state transitions and the final statistics.

> showResults :: [GmState] -> [Char]
> showResults states
> = iDisplay (iConcat [
> iStr "Supercombinator definitions", iNewline,
> iInterleave iNewline (map (showSC s) (getGlobals s)),
> iNewline, iNewline, iStr "State transitions", iNewline, iNewline,
> iLayn (map showState states),
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> iNewline, iNewline,
> showStats (last states)])
> where (s:ss) = states

Taking each of these in turn, we begin with showSC. This finds the code for the supercombinator
in the unique global heap node associated with the global, and prints the code sequence using
showInstructions.

> showSC :: GmState -> (Name, Addr) -> Iseq
> showSC s (name, addr)
> = iConcat [ iStr "Code for ", iStr name, iNewline,
> showInstructions code, iNewline, iNewline]
> where (NGlobal arity code) = (hLookup (getHeap s) addr)

Then showInstructions is used to output a code sequence.

> showInstructions :: GmCode -> Iseq
> showInstructions is
> = iConcat [iStr " Code:{",
> iIndent (iInterleave iNewline (map showInstruction is)),
> iStr "}", iNewline]

The output for each individual instruction is given by showInstruction.

> showInstruction :: Instruction -> Iseq
> showInstruction Unwind = iStr "Unwind"
> showInstruction (Pushglobal f) = (iStr "Pushglobal ") ‘iAppend‘ (iStr f)
> showInstruction (Push n) = (iStr "Push ") ‘iAppend‘ (iNum n)
> showInstruction (Pushint n) = (iStr "Pushint ") ‘iAppend‘ (iNum n)
> showInstruction Mkap = iStr "Mkap"
> showInstruction (Slide n) = (iStr "Slide ") ‘iAppend‘ (iNum n)

The next major piece of output is the state transitions; these are individually dealt with using
showState.

> showState :: GmState -> Iseq
> showState s
> = iConcat [showStack s, iNewline,
> showInstructions (getCode s), iNewline]

To correspond with our diagrams, we would like to have the top of stack at the bottom of the
printed stack. To this end we reverse the stack.

> showStack :: GmState -> Iseq
> showStack s
> = iConcat [iStr " Stack:[",
> iIndent (iInterleave iNewline
> (map (showStackItem s) (reverse (getStack s)))),
> iStr "]"]
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Each stack item is displayed using showStackItem. It prints the address stored in the stack and
the object in the heap to which it points.

> showStackItem :: GmState -> Addr -> Iseq
> showStackItem s a
> = iConcat [iStr (showaddr a), iStr ": ",
> showNode s a (hLookup (getHeap s) a)]

The function showNode needs to invert the association list of global names and heap addresses
to display the global nodes it comes across.

> showNode :: GmState -> Addr -> Node -> Iseq
> showNode s a (NNum n) = iNum n
> showNode s a (NGlobal n g) = iConcat [iStr "Global ", iStr v]
> where v = head [n | (n,b) <- getGlobals s, a==b]
> showNode s a (NAp a1 a2) = iConcat [iStr "Ap ", iStr (showaddr a1),
> iStr " ", iStr (showaddr a2)]

Finally, we print the accumulated statistics, using showStats.

> showStats :: GmState -> Iseq
> showStats s
> = iConcat [ iStr "Steps taken = ", iNum (statGetSteps (getStats s))]

This concludes the description of the basic G-machine. We now move on to consider ways to
make it more sophisticated.

3.3.6 Improvements to the Mark 1 G-machine

Exercise 3.4. Run the program main = S K K 3. How many steps does it take? Why is it different
from that obtained for the template machine? Do you think that comparing steps taken is a fair
comparison of the machines?

Exercise 3.5. Try running some other programs from Appendix B. Remember, there is no arithmetic
in this simple machine.

Exercise 3.6. It is possible to use the same trick we used for Pushglobal to implement Pushint: for
each distinct number we create a unique node in the heap. For example, when we first execute
Pushint 2, we update gmGlobals so that it associates "2" with the address in heap of the node
NNum 2.
In the transition rules, if there is already a global called n, then we can reuse this global node.

(3.13) Pushint n : i s h m[n : a]
=⇒ i a : s h m

Alternatively, when this is not the case, we will create a new node and add it to the global map.

(3.14)
Pushint n : i s h m

=⇒ i a : s h[a : NNum n] m[n : a]
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Figure 3.4: Mark 1 G-machine (executing Slide n+1)

The advantage of this scheme is that we can reuse the same number node in the heap each time a
Pushint is executed.
Implement this new transition pushint for the Pushint instruction. You should define an access
function for the global component, calling it putGlobals.

3.4 Mark 2: Making it lazy

We will now make a number of small changes to the Mark 1 G-machine in order to make it
lazy. The Mark 1 machine is not lazy at the moment because it does not overwrite the root
node of the original expression before unwinding. This updating is described in Section 2.1.5.
In the Mark 2 machine, the idea is that after instantiating the body of the supercombinator,
we will overwrite the root of the original redex with an indirection node pointing to the newly
constructed instance. The effect is that the machine ‘remembers’ the value that was instantiated
last time the redex was reduced, and hence does not need to recalculate it.

We implement this change as follows. In the Mark 1 machine the code for each supercom-
binator concluded with [Slide (n + 1), Unwind]. To capture updating we replace this with
[Update n, Pop n, Unwind]. This is illustrated in the following diagrams, in which we use # to
represent indirection nodes.

Figure 3.4 shows how the Mark 1 machine executes a Slide n +1 instruction. In Figure 3.5 we
see the Mark 2 machine executing the sequence [Update n, Pop n]; this being the sequence we
propose to use as a lazy replacement for [Slide n+1]. The Update instruction is responsible for
overwriting the root node with the newly created instance of the body of the supercombinator.
The Pop instruction is used to remove the arguments from the stack, as they are now no longer
needed.

Let us first consider the necessary modifications to the data structures.
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Figure 3.5: Mark 2 G-machine (executing [Update n, Pop n])

3.4.1 Data structures

In place of the single instruction Slide n + 1 that we generated last time we now generate the
sequence of instructions [Update n, Pop n]. Therefore we are going to have to include these
instructions in the new instruction set.

> data Instruction = Unwind
> | Pushglobal Name
> | Pushint Int
> | Push Int
> | Mkap
> | Update Int
> | Pop Int
> instance Eq Instruction
> where
> Unwind == Unwind = True
> Pushglobal a == Pushglobal b = a == b
> Pushint a == Pushint b = a == b
> Push a == Push b = a == b
> Mkap == Mkap = True
> Update a == Update b = a == b
> _ == _ = False

Exercise 3.7. Modify the function showInstruction, so that it displays the new instructions.

To implement the indirection nodes we must have a new node type in the heap: NInd which we
use for indirections.
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> data Node
> = NNum Int -- Numbers
> | NAp Addr Addr -- Applications
> | NGlobal Int GmCode -- Globals
> | NInd Addr -- Indirections
> instance Eq Node
> where
> NNum a == NNum b = a == b -- needed to check conditions
> NAp a b == NAp c d = False -- not needed
> NGlobal a b == NGlobal c d = False -- not needed
> NInd a == NInd b = False -- not needed

Again we must redefine the display function showNode, so that it reflects the extension of the
data type.

Exercise 3.8. Make the necessary change to showNode.

We have not yet given a semantics to the two new instructions. This is done below.

3.4.2 The evaluator

The effect of an Update n instruction is to overwrite the n + 1th stack item with an indirection
to the item on top of the stack. Notice that this addressing mode is different from that used
in [Peyton Jones 1987]. For the intended application of this instruction the a1 . . . an are the n
application nodes forming the spine, and a0 is the function node.

(3.15)
Update n : i a : a0 : . . . : an : s h m

=⇒ i a0 : . . . : an : s h[an : NInd a] m

The Pop n instruction simply removes n stack items. Again, in the Mark 2 G-machine a1 . . . an
are the application nodes forming the spine of the redex.

(3.16)
Pop n : i a1 : . . . : an : s h m

=⇒ i s h m

We must also define a transition for Unwind when the top of stack item is an indirection. The
effect is to replace the current stack item with the item that the indirection points to.

(3.17)
[Unwind] a0 : s h[a0 : NInd a] m

=⇒ [Unwind] a : s h m

Exercise 3.9. Modify the dispatch function of the Mark 1 machine to incorporate the new instructions;
implement the new transition rules.
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R[[e]] ρ d generates code which instantiates the expression e in environ-
ment ρ, for a supercombinator of arity d , and then proceeds to unwind
the resulting stack.

R[[e]] ρ d = C[[e]] ρ ++ [Update d , Pop d , Unwind]

Figure 3.6: The R compilation scheme for Mark 2 G-machine

3.4.3 The compiler

The only change to the compiler lies in the code generated by the R scheme. The new definition
is given in Figure 3.6.

Exercise 3.10. Modify compileR to implement the new R scheme.

Exercise 3.11. Run the lazy evaluator on the program:

twice f x = f (f x)
id x = x
main = twice twice id 3

How many steps does it take? Why is it different from that obtained for the Mark 1 machine? Is
it fair to compare the number of steps taken for the machines?

3.5 Mark 3: let(rec) expressions

We now extend the language so that the compiler will accept supercombinators whose body
includes let(rec)-bound variables. These are represented in the data type coreExpr by the
constructor ELet. It takes three arguments: a boolean flag which says whether the definitions
are to be treated recursively, the definitions themselves and an expression in which the definitions
are to be used.

Before we attempt to extend the machine by adding local definitions, we will have another look
at the stack. In particular we will try to define a more efficient access method for variables.
Besides the efficiency argument, we also wish to make access to locally bound variables the same
as that used to bind function parameters.

Argument access from the stack

Suppose that the unwinding process has reached a supercombinator node f, and that the super-
combinator takes n arguments. In the Mark 1 machine the stack will be in the state shown in
the left-hand diagram of Figure 3.7.

Having reached the supercombinator f, in the Mark 3 G-machine, the stack is slightly modified.
The equivalent Mark 3 stack is shown in the right-hand diagram of Figure 3.7; the top n elements
now point directly to the expressions e1 . . . en. The important point here is that we have faster
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Figure 3.7: Stack layout on entry to function f

access to the variables (provided that the variable is accessed at least once). This is because we
only look at the application node once, to get its right-hand argument.

This improves the efficiency of access to the expressions that will be substituted for the formal
parameters in the supercombinator. In terms of the Mark 1 machine:

• we no longer need the function getArg in the Push instruction,

• but we do need to rearrange the stack when we Unwind a supercombinator with sufficient
arguments.

Notice that we have retained a pointer to the root of the redex so that we can perform an
Update.

The effects on instructions

When we choose to use the new stack layout, we necessarily have to modify certain of the machine
instructions to cope. The instructions affected are Push and Unwind. The Push instruction will
have to change because we do not need to ‘look through’ the application node to get at the
argument.
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(3.18)
Push n : i a0 : . . . : an : s h m

=⇒ i an : a0 : . . . : an : s h m

The other modification required for the new stack layout is that Unwind must rearrange the
stack. This rearrangement is required whenever a supercombinator with sufficient arguments is
found on the top of the stack. The new transition rule for Unwind is:

(3.19)
[Unwind] a0 : . . . : an : s h



a0 : NGlobal n c
a1 : NAp a0 a ′

1
· · ·

an : NAp an−1 a ′
n


 m

=⇒ c a ′
1 : . . . : a′

n : an : s h m

Notice that this definition of Unwind will work properly for the case where n is zero.

Exercise 3.12. Rewrite the dispatch function and the new transitions for the new instruction set. You
should make use of the function rearrange to rearrange the stack.

> rearrange :: Int -> GmHeap -> GmStack -> GmStack
> rearrange n heap as
> = take n as’ ++ drop n as
> where as’ = map (getArg . hLookup heap) (tl as)

Exercise 3.13. Test the compiler and new abstract machine on some sample programs from Appendix B,
to ensure that the implementation still works.

3.5.1 Locally bound variables

Now we return to the implementation of let(rec) expressions, considering the non-recursive
case first. The variables x1 . . . xn , in the expression let x1=e1; . . . ; xn = en in e, can be
treated in the same way as the arguments to a supercombinator, once the expressions e1 . . . en
have been created. That is, we access the variables x1 . . . xn via offsets into the stack, using the
environment to record their locations.

Suppose that the code to build the local definitions is called Code, then the sequence of actions
shown in Figure 3.8 will be necessary. Initially, the stack will contain pointers to the arguments
to the supercombinator. After the code to build the local definitions has executed we will have
n new pointers on the stack. We can now proceed to build the body of the let expression, in a
new environment that maps xi to the pointer to ei . Finally, we need to throw away the pointers
to the expressions e1 . . . en from the stack.

Because we have added n new variables to the stack (x1 . . . xn) we must note this fact in the
variable map we use to compile e. The code to construct the local bindings – which we have
called Code – will simply build the graph of each expression e1 . . . en in turn, leaving the address
of the piece of graph on the stack.

After building the body expression e – which may use any of the variables x1 . . . xn – we must
remove the pointers to e1 . . . en from the stack. This is accomplished by using a Slide instruc-
tion. The complete scheme for compiling a non-recursive local definition is given in Figure 3.10
(p.109).
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The situation with recursive local definitions is more complicated: each of the expressions
e1 . . . en must be compiled so that the variables x1 . . . xn are in scope. To do this we create
empty nodes in the graph, leaving pointers to them on the stack. Each expression e1 . . . en is
then compiled using the same variable map that we used for the compilation of the body of the
non-recursive case. At the end of each expression’s compiled code we place an Update instruc-
tion that will overwrite the empty node with the correct piece of graph. To do this we need one
new instruction – Alloc n – which will create n empty graph nodes for us. In Figure 3.9 the
empty graph nodes are represented by a ? symbol.

The process shown in Figure 3.9 needs to be repeated until each of the expressions e1 . . . en
has been processed. Compiling code for the body e is then the same as the previous case for
non-recursive local definitions. We now add the new data types for the Mark 3 machine.
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3.5.2 Data structures

The instruction data type includes all of the instructions of the Mark 2 machine, with the new
Alloc instruction and the Slide instruction from the Mark 1 machine.

Exercise 3.14. Modify the data type instruction so that it includes Alloc and Slide. You will also
need to modify the function showInstruction, to accommodate these new instructions.

3.5.3 The evaluator

For the Mark 3 G-machine we will need to add the Alloc instruction which creates n locations in
the heap. We use these locations to mark the places we will store the locally bound expressions.
These nodes are initially created as indirection nodes that point to an illegal heap address:
hNull. Because these nodes created by Alloc are going to be overwritten, it does not really
matter what value we assign them.

(3.20)

Alloc n : i s h m

=⇒ i a1 : . . . : an : s h


 a1 : NInd hNull

· · ·
an : NInd hNull


 m

To implement alloc, the transition function for the Alloc instruction, we use an auxiliary
function allocNodes. Given the number of nodes required and the current heap, it returns a
pair consisting of the modified heap and the list of addresses of the indirection nodes.

> allocNodes :: Int -> GmHeap -> (GmHeap, [Addr])
> allocNodes 0 heap = (heap, [])
> allocNodes (n+1) heap = (heap2, a:as)
> where (heap1, as) = allocNodes n heap
> (heap2, a) = hAlloc heap1 (NInd hNull)

Exercise 3.15. Extend the dispatch function, with cases for the new instructions. You should use
allocNodes to implement alloc, the transition function for the Alloc instruction.

3.5.4 The compiler

The only change to the compiler is that there are now two more cases for which the C scheme
can compile code. The modification to compileC is simple. It can now cope with a wider range
of coreExprs. We need two new functions: compileLetrec and compileLet.

> compileC :: GmCompiler
> compileC (EVar v) args
> | elem v (aDomain args) = [Push n]
> | otherwise = [Pushglobal v]
> where n = aLookup args v (error "")
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C[[e]] ρ generates code which constructs the graph of e in environment ρ,
leaving a pointer to it on top of the stack.

C[[f ]] ρ = [Pushglobal f ] where f is a supercombinator
C[[x ]] ρ = [Push (ρ x )] where x is a local variable
C[[i ]] ρ = [Pushint i ]
C[[e0 e1]] ρ = C[[e1]] ρ ++ C[[e0]] ρ+1 ++ [Mkap] where ρ+n x is (ρ x ) + n
C[[let x1=e1; . . . ; xn=en in e]] ρ

= C[[e1]] ρ+0 ++ . . . ++
C[[en ]] ρ+(n−1) ++
C[[e]] ρ′ ++ [Slide n] where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]

C[[letrec x1=e1; . . . ; xn=en in e]] ρ
= [Alloc n] ++

C[[e1]] ρ′ ++ [Update n − 1] ++ . . . ++
C[[en ]] ρ′ ++ [Update 0] ++
C[[e]] ρ′ ++ [Slide n] where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]

Figure 3.10: The modified C compilation scheme for let and letrec

> compileC (ENum n) env = [Pushint n]
> compileC (EAp e1 e2) env = compileC e2 env ++
> compileC e1 (argOffset 1 env) ++
> [Mkap]
> compileC (ELet recursive defs e) args
> | recursive = compileLetrec compileC defs e args
> | otherwise = compileLet compileC defs e args

The definition of compileLet follows the specification given in Figure 3.10. It takes as arguments:
the compilation scheme comp for the body e, the definitions defs and the current environment
env. We have provided the compiler parameter so that in later versions of the machine we do
not have to rewrite this function.

> compileLet :: GmCompiler -> [(Name, CoreExpr)] -> GmCompiler
> compileLet comp defs expr env
> = compileLet’ defs env ++ comp expr env’ ++ [Slide (length defs)]
> where env’ = compileArgs defs env

The compilation of the new definitions is accomplished by the function compileLet’.

> compileLet’ :: [(Name, CoreExpr)] -> GmEnvironment -> GmCode
> compileLet’ [] env = []
> compileLet’ ((name, expr):defs) env
> = compileC expr env ++ compileLet’ defs (argOffset 1 env)

compileLet also uses compileArgs to modify the offsets into the stack for the compilation of
the body, e.

114



> compileArgs :: [(Name, CoreExpr)] -> GmEnvironment -> GmEnvironment
> compileArgs defs env
> = zip (map first defs) [n-1, n-2 .. 0] ++ argOffset n env
> where n = length defs

An example

In this example we will show how the code for the fixpoint combinator Y is compiled. The
definition we will use is:

Y f = letrec x = f x in x

This is the so-called ‘knot-tying’ fixpoint combinator; we will see why it has this name when
we run the resulting code. When the above definition is compiled, the compileSc function will
need to produce code for the supercombinator.

compileSc ("Y", ["f"], ELet True [("x", EAp (EVar "f") (EVar "x"))] (EVar "x"))

This in turn calls the compileR function with an environment for the variable f; having first
created a name for the supercombinator (Y) and its number of arguments (1).

("Y", 1, compileR e [("f", 0)])
where e = ELet True [("x", EAp (EVar "f") (EVar "x"))] (EVar "x")

For convenience we will refer to the body of the expression as e. The function compileR calls
compileC, placing the tidying-up code at the end.

("Y", 1, compileC e [("f", 0)] ++ [Update 1, Pop 1, Unwind])

Referring to the compilation scheme in Figure 3.10, we see that to compile a letrec we first
create a new environment. In the figure this is called ρ′; in this example we will call it p. It is an
extension of the initial environment in which we also give a stack location to the local variable
x.

("Y", 1, [Alloc 1] ++
compileC (EAp (EVar "f") (EVar "x")) p ++ [Update 0] ++
compileC (EVar "x") p ++ [Slide 1] ++
[Update 1, Pop 1, Unwind])
where p = [("x", 0), ("f", 1)]

The code generation is laid out in the same fashion as the compilation scheme. When the
expressions involving compileC are simplified we get:

("Y", 1, [Alloc 1] ++
[Push 0, Push 2, Mkap] ++ [Update 0] ++
[Push 0] ++ [Slide 1] ++
[Update 1, Pop 1, Unwind])
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Which gives the following code sequence:

("Y", 1, [Alloc 1, Push 0, Push 2, Mkap, Update 0, Push 0,
Slide 1, Update 1, Pop 1, Unwind])

We can see the way in which this code executes in Figure 3.11. This definition of the Y su-
percombinator is called ‘knot-tying’ because we are tying a knot in the graph when we do the
Update 0 as the fifth instruction. We have not shown the remainder of the instructions, as this
is left as Exercise 3.18.

Exercise 3.16. The compilation of letrecs is defined in Figure 3.10. Implement the function compileLetrec
to perform this operation.

Exercise 3.17. What test programs would you use to show that the new compiler and instruction set
work properly?

Exercise 3.18. By running the code generated for the supercombinator Y, or otherwise, draw the re-
mainder of the state transitions in the style of Figure 3.11.

Exercise 3.19. Give a shorter, alternative, code sequence for the supercombinator Y. It should still
construct a ‘knot-tying’ version.

Exercise 3.20. In the absence of a letrec construct in the language, how would you define the fixpoint
combinator Y? How is this definition different from the one we used in the example?
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3.6 Mark 4: Adding primitives

In this section we add primitive operations to the G-machine; this makes it useful. By primitive
operations we mean operations like addition, multiplication and so on. We will use addition as
a running example throughout this section.

The addition instruction will be called Add; which adds two numbers from the heap, placing the
result into a new node in the heap. The addresses of the two arguments are on top of the stack,
and this is where the address of the result is subsequently placed. It has the following transition
rule.

(3.21)
Add : i a0 : a1 : s h[a0 : NNum n0, a1 : NNum n1] m

=⇒ i a : s h[a : NNum n0 + n1] m

We could continue to expand the G-machine with other instructions to implement the remainder
of the operations required, but before we do, let us pause to consider whether we have missed
something here. The problem is that the rule only applies if the two objects on top of the stack
are numbers. Since we are working on a machine that supports lazy evaluation there is no good
reason to suppose that this will always be the case. In the template machine Add checked that
its arguments were evaluated. In the G-machine we want to keep the instructions simple, so we
will only use Add in situations where we guarantee that the arguments are already evaluated.

What we do instead is to augment the instruction set further with an Eval instruction. This
satisfies the following constraint:

Suppose that we are in a state:

Eval : i a : s h m

Whenever execution resumes with instruction sequence i, the state will be:

i a : s h′ m

and the item on top of the stack will be in WHNF.

It is also possible for Eval to fail to terminate; this will be the case when the node
pointed to from the top of the stack has no WHNF.

If the node whose address is on top of the stack is already in WHNF, then the Eval instruction
does nothing. If there is reduction to be performed, then the action of Eval is to perform
an evaluation to WHNF. If this call terminates then execution resumes with nothing except
the heap component changed. This is similar to the structure of subroutine call and return
traditionally used in programming language implementation. We recall that the classic way to
implement this feature is to use a stack. The stack will save sufficient of the machine’s current
context that it can resume when the subroutine call completes.

In the Mark 4 G-machine this stack is called the dump, and is a stack of pairs, whose first
component is a code sequence, and whose second component is a stack. This is similar to the
dump in the template machine (see Section 2.6), except we now have to restore the original code
sequence as well as the original stack. Hence both components are kept on the dump.
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3.6.1 Data structures

We extend the G-machine state by adding a dump component. As previously discussed, this is
used to implement recursive calls to the evaluator.

> type GmState = ( GmCode, -- current Instruction
> GmStack, -- current Stack
> GmDump, -- current Dump
> GmHeap, -- Heap of Nodes
> GmGlobals, -- Global adresses in Heap
> GmStats) -- Statistics

The dump itself is a stack of dumpItem. Each of these is a pair consisting of the instruction
stream and stack to use when we resume the original computation.

> type GmDump = [GmDumpItem]
> type GmDumpItem = (GmCode, GmStack)

When we add this new component we must change all of the previously specified access functions.
We must also add access functions for the dump.

> getDump :: GmState -> GmDump
> getDump (i, stack, dump, heap, globals, stats) = dump

> putDump :: GmDump -> GmState -> GmState
> putDump dump’ (i, stack, dump, heap, globals, stats)
> = (i, stack, dump’, heap, globals, stats)

Notice that it is only in the access functions that we have done pattern matching on G-machine
states. Changes to other functions as a result of adding new components to the state are no
longer needed.

Exercise 3.21. Make the relevant changes to the other access functions.

In addition to the new definition of state, we also need some new instructions. We reuse all of
the instructions from the Mark 3 machine.

> data Instruction
> = Slide Int
> | Alloc Int
> | Update Int
> | Pop Int
> | Unwind
> | Pushglobal Name
> | Pushint Int
> | Push Int
> | Mkap
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In addition we include the Eval instruction,

> | Eval

the following arithmetic instructions:

> | Add | Sub | Mul | Div | Neg

and the following comparison instructions:

> | Eq | Ne | Lt | Le | Gt | Ge

We also include a primitive form of conditional in the Cond instruction.

> | Cond GmCode GmCode

Exercise 3.22. Add cases to showInstruction to print all of the new instructions.

3.6.2 Printing the state

We take this opportunity to revise the definition of showState, so that it displays the dump
component.

> showState :: GmState -> Iseq
> showState s
> = iConcat [showStack s, iNewline,
> showDump s, iNewline,
> showInstructions (getCode s), iNewline]

We therefore need to define showDump.

> showDump :: GmState -> Iseq
> showDump s
> = iConcat [iStr " Dump:[",
> iIndent (iInterleave iNewline
> (map showDumpItem (reverse (getDump s)))),
> iStr "]"]

This in turn needs the function showDumpItem.

> showDumpItem :: GmDumpItem -> Iseq
> showDumpItem (code, stack)
> = iConcat [iStr "<",
> shortShowInstructions 3 code, iStr ", ",
> shortShowStack stack, iStr ">"]
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We use the function shortShowInstructions to print only the first three instructions of the in-
struction stream in the dump items. This is usually sufficient to indicate where the computation
will resume.

> shortShowInstructions :: Int -> GmCode -> Iseq
> shortShowInstructions number code
> = iConcat [iStr "{", iInterleave (iStr "; ") dotcodes, iStr "}"]
> where codes = map showInstruction (take number code)
> dotcodes | length code > number = codes ++ [iStr "..."]
> | otherwise = codes

Similarly, we do not need the full details of the stack component of the dump item either, so we
use shortShowStack.

> shortShowStack :: GmStack -> Iseq
> shortShowStack stack
> = iConcat [iStr "[",
> iInterleave (iStr ", ") (map (iStr . showaddr) stack),
> iStr "]"]

3.6.3 The new instruction transitions

Evaluator instructions

There are actually very few instructions that manipulate the dump. First, there is Eval itself,
which creates a new dump item whenever the node on top of the stack is not in WHNF. Secondly,
there is a modification to the Unwind instruction that pops a dump item when an evaluation is
completed.

We first describe the new Unwind instruction. When the expression held in the stack is in
WHNF, Unwind can restore the old context from the dump, placing the last address in the stack
on the restored old stack. We see this clearly in the transition for the case of numbers.1

(3.22)
[Unwind] a : s 〈i ′, s ′〉 : d h[a : NNum n] m

=⇒ i ′ a : s′ d h m

The expression with address a is in WHNF because it is an integer, so we restore the old
instruction sequence i ′ and the stack is now the old stack s′ with the address a on top. All other
transitions for Unwind remain the same as they were in the Mark 3 machine (except that they
have the dump component in their state).

We are now in a position to specify the rule for Eval. It saves the remainder of the stack s
and the rest of the instructions i as a dump item on the dump. The new code sequence is just
unwinding and the new stack contains the singleton a.

(3.23)
Eval : i a : s d h m

=⇒ [Unwind] [a] 〈i , s〉 : d h m
1The rule only applies if the dump is non-empty; if the dump is empty then the machine has terminated.
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Arithmetic instructions

The dyadic arithmetic operators all have the following generic transition rule. Let us suppose
that the arithmetic operator we wish to implement is �; the transition rule for the instruction
� is then:

(3.24)
� : i a0 : a1 : s d h[a0 : NNum n0, a1 : NNum n1] m

=⇒ i a : s d h[a : NNum (n0 � n1)] m

What has happened is that the two numbers on top of the stack have had the dyadic operator
� applied to them. The result, which is entered into the heap, has its address placed on the
stack. The Neg instruction negates the number on top of the stack, so it has transition rule:

(3.25)
Neg : i a : s d h[a : NNum n] m

=⇒ i a ′ : s d h[a′ : NNum (−n)] m

Notice how similar all of the dyadic operations are. First we extract the two numbers from
the heap, then we perform the operation, and finally we place the answer back in the heap.
This suggests that we should write some higher-order functions that are parameterised over the
extraction from heap (which we call ‘unboxing’ the value), and insertion back into the heap
(which we call ‘boxing’ the value), along with the specific operation we wish to perform.

Let us write the boxing operations first. boxInteger takes a number and an initial state, and
returns a new state in which the number has been placed into the heap, and a pointer to this
new node left on top of the stack.

> boxInteger :: Int -> GmState -> GmState
> boxInteger n state
> = putStack (a: getStack state) (putHeap h’ state)
> where (h’, a) = hAlloc (getHeap state) (NNum n)

Now to extract an integer at address a from a state, we will use unboxInteger.

> unboxInteger :: Addr -> GmState -> Int
> unboxInteger a state
> = ub (hLookup (getHeap state) a)
> where ub (NNum i) = i
> ub n = error "Unboxing a non-integer"

A generic monadic operator can now be specified in terms of its boxing function, box, its
unboxing function unbox, and the operator op on the unboxed values.

> primitive1 :: (b -> GmState -> GmState) -- boxing function
> -> (Addr -> GmState -> a) -- unbixing function
> -> (a -> b) -- operator
> -> (GmState -> GmState) -- state transition
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> primitive1 box unbox op state
> = box (op (unbox a state)) (putStack as state)
> where (a:as) = getStack state

The generic dyadic operators can now be implemented in a similar way using primitive2.

> primitive2 :: (b -> GmState -> GmState) -- boxing function
> -> (Addr -> GmState -> a) -- unbixing function
> -> (a -> a -> b) -- operator
> -> (GmState -> GmState) -- state transition

> primitive2 box unbox op state
> = box (op (unbox a0 state) (unbox a1 state)) (putStack as state)
> where (a0:a1:as) = getStack state

To be even more explicit, arithmetic1 implements all monadic arithmetic, and arithmetic2
implements all dyadic arithmetic.

> arithmetic1 :: (Int -> Int) -- arithmetic operator
> -> (GmState -> GmState) -- state transition

> arithmetic1 = primitive1 boxInteger unboxInteger

> arithmetic2 :: (Int -> Int -> Int) -- arithmetic operation
> -> (GmState -> GmState) -- state transition

> arithmetic2 = primitive2 boxInteger unboxInteger

As the alert reader would expect, we will be taking advantage of the generality of these functions
later in the chapter.

Exercise 3.23. Implement all of the new instruction transitions for the machine. Modify the dispatch
function to deal with the new instructions. You should use the higher-order functions primitive1
and primitive2 to implement the operators.

Exercise 3.24. Why are indirection nodes never left on top of the stack on completing an Eval instruc-
tion?
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Comparison instructions

The comparison operators all have the following generic transition rule. Let us suppose that
the comparison operator we wish to implement is �; the transition rule for the instruction � is
then:

(3.26)
� : i a0 : a1 : s d h[a0 : NNum n0, a1 : NNum n1] m

=⇒ i a : s d h[a : NNum (n0 � n1)] m

What has happened is that the two numbers on top of the stack have had the dyadic operator
� applied to them. The result, which is entered into the heap, has its address placed on the
stack. This is almost the same as arithmetic.

The difference is that an operation, == say, returns a boolean and not an integer. To fix this we
turn booleans into integers using the following rule:

• we represent True by the integer 1;

• we represent False by the integer 0.

To make the use of primitive2 possible, we define boxBoolean

> boxBoolean :: Bool -> GmState -> GmState
> boxBoolean b state
> = putStack (a: getStack state) (putHeap h’ state)
> where (h’,a) = hAlloc (getHeap state) (NNum b’)
> b’ | b = 1
> | otherwise = 0

Using this definition we can write a generic comparison function, which we call comparison.
This function takes a boxing function for the booleans, the unboxing function for integers
(unboxInteger), and a comparison operator; it returns a state transition.

> comparison :: (Int -> Int -> Bool) -> GmState -> GmState
> comparison = primitive2 boxBoolean unboxInteger

Finally, we implement the Cond instruction, which we will use to compile the if function. It
has two transition rules:

(3.27)
Cond i1 i2 : i a : s d h[a : NNum 1] m

=⇒ i1 ++ i s d h m

In the first case – where there is the number 1 on top of the stack – we take the first branch.
This means that we execute the instructions i1 before continuing to execute the instructions i .

(3.28)
Cond i1 i2 : i a : s d h[a : NNum 0] m

=⇒ i2 ++ i s d h m
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Alternatively, if the number on top of the stack is 0, we execute the instruction sequence i2 first,
and then the sequence i .

Exercise 3.25. Implement the transitions for the comparison instructions and the Cond instruction.

3.6.4 The compiler

The compiler will eventually need to be changed to take advantage of these new instructions to
compile arithmetic expressions. For the moment we make only the minimum set of changes that
will allow us to use the arithmetic instructions we have so laboriously added. First, the compile
function must create a new initial state in which the initial dump is empty and in which the
initial code sequence differs from the one we have used so far.

> compile :: CoreProgram -> GmState
> compile program
> = (initialCode, [], [], heap, globals, statInitial)
> where (heap, globals) = buildInitialHeap program

> initialCode :: GmCode
> initialCode = [Pushglobal "main", Eval]

Exercise 3.26. Why has the initial instruction sequence been changed? What happens if we retain the
old one?

The simplest way to extend the compiler is simply to add G-machine code for each of the new
built-in functions to the compiledPrimitives. The initial four instructions of the sequence
ensure that the arguments have been evaluated to integers.

> compiledPrimitives :: [GmCompiledSC]
> compiledPrimitives
> = [("+", 2, [Push 1, Eval, Push 1, Eval, Add, Update 2, Pop 2, Unwind]),
> ("-", 2, [Push 1, Eval, Push 1, Eval, Sub, Update 2, Pop 2, Unwind]),
> ("*", 2, [Push 1, Eval, Push 1, Eval, Mul, Update 2, Pop 2, Unwind]),
> ("/", 2, [Push 1, Eval, Push 1, Eval, Div, Update 2, Pop 2, Unwind]),

We also need to add the negation function. As this only takes one argument, we only evaluate
one argument.

> ("negate", 1, [Push 0, Eval, Neg, Update 1, Pop 1, Unwind]),

The comparison operations are implemented as follows.

> ("==", 2, [Push 1, Eval, Push 1, Eval, Eq, Update 2, Pop 2, Unwind]),
> ("˜=", 2, [Push 1, Eval, Push 1, Eval, Ne, Update 2, Pop 2, Unwind]),
> ("<", 2, [Push 1, Eval, Push 1, Eval, Lt, Update 2, Pop 2, Unwind]),
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> ("<=", 2, [Push 1, Eval, Push 1, Eval, Le, Update 2, Pop 2, Unwind]),
> (">", 2, [Push 1, Eval, Push 1, Eval, Gt, Update 2, Pop 2, Unwind]),
> (">=", 2, [Push 1, Eval, Push 1, Eval, Ge, Update 2, Pop 2, Unwind]),

The if function is compiled so that it uses Cond for the branching.

> ("if", 3, [Push 0, Eval, Cond [Push 1] [Push 2],
> Update 3, Pop 3, Unwind])]

Exercise 3.27. What test programs from Appendix B would you use in order to check that the new
instructions and compiler work?

3.7 Mark 5: Towards better handling of arithmetic

The way the G-machine is implemented at the moment, each arithmetic operator is called via
one of the compiled primitives. We can improve on this arrangement by observing that often we
can call the arithmetic operator directly. For example, consider the following simple program:

main = 3+4*5

This generates the following code when we use the current compiler:

[Pushint 5, Pushint 4, Pushglobal "*", Mkap, Mkap,
Pushint 3, Pushglobal "+", Mkap, Mkap, Eval]

When executed this code will take 33 steps and use 11 heap nodes. Our first thought must
surely be that we can use the instructions Add and Mul in place of calls to the functions ‘+’ and
‘*’. This leads to the following improved code:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add]

This will take only five steps to execute and uses five heap nodes.

3.7.1 A problem

A possible problem arises when we consider our next example program.

main = K 1 (1/0)

This generates the following code:

[Pushint 0, Pushint 1, Pushglobal "/", Mkap, Mkap,
Pushint 1, Pushglobal "K", Mkap, Mkap, Eval]

If we follow the pattern of the previous example we might try generating the code:
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[Pushint 0, Pushint 1, Div,
Pushint 1, Pushglobal "K", Mkap, Mkap, Eval]

The problem is that the division operator is applied before we reduce K, with the result that a
division-by-zero error is generated. A correct compiler must generate code that will not give
such errors.

What has happened is that our code is too strict. The code is evaluating expressions that it
need not – which results in errors arising where they should not. A similar problem will also
arise when non-terminating expressions are inadvertently evaluated.

3.7.2 The solution

The solution to the problem is to keep track of the context in which an expression appears. We
will distinguish two contexts2:

Strict The value of the expression will be required in WHNF.

Lazy The value of the expression may or may not be required in WHNF.

Corresponding to each context, we have a compilation scheme which will compile an expression
to a sequence of G-machine instructions. In the strict context this compilation scheme is the E
scheme; in the lazy context we will use the C scheme we have seen already.

We would like to find as many strict contexts as possible, since these contexts allow us to generate
better code. We make the following observation: whenever a supercombinator is instantiated it
is because we wish to evaluate its value to WHNF. From this we conclude that the body of a
supercombinator can always be evaluated in a strict context. There are also expressions where
we know that some sub-expressions will be evaluated to WHNF if the expression is evaluated to
WHNF.

The class of strict context expressions can be described recursively.

• The expression in the body of a supercombinator definition is in a strict context.

• If e0 � e1 occurs in a strict context, where � is an arithmetic or comparison operator,
then the expressions e0 and e1 are also in a strict context.

• If negate e occurs in a strict context, then the expression e also does.

• If the expression if e0 e1 e2 occurs in a strict context, then so do the expressions e0, e1,
and e2.

• If let(rec) ∆ in e occurs in a strict context then the expression e is also in a strict
context.

An example should make this clear; consider the body of the supercombinator f:
2It is possible to distinguish more contexts. Projection analysis [Wadler 1987] and evaluation transformers

[Burn 1991] are two ways to do this.
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R[[e]] ρ d generates code which instantiates the expression e in environ-
ment ρ, for a supercombinator of arity d , and then proceeds to unwind
the resulting stack.

R[[e]] ρ d = E [[e]] ρ ++ [Update d , Pop d , Unwind]

E [[e]] ρ compiles code that evaluates an expression e to WHNF in envi-
ronment ρ, leaving a pointer to the expression on top of the stack.

E [[i ]] ρ = [Pushint i ]
E [[let x1=e1; . . . ; xn=en in e]] ρ

= C[[e1]] ρ+0 ++ . . . ++
C[[en ]] ρ+(n−1) ++
E [[e]] ρ′ ++ [Slide n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
E [[letrec x1=e1; . . . ; xn=en in e]] ρ

= [Alloc n] ++
C[[e1]] ρ′ ++ [Update n − 1] ++ . . . ++
C[[en ]] ρ′ ++ [Update 0] ++
E [[e]] ρ′ ++ [Slide n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
E [[e0 + e1]] ρ = E [[e1]] ρ ++ E [[e0]] ρ+1 ++ [Add]

And similarly for other arithmetic and comparison expressions
E [[negate e]] ρ = E [[e]] ρ ++ [Neg]

E [[if e0 e1 e2]] ρ = E [[e0]] ρ ++ [Cond (E [[e1]] ρ) (E [[e2]] ρ)]
E [[e]] ρ = C[[e]] ρ ++ [Eval] the default case

Figure 3.12: The R and E compilation schemes for the Mark 5 machine

f x y = (x+y) + g (x*y)

Both (x+y) and g (x*y) will be evaluated in a strict context – because the body of the super-
combinator is. In the first case this causes x and y to be evaluated in a strict context – because
+ propagates the strict context. In the second expression, the presence of a user-defined super-
combinator means that the sub-expression x*y will be compiled assuming that the expression
may not be evaluated.

This suggests that we can implement the strict-context compiler, E , in a recursive manner.
Because the body of each supercombinator is evaluated in a strict context we will need to call
the E scheme function from the R scheme. This satisfies the first of the points above. To
propagate the context information into sub-expressions we will recursively invoke the E scheme
for arithmetic expressions.

The new compiler schemes are defined in Figure 3.12.

To make it easier to extend the set of built-in operators that can be compiled using the new
scheme, we define builtInDyadic.
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> builtInDyadic :: ASSOC Name Instruction
> builtInDyadic
> = [("+", Add), ("-", Sub), ("*", Mul), ("div", Div),
> ("==", Eq), ("˜=", Ne), (">=", Ge),
> (">", Gt), ("<=", Le), ("<", Lt)]

Exercise 3.28. Modify the existing compiler functions compileR and compileE so that they implement
the R scheme and E scheme of Figure 3.12. You should use builtInDyadic.

Occasionally the machine will fail when the new compiler is used. What we need is to introduce
a new rule for the Unwind instruction.

(3.29)
[Unwind] [a0, . . . , ak ] 〈i , s〉 : d h[a0 : NGlobal n c] m

=⇒ i ak : s d h m when k < n

This allows us to use Eval to evaluate any object to WHNF, and not just numbers.

Exercise 3.29. Implement the new transition for Unwind. Write a program that fails without the new
Unwind transition.

Exercise 3.30. Compare the execution of the example program used at the start of this section, with
its execution on the Mark 4 machine.

main = 3+4*5

Try some other programs from Appendix B.

The way we implemented the strict context in the compiler is addis simple example of the
inherited attributes from compiler theory. If we regard the strict context as an attribute of an
expression, then a sub-expression inherits its strict context from its parent expression. The
general theory is discussed in [Aho et al. 1986].

It is unfortunately not possible – in general – to determine at compile-time whether an expression
should be compiled with a strict context. We therefore have to accept a compromise. In this
book we have only treated a limited set of expressions – the arithmetic expressions – in a special
way. Much active research is concerned with extending this analysis to cover more general
expressions [Burn 1991].

3.8 Mark 6: Adding data structures

In this section we extend the G-machine to deal with arbitrary data structures. As discussed in
Chapter 1, two new Core-language constructs are required for programs involving data struc-
tures: constructors, EConstr; and case expressions, ECase. Our goal, in producing the Mark 6
machine, is to compile code for these expressions.
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3.8.1 Overview

In Section 1.1.4 we saw that a constructor with tag t and arity a was represented as Pack{t,a}
in the core language. For example, the usual list data type has two constructors: Pack{1,0}
and Pack{2,2}. These correspond to Miranda’s [] and (:) respectively.

A case expression, which has no direct counterpart in Miranda, is used to inspect the values
held in a constructor. For example, we can write the length function for a list as:

length xs = case xs of
<1> -> 0;
<2> y ys -> 1 + length ys

It is instructive to look at the way we execute the case expression

1. To evaluate the case expression, we first evaluate xs to WHNF.

2. Once this evaluation has occurred, we are able to tell which of the alternatives to take.
The tag of the evaluated expression – which must be a structured data object – determines
which alternative we take. In the above example, for length:

• If the tag of the constructor for xs is 1 then the list is empty and we take the first
branch. We therefore return 0.

• If the tag is 2, then the list is non-empty. This time there are components of the
constructor (y and ys). The length of the list is one more than the length of ys.

We will assume that whenever we attempt to dismantle a constructor it has been applied to the
correct number of arguments. A constructor in this state is said to be saturated. As an example,
in Section 1.1.3, Cons is defined to take two arguments, so it is saturated when it is applied to
two expressions.

We also note that a Core-language program can now return a result that is a structured data
object. The Mark 5 G-machine must be able to print the structured data object in a lazy
fashion. Let us first consider what additions will need to be made to the data structures of the
Mark 5 machine.

3.8.2 Data structures

It would be nice to allow the machine to return values which are not just numbers. We would
like to be able to return values that consist of constructors. This will require us to evaluate the
components of the structure recursively, and then return these values. To do this we need to
add yet another component to the state: gmOutput. This will hold the result of the program.

> type GmState =
> (GmOutput, -- Current Output
> GmCode, -- Current Instruction Stream
> GmStack, -- Current Stack
> GmDump, -- The Dump
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> GmHeap, -- Heap of Nodes
> GmGlobals, -- Global addresses in Heap
> GmStats) -- Statistics

This component is defined to be a character string.

> type GmOutput = [Char]

We can write the access functions in the obvious way.

> getOutput :: GmState -> GmOutput
> getOutput (o, i, stack, dump, heap, globals, stats) = o

> putOutput :: GmOutput -> GmState -> GmState
> putOutput o’ (o, i, stack, dump, heap, globals, stats)
> = (o’, i, stack, dump, heap, globals, stats)

Exercise 3.31. Make the appropriate changes to the remainder of the access functions.

To support constructor nodes in the heap, we augment the type node with NConstr; this takes
a positive number which will represent a tag, and a list of components which we represent as the
list of the addresses of the nodes in heap.

> data Node
> = NNum Int -- Numbers
> | NAp Addr Addr -- Applications
> | NGlobal Int GmCode -- Globals
> | NInd Addr
> | NConstr Int [Addr]
> instance Eq Node
> where
> NNum a == NNum b = a == b -- needed to check conditions
> NAp a b == NAp c d = False -- not needed
> NGlobal a b == NGlobal c d = False -- not needed
> NInd a == NInd b = False -- not needed
> NConstr a b == NConstr c d = False -- not needed

3.8.3 Printing the result

Because we have a new state component which we wish to display, we must redefine the function
showState.

> showState :: GmState -> Iseq
> showState s
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> = iConcat [showOutput s, iNewline,
> showStack s, iNewline,
> showDump s, iNewline,
> showInstructions (getCode s), iNewline]

The showOutput function is easy, because the output component is already a string.

> showOutput :: GmState -> Iseq
> showOutput s = iConcat [iStr "Output:\"", iStr (getOutput s), iStr "\""]

The only other change (apart from changing showInstruction for the new instruction set)
occurs in showNode, because we have extended the data type to include constructor nodes.

> showNode :: GmState -> Addr -> Node -> Iseq
> showNode s a (NNum n) = iNum n
> showNode s a (NGlobal n g) = iConcat [iStr "Global ", iStr v]
> where v = head [n | (n,b) <- getGlobals s, a==b]
> showNode s a (NAp a1 a2) = iConcat [iStr "Ap ", iStr (showaddr a1),
> iStr " ", iStr (showaddr a2)]
> showNode s a (NInd a1) = iConcat [iStr "Ind ", iStr (showaddr a1)]
> showNode s a (NConstr t as)
> = iConcat [iStr "Cons ", iNum t, iStr " [",
> iInterleave (iStr ", ") (map (iStr.showaddr) as), iStr "]"]

3.8.4 The instruction set

The new instruction set is now defined. It simply adds four new instructions to the Mark 4
machine.

> data Instruction
> = Slide Int
> | Alloc Int
> | Update Int
> | Pop Int
> | Unwind
> | Pushglobal Name
> | Pushint Int
> | Push Int
> | Mkap
> | Eval
> | Add | Sub | Mul | Div
> | Neg
> | Eq | Ne | Lt | Le | Gt | Ge
> | Cond GmCode GmCode

The four new instructions that are added to the machine are as follows:
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> | Pack Int Int
> | Casejump [(Int, GmCode)]
> | Split Int
> | Print

Exercise 3.32. Extend showInstruction to match the new instruction set.

The Pack instruction is simple; it assumes that there are sufficient arguments on the stack to
construct a saturated constructor. When there are, it proceeds to make a saturated constructor;
if there are not enough arguments, then the instruction is undefined.

(3.30)
o Pack t n : i a1 : . . . : an : s d h m

=⇒ o i a : s d h[a : NConstr t [a1, . . . , an ]] m

The transition rule for Casejump expects (a) that the node on top of the stack is in WHNF,
and (b) that the node is a structured data object. Using the tag from this object we select one
of the alternative instruction sequences, and the current instruction stream is then prefixed by
the code for the particular alternative selected.

(3.31)
o Casejump [. . . , t->i ′, . . .] : i a : s d h[a : NConstr t ss] m

=⇒ o i ′ ++ i a : s d h m

This is a simple way to specify a multiway jump and join. That is, by prefixing the current
code i by the code for the alternative i′, we achieve the effect of first running the code for the
alternative and then resuming with whatever the remainder of the code for the main expression
requires3.

The code for each alternative begins with a Split n instruction and terminates with a Slide n
instruction. The value of n is determined by the number of components in the constructor. The
Split instruction is used to gain access to the components of a constructor.

Consider the code sequence generated for the length function:

[Push 0, Eval,
Casejump [1 -> [Pushint 0]

2 -> [Split 2, Push 1, Pushglobal "length", Mkap,
Eval, Pushint 1, Add, Slide 2]],

Update 1,
Pop 1,
Unwind]

The execution of this pattern is shown in Figure 3.13, where we see that the Slide and Split
instructions are being used temporarily to extend the current set of local bindings. Assuming

3It should be noted that code sequences using Casejump are not flat. We can, however, construct the flat code
sequences we desire by labelling each alternative and jumping to the labelled code addresses. We have not done
this as it unnecessarily complicates the code generation.

132



✲ ✲

✲

✲

✲

✲

✲

✲

✲

(d) After Slide 2(c) After code for body

(b) After Split 2(a) On entering alternative

l

head

tail

head

tail

2 2

tail

head

l

Figure 3.13: Running compiled code for alternatives

that the length function was applied to a non-nil node, when we execute the Casejump instruc-
tion, we take the alternative labelled 2. This is the initial diagram (a). The Split 2 instruction
‘unpacks’ the constructor node onto the stack. This is shown in diagram (b). After completing
the body of the alternative, i.e. the code sequence

[Push 1, Pushglobal "length", Mkap, Eval, Pushint 1, Add]

the length of the list argument to this call of length will be on top of the stack labelled l in
diagram (c). To complete the execution we remove the pointers to head and tail; this is shown
in diagram (d). The transition for Split is straightforward.

(3.32)
o Split n : i a : s d h[a : NConstr t [a1, . . . , an ]] m

=⇒ o i a1 : . . . : an : s d h m

Next, we describe the transitions for Print. There are two transitions for Print; one each for
constructors and numbers.

(3.33)
o Print : i a : s d h[a : NNum n] m

=⇒ o ++ [n] i s d h m

The rule for constructors is more complex, as it must arrange to print each component of the
constructor. For simplicity we will only print out the components.

(3.34)
o Print : i a : s d h[a : NConstr t [a1, . . . , an ]] m

=⇒ o i ′ ++ i a1 : . . . : an : s d h m
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E [[e]] ρ compiles code that evaluates an expression e to WHNF in envi-
ronment ρ, leaving a pointer to the expression on top of the stack.

E [[case e of alts]] ρ = E [[e]] ρ ++ [Casejump D[[alts]] ρ]
E [[Pack{t,a} e1 . . . ea ]] ρ = C[[ea ]] ρ+0 ++ . . . C[[e1]] ρ+(a−1) ++ [Pack t a]

C[[e]] ρ generates code which constructs the graph of e in environment ρ,
leaving a pointer to it on top of the stack.

C[[Pack{t,a} e1 . . . ea ]] ρ = C[[ea ]] ρ+0 ++ . . . C[[e1]] ρ+(a−1) ++ [Pack t a]

D[[alts]] ρ compiles the code for the alternatives in a case expression.

D[[alt1 . . . altn ]] ρ = [A[[alt1]] ρ , . . . , A[[altn ]] ρ]

A[[alt ]] ρ compiles the code for an alternative in a case expression.

A[[<t> x1 . . . xn -> body ]] ρ = t -> [Split n] ++ E [[body ]] ρ′ ++ [Slide n]
where ρ′ = ρ+n [x1 �→ 0 . . . xn �→ n − 1]

Figure 3.14: Compilation schemes for case expressions

The code i ′ is simply:
[Eval, Print, . . . , Eval, Print︸ ︷︷ ︸

n

].

Lastly, we must add a new rule for Unwind, that tells it to return when unwinding an NConstr,
just like the rule for NNum.

(3.35)
[Unwind] a : s 〈i ′, s ′〉 : d h[a : NConstr n as] m

=⇒ i ′ a : s′ d h m

Exercise 3.33. Implement the new transitions and modify the dispatch function.

3.8.5 The compiler

In Figure 3.14 the new cases for the E and C compilation schemes are presented. They require
auxiliary compilation schemes, D and A, to deal with the alternatives that may be selected in
a case expression. The function compileAlts (corresponding to the D scheme) compiles a list
of alternatives, using the current environment, and produces a list of tagged code sequences.
It also uses the comp argument (which corresponds to A) to compile the body of each of the
alternatives. For the moment this argument will always be compileE’.
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> compileAlts :: (Int -> GmCompiler) -- compiler for alternative bodies
> -> [CoreAlt] -- the list of alternatives
> -> GmEnvironment -- the current environment
> -> [(Int, GmCode)] -- list of alternative code sequences
> compileAlts comp alts env
> = [(tag, comp (length names) body (zip names [0..] ++ argOffset (length names) env))
> | (tag, names, body) <- alts]

The compileE’ scheme is a small modification to the compileE scheme. It simply places a
Split and Slide around the code generated by the ordinary compileE scheme.

> compileE’ :: Int -> GmCompiler
> compileE’ offset expr env
> = [Split offset] ++ compileE expr env ++ [Slide offset]

Exercise 3.34. Make the relevant changes to compile, and modify initialCode to have a final Print
instruction.

Exercise 3.35. Add the new cases to the compiler functions compileE and compileC.

Exercise 3.36. What changes are required to print out the output in ‘structured form’. By this we
mean placing the constructors and parentheses into the output component gmOutput, as well as
integers.

3.8.6 Using the new boolean representation in comparisons

In this section we show how the Mark 6 machine we have constructed, can be modified to use
our new representation of booleans. We first observe that we can implement the booleans as
structured data objects; with True and False being represented as constructors of zero arity
and tags 2 and 1 respectively.

How do we implement conditionals? This can be done by adding a new definition to the program
for if. It returns either its second or third argument, depending on the first argument.

if c t f = case c of
<1> -> f;
<2> -> t

The first change we require lies in the comparison operations. These have the following generic
transition rule.

(3.36)
o � : i a0 : a1 : s d h[a0 : NNum n0, a1 : NNum n1] m

=⇒ o i a : s d h[a : Constr (n0 � n1) []] m

For example, in the Eq instruction, we replace � with a function that returns 2 (the tag for
True) if the two numbers n0 and n1 are the same, and 1 (the tag for False) otherwise.
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We can implement the transitions quickly, by reusing some of the code we developed for the
Mark 4 machine. In Section 3.6.3 we saw how to represent some generic arithmetic and com-
parison operators. In fact, because of the way in which we structured the definition of the
comparison function, we can almost immediately use our new representation of booleans.

The boxing function boxBoolean takes a comparison operation and a state in which there are
two integers on top of the stack. It returns the new state in which there is the boolean result of
comparing the two integers on top of the stack.

> boxBoolean :: Bool -> GmState -> GmState
> boxBoolean b state
> = putStack (a: getStack state) (putHeap h’ state)
> where (h’,a) = hAlloc (getHeap state) (NConstr b’ [])
> b’ | b = 2 -- 2 is tag of True
> | otherwise = 1 -- 1 is tag of False

Exercise 3.37. Run some example programs from Appendix B; for example try the factorial program:

fac n = if (n==0) 1 (n * fac (n-1))

3.8.7 Extending the language accepted

As astute readers might have noticed, there are some legal expressions involving ECase and
EConstr for which our compiler will fail. The legal expressions that we cannot compile fall into
two classes:

1. Occurrences of ECase in non-strict contexts; i.e. in expressions compiled by the C scheme.

2. Occurrences of EConstr in expressions where it is applied to too few arguments.

Both problems can be solved by using program transformation techniques. The solution for
ECase is to make the offending expressions into supercombinators which are then applied to
their free variables. For example, the program:

f x = Pack{2,2} (case x of <1> -> 1; <2> -> 2) Pack{1,0}

can be transformed into the equivalent program:

f x = Pack{2,2} (g x) Pack{1,0}
g x = case x of <1> -> 1; <2> -> 2

The trick for EConstr is to create a supercombinator for each constructor; this will be generated
with enough free variables to saturate the constructor. Here is an example.

prefix p xs = map (Pack{2,2} p) xs

This is transformed to:
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prefix p xs = map (f p) xs
f p x = Pack{2,2} p x

Another way to solve this problem is to modify the Pushglobal instruction, so that it will work
for functions with names of the form: ‘Pack{t,a}’. We can then simply look for constructor
functions, such as f in the example above, in the globals component of the state. If the function
is not already present, we can create a new global node to associate with the function because
the node has a particularly simple structure.

NGlobal a [Pack t a, Update 0, Unwind]

The new transitions are, firstly, if the function exists already:

(3.37)
o Pushglobal Pack{t,n} : i s d h m[Pack{t,n} : a]

=⇒ o i a : s d h m

and secondly when it does not already exist:

(3.38)
o Pushglobal Pack{t,n} : i s d h m

=⇒ o i a : s d h[a : gNodet ,n ] m[Pack{t,n} : a]

where gNodet ,n is
NGlobal n [Pack t n, Update 0, Unwind]

Our compiler can then generate code for expressions with unsaturated constructor nodes directly.
It does this by generating the following code for unsaturated constructors.

C[[Pack{t,a}]] ρ = [Pushglobal "Pack{t,a}"]

Exercise 3.38. Implement the extensions to the pushglobal function for the Pushglobal instruction
and modify the compiler.

3.9 Mark 7: Further improvements

Let us consider again the example program we saw when we developed the Mark 5 compiler.

main = 3+4*5

This generates the following code when we use the Mark 6 compiler:

[Pushint 5, Pushint 4, Mul, Pushint 3, Add]
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When executed this code will use five heap nodes. Is it possible to reduce this still further?

The answer is yes. We can reduce the number of heap accesses for arithmetic further by using a
stack of numbers to represent intermediate values in the computation. In the Mark 7 machine
these values are held in a new state component called the V-stack. The problem is that placing
numbers into the heap or extracting them is an expensive operation on a real machine. It is
much more efficient to use the machine’s register set or stack. In the Mark 7 G-machine we will
use a stack; this means that we do not have to worry about running out of registers.

The new code for the program

main = 3+4*5

is very similar to that which we previously generated:

[Pushbasic 5, Pushbasic 4, Mul, Pushbasic 3, Add, Mkint]

The first instruction Pushbasic 5 places 5 on top of the V-stack. Next we push 4 onto the
V-stack, following this by a multiplication. This instruction now expects its arguments to be in
the V-stack. It will place the answer into the V-stack as well. The next two instructions add 3
to the value on top of the V-stack. The final instruction, Mkint, takes the value on top of the
V-stack and places it into a number node in the heap, leaving a pointer to this new node on top
of the S-stack.

3.9.1 Executing the factorial function using the V-stack

We begin an investigation into the Mark 7 machine, by way of an example. We will be looking
at the execution of the factorial function, defined as follows:

fac n = if (n==0) 1 (n * fac (n-1))

Using the Mark 7 compiler, we will generate the following code sequence for the body of the
supercombinator.

[Pushbasic 0, Push 0, Eval, Get, Eq,
Cond [Pushint 1, Update 1, Pop 1, Unwind]

[Pushint 1, Push 1, Pushglobal "-", Mkap, Mkap, Pushglobal "fac", Mkap,
Eval, Get, Push 0, Eval, Get, Mul, Mkint, Update 1, Pop 1, Unwind]

When this code commences execution, the V-stack is empty, and there is one item on the
ordinary stack. We will call the latter the S-stack from now on to distinguish the two sorts of
stack. In Figure 3.15 – starting with diagram (a) – we see the initial state in which a pointer
to the argument to fac is on top of the S-stack. In diagram (b) we see what happens when a
Pushbasic instruction is executed: an integer is pushed onto the V-stack. Diagram (c) shows
that the argument to fac has now been evaluated, whilst in diagram (d) we see the effect of a
Get instruction. It has extracted the value from the node in the heap, and placed it into the
V-stack.
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Figure 3.15: Mark 7 machine running fac

✲✲

(f) After Cond(e) After Eq

1

SV

1 1
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Figure 3.16: Mark 7 machine running fac

In diagram (e) (Figure 3.16) we see the state after an Eq instruction has executed. It has
compared the two items in the V stack, and discovered that they are not equal. The Mark 7
G-machine represents the boolean value False by 1 in the V-stack. In diagram (f), the Cond
instruction has inspected this value, and used it to select which branch to execute.

In diagram (g) (Figure 3.17) the state after the construction and evaluation of fac (1-1) is
shown. The next instruction is Get which fetches the newly evaluated value into the V stack.
Diagram (i) shows that we evaluate and fetch the value from the node 1 into the V-stack. In
diagram (j) a Mul instruction has multiplied the two values in the V-stack, placing the result
back there. In diagram (k) a Mkint instruction has moved this result from the V-stack to the
heap, recording the address of the newly created node on the S-stack.

In a machine where there is a performance penalty for creating and accessing objects in the
heap – compared with keeping the objects in a stack – we expect the use of the V-stack to be
an improvement. Having seen how the V-stack works, we now make small modifications to the
G-machine to implement the Mark 7 machine.

3.9.2 Data structures

The use of the V-stack requires that each G-machine state has a new state component gmVStack
added to its state.

> type GmState = (GmOutput, -- Current output
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Figure 3.17: Mark 7 machine running fac

> GmCode, -- Current instruction stream
> GmStack, -- Current stack
> GmDump, -- Current dump
> GmVStack, -- Current V-stack
> GmHeap, -- Heap of nodes
> GmGlobals, -- Global addresses in heap
> GmStats) -- Statistics

As we have already stated this new component behaves as a stack of numbers.

> type GmVStack = [Int]

We add access functions for this component.

> getVStack :: GmState -> GmVStack
> getVStack (o, i, stack, dump, vstack, heap, globals, stats) = vstack

> putVStack :: GmVStack -> GmState -> GmState
> putVStack vstack’ (o, i, stack, dump, vstack, heap, globals, stats)
> = (o, i, stack, dump, vstack’, heap, globals, stats)

Exercise 3.39. Make the relevant changes to the other access functions.
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Displaying the states

The function showState is changed so that it prints out the V-stack component.

> showState :: GmState -> Iseq
> showState s
> = iConcat [showOutput s, iNewline,
> showStack s, iNewline,
> showDump s, iNewline,
> showVStack s, iNewline,
> showInstructions (getCode s), iNewline]

To do this we define the function showVStack.

> showVStack :: GmState -> Iseq
> showVStack s
> = iConcat [iStr "Vstack:[",
> iInterleave (iStr ", ") (map iNum (getVStack s)),
> iStr "]"]

3.9.3 Instruction set

An obvious first requirement is that each of the arithmetic transitions will now have to be
modified to get their values from, and return their results to, the V-stack instead of the ordinary
stack. Let us first deal with the case of dyadic primitives. The generic transition for the
operation � is given below. It takes two arguments from the V-stack and places the result of
the operation � back onto the V-stack.

(3.39)
o � : i s d n0 : n1 : v h m

=⇒ o i s d n0 � n1 : v h m

The Neg instruction now has the following transition: it simply replaces the number on top of
the V-stack with its negation.

(3.40)
o Neg : i s d n : v h m

=⇒ o i s d (−n) : v h m

We also need instructions to move values between the heap and the V-stack. We begin with
Pushbasic, which pushes an integer n onto the V-stack.

(3.41)
o Pushbasic n : i s d v h m

=⇒ o i s d n : v h m

To move a value from the V-stack to the heap, we use two instructions: Mkbool and Mkint.
These treat the integer on top of the V-stack as booleans and integers respectively. We begin
with Mkbool.
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(3.42)
o Mkbool : i s d t : v h m

=⇒ o i a : s d v h[a : NConstr t []] m

The transition for Mkint is similar, except that it creates a new integer node in the heap.

(3.43)
o Mkint : i s d n : v h m

=⇒ o i a : s d v h[a : NNum n] m

To perform the inverse operation we use Get. This is specified by two transitions. In the first
we see how Get treats a boolean on top of the stack.

(3.44)
o Get : i a : s d v h[a : NConstr t []] m

=⇒ o i s d t : v h m

In the second, we see how Get treats a number.

(3.45)
o Get : i a : s d v h[a : NNum n] m

=⇒ o i s d n : v h m

Finally, to make use of booleans on the V-stack we use a simplified Casejump instruction that
inspects the V-stack to determine which instruction stream to use. This new instruction is called
Cond, and is specified by the following two transitions. In the first – with the value on top of
the V-stack being true – we select the first code sequence: t .

(3.46)
o Cond t f : i s d 2 : v h m

=⇒ o t ++ i s d v h m

In the second transition we see that with a false value on top of the V-stack Cond selects its
second code sequence: f .

(3.47)
o Cond t f : i s d 1 : v h m

=⇒ o f ++ i s d v h m

Exercise 3.40. Extend the instruction data type, redefine the showInstruction function, implement
the new instruction transitions and modify the dispatch function.

We now consider the – rather extensive – modifications to the compiler.

3.9.4 The compiler

Because of the extra state component, the compile function must initialise the V-stack compo-
nent to be empty.
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> compile :: CoreProgram -> GmState
> compile program
> = ([], initialCode, [], [], [], heap, globals, statInitial)
> where (heap, globals) = buildInitialHeap program

Strictly speaking, this is all that is necessary to make the machine work, but we have introduced
the V-stack so that we can compile arithmetic functions ‘in-line’, so this is what we intend our
code to do.

> buildInitialHeap :: CoreProgram -> (GmHeap, GmGlobals)
> buildInitialHeap program
> = mapAccuml allocateSc hInitial compiled
> where compiled = map compileSc (preludeDefs ++ program ++ primitives)

Because of the changes to the transitions for the primitive instruction, we must change the code
for each compiled primitive. Instead of hand compiling this code – as we did for the Mark 6
machine – we can instead give this job to the compiler. This of course relies on the fact that
the compiler is clever enough to optimise the code it produces, otherwise we never generate any
Add instructions!

> primitives :: [(Name,[Name],CoreExpr)]
> primitives
> = [("+", ["x","y"], (EAp (EAp (EVar "+") (EVar "x")) (EVar "y"))),
> ("-", ["x","y"], (EAp (EAp (EVar "-") (EVar "x")) (EVar "y"))),
> ("*", ["x","y"], (EAp (EAp (EVar "*") (EVar "x")) (EVar "y"))),
> ("/", ["x","y"], (EAp (EAp (EVar "/") (EVar "x")) (EVar "y"))),

We also need to add the negation function.

> ("negate", ["x"], (EAp (EVar "negate") (EVar "x"))),

Comparison functions are almost identical to the dyadic arithmetic functions.

> ("==", ["x","y"], (EAp (EAp (EVar "==") (EVar "x")) (EVar "y"))),
> ("˜=", ["x","y"], (EAp (EAp (EVar "˜=") (EVar "x")) (EVar "y"))),
> (">=", ["x","y"], (EAp (EAp (EVar ">=") (EVar "x")) (EVar "y"))),
> (">", ["x","y"], (EAp (EAp (EVar ">") (EVar "x")) (EVar "y"))),
> ("<=", ["x","y"], (EAp (EAp (EVar "<=") (EVar "x")) (EVar "y"))),
> ("<", ["x","y"], (EAp (EAp (EVar "<") (EVar "x")) (EVar "y"))),

Finally, we ought to include the conditional function, and some supercombinators to represent
boolean values.

> ("if", ["c","t","f"],
> (EAp (EAp (EAp (EVar "if") (EVar "c")) (EVar "t")) (EVar "f"))),
> ("True", [], (EConstr 2 0)),
> ("False", [], (EConstr 1 0))]
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B[[e]] ρ compiles code that evaluates an expression e to WHNF, in an
environment ρ, leaving the result on the V stack.

B[[i ]] ρ = [Pushbasic i ]
B[[let x1=e1; . . . ; xn=en in e]] ρ

= C[[e1]] ρ+0 ++ . . . ++
C[[en ]] ρ+(n−1) ++
B[[e]] ρ′ ++ [Pop n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
B[[letrec x1=e1; . . . ; xn=en in e]] ρ

= [Alloc n] ++
C[[e1]] ρ′ ++ [Update n − 1] ++ . . . ++
C[[en ]] ρ′ ++ [Update 0] ++
B[[e]] ρ′ ++ [Pop n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
B[[e0 + e1]] ρ = B[[e1]] ρ ++ B[[e0]] ρ ++ [Add]

And similarly for other arithmetic expressions
B[[e0 == e1]] ρ = B[[e1]] ρ ++ B[[e0]] ρ ++ [Eq]

And similarly for other comparison expressions
B[[negate e]] ρ = B[[e]] ρ ++ [Neg]

B[[if e0 e1 e2]] ρ = B[[e0]] ρ ++ [Cond (B[[e1]] ρ) (B[[e2]] ρ)]
B[[e]] ρ = E [[e]] ρ ++ [Get] the default case

Figure 3.18: The B compilation scheme

The B compilation scheme

The B scheme, shown in Figure 3.18, constitutes another type of context. To be compiled by
the B scheme, an expression must not only be known to need evaluation to WHNF, it must also
be an expression of type integer or boolean. The following expressions will propagate through
the B scheme:

• If let(rec) ∆ in e occurs in a B-strict context then the expression e is also in a B-strict
context.

• If the expression if e0 e1 e2 occurs in a B-strict context then the expressions e0, e1 and
e2 also occur in B-strict contexts.

• If e0 � e1 occurs in a B-strict context, with � being a comparison or arithmetic operator,
then the expressions e0 and e1 also occur in B-strict contexts.

• If negate e occurs in a B-strict context then so does the expression e.

If we cannot recognise any of the special cases of expression, then the compiled code will evaluate
the expression using the E scheme, and then perform a Get instruction. The Get instruction
unboxes the value left on top of the stack by the E scheme and moves it to the V-stack.
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This has left unspecified how we know that an expression is initially in a B-strict context. The
usual situation is that we generate a B-strict context from the usual strict context: E , with the
additional knowledge that the value is of type integer or boolean.

Exercise 3.41. Implement the B compiler scheme.

The E compilation scheme

The E scheme – defined in Figure 3.19 – specifies that we should give special treatment to arith-
metic and comparison function calls. It differs from the version we used for the Mark 6 machine
because we make use of the B scheme to perform the arithmetic and comparison operations. A-
gain, if there are no special cases, then we must use a default method to compile the expression.
This is simply to build the graph, using the C scheme, and then place an Eval instruction in
the code stream. This will ensure that the graph is evaluated to WHNF.

Exercise 3.42. Implement the new E compiler scheme.

The R compilation scheme

We also take this opportunity to improve the R scheme. Firstly, we wish to create opportunities
for the B scheme to be used. We are also attempting to reduce the number of instructions that
are executed at the end of a function’s code sequence. The new compilation schemes for the R
scheme are given in Figure 3.20. It has been expanded from the version we used in the Mark 6
machine; in that it now works like a context. We refer to this context as R-strict. An expression
being compiled in a R-strict context will be evaluated to WHNF, and it will then be used to
overwrite the current redex. It obeys the following rules of propagation.

• The expression in the body of a supercombinator definition is in an R-strict context.

• If let(rec) ∆ in e occurs in an R-strict context then the expression e is also in an
R-strict context.

• If the expression if e0 e1 e2 occurs in an R-strict context then the expressions e1 and e2
are also in an R-strict context. (The expression e0 will now appear in a B-strict context.)

• If case e of alts occurs in an R-strict context then the expression e is in a strict context.
Furthermore, the expression part of each alternative will occur in an R-strict context.

Exercise 3.43. Implement the R scheme in Figure 3.20. Note that you can use the generality of the
compileAlts function to implement both the AR and AE schemes.

One point worth noting about the Mark 7 machine is that we did not define the Eval instruction
to save the current V-stack on the dump. This is in contrast to the G-machine described in
[Peyton Jones 1987]. Whether you do this is really a matter of taste in the abstract machines
we have produced in this book. In compiling code for a real machine we would be likely to
try to minimise the number of stacks. When this is the case, we will wish to use the following
alternative transition for Eval.
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E [[e]] ρ compiles code that evaluates an expression e to WHNF in envi-
ronment ρ, leaving a pointer to the expression on top of the stack.

E [[i ]] ρ = [Pushint i ]
E [[let x1=e1; . . . ; xn=en in e]] ρ

= C[[e1]] ρ+0 ++ . . . ++
C[[en ]] ρ+(n−1) ++
E [[e]] ρ′ ++ [Slide n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
E [[letrec x1=e1; . . . ; xn=en in e]] ρ

= [Alloc n] ++
C[[e1]] ρ′ ++ [Update n − 1] ++ . . . ++
C[[en ]] ρ′ ++ [Update 0] ++
E [[e]] ρ′ ++ [Slide n]

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
E [[case e of alts]] ρ = E [[e]] ρ ++ [Casejump DE [[alts]] ρ]

E [[Pack{t,a} e1 . . . ea ]] ρ = C[[ea ]] ρ ++ . . . C[[e1]] ρ ++ [Pack t a]
E [[e0 + e1]] ρ = B[[e0 + e1]] ρ ++ [Mkint]

And similarly for other arithmetic expressions
E [[e0 == e1]] ρ = B[[e0 == e1]] ρ ++ [Mkbool]

And similarly for other comparison expressions
E [[negate e]] ρ = B[[negate e]] ρ ++ [Mkint]

E [[if e0 e1 e2]] ρ = B[[e0]] ρ ++ [Cond (E [[e1]] ρ) (E [[e2]] ρ)]
E [[e]] ρ = C[[e]] ρ ++ [Eval] the default case

DE [[alts]] ρ compiles the code for the alternatives in a case expression.

DE [[alt1 . . . altn ]] ρ = [AE [[alt1]] ρ, . . . , AE [[altn ]] ρ]

AE [[alt ]] ρ compiles the code for an alternative in a case expression.

AE [[<t> x1 . . . xn -> body ]] ρ
= t -> [Split n] ++ E [[body ]] ρ′ ++ [Slide n]

where ρ′ = ρ+n [x1 �→ 0 . . . xn �→ n − 1]

Figure 3.19: The Mark 7 E , DE and AE compilation schemes
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R[[e]] ρ d generates code which instantiates the expression e in environ-
ment ρ, for a supercombinator of arity d , and then proceeds to unwind
the resulting stack.

R[[let x1=e1; . . . ; xn=en in e]] ρ d
= C[[e1]] ρ+0 ++ . . . ++

C[[en ]] ρ+(n−1) ++
R[[e]] ρ′ (n + d)

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
R[[letrec x1=e1; . . . ; xn=en in e]] ρ d

= [Alloc n] ++
C[[e1]] ρ′ ++ [Update n − 1] ++ . . . ++
C[[en ]] ρ′ ++ [Update 0] ++
R[[e]] ρ′(n + d)

where ρ′ = ρ+n [x1 �→ n − 1, . . . , xn �→ 0]
R[[if e0 e1 e2]] ρ d = B[[e0]] ρ ++ [Cond [R[[e1]] ρ d , R[[e2]] ρ d ]]

R[[case e of alts]] ρ d = E [[e]] ρ ++ [Casejump DR[[alts]] ρ d ]
R[[e]] ρ d = E [[e]] ρ ++ [Update d , Pop d , Unwind] the default case

DR[[alts]] ρ d compiles the code for the alternatives in a case expression.

DR[[alt1 . . . altn ]] ρ d = [AR[[alt1]] ρ d , . . . , AR[[altn ]] ρ d ]

AR[[alt ]] ρ d compiles the code for an alternative in a case expression.

AR[[<t> x1 . . . xn -> body ]] ρ d
= t -> [Split n] ++ R[[body ]] ρ′ (n + d)

where ρ′ = ρ+n [x1 �→ 0 . . . xn �→ n − 1]

Figure 3.20: The Mark 7 R, DR, and AR compilation schemes

(3.48)
o Eval : i a : s d v h m

=⇒ o [Unwind] [a] 〈i , s, v〉 : d [] h m

Exercise 3.44. Implement this alternative transition for Eval. What are the other instructions that
will need to be changed to allow for this new transition?

Exercise 3.45. What compilation rules would you change to produce optimised code for the boolean
operators &, | and not?

Exercise 3.46. Add a Return instruction with transition:

(3.49) o [Return] [a0, . . . , ak ] 〈i , s〉 : d v h m
=⇒ o i ak : s d v h m
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This is used by the R scheme in place of Unwind when the item on top of the stack is known to be
in WHNF. Modify compileR to generate this new instruction.

Exercise 3.47. Write out the transition for UpdateInt n. This instruction performs the same actions as
the sequence [Mkint, Update n]. Implement this transition and a similar one for UpdateBool n.
Modify compileR to generate these instructions instead of the original sequences.
Why are the new instructions preferred to the original sequences? (Hint: use the statistics from
some sample programs.)

3.10 Conclusions

The approach that we have taken in this chapter is a very useful one when designing large pieces
of software. First we start with something very simple, and then by a number of gradual changes
we produce a very large and complicated piece of software. It would be misleading to claim that
this is always possible by a process of small, incremental, changes. In fact the material presented
as part of the Mark 1 machine was specifically designed with the Mark 7 machine in mind.

For the moment, however, we have produced a reasonably efficient machine. In the next chapter
we will look at the TIM.
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> module Tim where
> import Utils
> import Language
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Chapter 4

TIM: the three instruction machine

TIM, the Three Instruction Machine, at first appears to be a very different form of reduction
machine from those we have seen so far. Nevertheless, it turns out that we can transform a G-
machine into a TIM in a series of relatively simple steps. In this chapter we describe these steps,
thereby showing how the TIM works, define a complete minimal TIM compiler and evaluator,
and then develop a sequence of improvements and optimisations to it.

TIM was invented by Fairbairn and Wray, and their original paper [Fairbairn and Wray 1987]
is well worth reading. It describes TIM in a completely different way from the approach taken
in this chapter. The material developed in this chapter goes considerably beyond Fairbairn and
Wray’s work, however, so the level of detail increases in later sections where less well-known
ideas are discussed and implemented. Many of the new ideas presented are due to Guy Argo
and are presented in his FPCA paper [Argo 1989] and his Ph.D. thesis [Argo 1991].

4.1 Background: How TIM works

Consider the following function definition:

f x y = g E1 E2

where E1 and E2 are arbitrary (and perhaps complex) expressions, and g is some other func-
tion. Both the template instantiation machine (Chapter 2) and the G-machine (Chapter 3) will
perform the following reduction:

@ reduces to @
/ \ / \

@ y @ E2
/ \ / \
f x g E1

The G-machine will take quite a few (simple) instructions to do this, whereas the template
machine does it in one (complicated) step, but the net result is the same.

150



In this picture, E1 and E2 are the graphs of the expressions E1 and E2. For example, if E1 was
(x+y)*(x-y), the first argument of g would be a graph of (x+y)*(x-y). This graph has to be
laboriously built in the heap (by code generated by the C compilation scheme). Sadly this might
be wasted work, because g might discard its first argument without using it. We would like to
find some way of limiting the amount of graph-building done for arguments to functions.

4.1.1 Flattening

Step 1 of our transformation does just this. Suppose we replace the definition of f with the
following new one:

f x y = g (c1 x y) (c2 x y)
c1 x y = E1
c2 x y = E2

We have invented two auxiliary functions, c1 and c2. This definition is plainly equivalent to the
old one, but no matter how large or complicated E1 is, the only work done during the f reduction
is to build the graph of (c1 x y).

Better still, for a G-machine implementation, there is a further benefit which we get automat-
ically. With the first definition, E1 would be compiled by the C scheme; no advantage can be
taken of the optimisations present in the E scheme when compiling arithmetic expressions. But
with the second definition, the expression E1 is now the right-hand side of a supercombinator,
so all these optimisations apply. We can evaluate (x+y)*(x-y) much more efficiently in this
way.

Of course, E1 and E2 might themselves contain large expressions which will get compiled with
the C scheme (for example, suppose E2 was (h E3 E4)), so we must apply the transformation
again to the right-hand sides of c1 and c2. The result is a flattened program, so-called because
no expression has a nested structure.

4.1.2 Tupling

The next observation is that both c1 and c2 are applied to both x and y, so we have to construct
the graphs of (c1 x y) and (c2 x y) before calling g. If c1 and c2 had lots of arguments,
rather than just two, the graphs could get quite big. The two graphs are so similar to each
other that it is natural to ask whether these argument graphs could share some common part to
avoid duplication, and thereby reduce heap allocation. We can express this idea with a second
transformation:

f x y = let tup = (x,y)
in g (c1 tup) (c2 tup)

c1 (x,y) = E1
c2 (x,y) = E2

The idea is that f first packages up its arguments into a tuple, and then passes this single tuple
to c1 and c2. With this definition of f, the f-reduction looks like this:
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@ reduces to @
/ \ / \

@ y / @
/ \ @ / \
f x / \ c2 \

g @ \
/ \_____\

c1 \
-----
| -|---> x
-----
| -|---> y
-----

4.1.3 Spinelessness

Looking at the previous picture, you can see that the arguments pointed to by the spine are
always of the form (c tup), for some supercombinator c and tuple tup. During reduction, we
build up a stack of pointers to these arguments. But since they are now all of the same form,
we could instead stack the (root of) the arguments themselves! So, after the f-reduction, the
stack would look like this:

| | |
|-------------- |
| c2 | ----|---\
|---------------| \ ---------------
| c1 | ------------> | | | x
|---------------| |-------------|

| | | y
---------------

Each item on the spine stack is now a pair of a code pointer and a pointer to a tuple. You can
think of this pair as an application node, the code defining a function which is being applied to
the tuple. On entry to f, the (roots of the) arguments x and y were on the stack, so the tuple
of x and y is actually a tuple of code pointer/tuple pointer pairs.

A code pointer/tuple pointer pair is called a closure, and a tuple of such closures is called a
frame. A pointer to a frame is called a frame pointer. Notice that there is no spine in the heap
any more; the stack is the spine of the expression being evaluated. TIM is a spineless machine.

4.1.4 An example

It is time for an example of how a TIM program might work. Consider the function compose2,
defined like this:

compose2 f g x = f (g x x)
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The ‘flattened’ form of compose2 would be

compose2 f g x = f (c1 g x)
c1 g x = g x x

When compose2 is entered, its three arguments will be on top of the stack, like this:

| | |
|---------------|

x | x-code| x-frm |
|---------------|

g | g-code| g-frm |
|---------------|

f | f-code| f-frm |
|---------------|

The first thing to do is to form the tuple (frame) of these three arguments in the heap. We can
then remove them from the stack. We will keep a pointer to the new frame in a special register,
called the frame pointer. This is done by the instruction

Take 3

The state of the machine now looks like this:

| | |
|---------------|

-----------------
Frame ptr ------------------------> f | f-code| f-frm |

|---------------|
g | g-code| g-frm |
|---------------|

x | x-code| x-frm |
-----------------

Next, we have to prepare the arguments for f. There is only one, namely (g x x), and we want
to push a closure for it onto the stack. The frame pointer for the closure is just the current
frame pointer register, and so the instruction need only supply a code label:

Push (Label "c1")

Finally, we want to jump to f. Since f is an argument to compose, not a global supercombinator,
f is represented by a closure in the current frame. What we must do is fetch the closure, load
its frame pointer into the frame pointer register, and its code pointer into the program counter.
This is done by the instruction:

Enter (Arg 1) -- f is argument 1
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After this instruction, the state of the machine is like this:

| | |
|---------------| -----------------
| c1 | ----|-----------> f | f-code| f-frm |
|---------------| |---------------|

g | g-code| g-frm |
Frame ptr: f-frm |---------------|
Program ctr: f-code x | x-code| x-frm |

-----------------

That is it! The main body of compose2 consists of just these three instructions:

compose2: Take 3 -- 3 arguments
Push (Label "c1") -- closure for (g x x)
Enter (Arg 1) -- f is argument 1

We still need to deal with the label c1, though. When the closure for (g x x) is needed, it will
be entered with the Enter instruction, so that the program counter will point to c1, and the
frame pointer to the original frame containing f, g and x. At this point, all we need do is to
prepare the argument for g, namely x, and enter g:

c1: Push (Arg 3) -- x is argument 3
Push (Arg 3) -- x again
Enter (Arg 2) -- g is argument 2

The Push (Arg 3) instruction fetches a copy of the closure for x from the current frame, and
pushes it onto the stack. Then the Enter (Arg 2) instruction applies g to the argument(s) now
on the stack1.

4.1.5 Defining the machine with state transition rules

You can see why it is called the Three Instruction Machine: there are three dominant instruc-
tions: Take, Push and Enter. In some ways, it is rather optimistic to claim that it has only three
instructions, because Push and Enter both have several ‘addressing modes’ and, furthermore,
we will need to invent quite a few brand new instructions in due course. Still, it makes a nice
name.

As usual, we use state transition rules to express the precise effect of each instruction. First of
all we must define the state of the machine. It is a quintuple:

(instructions, frame pointer, stack, heap, code store)

or (i , f , s, h, c) for short. The code store is the only item which has not already been described.
It contains a collection of pieces of code, each of which has a label. In practice, the code
store contains the compiled supercombinator definitions, each labelled with the name of the

1There might be more than just two if the stack was non-empty when the (g x x) closure was entered.
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supercombinator, though in principle it could also contain other labelled code fragments if that
proved useful.

We now develop the transition rules for each of the instructions. Take n forms the top n elements
of the stack into a new frame, and makes the current frame pointer point to it.

(4.1)
Take n : i f c1 : . . . : cn : s h c

=⇒ i f ′ s h[f ′ : 〈c1, . . . , cn〉] c

Now we come to the rules for Push and Enter. These two instructions have just the same
addressing modes (Arg, Label and so on), and there is a very definite relationship between
them, which we dignify with a formal statement:

The Push/Enter relationship. If the instruction Push arg pushes a closure (i , f ) onto
the stack, then Enter arg will load i into the program counter and f into the current
frame pointer.

The instruction Push (Arg n) fetches the nth closure from the current frame, and pushes it onto
the stack.

(4.2)
Push (Arg k) : i f s h[f : 〈(i1, f1), . . . , (ik , fk ), . . . , (in , fn)〉] c

=⇒ i f (ik , fk ) : s h c

Push (Label l) looks up the label l in the code store, and pushes a closure consisting of this
code pointer together with the current frame pointer:

(4.3)
Push (Label l) : i f s h c[l : i ′]

=⇒ i f (i ′, f ) : s h c

In the compose example, we had to invent an arbitrary label c1. It is a nuisance having to invent
these labels, and instead we will simply add a new form for the push instruction, Push (Code i),
which makes the target code sequence i part of the instruction itself. Thus, instead of

Push (Label "c1")

we can write

Push (Code [Push (Arg 3), Push (Arg 3), Enter (Arg 2)])

Here is the appropriate state transition rule:

(4.4)
Push (Code i ′) : i f s h c

=⇒ i f (i ′, f ) : s h c

So far we have three ‘addressing modes’: Arg, Code, Label. We need to add one more, IntConst,
for integer constants. For example, the call (f 6) would compile to the code
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Push (IntConst 6)
Enter (Label "f")

The Push instruction always pushes a closure (that is, a code pointer/frame pointer pair) onto
the stack, but in the case of integer constants it is not at all obvious what closure it should push.
Since we need somewhere to store the integer itself, let us ‘steal’ the frame pointer slot for that
purpose2. This decision leads to the following rule, where intCode is the (as yet undetermined)
code sequence for integer closures:

(4.5)
Push (IntConst n) : i f s h c

=⇒ i f (intCode,n) : s h c

What should intCode do? For the present our machine will do no arithmetic, so an easy solution
is to make intCode the empty code sequence:

> intCode = []

If an integer closure is ever entered, the machine will jump to the empty code sequence, which
will halt execution. This will allow us to write programs which return integers, which is enough
for Mark 1.

So much for the Push instruction. The rules for the Enter instruction, one for each addressing
mode, follow directly from the Push/Enter relationship:

(4.6)
[Enter (Label l)] f s h c[l : i ]

=⇒ i f s h c

(4.7)
[Enter (Arg k)] f s h[f : 〈(i1, f1), . . . , (ik , fk ), . . . , (in , fn)〉] c

=⇒ ik fk s h c

(4.8)
[Enter (Code i)] f s h c

=⇒ i f s h c

(4.9)
[Enter (IntConst n)] f s h c

=⇒ intCode n s h c

4.1.6 Compilation

We have now given a precise statement of what each TIM instruction does. It remains to
describe how to translate a program into TIM instructions. This we do, as before, using a set
of compilation schemes. Each supercombinator is compiled with the SC scheme, which is given
in Figure 4.1. The initial environment passed into SC binds each supercombinator name to a
Label addressing mode for it. The SC scheme just produces a Take instruction and invokes the
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SC[[def ]] ρ is the TIM code for the supercombinator definition def , in the
environment ρ

SC[[f x1 . . . xn = e]] ρ = Take n : R[[e]] ρ[x1 �→ Arg 1, . . . , xn �→ Arg n]

R[[e]] ρ is TIM code which applies the value of the expression e in envi-
ronment ρ to the arguments on the stack.

R[[e1 e2]] ρ = Push (A[[e2]] ρ) : R[[e1]] ρ
R[[a]] ρ = Enter (A[[a]] ρ) where a is an integer, variable,

or supercombinator

A[[e]] ρ is a TIM addressing mode for expression e in environment ρ.

A[[x ]] ρ = ρ x where x is bound by ρ
A[[n]] ρ = IntConst n where n is an integer
A[[e]] ρ = Code (R[[e]] ρ) otherwise

Figure 4.1: The SC, R and A compilation schemes

R scheme, passing it an environment augmented by bindings which say what addressing mode
to use for each argument.

The R scheme (Figure 4.1) simply pushes arguments onto the stack until it finds a variable or
supercombinator, which it enters. It uses the A scheme to generate the correct addressing mode.
Notice the way that the flattening process described in Section 4.1.1 is carried out ‘on the fly’
by these rules.

For the present, we omit arithmetic, data structures, case analysis and let(rec) expressions.
They will all be added later.

4.1.7 Updating

So far there has been no mention of updating. That is because, now that the spine has van-
ished, there are no spine nodes to update! Indeed, the machine as so far described is a tree-
reduction machine. Shared arguments may be evaluated repeatedly. Doing updates properly
is the Achilles’ heel of spineless implementations. It is utterly necessary, because otherwise an
unbounded amount of work could be duplicated, yet it adds complexity which loses some of the
elegance and speed (duplication aside) of the non-updating version.

We will return to updating later in Section 4.5, but meanwhile it is enough to implement the
non-updating version.

2We are making the implicit assumption that an integer is no larger than a frame pointer, which is usually
true in practice.
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4.2 Mark 1: A minimal TIM

In this section we will develop a minimal, but complete, TIM implementation, without arith-
metic, data structures or updates. These will be added in subsequent sections.

4.2.1 Overall structure

The structure is much the same as for the template instantiation interpreter. The run function
is the composition of four functions, parse, compile, eval and showResults, just as before.
The type of parse is given in Chapter 1; the types for the other three are given below:

> runProg :: [Char] -> [Char]
> compile :: CoreProgram -> TimState
> eval :: TimState -> [TimState]
> showResults :: [TimState] -> [Char]
>
> runProg = showResults . eval . compile . parse

It is often convenient to see all the intermediate states, so we also provide fullRun, which uses
showFullResults to show each state:

> fullRun :: [Char] -> [Char]
> fullRun = showFullResults . eval . compile . parse

We need to import the language module:

4.2.2 Data type definitions

The data type for TIM instructions corresponds directly to the instructions introduced so far.

> data Instruction = Take Int
> | Enter TimAMode
> | Push TimAMode

The type of addressing modes, timAMode, is separated out as a distinct data type to stress the
relationship between Push and Enter.

> data TimAMode = Arg Int
> | Label [Char]
> | Code [Instruction]
> | IntConst Int

The state of the TIM machine is given by the following definition:
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> type TimState = ([Instruction], -- The current instruction stream
> FramePtr, -- Address of current frame
> TimStack, -- Stack of arguments
> TimValueStack, -- Value stack (not used yet)
> TimDump, -- Dump (not used yet)
> TimHeap, -- Heap of frames
> CodeStore, -- Labelled blocks of code
> TimStats) -- Statistics

The value stack and dump are only required later on in this chapter, but it is more convenient
to add placeholders for them right away.

We consider the representation for each of these components in turn.

• The current instruction stream is represented by a list of instructions. In a real machine
this would be the program counter together with the program memory.

• The frame pointer is usually the address of a frame in the heap, but there are two other
possibilities: it might be used to hold an integer value, or it might be uninitialised. The
machine always ‘knows’ which of these three possibilities to expect, but it is convenient in
our implementation to distinguish them by using an algebraic data type for framePtr:

> data FramePtr = FrameAddr Addr -- The address of a frame
> | FrameInt Int -- An integer value
> | FrameNull -- Uninitialised

If we do not do this, Miranda will (legitimately) complain of a type error when we try to
use an address as a number. Furthermore, having a constructor for the uninitialised state
FrameNull means that our interpreter will discover if we ever mistakenly try to use an
uninitialised value as a valid address.

• The stack contains closures, each of which is a pair containing a code pointer and a frame
pointer. We represent the stack as a list.

> type TimStack = [Closure]
> type Closure = ([Instruction], FramePtr)

• The value stack and dump are not used at all to begin with, so we represent each of them
with a dummy algebraic data type which has just one nullary constructor. Later we will
replace these definitions with more interesting ones.

> data TimValueStack = DummyTimValueStack
> data TimDump = DummyTimDump

• The heap contains frames, each of which is a tuple of closures. The data type of frames is
important enough to merit an abstract data type of its own.
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> type TimHeap = Heap Frame
>
> fAlloc :: TimHeap -> [Closure] -> (TimHeap, FramePtr)
> fGet :: TimHeap -> FramePtr -> Int -> Closure
> fUpdate :: TimHeap -> FramePtr -> Int -> Closure -> TimHeap
> fList :: Frame -> [Closure] -- Used when printing

These operations allow frames to be built, and components to be extracted and updated.
The first element of the list given to fAlloc is numbered 1 for the purposes of fGet and
fUpdate. Here is a simple implementation based on lists.

> type Frame = [Closure]
>
> fAlloc heap xs = (heap’, FrameAddr addr)
> where
> (heap’, addr) = hAlloc heap xs
>
> fGet heap (FrameAddr addr) n = f !! (n-1)
> where
> f = hLookup heap addr
>
> fUpdate heap (FrameAddr addr) n closure
> = hUpdate heap addr new_frame
> where
> frame = hLookup heap addr
> new_frame = take (n-1) frame ++ [closure] ++ drop n frame
>
> fList f = f

• For each label, the code store gives the corresponding compiled code:

> type CodeStore = ASSOC Name [Instruction]

We take the opportunity to provide a lookup function for labels, which generates an error
message if it fails:

> codeLookup :: CodeStore -> Name -> [Instruction]
> codeLookup cstore l
> = aLookup cstore l (error ("Attempt to jump to unknown label "
> ++ show l))

• As usual, we make the statistics into an abstract data type which we can add to easily:

> statInitial :: TimStats
> statIncSteps :: TimStats -> TimStats
> statGetSteps :: TimStats -> Int

The first implementation, which counts only the number of steps, is rather simple:
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> type TimStats = Int -- The number of steps
> statInitial = 0
> statIncSteps s = s+1
> statGetSteps s = s

Finally, we need the code for heaps and stacks:

> -- :a util.lhs -- heap data type and other library functions

4.2.3 Compiling a program

compile works very much like the template instantiation compiler, creating an initial machine s-
tate from the program it is given. The main difference lies in the compilation function compileSC
which is applied to each supercombinator.

> compile program
> = ([Enter (Label "main")], -- Initial instructions
> FrameNull, -- Null frame pointer
> initialArgStack, -- Argument stack
> initialValueStack, -- Value stack
> initialDump, -- Dump
> hInitial, -- Empty heap
> compiled_code, -- Compiled code for supercombinators
> statInitial) -- Initial statistics
> where
> sc_defs = preludeDefs ++ program
> compiled_sc_defs = map (compileSC initial_env) sc_defs
> compiled_code = compiled_sc_defs ++ compiledPrimitives
> initial_env = [(name, Label name) | (name, args, body) <- sc_defs]
> ++ [(name, Label name) | (name, code) <- compiledPrimitives]

For the moment, the argument stack is initialised to be empty.

> initialArgStack = []

For now the value stack and dump are initialised to their dummy values. Later we will change
these definitions.

> initialValueStack = DummyTimValueStack
> initialDump = DummyTimDump

The compiled supercombinators, compiled_sc_defs, is obtained by compiling each of the su-
percombinators in the program, using compileSC. The initial environment passed to compileSC
gives a suitable addressing mode for each supercombinator. The code store, compiled_code, is
obtained by combining compiled_sc_defs with compiledPrimitives. The latter is intended
to contain compiled code for built-in primitives, but it is empty for the present:

161



> compiledPrimitives = []

Unlike the template machine and the G-machine, the initial heap is empty. The reason for a
non-empty initial heap in those cases was to retain sharing for CAFs (that is, supercombinators
with no arguments – Section 2.1.6). In this initial version of the TIM machine, the compiled
TIM code for a CAF will be executed each time it is called, so the work of evaluating the CAF
is not shared. We will address this problem much later, in Section 4.7.

The heart of the compiler is a direct translation of the compilation schemes SC, R and A into the
functions compileSC, compileR and compileA respectively. The environment, ρ, is represented
by an association list binding names to addressing modes. The G-machine compiler used a
mapping from names to stack offsets, but the extra flexibility of using addressing modes turns
out to be rather useful.

> type TimCompilerEnv = [(Name, TimAMode)]

Now we are ready to define compileSC:

> compileSC :: TimCompilerEnv -> CoreScDefn -> (Name, [Instruction])
> compileSC env (name, args, body)
> = (name, Take (length args) : instructions)
> where
> instructions = compileR body new_env
> new_env = (zip2 args (map Arg [1..])) ++ env

compileR takes an expression and an environment, and delivers a list of instructions:

> compileR :: CoreExpr -> TimCompilerEnv -> [Instruction]
> compileR (EAp e1 e2) env = Push (compileA e2 env) : compileR e1 env
> compileR (EVar v) env = [Enter (compileA (EVar v) env)]
> compileR (ENum n) env = [Enter (compileA (ENum n) env)]
> compileR e env = error "compileR: can’t do this yet"

> compileA :: CoreExpr -> TimCompilerEnv -> TimAMode
> compileA (EVar v) env = aLookup env v (error ("Unknown variable " ++ v))
> compileA (ENum n) env = IntConst n
> compileA e env = Code (compileR e env)

4.2.4 The evaluator

Next we need to define how the evaluator actually works. The definition of eval is exactly as
for the template instantiation machine:

> eval state
> = state : rest_states where
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> rest_states | timFinal state = []
> | otherwise = eval next_state
> next_state = doAdmin (step state)
>
> doAdmin state = applyToStats statIncSteps state

The timFinal function says when a state is a final state. We could invent a Stop instruction,
but it is just as easy to say that we have finished when the code sequence is empty:

> timFinal ([], frame, stack, vstack, dump, heap, cstore, stats) = True
> timFinal state = False

The applyToStats function just applies a function to the statistics component of the state:

> applyToStats stats_fun (instr, frame, stack, vstack,
> dump, heap, cstore, stats)
> = (instr, frame, stack, vstack, dump, heap, cstore, stats_fun stats)

Taking a step

step does the case analysis which takes a single instruction and executes it. The Take equation
is a straightforward transliteration of the corresponding state transition rule (4.1):

> step ((Take n:instr), fptr, stack, vstack, dump, heap, cstore,stats)
> | length stack >= n = (instr, fptr’, drop n stack, vstack, dump, heap’, cstore, stats)
> | otherwise = error "Too few args for Take instruction"
> where (heap’, fptr’) = fAlloc heap (take n stack)

The equations for Enter and Push take advantage of the Push/Enter relationship by using a
common function amToClosure which converts a timAMode to a closure:

> step ([Enter am], fptr, stack, vstack, dump, heap, cstore, stats)
> = (instr’, fptr’, stack, vstack, dump, heap, cstore, stats)
> where (instr’,fptr’) = amToClosure am fptr heap cstore

> step ((Push am:instr), fptr, stack, vstack, dump, heap, cstore, stats)
> = (instr, fptr, amToClosure am fptr heap cstore : stack,
> vstack, dump, heap, cstore, stats)

amToClosure delivers the closure addressed by the addressing mode which is its first argument:

> amToClosure :: TimAMode -> FramePtr -> TimHeap -> CodeStore -> Closure
> amToClosure (Arg n) fptr heap cstore = fGet heap fptr n
> amToClosure (Code il) fptr heap cstore = (il, fptr)
> amToClosure (Label l) fptr heap cstore = (codeLookup cstore l, fptr)
> amToClosure (IntConst n) fptr heap cstore = (intCode, FrameInt n)
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4.2.5 Printing the results

As with the template instantiation version we need a rather boring collection of functions to
print the results in a sensible way. It is often useful to print out the supercombinator definitions,
so showResults begins by doing so, using the definitions in the first state:

> showFullResults states
> = iDisplay (iConcat [
> iStr "Supercombinator definitions", iNewline, iNewline,
> showSCDefns first_state, iNewline, iNewline,
> iStr "State transitions", iNewline,
> iLayn (map showState states), iNewline, iNewline,
> showStats (last states)
> ])
> where
> (first_state:rest_states) = states

showResults just shows the last state and some statistics:

> showResults states
> = iDisplay (iConcat [
> showState last_state, iNewline, iNewline, showStats last_state
> ])
> where last_state = last states

The rest of the functions are straightforward. showSCDefns displays the code for each super-
combinator.

> showSCDefns :: TimState -> Iseq
> showSCDefns (instr, fptr, stack, vstack, dump, heap, cstore, stats)
> = iInterleave iNewline (map showSC cstore)

> showSC :: (Name, [Instruction]) -> Iseq
> showSC (name, il)
> = iConcat [
> iStr "Code for ", iStr name, iStr ":", iNewline,
> iStr " ", showInstructions Full il, iNewline, iNewline
> ]

showState displays a TIM machine state.

> showState :: TimState -> Iseq
> showState (instr, fptr, stack, vstack, dump, heap, cstore, stats)
> = iConcat [
> iStr "Code: ", showInstructions Terse instr, iNewline,
> showFrame heap fptr,
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> showStack stack,
> showValueStack vstack,
> showDump dump,
> iNewline
> ]

showFrame shows the frame component of a state, using showClosure to display each of the
closures inside it.

> showFrame :: TimHeap -> FramePtr -> Iseq
> showFrame heap FrameNull = iStr "Null frame ptr" ‘iAppend‘ iNewline
> showFrame heap (FrameAddr addr)
> = iConcat [
> iStr "Frame: <",
> iIndent (iInterleave iNewline
> (map showClosure (fList (hLookup heap addr)))),
> iStr ">", iNewline
> ]
> showFrame heap (FrameInt n)
> = iConcat [ iStr "Frame ptr (int): ", iNum n, iNewline ]

showStack displays the argument stack, using showClosure to display each closure.

> showStack :: TimStack -> Iseq
> showStack stack
> = iConcat [ iStr "Arg stack: [",
> iIndent (iInterleave iNewline (map showClosure stack)),
> iStr "]", iNewline
> ]

For the present, showValueStack and showDump, which display the value stack and dump, are
stubs for now, because we are not using these components of the state.

> showValueStack :: TimValueStack -> Iseq
> showValueStack vstack = iNil

> showDump :: TimDump -> Iseq
> showDump dump = iNil

showClosure displays a closure, using showFramePtr to display the frame pointer.

> showClosure :: Closure -> Iseq
> showClosure (i,f)
> = iConcat [ iStr "(", showInstructions Terse i, iStr ", ",
> showFramePtr f, iStr ")"
> ]
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> showFramePtr :: FramePtr -> Iseq
> showFramePtr FrameNull = iStr "null"
> showFramePtr (FrameAddr a) = iStr (show a)
> showFramePtr (FrameInt n) = iStr "int " ‘iAppend‘ iNum n

showStats is responsible for printing out accumulated statistics:

> showStats :: TimState -> Iseq
> showStats (instr, fptr, stack, vstack, dump, heap, code, stats)
> = iConcat [ iStr "Steps taken = ", iNum (statGetSteps stats), iNewline,
> iStr "No of frames allocated = ", iNum (hSize heap),
> iNewline
> ]

Printing instructions

We are going to need to print instructions and instruction sequences. If a sequence of instructions
is printed as one long line, it is rather hard to read, so it is worth writing some code to pretty-
print them.

In fact we want to be able to print either the entire code for an instruction sequence (for example
when printing a supercombinator definition), or just some abbreviated form of it. An example
of the latter occurs when printing the contents of the stack; it can be helpful to see some part
of the code in each closure, but we do not want to see it all! Accordingly, we give an extra
argument, d, to each function to tell it how fully to print. The value of this argument is either
Full, Terse or None.

> data HowMuchToPrint = Full | Terse | None

showInstructions turns a list of instructions into an iseq. When d is None, only an ellipsis is
printed. If d is Terse, the instructions are printed all on one line, and nested instructions are
printed with d as None. If d is Full, the instructions are laid out one per line, and printed in
full.

> showInstructions :: HowMuchToPrint -> [Instruction] -> Iseq
> showInstructions None il = iStr "{..}"
> showInstructions Terse il
> = iConcat [iStr "{", iIndent (iInterleave (iStr ", ") body), iStr "}"]
> where
> instrs = map (showInstruction None) il
> body | length il <= nTerse = instrs
> | otherwise = (take nTerse instrs) ++ [iStr ".."]
> showInstructions Full il
> = iConcat [iStr "{ ", iIndent (iInterleave sep instrs), iStr " }"]
> where
> sep = iStr "," ‘iAppend‘ iNewline
> instrs = map (showInstruction Full) il
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showInstruction turns a single instruction into an iseq.

> showInstruction d (Take m) = (iStr "Take ") ‘iAppend‘ (iNum m)
> showInstruction d (Enter x) = (iStr "Enter ") ‘iAppend‘ (showArg d x)
> showInstruction d (Push x) = (iStr "Push ") ‘iAppend‘ (showArg d x)

> showArg d (Arg m) = (iStr "Arg ") ‘iAppend‘ (iNum m)
> showArg d (Code il) = (iStr "Code ") ‘iAppend‘ (showInstructions d il)
> showArg d (Label s) = (iStr "Label ") ‘iAppend‘ (iStr s)
> showArg d (IntConst n) = (iStr "IntConst ") ‘iAppend‘ (iNum n)

nTerse says how many instructions of a sequence should be printed in terse form.

> nTerse = 3

Exercise 4.1. Run the machine using the following definition of main:

main = S K K 4

Since S K K is the identity function, main should reduce to 4, which halts the machine. Experiment
with making it a little more elaborate; for example

id = S K K ;
id1 = id id ;
main = id1 4

Exercise 4.2. Add more performance instrumentation. For example:

• Measure execution time, counting one time unit for each instruction except Take, for which
you should count as many time units as the frame has elements.

• Measure the the heap usage, printing the total amount of heap allocated in a run. Take
account of the size of the frames, so that you can compare your results directly with those
from the template instantiation version.

• Measure the maximum stack depth.

Exercise 4.3. If n = 0, then Take n does nothing useful. Adapt the definition of compileSC to spot
this optimisation by omitting the Take instruction altogether for CAFs.

4.2.6 Garbage collection†

Like any heap-based system, TIM requires a garbage collector, but it also requires one with a
little added sophistication. As usual, the garbage collector finds all the live data by starting
from the machine state; that is, from the stack and the frame pointer. Each closure on the stack
points to a frame, which must clearly be retained. But that frame in turn contains pointers to
further frames, and so on. The question arises: given a particular frame, which frame pointers
within it should be recursively followed?

The safe answer is ‘follow all of them’, but this risks retaining far more data than required.
For example, the closure for (g x x) in the compose2 example of Section 4.1.4 has a pointer
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to a frame containing f, g and x, but it only requires the closures for g and x. A naive
garbage collector might follow the frame pointer from f’s closure as well, thus retaining data
unnecessarily. This unwanted retention is called a space leak, and can cause garbage collection
to occur much more frequently than would otherwise be the case.

However, this particular space leak is straightforward, if rather tedious, to eliminate. Each
closure consists of a code pointer paired with a frame pointer. The code ‘knows’ which frame
elements it is going to need, and this information can be recorded with the code, for the garbage
collector to examine. For example, what we have been calling a ‘code pointer’ could actually
point to a pair, consisting of a list of slot numbers used by the code, and the code itself. (In a
real implementation the list might be encoded as a bit-mask.) How can the list of useful slots
be derived? It is simple: just find the free variables of the expression being compiled, and use
the environment to map them into slot numbers.

4.3 Mark 2: Adding arithmetic

In this section we will add arithmetic to our machine.

4.3.1 Overview: how arithmetic works

The original Fairbairn and Wray TIM machine had a rather devious scheme for doing arithmetic.
Their main motivation was to keep the machine minimal, but their approach is quite hard to
understand and requires considerable massaging to give an efficient implementation.

Instead, we will modify the TIM in a way exactly analogous to the V-stack of the G-machine
(Section 3.9). We modify the state by introducing a value stack, which is a stack of (evaluated,
unboxed) integers. We extend the instruction set with a family of instructions Op op which
perform the arithmetic operation op on the top elements of the value stack, leaving the result
on top of the value stack. For example, the Op Sub instruction removes the top two elements of
the value stack, subtracts them and pushes the result onto the value stack:

(4.10)
Op Sub : i f s n1 : n2 : v h c

=⇒ i f s (n1 − n2) : v h c

It is easy to define a complete family of arithmetic instructions, Op Add, Op Sub, Op Mult,
Op Div, Op Neg and so on, in this way.

Now consider the following function sub:

sub a b = a - b

What code should we generate for sub? It has to take the following steps:

1. The usual Take 2 to form its arguments into a frame.

2. Evaluate b, putting its value on the value stack.

3. Evaluate a, doing likewise.
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4. Subtract the value of b from the value of a, using the Op Sub instruction, which leaves its
result on top of the value stack.

5. ‘Return’ to the ‘caller’.

We will consider the evaluation of a and b first. They are represented by closures, held in the
current frame, and the only thing we can do to a closure is to enter it. So presumably to evaluate
a we must enter the closure for a, but what does it mean to enter an integer-valued closure? So
far we have only entered functions, and integers are not functions. Here is the key idea:

Integer invariant: when an integer-valued closure is entered, it computes the value of
the integer, pushes it onto the value stack, and enters the top closure on the argument
stack.

The closure on top of the argument stack is called the continuation, because it says what
to do next, once the evaluation of the integer is complete. The continuation consists of an
instruction sequence, saying what to do when evaluation of the integer is complete, and the
current frame pointer (in case it was disturbed by the evaluation of the integer). In other words,
the continuation is a perfectly ordinary closure.

So the code for sub looks like this:

sub: Take 2
Push (Label L1) -- Push the continuation
Enter (Arg 2) -- Evaluate b

L1: Push (Label L2) -- Push another continuation
Enter (Arg 1) -- Evaluate a

L2: Op Sub -- Compute a-b on value stack
Return

What should the Return instruction do? Since the value returned by sub is an integer, and after
the Op Sub instruction this integer is on top of the value stack, all Return has to do is to pop
the closure on top of the argument stack and enter it:

(4.11)
[Return] f (i ′, f ′) : s v h c

=⇒ i ′ f ′ s v h c

We have used labels to write the code for sub. This is not the only way to do it; an alternative
is to use the Push Code instruction, which avoids the tiresome necessity of inventing new labels.
In this style the code for sub becomes:

sub: Take 2
Push (Code [ Push (Code [Op Sub, Return]),

Enter (Arg 1)
])

Enter (Arg 2)
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Written like this, it is less easy to see what is going on than by using labels, so we will continue
to use labels in the exposition where it makes code fragments easier to understand, but we will
use the Push Code version in the compiler.

Now we must return to the question of integer constants. Consider the expression (sub 4 2).
It will compile to the code

Push (IntConst 2)
Push (IntConst 4)
Enter (Label "sub")

The code for sub will soon enter the closure (IntConst 2), which will place the integer 2 in
the frame pointer and jump to intCode. Currently, intCode is the empty code sequence (so
that the machine stops if we ever enter an integer), but we need to change that. What should
intCode now do? The answer is given by the integer invariant: it must push the integer onto
the value stack and return, thus:

> intCode = [PushV FramePtr, Return]

PushV FramePtr is a new instruction which pushes the number currently masquerading as the
frame pointer onto the top of the value stack:

(4.12)
PushV FramePtr : i n s v h c

=⇒ i n s n : v h c

4.3.2 Adding simple arithmetic to the implementation

Now we are ready to modify our implementation. We keep the modifications to a minimum by
adding code for each of the arithmetic functions to compiledPrimitives. Recall that when we
write (for example) p-q in a program, the parser converts it to

EAp (EAp (EVar "-") (EVar "p")) (EVar "q")

All we need do is to work out some suitable code for the primitive -, and add this code to
the code store. The compiler can then treat - in the same way as any other supercombinator.
Finally, the code for - that we want is exactly that which we developed in the previous section
for sub, and similar code is easy to write for other arithmetic operations.

So the steps required are as follows:

• Add the following type definition and initialisation for the value stack:

> type TimValueStack = [Int]
> initialValueStack = []

• Add the new instructions PushV, Return and Op to the instruction data type. We take
the opportunity to add one further instruction, Cond, which has not yet been discussed
but is the subject of a later exercise. TIM is no longer a three instruction machine!
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> data Instruction = Take Int
> | Push TimAMode
> | PushV ValueAMode
> | Enter TimAMode
> | Return
> | Op Op
> | Cond [Instruction] [Instruction]
> data Op = Add | Sub | Mult | Div | Neg
> | Gr | GrEq | Lt | LtEq | Eq | NotEq
> deriving (Eq) -- KH

So far the argument of a PushV instruction can only be FramePtr, but we will shortly add
a second form which allows us to push literal constants onto the value stack. So it is worth
declaring an algebraic data type for valueAMode:

> data ValueAMode = FramePtr
> | IntVConst Int

The showInstruction function must be altered to deal with this additional structure.

• Modify the step function to implement the extra instructions. This is just a question of
translating the state transition rules into Miranda.

• Add to compiledPrimitives suitable definitions for +, - and so on.

• Now that intCode is no longer empty, we must initialise the stack to have a suitable
continuation (return address) for main to return to. The way to do this is to make compile
initialise the stack with the closure ([],FrameNull), by redefining initialArgStack:

> initialArgStack = [([], FrameNull)]

This continuation has an empty code sequence, so the machine will now halt with the
result on top of the value stack.

Exercise 4.4. Implement these changes on your prototype. Try it out on some simple examples; for
example

four = 2 * 2
main = four + four

Exercise 4.5. We still cannot execute ‘interesting’ programs, because we do not yet have a conditional,
and without a conditional we cannot use recursion. A simple solution is to add a new instruction
Cond i1 i2, which removes a value from the top of the value stack, checks whether it was zero
and if so continues with instruction sequence i1, otherwise continues with i2. Here are its state
transition rules:

(4.13)

[Cond i1 i2] f s 0 : v h c
=⇒ i1 f s v h c

[Cond i1 i2] f s n : v h c
=⇒ i2 f s v h c

where n �= 0
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The first rule matches if zero is on top of the value stack; otherwise the second rule applies.
You also need to add a primitive if, which behaves as follows:

if 0 t f = t
if n t f = f

You need to work out the TIM code for if, using the Cond instruction, and add it to
compiledPrimitives. Finally, you can test your improved system with the factorial function:

factorial n = if n 1 (n * factorial (n-1))
main = factorial 3

4.3.3 Compilation schemes for arithmetic

Just as with the G-machine, we can do a much better job of compiling for our machine than we
are doing at present. Consider a function such as

f x y z = (x+y) * z

As things stand, this will get parsed to

f x y z = * (+ x y) z

and code for f will get compiled which will call the standard functions * and +. But we could
do much better than this! Instead of building a closure for (+ x y) and passing it to *, for
example, we can just do the operations in-line, using the following steps:

1. evaluate x

2. evaluate y

3. add them

4. evaluate z

5. multiply

6. return

No closures need be built and no jumps need occur (except those needed to evaluate x, y and
z).

To express this improvement, we introduce a new compilation scheme to deal with expressions
whose value is an integer, the B scheme. It is defined like this: for any expression e whose value
is an integer, and for any code sequence cont ,

(B[[e]] ρ cont) is a code sequence which, when executed with a current frame laid out
as described by ρ, will push the value of the expression e onto the value stack, and
then execute the code sequence cont.
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R[[e]] ρ is TIM code which applies the value of the expression e in envi-
ronment ρ to the arguments on the stack.

R[[e]] ρ = B[[e]] ρ [Return] where e is an arithmetic ex-
pression, such as e1 + e2, or a
number

R[[e1 e2]] ρ = Push (A[[e2]] ρ) : R[[e1]] ρ
R[[a]] ρ = Enter (A[[a]] ρ) where a is a variable, or super-

combinator

A[[e]] ρ is a TIM addressing mode for expression e in environment ρ.

A[[x ]] ρ = ρ x where x is bound by ρ
A[[n]] ρ = IntConst n where n is an integer constant
A[[e]] ρ = Code (R[[e]] ρ) otherwise

B[[e]] ρ cont is TIM code which evaluates e in environment ρ, and puts
its value, which should be an integer, on top of the value stack, and then
continues with the code sequence cont .

B[[e1 + e2]] ρ cont = B[[e2]] ρ (B[[e1]] ρ (Op Add : cont))
. . . and similar rules for other arithmetic primitives

B[[n]] ρ cont = PushV (IntVConst n) : cont where n is a number
B[[e]] ρ cont = Push (Code cont) : R[[e]] ρ otherwise

Figure 4.2: Revised compilation schemes for arithmetic

The compilation scheme uses a continuation-passing style, in which the cont argument says
what to do after the value has been computed. Figure 4.2 gives the B compilation scheme,
together with the revised R and A schemes. When R finds an expression which is an arithmetic
expression it calls B to compile it. B has special cases for constants and applications of arithmetic
operators, which avoid explicitly pushing the continuation. If it encounters an expression which
it cannot handle specially, it just pushes the continuation and calls R.

There is one new instruction required, which is used when B is asked to compile a constant.
Then we need an instruction PushV (IntVConst n) to push an integer constant on the value
stack. Its transition rule is quite simple:

(4.14)
PushV (IntVConst n) : i f s v h c

=⇒ i f s n : v h c

Exercise 4.6. Implement the improved compilation scheme. Compare the performance of your imple-
mentation with that from before.
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Exercise 4.7. Add a new rule to the R scheme to match a (full) application of if. You should be able
to generate much better code than you get by calling the if primitive. Implement the change and
measure the improvement in performance.

Exercise 4.8. Suppose we want to generalise our conditionals to deal with more general arithmetic
comparisons, such as that required by

fib n = if (n < 2) 1 (fib (n-1) + fib (n-2))

What is required is a new instruction Op Lt which pops the top two items on the value stack,
compares them, and pushes 1 or 0 onto the value stack depending on the result of the comparison.
Now the Cond instruction can inspect this result.
Implement a family of such comparison instructions, and add special cases for them to the B
scheme, in exactly the same way as for the other arithmetic operators. Test your improvement.

Exercise 4.9. In the previous exercise, you may have wondered why we did not modify the Cond in-
struction so that it had an extra ‘comparison mode’. It could then compare the top two items on
the value stack according to this mode, and act accordingly. Why did we not do this?
Hint: what would happen for programs like this?

multipleof3 x = ((x / 3) * 3) == x
f y = if (multipleof3 y) 0 1

The material of this section is discussed in [Argo 1989] and corresponds precisely to the improved
G-machine compilation schemes discussed in Chapter 20 of [Peyton Jones 1987].

4.4 Mark 3: let(rec) expressions

At present the compiler cannot handle let(rec) expressions, a problem which we remedy in
this section. Two main new ideas are introduced:

• We modify the Take instruction to allocate a frame with extra space to contain the
let(rec)-bound variables, as well as the formal parameters.

• We introduce the idea of an indirection closure.

4.4.1 let expressions

When we compile a let expression, we must generate code to build new closures for the right-
hand sides of the definitions. Where should these new closures be put? In order to treat
let(rec)-bound names in the same way as argument names, they have to be put in the current
frame3. This requires two modifications to the run-time machinery:

• The Take instruction should allocate a frame large enough to contain closures for all the
let definitions which can occur during the execution of the supercombinator. The Take
instruction must be modified to the form Take t n, where t ≥ n. This instruction allocates
a frame of size t , takes n closures from the top of the stack, and puts them into the first
n locations of the frame.

3A hint of the material in this section is in [Wakeling and Dix 1989], but it is not fully worked out.
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• We need a new instruction, Move i a, for moving a new closure a into slot i of the current
frame. Here a is of type timAMode as for Push and Enter.

For example, the following definition:

f x = let y = f 3 in g x y

would compile to this code:

[ Take 2 1,
Move 2 (Code [Push (IntConst 3), Enter (Label "f")]),
Push (Arg 2),
Push (Arg 1),
Enter (Label "g")

]

Here is a slightly more elaborate example:

f x = let y = f 3
in
g (let z = 4 in h z) y

which generates the code:

[ Take 3 1,
Move 2 (Code [Push (IntConst 3), Enter (Label "f")]),
Push (Arg 2),
Push (Code [Move 3 (IntConst 4), Push (Arg 3), Enter (Label "h")]),
Enter (Label "g")

]

Notice the way that the initial Take allocates space for all the slots required by any of the
closures in the body of the supercombinator.

Exercise 4.10. Write state transition rules for the new Take and Move instructions.

Next, we need to modify the compiler to generate the new Take and Move instructions. When
we encounter a let expression we need to assign a free slot in the frame to each bound variable,
so we need to keep track of which slots in the frame are in use and which are free. To do this,
we add an extra parameter d to each compilation scheme, to record that the frame slots from
d + 1 onwards are free, but that the slots from 1 to d might be occupied.

The remaining complication is that we need to discover the maximum value that d can take, so
that we can allocate a big enough frame with the initial Take instruction. This requires each
compilation scheme to return a pair: the compiled code, and the maximum value taken by d .
The new compilation schemes are given in Figure 4.3. (In this figure, and subsequently, we use
the notation is1 ++ is2 to denote the concatenation of the instruction sequences is1 and is2.)
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SC[[def ]] ρ is the TIM code for the supercombinator definition def com-
piled in environment ρ.

SC[[f x1 . . . xn = e]] ρ = Take d ′ n : is
where (d ′, is) = R[[e]] ρ[x1 �→ Arg 1, . . . , xn �→ Arg n] n

R[[e]] ρ d is a pair (d ′, is), where is is TIM code which applies the value
of the expression e in environment ρ to the arguments on the stack. The
code is assumes that the first d slots of the frame are occupied, and it
uses slots (d + 1 . . . d′).

R[[e]] ρ d = B[[e]] ρ d [Return]
where e is an arithmetic expression or a number

R[[let x1=e1; . . . ; xn=en in e]] ρ d
= (d ′, [Move (d + 1) am1, . . . , Move (d + n) amn ] ++ is)

where (d1, am1) = A[[e1]] ρ (d + n)
(d2, am2) = A[[e2]] ρ d1
. . .
(dn , amn ) = A[[en ]] ρ dn−1
ρ′ = ρ[x1 �→ Arg (d + 1), . . . , xn �→ Arg (d + n)]
(d ′, is) = R[[e]] ρ′ dn

R[[e1 e2]] ρ d = (d2, Push am : is)
where (d1, am) = A[[e2]] ρ d

(d2, is) = R[[e1]] ρ d1

R[[a]] ρ d = (d′, [Enter am])
where a is a constant, supercombinator or local variable
and (d ′, am) = A[[a]] ρ d

A[[e]] ρ d is a pair (d ′, am), where am is a TIM addressing mode for
expression e in environment ρ. The code assumes that the first d slots of
the frame are occupied, and it uses slots (d + 1 . . . d′).

A[[x ]] ρ d = (d , ρ x ) where x is bound by ρ
A[[n]] ρ d = (d , IntConst n) where n is an integer constant
A[[e]] ρ d = (d ′, Code is) otherwise

where (d ′, is) = R[[e]] ρ d

Figure 4.3: Compilation schemes for let expressions
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In the SC scheme you can see how the maximum frame size d′, returned from the compilation of
the supercombinator body, is used to decide how large a Take to perform. In the let expression
case of the R scheme, for each definition we generate an instruction Move i a, where i is the
number of a free slot in the current frame, and a is the result of compiling e with the A scheme.
Notice the way in which the compilation of each right-hand side is given the index of the last
slot occupied by the previous right-hand side, thus ensuring that all the right-hand sides use
different slots.

Exercise 4.11. Implement the changes described in this section: add the new instructions to the
instruction type, add new cases to step and showInstruction to handle them, and implement
the new compilation schemes.

Exercise 4.12. Consider the program

f x y z = let p = x+y in p+x+y+z
main = f 1 2 3

In the absence of let expressions, it would have to be written using an auxiliary function, like this:

f’ p x y z = p+x+y+z
f x y z = f’ (x+y) x y z
main = f 1 2 3

Compare the code generated by these two programs, and measure the difference in store consumed
and steps executed. What is the main saving obtained by implementing let expressions directly?

4.4.2 letrec expressions

What needs to be done to handle letrec expressions as well? At first it seems very easy: the
letrec case for the R scheme is exactly the same as the let case, except that we need to replace
ρ by ρ′ in the definitions of the ami . This is because the xi are in scope in their own right-hand
sides.

Exercise 4.13. Implement this extra case in compileR, and try it out on the program

f x = letrec p = if (x==0) 1 q ;
q = if (x==0) p 2

in p+q
main = f 1

Make sure you understand the code which is generated, and test it.

Unfortunately there is a subtle bug in this implementation! Consider the code generated from:

f x = letrec a = b ;
b = x

in a

which is as follows:

[Take 3 1, Move 2 (Arg 3), Move 3 (Arg 1), Enter (Arg 2)]
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The closure for b is copied by the first Move before it is assigned by the second Move!

There are two ways out of this. The first is to declare that this is a silly program; just replace
b by x in the scope of the binding for b. But there is a more interesting approach which will be
instructive later, and which allows even silly programs like the one above to work. Suppose we
generate instead the following code for the first Move:

Move 2 (Code [Enter (Arg 3)])

Now everything will be fine: slot 3 will be assigned before the Enter (Arg 3) gets executed. In
fact you can think of the closure ([Enter (Arg 3)], f) as an indirection to slot 3 of frame f.

This code can be obtained by modifying the let(rec) case of the R compilation scheme, so
that it records an indirection addressing mode in the environment for each variable bound by the
let(rec). Referring to Figure 4.3, the change required is to the rule for let in the R scheme,
where the definition of ρ′ becomes

ρ′ = ρ[x1 �→ I[[d + 1]] , . . . , xn �→ I[[d + n]] ]
where I[[d ]] = Code [Enter (Arg d)]

Of course, this is rather conservative: it returns an indirection in lots of cases where it is not
necessary to do so, but the resulting code will still work fine, albeit less efficiently.

Exercise 4.14. Modify compileR to implement this idea, and check that it generates correct code for
the above example. In modifying compileR use the auxiliary function mkIndMode (corresponding
to the I scheme) to generate the indirection addressing modes in the new environment:

> mkIndMode :: Int -> TimAMode
> mkIndMode n = Code [Enter (Arg n)]

4.4.3 Reusing frame slots†

At present, every definition on the right-hand side of a supercombinator definition gets its own
private slot in the frame. Sometimes you may be able to figure out that you can safely share
slots between different let(rec)s. For example, consider the definition

f x = if x (let ... in ...) (let ... in ...)

Now it is plain that only one of the two let expressions can ever be evaluated, so it would be
perfectly safe to use the same slots for their definitions.

Similarly, in the expression e1 + e2, any let(rec) slots used during the evaluation of e1 will be
finished with by the time e2 is evaluated (or vice versa if + happened to evaluate its arguments
in the reverse order), so any let(rec)-bound variables in e1 can share slots with those in e2.

Exercise 4.15. Modify your compiler to spot this and take advantage of it.
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4.4.4 Garbage collection†

In Section 4.2.6 we remarked that it would be desirable to record which frame slots were used by
a code sequence, so that space leaks can be avoided. If Take does not initialise the extra frame
slots which it allocates, there is a danger that the garbage collector will treat the contents of
these uninitialised slots as valid pointers, with unpredictable results. The easiest solution is to
initialise all slots, but this is quite expensive. It is better to adopt the solution of Section 4.2.6,
and record with each code sequence the list of slots which should be retained. Uninitialised slots
will then never be looked at by the garbage collector.

4.5 Mark 4: Updating

So far we have been performing tree reduction not graph reduction, because we repeatedly
evaluate shared redexes. It is time to fix this. Figuring out exactly how the various ways of
performing TIM updates work is a little tricky, but at least we have a prototype implementation
so that our development will be quite concrete.

4.5.1 The basic technology

The standard template instantiation machine and the G-machine perform an update after every
reduction. (The G-machine has a few optimisations for tail calls, but the principle is the same.)
Because TIM is a spineless machine, its updating technique has to be rather different. The key
idea is this:

Updates are not performed after each reduction, as the G-machine does. Instead,
when evaluation of a closure is started (that is, when the closure is entered), the
following steps are taken:

• The current stack, and the address of the closure being entered, are pushed onto
the dump, a new component of the machine state.

• A ‘mouse-trap’ is set up which is triggered when evaluation of the closure is
complete.

• Evaluation of the closure now proceeds normally, starting with an empty stack.

• When the mouse-trap is triggered, the closure is updated with its normal form,
and the old stack is restored from the dump.

The ‘mouse-trap’ is the following. Since the evaluation of the closure is carried out
on a new stack, the evaluation must eventually grind to a halt, because a Return
instruction finds an empty stack, or a supercombinator is being applied to too few
arguments. At this point the expression has reached (head) normal form, so an update
should be performed.

To begin with, let us focus on updating a closure whose value is of integer type. We will arrange
that just before the closure is entered, a new instruction PushMarker x is executed, which sets up
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the update mechanism by pushing some information on the dump. Specifically, PushMarker x
pushes onto the dump4:

• The current stack.

• The current frame pointer, which points to the frame containing the closure to be updated.

• The index, x , of the closure to be updated within the frame.

Now that it has saved the current stack on the dump, PushMarker continues with an empty
stack. Here is its state transition rule:

(4.15)
PushMarker x : i f s v d h c

=⇒ i f [] v (f , x , s) : d h c

Some while later, evaluation of the closure will be complete. Since its value is an integer, its value
will be on top of the value stack, and a Return instruction will be executed in the expectation
of returning to the continuation on top of the stack. But the stack will be empty at this point!
This is what triggers the update: the dump is popped, the update is performed, and the Return
instruction is re-executed with the restored stack. This action is described by the following
transition rules:

(4.16)

[Return] f [] n : v (fu , x , s) : d h c
=⇒ [Return] f s n : v d h′ c

h ′ = h[fu : 〈. . . , dx−1, (intCode,n), dx+1, . . .〉]
[Return] f (i , f ′) : s n : v d h c

=⇒ i f ′ s n : v d h c

The first rule describes the update of the x th closure in frame fu , with the closure (intCode,n).
This is a closure which when entered immediately pushes n onto the value stack and returns (see
Section 4.3.1). Notice that the Return instruction is retried, in case there is a further update to
perform; this is indicated by the fact that the code sequence in the right-hand side of the rule
is still [Return].

The second rule is just Rule 4.11 written out again. It covers the case when there is no update
to be performed; the continuation on top of the stack is loaded into the program counter and
current frame pointer.

4.5.2 Compiling PushMarker instructions

The execution of the PushMarker and Return instructions is thus quite straightforward, but the
tricky question is: where should the compiler plant PushMarker instructions? To answer this
we have to recall the motivation for the whole updating exercise: it is to ensure that each redex
is only evaluated once, by overwriting the redex with its value once it has been evaluated. In
TIM, a ‘redex’ is a closure. The key insight is this:

4In papers about TIM this operation is often called ‘pushing an update marker’, because the stack is ‘marked’
so that the attempt to use arguments below the ‘marker’ will trigger an update.
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we have to be very careful when copying closures, because once two copies exist there
is no way we can ever share their evaluation.

For example, consider the following function definitions:

g x = h x x
h p q = q - p

At present we will generate the following code for g:

[ Take 1 1, Push (Arg 1), Push (Arg 1), Enter (Label "h") ]

The two Push Arg instructions will each take a copy of the same closure, and h will subsequently
evaluate each of them independently.

What we really want to do is to push not a copy of the closure for x, but rather a pointer to it.
Recalling the idea of an indirection closure from Section 4.4.2, this is easily done, by replacing
Push (Arg 1) with Push (Code [Enter (Arg 1)]).

This gets us half-way; we are not duplicating the closure, but we still are not updating it. But
now it is easy! All we need to is to precede the Enter (Arg 1) instruction with PushMarker 1,
thus:

Push (Code [PushMarker 1, Enter (Arg 1)])

That is, just before entering the shared closure, we set up the update mechanism which will
cause it to be updated when its evaluation is complete.

The addressing mode (Code [PushMarker n, Enter (Arg n)]) is called an updating indirection
to the nth closure of the frame, because it is an indirection which will cause an update to take
place. Exactly the same considerations apply to entering an argument (rather than pushing it on
the stack). An updating indirection to the argument must be entered, rather than the argument
itself: Enter (Arg 1) must be replaced by Enter (Code [PushMarker 1, Enter (Arg 1)]).

The changes to the compilation schemes are simple. Only the SC and R schemes are affected,
and they are both affected in the same way: where they build an environment, they should bind
each variable to an updating indirection addressing mode. For example, in the let(rec) case
of the R scheme, we now use the following definition for ρ′ (cf. Figure 4.3):

ρ′ = ρ[x1 �→ J [[d + 1]] , . . . , xn �→ J [[d + n]] ]
where J [[d ]] = Code [PushMarker d , Enter (Arg d)]

4.5.3 Implementing the updating mechanism

To implement the new updating mechanism, we need to make the following changes:

• Give a type definition for the dump. It is just a stack of triples, represented as a list, and
initialised to be empty:

> type TimDump = [(FramePtr, -- The frame to be updated
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> Int, -- Index of slot to be updated
> TimStack) -- Old stack
> ]
> initialDump = []

• Add the PushMarker instruction to the instruction type, with appropriate modifications
to showInstruction.

• Add a new case to step for the PushMarker instruction, and modify the case for Return.

• Modify compileSC and the ELet case of compileR to build environments which bind each
variable to an updating indirection addressing mode. Use the function mkUpdIndMode to
implement the J scheme:

> mkUpdIndMode :: Int -> TimAMode
> mkUpdIndMode n = Code [PushMarker n, Enter (Arg n)]

Exercise 4.16. Implement the updating mechanism as described.
When running the new system on some test programs, you should be able to watch PushMarker
adding update information to the dump, and Return performing the updates. Here is one possible
test program:

f x = x + x
main = f (1+2)

The evaluation of (1+2) should only happen once!

Exercise 4.17. Here is an easy optimisation you can perform. For a function such as:

compose f g x = f (g x)

you will see that the code for compose is like this:

compose: Take 3 3
Push (Code [...])
Enter (Code [PushMarker 1, Enter (Arg 1)])

where the [...] is code for (g x). The final instruction enters an updating indirection for f. But
it is a fact that

Enter (Code i) is equivalent to i

(This follows immediately from Rule 4.8.) So the equivalent code for compose is

compose: Take 3 3
Push (Code [...])
PushMarker 1
Enter (Arg 1)

Implement this optimisation. Much the nicest way to do this is by replacing all expressions in the
compiler of the form [Enter e] with (mkEnter e), where mkEnter is defined like this:

> mkEnter :: TimAMode -> [Instruction]
> mkEnter (Code i) = i
> mkEnter other_am = [Enter other_am]
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mkEnter is an ‘active’ form of the Enter constructor, which checks for a special case before gener-
ating an Enter instruction.

There are a number of other improvements we can make to this scheme, and we will study them
in the following sections.

4.5.4 Problems with updating indirections

While it is simple enough, this updating mechanism is horribly inefficient. There are two main
problems, which were first distinguished by Argo [Argo 1989]. The first problem is that of
identical updates. Consider the program given in the previous section:

f x = x+x
main = f (1+2)

For each use of x, f will enter an updating closure to its argument x. The first time, x will be
updated with its value. The second time, a second (and entirely redundant) update will take
place, which overwrites the x with its value again. You should be able to watch this happening
as you execute the example on your implementation.

In this case, of course, a clever compiler could spot that x was sure to be evaluated, and just
copy x instead of entering an indirection to it. But this complicates the compiler, and in general
may be impossible to spot. For example, suppose f was defined like this:

f x = g x x

Unless f analyses g to discover in which order the different x’s are evaluated (and in general there
may be no one answer to this question), it has to be pessimistic and push updating indirections
as arguments to g.

The second problem is that of indirection chains. Consider the program

g x = x+x
f y = g y
main = f (1+2)

Here, f passes to g an updating indirection to its argument y; but g enters an updating indirection
to its argument x. Thus g enters an indirection to an indirection. In short, chains of indirections
build up, because an indirection is added every time an argument is passed on as an argument
to another function. Just imagine how many indirections to m could build up in the following
tail-recursive function!

horrid n m = if (n=0) m (horrid (n-1) m)

We will not solve these problems yet. Instead, the next section shows how to deal with updates
for let(rec)-bound variables, and why these two problems do not arise. This points the way
to a better solution for supercombinator arguments as well.
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4.5.5 Updating shared let(rec)-bound variables

So far we have assumed that let(rec)-bound variables are updated in exactly the same way
as supercombinator arguments, by always using an updating indirection addressing mode for
them. For example, consider the following supercombinator definition:

f x = let y = ...
in
g y y

where the ‘...’ stands for an arbitrary right-hand side for y. Treating y just the same as x, we
will generate this code for f:

f: Take 2 1 -- Frame with room for y
Move 2 (Code [...code for y...]) -- Closure for y
Push (Code [PushMarker 2, Enter (Arg 2)]) -- Indirection to y
Push (Code [PushMarker 2, Enter (Arg 2)]) -- Indirection to y
Enter (Label "g")

where the ‘...code for y...’ stands for the code generated from y’s right-hand side. This
code suffers from the identical-update problem outlined earlier.

But a much better solution is readily available. Suppose we generate the following code for f
instead:

f: Take 2 1 -- Frame with room for y
Move 2 (Code (PushMarker 2 :

[...code for y...])) -- Closure for y
Push (Code [Enter (Arg 2)]) -- Non-updating indirection to y
Push (Code [Enter (Arg 2)]) -- Indirection to y
Enter (Label "g")

The PushMarker instruction has moved from the uses of y to its definition. The closure for
y built by the Move instruction is now a self-updating closure; that is, when entered it will
set up the update mechanism which will update itself. Once this has happened, it will never
happen again because the pointer to the code with the PushMarker instruction has now been
overwritten!

In general, the idea is this:

• Use a self-updating closure for the right-hand side of a let(rec) binding, by beginning
the code with a PushMarker instruction.

• Use ordinary (non-updating) indirection addressing modes when pushing let(rec)-bound
variables onto the stack. We still need to use indirections, rather than taking a copy of
the closure because, until it is updated, copying it would give rise to duplicated work.

The modifications needed to implement this idea are:
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U [[e]] u ρ d is a pair (d ′, am), where am is a TIM addressing mode for
expression e in environment ρ. If the closure addressed by am is entered,
it will update slot u of the current frame with its normal form. The code
assumes that the first d slots of the frame are occupied, and it uses slots
(d + 1 . . . d′).

U [[e]] u ρ d = (d′, Code (PushMarker u : is))
where (d ′, is) = R[[e]] ρ d

R[[let x1=e1; . . . ; xn=en in e]] ρ d
= (d ′, [Move (d + 1) am1, . . . , Move (d + n) amn ] ++ is)

where (d1, am1) = U [[e1]] (d + 1) ρ (d + n)
(d2, am2) = U [[e2]] (d + 2) ρ d1
. . .
(dn , amn ) = U [[en ]] (d + n) ρ dn−1
ρ′ = ρ[x1 �→ I[[d + 1]] , . . . , xn �→ I[[d + n]] ]

where I[[d ]] = Code [Enter (Arg d)]
(d ′, is) = R[[e]] ρ′ dn

The letrec case is similar, except that ρ′ is passed to the calls to U [[]] instead of ρ.

Figure 4.4: The U compilation scheme, and revised R rule for let

• Modify the R scheme so that it generates non-updating indirections for let(rec)-bound
variables; that is, it builds the new environment using the I scheme rather than J . (For
the present, SC should continue to generate updating indirections, using J , for supercom-
binator arguments.)

• Modify the R scheme for let(rec) expressions, so that it generates a PushMarker instruc-
tion at the start of the code for every right-hand side. This is most conveniently done by
creating a new compilation scheme, the U scheme (see Figure 4.4), which is used in the
let(rec) case of the R scheme to compile the right-hand sides of definitions. U needs a
extra argument to tell it which slot in the current frame should be updated, and uses this
argument to generate an appropriate PushMarker instruction. Figure 4.4 also gives the
revised let equation for the R scheme. The modification to the letrec case is exactly
analogous.

Exercise 4.18. Try out this idea and measure its effectiveness in terms of how many steps are saved.

Exercise 4.19. Consider the expression

let x = 3 in x+x

In this case, the right-hand side of the let expression is already in normal form, so there is no point
in the U scheme generating a PushMarker instruction. Rather, U can simply return an IntConst
addressing mode for this case.
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Modify the U compilation scheme, and the corresponding compileU function, and confirm that the
modification works correctly.

4.5.6 Eliminating indirection chains

The idea of the previous section shows how to eliminate identical updates for let(rec)-bound
variables. In this section we show how to extend the idea to eliminate identical updates for
supercombinator arguments as well and, at the same time, to eradicate the indirection chain
problem. The idea was first proposed by Argo [Argo 1989].

We start with indirection chains. As noted earlier, indirection chains build up because a super-
combinator has to assume that it must not copy any of its argument closures, so if it uses them
more than once it had better use indirections. This gives rise to indirection chains because often
the argument closure is an indirection already, and it would be perfectly safe to copy it.

This suggests an alternative strategy:

adopt the convention that every argument closure must be freely copyable without loss
of sharing.

This calling convention is clearly convenient for the called function, but how can the caller ensure
that it is met? An argument is either:

• a constant, whose closure is freely copyable;

• a supercombinator, which has the same property;

• a let(rec)-bound variable, which also can be freely copied (using the ideas of the previous
section);

• an argument to the current supercombinator, which is freely copyable because of our new
convention;

• a non-atomic expression, whose closure (as things stand) is not freely copyable.

It follows that all we have to do to adopt this new calling convention is find some way of passing
non-atomic arguments as freely copyable closures. For example, consider the expression

f (factorial 20)

How can the argument (factorial 20) be passed as a freely copyable closure. The solution is
simple: transform the expression to the following equivalent form:

let arg = factorial 20 in f arg

The let expression will allocate a slot in the current frame for the closure for (factorial 20),
will put a self-updating closure in it, and an (ordinary) indirection to this closure will be passed
to f. (Notice that this transformation need only be carried out if the closure passed to f might
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R[[e a]] ρ d = (d1, Push (A[[a]] ρ) : is)
where a is a supercombinator, local variable, or constant

(d1, is) = R[[e]] ρ d

R[[efun earg ]] ρ d = (d2, Move (d + 1) amarg : Push (Code [Enter (Arg (d + 1))]) : isfun)
where (d1, amarg) = U [[earg ]] (d + 1) ρ (d + 1)

(d2, isfun) = R[[efun ]] ρ d1

A[[n]] ρ = IntConst n where n is a number
A[[x ]] ρ = ρ x where x is bound by ρ

Figure 4.5: Modifications to R and A for copyable arguments

be entered more than once. There is an opportunity here for a global sharing analysis to be
used to generate more efficient code.)

Once this transformation is done we can freely copy argument closures, though we must still use
(non-updating) indirections for let(rec)-bound closures. No indirection chains will build up,
nor will identical updates take place.

It is interesting to reflect on what has happened. At first it appeared as though TIM would
allocate much less heap than a G-machine, because the entire allocation for a supercombinator
call was the frame required to hold its arguments. However, using our new updating techniques,
we see that every sub-expression within the supercombinator body requires a slot in the frame
to hold it. Similarly, since most supercombinator arguments are now indirections, TIM is be-
having quite like the G-machine which passes pointers to arguments rather than the arguments
themselves. So the problems of lazy updating have forced TIM to become more G-machine-like.

We have presented the technique as a program transformation which introduces a let expression
for every argument expression, but doing so is somewhat tiresome because it involves inventing
new arbitrary variable names. It is easier to write the new compilation schemes more directly.
The main alteration is to the application case of the R scheme, which is given in Figure 4.5.
The first equation deals with the case where the argument to the application is an atomic
expression (variable or constant), using the A scheme to generate the appropriate addressing
mode as before. The second equation deals with the case where the argument is a compound
expression; it initialises the next free slot in the frame with a self-updating closure for the
argument expression, and pushes an indirection to this closure.

The A scheme, also given in Figure 4.5, now has one case fewer than before, because it is only
invoked with an atomic expression (variable or constant) as its argument. For the same reason,
it no longer needs to take d as an argument and return it as a result, because it never uses any
frame slots.

Exercise 4.20. Implement this revised scheme, and measure the difference in performance from the
previous version.
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4.5.7 Updating partial applications

So far we have successfully dealt with the update of closures whose value is an integer. When a
Return instruction finds an empty stack, it performs an update and pops a new stack from the
dump.

But there is another instruction which consumes items from the stack, namely Take. What
should happen if a Take instruction finds fewer items on the stack than it requires? For example,
consider the program

add a b = a+b
twice f x = f (f x)
g x = add (x*x)
main = twice (g 3) 4

When twice enters f it will do so via an indirection, which will set up an update for f. In
this example, f will be bound to (g 3), which evaluates to a partial application of add to one
argument. The Take 2 instruction at the beginning of the code for add will discover that there
is only one argument on the stack, which indicates that an update should take place, overwriting
the closure for (g x) with one for (add (x*x)).

In general:

when a Take instruction finds too few arguments on the stack, it should perform
an update on the closure identified by the top item on the dump, glue the items on
the current stack on top of the stack recovered from the dump, and retry the Take
instruction (in case another update is required).

The Take instruction is already complicated enough, and now it has a further task to perform.
To avoid Take getting too unwieldy, we split it into two instructions: UpdateMarkers, which
performs the check as to whether there are enough arguments, and Take which actually builds
the new frame. An UpdateMarkers n instruction always immediately precedes every Take t n
instruction.

The transition rule for Take is therefore unchanged. The rules for UpdateMarkers are as follows:

(4.17)

UpdateMarkers n : i f c1 : . . . : cm : s v d h c
=⇒ i f c1 : . . . : cm : s v d h c

where m ≥ n
UpdateMarkers n : i f c1 : . . . : cm : [] v (fu , x , s) : d h c

=⇒ UpdateMarkers n : i f c1 : . . . : cm : s v d h′ c
where m < n

h ′ = h[fu : 〈. . . , dx−1, (i ′, f ′), dx+1, . . .〉]

The first rule deals with the case where there are enough arguments, so that UpdateMarkers
does nothing. The second deals with the other case, where an update needs to take place;
the appropriate closure is updated, the current stack is glued on top of the old one, and the
UpdateMarkers is retried.
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In this rule, i ′ and f ′ are the code pointer and frame pointer which overwrite the target closure,
but so far we have not specified just what values they should take. The way to figure out
what they should be is to ask the question: what should happen when the closure (i′, f ′) is
entered? This closure represents the partial application of the supercombinator to the arguments
c1, . . . , cm . Hence, when it is entered, it should push c1, . . . , cm , and then jump to the code for
the supercombinator. It follows that

• f ′ must point to a newly allocated frame 〈c1, . . . , cm〉.

• i ′ must be the code sequence

Push (Arg m) : . . . : Push (Arg 1) : UpdateMarkers n : i

Here, the Push instructions place the arguments of the partial application onto the stack,
the UpdateMarkers instruction checks for any further updates that need to take place,
and i is the rest of the code for the supercombinator.

Exercise 4.21. Implement the UpdateMarkers instruction, and modify the compiler to place one before
each Take instruction. Test your implementation before and after the modification on the following
program. The program uses higher-order functions to implement pairs (Section 2.8.3). The pair w
is shared, and evaluates to a partial application of the pair function.

pair x y f = f x y
fst p = p K
snd p = p K1
main = let w = pair 2 3

in (fst w) * (snd w)

You should see w being updated with the partial application for (pair 2 3). To make it a little
more convincing, you could make the right-hand side of w involve a little more computation: for
example

main = let w = if (2*3 > 4) (pair 2 3) (pair 3 2)
in (fst w) * (snd w)

Exercise 4.22. Just as Take 0 0 does nothing, UpdateMarkers 0 does nothing. Modify compileSC so
that it omits both of these instructions when appropriate. (This is a simple extension of Exer-
cise 4.3.)

There are a few other points worth noticing:

• In a real implementation, the code i′ would not be manufactured afresh whenever an
update takes place, as the rule appears to say. Instead, the code for the supercombinator
i can be preceded by a sequence of Push instructions, and the code pointer for a partial
application can just point into the appropriate place in the sequence.

• The UpdateMarkers rule duplicates the closures c1, . . . , cm . This is fine now that super-
combinator arguments are freely copyable, a modification we introduced in Section 4.5.6.
Prior to that modification, making such a copy would have risked duplicating a redex, so
instead the UpdateMarkers rule would have been further complicated with indirections.
It is for this reason that the introduction of UpdateMarkers has been left so late.
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• Suppose we are compiling code for the expression (f e1 e2), where f is known to be a
supercombinator of 2 (or fewer) arguments. In this case, the UpdateMarkers instruction
at the start of f will certainly do nothing, because the stack is sure to be deep enough to
satisfy it. So when compiling a call to a supercombinator applied to all its arguments (or
more) we can enter its code after the UpdateMarkers instruction.

Many of the function applications in a typical program are saturated applications of known
supercombinators, so this optimisation is frequently applicable.

4.6 Mark 5: Structured data

In this section we will study how to add algebraic data types to TIM. It is possible to implement
data structures without any of the material of this section, using higher-order functions as
described in Section 2.8.3; but it is rather inefficient to do so. Instead, we will develop the
approach we used for arithmetic to be able to handle more general data structures.

4.6.1 The general approach

Consider the function is_empty, which returns 1 if its argument is an empty list, and 0 if not.
It is given in the context of a program which applies it to a singleton list.

is_empty xs = case xs of
<1> -> 1
<2> y ys -> 0

cons a b = Pack{2,2} a b
nil = Pack{1,0}

main = is_empty (cons 1 nil)

Recall from Section 1.1.4 that constructors are denoted by Pack{tag , arity}. In this program,
which manipulates lists, the empty list constructor nil has tag 1 and arity 0, while the list
constructor cons has tag 2 and arity 2. Pattern matching is performed only by case expressions;
nested patterns are matched by nested case expressions.

We consider first what code we should generate for a case expression. Just as arithmetic
operators require their arguments to be evaluated, a case expression requires an expression, xs
in the is_empty example, to be evaluated. After this, a multi-way jump can be taken depending
on the tag of the object returned. Taking a similar approach to the one we used for arithmetic
operators suggests the following conventions:

• To evaluate a closure representing a data object, a continuation is pushed onto the argu-
ment stack, and the closure is entered.

• When it is evaluated to (head) normal form, this continuation is popped from the stack
and entered.

• The tag of the data object is returned on top of the value stack.
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• The components of the data object (if any) are returned in a frame pointed to by a new
register, the data frame pointer.

So the code we would produce for is_empty would be like this5:

is_empty: Take 1 1 -- One argument
Push (Label "cont") -- Continuation
Enter (Arg 1) -- Evaluate xs

cont: Switch [ 1 -> [PushV (IntVConst 1), Return]
2 -> [PushV (IntVConst 0), Return]

]

The Switch instruction does a multi-way jump based on the top item on the value stack. In
this example, both branches of the case expression just return a constant number.

In this example the components of the scrutinised list cell were not used. This is not always the
case. Consider, for example, the sum function:

sum xs = case xs of
<1> -> 0
<2> y ys -> y + sum ys

sum computes the sum of the elements of a list. The new feature is that the expression
y + sum ys uses the components, y and ys, of the list cell. As indicated earlier, these compo-
nents are returned to the continuation in a frame pointed to by the data frame pointer, a new
register. (Exercise: why cannot the ordinary frame pointer be used for this purpose?)

So far, every local variable (that is, supercombinator argument or let(rec)-bound variable)
has a slot in the current frame which contains its closure, so it seems logical to extend the idea,
and add further slots for y and ys. All we need to do is to move the closures out of the list cell
frame, and into the current frame. Here, then, is the code for sum:

sum: Take 3 1 -- One argument, two extra slots for y,ys
Push (Label "cont") -- Continuation for case
Enter (Arg 1) -- Evalute xs

cont: Switch [
1 -> [PushV (IntVConst 0), Return]
2 -> [Move 2 (Data 1)

Move 3 (Data 2)
...code to compute y + sum ys...

]
]

The Move instructions use a new addressing mode Data, which addresses a closure in the frame
pointed to by the data frame pointer. The two Move instructions copy y and ys from the list
cell into the current frame (the one which contains xs).

5As usual we write the code with explicit labels for continuations, but in reality we would compile uses of the
Code addressing mode so as to avoid generating fresh labels.
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In summary, a case expression is compiled into five steps:

1. Push a continuation.

2. Enter the closure to be scrutinised. When it is evaluated, it will enter the continuation
pushed in Step 1.

3. The continuation uses a Switch instruction to take a multi-way jump based on the tag,
which is returned on top of the value stack.

4. Each branch of the Switch begins with Move instructions to copy the contents of the data
object into the current frame. Since this copies the closure, we must be sure that all
closures in data objects have the property that they can freely be copied (Section 4.5.6).

5. Each alternative then continues with the code for that alternative, compiled exactly as
usual.

Finally, we can ask what code should be generated for the expression Pack{tag , arity}. Consider,
for example, the expression

Pack{1,2} e1 e2

which builds a list cell. The minimalist approach is to treat Pack{1,2} as a supercombinator,
and generate the following code6:

Push (...addressing mode for e2...)
Push (...addressing mode for e1...)
Enter (Label "Pack{1,2}")

The code for Pack{1,2} is very simple:

Pack{1,2}: UpdateMarkers 2
Take 2 2
ReturnConstr 1

The first two instructions are just the same as for any other supercombinator. The
UpdateMarkers instruction performs any necessary updates, and the Take instruction builds
the frame containing the two components of the list cell, putting a pointer to it in the cur-
rent frame pointer. Finally, a new instruction, ReturnConstr, enters the continuation, while
pushing a tag of 1 onto the value stack, and copying the current frame pointer into the data
frame pointer. Like Return, ReturnConstr needs to check for updates and perform them when
necessary.

4.6.2 Transition rules and compilation schemes for data structures

Now that we have completed the outline, we can give the details of the transition rules and
compilation schemes for the new constructs. The rule for Switch is as follows:

6In principle there are an infinite number of possible constructors, so it seems that we need an infinite family
of similar code fragments for them in the code store. In practice this is easily avoided as will be seen when we
write the detailed compilation schemes.
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(4.18)
[Switch [. . . t -> i . . .]] f fd s t : v d h c

=⇒ i f fd s v d h c

There are two rules for ReturnConstr, because it has to account for the possibility that an
update is required. The first is straightforward, when there is no update to be done:

(4.19)
[ReturnConstr t ] f fd (i , f ′) : s v d h c

=⇒ i f ′ f s t : v d h c

The second rule deals with updating, overwriting the closure to be updated with a code sequence
containing only a ReturnConstr instruction, and the data frame pointer:

(4.20)
[ReturnConstr t ] f fd [] v (fu , x , s) : d h c

=⇒ [ReturnConstr t ] f fd s v d h′ c
where h ′ = h[fu : 〈. . . , dx−1, ([ReturnConstr t ], f ), dx+1, . . .〉]

The only changes to the compilation schemes are to add extra cases to the R scheme for con-
structors and for case expressions. The latter is structured by the use of an auxiliary scheme E ,
which compiles a case alternative (Figure 4.6). Notice that constructors are compiled ‘in-line’
as they are encountered, which avoids the need for an infinite family of definitions to be added
to the code store.

4.6.3 Trying it out

We can use the new machinery to implement lists and booleans, by using the following extra
Core-language definitions:

cons = Pack{2,2}
nil = Pack{1,0}

true = Pack{2,0}
false = Pack{1,0}
if cond tbranch fbranch = case cond of

<1> -> fbranch
<2> -> tbranch

Notice that if, which previously had a special instruction and case in the compilation schemes,
is now just a supercombinator definition like any other. Even so, it is often clearer to write
programs using if rather than case, so you may want to leave the special case in your compiler;
but now you can generate a Switch instruction rather than a Cond instruction. (The latter can
vanish.)

Exercise 4.23. Implement the new instructions and compilation schemes.
Test your new implementation on the following program:

length xs = case xs of
<1> -> 0
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R[[Pack{t,a}]] ρ d = (d , [UpdateMarkers a, Take a a, ReturnConstr t ])

R[[case e of alt1 . . . altn ]] ρ d = (d ′, Push (Code [Switch [branch1 . . . branchn ]]) : ise)
where (d1, branch1) = E [[alt1]] ρ d

. . .
(dn , branchn ) = E [[altn ]] ρ d
(d ′, ise) = R[[e]] ρ max (d1, . . . , dn )

E [[alt ]] ρ d , where alt is a case alternative, is a pair (d′, branch), where
branch is the Switch branch compiled in environment ρ. The code as-
sumes that the first d slots of the frame are occupied, and it uses slots
(d + 1 . . . d′).

E [[<t> x1 . . . xn -> body ]] ρ d = (d′, t -> (ismoves ++ isbody))
where ismoves = [Move (d + 1) (Data 1),

. . . ,
Move (d + n) (Data n)]

(d ′, isbody ) = R[[body ]] ρ′ (d + n)
ρ′ = ρ[x1 �→ Arg (d + 1),

. . . ,
xn �→ Arg (d + n)]

Figure 4.6: Compilation schemes for case expressions

<2> p ps -> 1 + length ps

main = length (cons 1 (cons 2 nil))

A more interesting example, which will demonstrate whether your update code is working correctly,
is this:

append xs ys = case xs of
<1> -> ys
<2> p ps -> cons p (append ps ys)

main = let xs = append (cons 1 nil) (cons 2 nil)
in
length xs + length xs

Here xs is used twice, but the work of appending should only be done once.

Exercise 4.24. If the arity, a, of the constructor is zero, then R[[Pack{t,a}]] will generate the code
[UpdateMarkers 0, Take 0 0, ReturnConstr t]. Optimise the R scheme and compileR func-
tion to generate better code for this case (cf. Exercise 4.22).

194



4.6.4 Printing a list

The example programs suggested so far have all returned an integer, but it would be nice to be
able to return and print a list instead.

The way we expressed this in the G-machine chapter was to add an extra component to the
machine state to represent the output, together with an instruction Print, which appends a
number to the end of the output. In our case, numbers are returned on the value stack, so
Print consumes a number from the value stack and appends it to the output.

At present compile initialises the stack with the continuation ([],FrameNull), which has the
effect of stopping the machine when it is entered. All we need to do is change this continuation
to do the printing. This time, the continuation expects the value of the program to be a list, so
it must do case analysis to decide how to proceed. If the list is empty, the machine should halt,
so that branch can just have the empty code sequence. Otherwise, the head of the list should
be evaluated and printed, and the tail then given the original continuation again. Here is the
code:

topCont: Switch [ 1 -> []
2 -> [ Move 1 (Data 1) -- Head

Move 2 (Data 2) -- Tail
Push (Label "headCont")
Enter (Arg 1) -- Evaluate head

]
]

headCont: Print
Push (Label "topCont")
Enter (Arg 2) -- Do the same to tail

Notice that the topCont code needs a 2-slot frame for working storage, which compile had
better provide for it. compile therefore initialises the stack with the continuation

(topCont, frame)

where topCont is the code sequence above, and frame is the address of a 2-slot frame allocated
from the heap.

Exercise 4.25. Implement list printing as described. The only tiresome aspect is that you need to add
an extra component to the machine state (again).
As usual, you can use Push (Code ...) instead of Push (Label "headCont"), and in fact you
can do the same for Push (Label "topCont"), by using a little recursion!
Test your work on the following program:

between n m = if (n>m) nil (cons n (between (n+1) m))
main = between 1 4

Exercise 4.26. When running a program whose result is a list, it is nice to have the elements of the
list printed as soon as they become available. With our present implementation, either we print
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every state (if we use showFullResults) or we print only the last state (using showResults). In
the former case we get far too much output, while in the latter we get no output at all until the
program terminates.
Modify showResults so that it prints the output as it is produced. The easiest way to do this is
to compare the output component of successive pairs of states, and to print the last element when
the output gets longer between one state and the next.
Another possible modification to showResults is to print a dot for each state (or ten states), to
give a rough idea of how much work is done between each output step.

4.6.5 Using data structures directly†

One might ask why we cannot use the components of a data structure directly in the arms of
a Switch instruction, by using Data addressing modes in instructions other than Move. The
reason can be found in the sum example, which we repeat here:

sum xs = case xs of
<1> -> 0
<2> y ys -> y + sum ys

Now, let us follow the code for y + sum ys a little further. This code must first evaluate y,
which may take a lot of computation, certainly using the data frame pointer register. Hence, by
the time it comes to evaluate ys, the data frame pointer will have been changed, so ys will no
longer be accessible via the data frame pointer. By moving the contents of the list cell into the
current frame, we enable them to be preserved across further evaluations.

Sometimes, no further evaluation is to be done, as in the head function:

head xs = case xs of
<1> -> error
<2> y ys -> y

In this case, as an optimisation we could use y directly from the data frame; that is, the second
branch of the Switch instruction would be simply [Enter (Data 1)].

Similarly, if a variable is not used at all in the branch of the case expression, there is no need
to move it into the current frame.

4.7 Mark 6: Constant applicative forms and the code store†

As we mentioned earlier (Section 4.2.3), our decision to represent the code store as an association
list of names and code sequences means that CAFs do not get updated. Instead, their code
is executed each time they are called, which will perhaps duplicate work. We would like to
avoid this extra work, but the solution for the TIM is not quite as easy as that for our earlier
implementations.

In the case of the template instantiation machine and the G-machine, the solution was to allocate
a node in the heap to represent each supercombinator. When a CAF is called, the root of
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the redex is the supercombinator node itself, and so the node is updated with the result of
the reduction (that is, an instance of the right-hand side of the supercombinator definition).
Any subsequent use of the supercombinator will see this updated node instead of the original
supercombinator. The trouble is that the TIM does not have heap nodes at all; what corresponds
to a node is a closure within a frame. So what we have to do is to allocate in the initial heap a
single giant frame, the global frame, which contains a closure for each supercombinator.

The code store is now represented by the address, fG , of the global frame, together with an
association list, g , mapping supercombinator names to their offset in the frame. The Label
addressing mode uses this association list to find the offset, and then fetches the closure for
the supercombinator from the global frame. The new transition rule for Push Label formalises
these ideas:

(4.21)
Push (Label l) : i f s h[fG : 〈(i1, f1), . . . , (in , fn)〉] (fG , g [l : k ])

=⇒ i f (ik , fk ) : s h (fG , g)

The rule for Enter Label follows directly from the Push/Enter relationship. Each closure in the
global frame is a self-updating closure, as described in the context of let(rec)-bound variables
in Section 4.5.5. Just as for let(rec)-bound variables, when pushing a supercombinator on the
stack we should use a (non-updating) indirection (Section 4.5.5).

4.7.1 Implementing CAFs

Here is what needs to be done to add proper updating for CAFs to a Mark 4 or Mark 5 TIM.

• The code store component of the machine state now contains the address of the global
frame and an association between supercombinator names and frame offsets:

> type CodeStore = (Addr, ASSOC Name Int)

The showSCDefns function must be altered to take account of this change.

• The function amToClosure must take different action for a Label addressing mode, as
described above.

• The initial environment, initial_env, computed in the compile function, must be altered
to generate an indirection addressing mode for each supercombinator.

• The last modification involves most work. We need to alter the compile function to build
the initial heap, just as we did in the compile function of the template instantiation
machine and the G-machine.

The last of these items needs a little more discussion. Instead of starting with an empty heap,
compile now needs to build an initial heap, using an auxiliary function allocateInitialHeap.
allocateInitialHeap is passed the compiled_code from the compile function. It allocates a
single big frame containing a closure for each element of compiled_code, and returns the initial
heap and the codeStore:
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> allocateInitialHeap :: [(Name, [Instruction])] -> (TimHeap, CodeStore)
> allocateInitialHeap compiled_code
> = (heap, (global_frame_addr, offsets))
> where
> indexed_code = zip2 [1..] compiled_code
> offsets = [(name, offset) | (offset, (name, code)) <- indexed_code]
> closures = [(PushMarker offset : code, global_frame_addr) |
> (offset, (name, code)) <- indexed_code]
> (heap, global_frame_addr) = fAlloc hInitial closures

allocateInitialHeap works as follows. First the compiled_code list is indexed, by pairing
each element with a frame offset, starting at 1. Now this list is separately processed to produce
offsets, the mapping from supercombinator names to addresses, and closures, the list of
closures to be placed in the global frame. Finally, the global frame is allocated, and the resulting
heap is returned together with the code store.

Notice that global_frame_addr is used in constructing closures; the frame pointer of each
supercombinator closure is the global frame pointer itself, so that the PushMarker instruction
pushes an update frame referring to the global frame.

Exercise 4.27. Make the required modifications to showSCDefns, compileA, amToClosure and compile.
Test whether updating of CAFs does in fact take place.

Exercise 4.28. The PushMarker instruction added inside allocateInitialHeap is only required for
CAFs, and is a waste of time for supercombinators with one or more arguments. Modify
allocateInitialHeap to plant the PushMarker instruction only for CAFs. (Hint: you can i-
dentify non-CAFs by the fact that their code begins with a Take n instruction, where n > 0.)
Measure the improvement.

Exercise 4.29. An indirection addressing mode is only required for CAFs, and not for non-CAF super-
combinators. Modify the construction of initial_env to take advantage of this fact.

4.7.2 Modelling the code store more faithfully

There is something a little odd about our handling of Labels so far. It is this: the names of
supercombinators get looked up in the environment at compile-time (to map them to a Label
addressing mode), and then again at run-time (to map them to an offset in the global frame7).
This is hardly realistic: in a real compiler, names will be looked up at compile-time, but will be
linked to a hard machine address before run-time, so no run-time lookups take place.

We can model this by changing the Label constructor to take two arguments instead of one,
thus:

timAMode ::= Label name num
| ...as before...

7We are assuming that we have implemented the changes suggested in the previous section for CAFs, but this
section applies also to the pre-CAF versions of the machine.
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The name field records the name of the supercombinator as before, but now the num says what
offset to use in the global frame. Just as in the NSupercomb constructor of the template ma-
chine, the name field is only there for documentation and debugging purposes. The code store
component now becomes simply the address of the global frame, as you can see from the revised
rule for Push Label:

(4.22)
Push (Label l k) : i f s h[g : 〈(i1, f1), . . . , (in , fn)〉] g

=⇒ i f (ik , fk ) : s h g

The rule for Enter follows from the Push/Enter relationship.

Exercise 4.30. Implement this idea. To do this:

• Change the timAMode type as described.

• Change the codeStore type to consist only of a frame pointer.

• Change the compile function so that it generates the correct initial state for the machine. In
particular, it must generate an initial_env with the right Label addressing modes.

• Adjust the show functions to account for these changes.

4.8 Summary

The final TIM compilation schemes are summarised in Figures 4.7 and 4.8. The obvious question
is ‘is the TIM better or worse than the G-machine?’; it is a hard one to answer. Our prototypes
are very useful for exploring design choices, but really no good at all for making serious perfor-
mance comparisons. How can one establish, for example, the relative costs of a Take instruction
compared with a G-machine Mkap? About the only really comparable measure we have available
is the heap consumption of the two.

Still, it can be very illuminating to explore another evaluation model, as we have done in
this chapter, because it suggests other design avenues which combine aspects of the TIM
with those of the G-machine. One attempt to do so is the Spineless Tagless G-machine
[Peyton Jones and Salkild 1989, Peyton Jones 1991], which adopts the spinelessness and update
mechanism of TIM, but whose stack consists of pointers to heap objects (like the G-machine)
rather than code-frame pairs (as in TIM).
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SC[[def ]] ρ is the TIM code for the supercombinator definition def compiled in envi-
ronment ρ.

SC[[f x1 . . . xn = e]] ρ = UpdateMarkers n : Take d ′ n : is
where (d ′, is) = R[[e]] ρ[x1 �→ Arg 1, . . . , xn �→ Arg n] n

R[[e]] ρ d is a pair (d ′, is), where is is TIM code which applies the value of the expression
e in environment ρ to the arguments on the stack. The code is assumes that the first
d slots of the frame are occupied, and it uses slots (d + 1 . . . d′).

R[[e]] ρ d = B[[e]] ρ d [Return]
where e is an integer or arithmetic expression

R[[a]] ρ d = (d , [Enter (A[[a]] ρ)])
where a is a supercombinator or local variable

R[[e a]] ρ d = (d1, Push (A[[a]] ρ) : is)
where a is a supercombinator, local variable, or integer

(d1, is) = R[[e]] ρ d

R[[efun earg ]] ρ d = (d2, Move (d + 1) amarg : Push I[[d + 1]] : isfun)
where (d1, amarg ) = U [[earg ]] (d + 1) ρ (d + 1)

(d2, isfun) = R[[efun ]] ρ d1

R[[let x1=e1; . . . ; xn=en in e]] ρ d
= (d ′, [Move (d + 1) am1, . . . , Move (d + n) amn ] ++ is)

where (d1, am1) = U [[e1]] (d + 1) ρ (d + n)
(d2, am2) = U [[e2]] (d + 2) ρ d1
. . .
(dn , amn ) = U [[en ]] (d + n) ρ dn−1
ρ′ = ρ[x1 �→ I[[d + 1]] , . . . , xn �→ I[[d + n]] ]
(d ′, is) = R[[e]] ρ′ dn

The letrec case is similar, except that ρ′ is passed to the calls to U [[]] instead of ρ.

R[[Pack{t,a}]] ρ d = (d , [UpdateMarkers a, Take a a, ReturnConstr t ])

R[[case e of alt1 . . . altn ]] ρ d
= (d ′, Push (Code [Switch [branch1 . . . branchn ]]) : ise)

where (d1, branch1) = E [[alt1]] ρ d
. . .
(dn , branchn ) = E [[altn ]] ρ d
(d ′, ise) = R[[e]] ρ max (d1, . . . , dn )

Figure 4.7: Final TIM compilation schemes (part 1)
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E [[alt ]] ρ d , where alt is a case alternative, is a pair (d′, branch), where branch is the
Switch branch compiled in environment ρ. The code assumes that the first d slots of
the frame are occupied, and it uses slots (d + 1 . . . d′).

E [[<t> x1 . . . xn -> body ]] ρ d = (d′, t -> (ismoves ++ isbody))
where ismoves = [Move (d + 1) (Data 1),

. . . ,
Move (d + n) (Data n)]

(d ′, isbody) = R[[e]] ρ′ (d + n)
ρ′ = ρ[x1 �→ Arg (d + 1),

. . . ,
xn �→ Arg (d + n)]

U [[e]] u ρ d is a pair (d ′, am), where am is a TIM addressing mode for expression e
in environment ρ. If the closure addressed by am is entered, it will update slot u of
the current frame with its normal form. The code assumes that the first d slots of the
frame are occupied, and it uses slots (d + 1 . . . d′).

U [[n]] u ρ d = (d , IntConst n) where n is an integer constant
U [[e]] u ρ d = (d′, Code (PushMarker u : is)) otherwise

where (d ′, is) = R[[e]] ρ d

A[[e]] ρ is a TIM addressing mode for expression e in environment ρ.

A[[n]] ρ = IntConst n where n is a number
A[[x ]] ρ = ρ x where x is bound by ρ

I[[d ]] is an indirection addressing mode for frame offset d

I[[d ]] = Code [Enter (Arg d)]

B[[e]] ρ d cont is a pair (d′, is), where is is TIM code which evaluates e in environment ρ,
putting its value (which should be an integer) on top of the value stack, and continuing
with the code sequence cont . The code assumes that the first d slots of the frame are
occupied, and it uses slots (d + 1 . . . d′).

B[[e1 + e2]] ρ d cont = B[[e2]] ρ d1 is1
where (d1, is1) = B[[e1]] ρ d (Op Add : cont)

. . . and similar rules for other arithmetic primitives

B[[n]] ρ d cont = (d , PushV (IntVConst n) : cont) where n is a number
B[[e]] ρ d cont = (d′, Push (Code cont) : is) otherwise

where (d ′, is) = R[[e]] ρ d

Figure 4.8: Final TIM compilation schemes (part 2)
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> module ParGM where
> import Utils
> import Language
> --import GM
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Chapter 5

A Parallel G-machine

5.1 Introduction

In this chapter we develop an abstract machine and compiler for a parallel G-machine. It is
based on a simplified version of the parallel G-machine developed as part of ESPRIT project
415; interested readers are referred to [Kingdon et al 1991] for an easily accessible account. A
general introduction to parallel graph reduction can be found in [Peyton Jones 1989].

5.1.1 Parallel functional programming

Writing parallel imperative programs is hard. Amongst the reasons for this are the following:

• The programmer has to conceive of a parallel algorithm which meets the specification of
the problem.

• The algorithm must be translated into the programming language constructs provided
by the language. This is likely to entail: identification of concurrent tasks, defining the
interfaces between tasks to allow them to synchronise and communicate. Shared data may
need to be especially protected, to prevent more than one task accessing a variable at once.

• The programmer may be responsible for assigning tasks to processors, ensuring that tasks
that need to communicate with one another are assigned to processors that are physically
connected.

• Finally, in systems with no programmer control over the scheduling policy, the programmer
must prove that the collection of concurrent tasks will execute correctly under all possible
interleavings of task operations.

In contrast, when programming in a functional language, only the first of these points applies.
Consider the following (contrived) example program, psum n, which calculates the sum of the
numbers 1 . . . n.

psum n = dsum 1 n;
dsum lo hi = let mid = (lo+hi)/2 in

if (hi==lo) hi ((dsum lo mid)+(dsum (mid+1) hi))
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The dsum function works by dividing the problem into two, roughly equal, parts. It then
combines the two results together to generate the answer. This is a classic divide-and-conquer
algorithm.

Notice that neither of the functions dsum or psum includes any mention of parallel primitives in
the language; so why is psum a parallel algorithm? For comparison, we can write a sequential
algorithm: ssum.

ssum n = if (n==1) 1 (n + ssum (n-1))

This function is a sequential algorithm because its data dependencies are inherently sequential.
In the ssum example, what we mean by this is that the addition in ssum n can only take place
once ssum (n-1) has been evaluated. This in turn can only take place once we have evaluated
ssum (n-2), and so on. We may summarise this distinction as:

A function implements a parallel algorithm whenever it permits the concurrent eval-
uation of two or more sub-expressions of its body.

As with any other programming language, a parallel algorithm is essential. Notice, however, the
contrasts with parallel imperative programming:

• No new language constructs are required to express parallelism, synchronisation or com-
munication. The concurrency is implicit, and new tasks are created dynamically to be
executed by the machine whenever it has spare capacity.

• No special measures are taken to protect data shared between concurrent tasks. For
example, mid is safely shared between the two concurrent tasks in dsum.

• We need no new proof techniques to reason about the parallel programs, as all of the
techniques we use for sequentially executed functional programs still work. We also note
that deadlock can only arise as a result of a self-dependency, such as

letrec a = a+1 in a

Expressions depending on their own value are meaningless, and their non-termination is
the same behaviour as observed in the sequential implementation.

• The results of a program are determinate. It is not possible for the scheduling algorithm
to cause answers to differ between two runs of the same program.

In summary, we suggest that these features allow us to express parallel algorithms conveniently,
without having to solve a large number of low-level problems. Perhaps we can characterise this
as:

A parallel imperative program specifies in detail resource allocation decisions which
a parallel functional program does not even mention.

This means that the machine will have to be able to make resource allocation decisions au-
tomatically. We will pay, with a loss of execution efficiency, whenever these decisions are not
optimal.
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Annotations

The high level of abstraction offered by functional languages places heavy demands on the
compile-time and run-time resource allocators. Rather than leave all resource allocation deci-
sions to the system, we will introduce an annotation, par, which initiates a new parallel thread.
The annotation is a meaning-preserving decoration of the program text; in the case of par it
has the following syntax and meaning:

par E1 E2 = E1 E2

That is: par is a synonym for application. Where it differs is that we intend that the expression
E2 should be evaluated by a concurrent task. As an example we will now rewrite the dsum
function using this annotation:

dsum lo hi = let mid = (lo+hi)/2 in
let add x y = x+y
if (lo==hi) hi (par (add (dsum lo mid))

(dsum (mid+1) hi))

We see that par causes the second argument to + to be evaluated in parallel. The par annotation
can be inserted by the programmer or, in principle, by a clever compiler. Such cleverness is,
however, beyond the scope of this book, so we will assume that the pars have already been
inserted.

5.1.2 Parallel graph reduction

We have seen in this book that graph reduction is a useful implementation technique for se-
quential machines; it will be no surprise that it is also suited to the implementation of parallel
machines. In fact it has a number of benefits:

• There is no sequential concept of program counter; graph reduction is decentralised and
distributed.

• Reductions may take place concurrently in many places in the graph, and the relative
order in which they are scheduled cannot affect the result.

• All communication and synchronisation takes place via the graph.

A parallel model

A task is a sequential computation whose purpose is to reduce a particular sub-graph to WHNF.
At any moment there may be many tasks that are able to run; this collection of sparked tasks
is called the spark pool. A processor in search of work fetches a new task from the spark pool
and executes it. A task can be thought of as a virtual processor.

Initially, there is only one task, whose job is to evaluate the whole program. During its execution,
it will hopefully create new tasks to evaluate expressions that the main task will later need. These
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are placed in the spark pool, so that another processor can pick up the task if it has run out of
work. We call the act of placing a task into the spark pool sparking a child task.

It is useful to consider the interaction between parent and child tasks. In the evaluate-and-die
model of task management there is a lock bit on each graph node. When the bit is on, a task
is executing which will evaluate the node; otherwise the bit is off. When a parent task requires
the value of a sub-graph for which a task has been sparked, there are three cases to consider:

• the child task has not started yet,

• the child task has started, but not stopped yet, or

• the child task has completed.

In the first case, the parent task can evaluate the graph just as if the child task was not there.
Of course this sets the lock bit, so that when an attempt is made to execute the child task
it is immediately discarded. The interesting case is the second one, in which both parent and
child are executing. When this is the situation, the parent task must wait for the child task to
complete before proceeding. We say that the child task is blocking the parent task. In the third
case, the node is now in WHNF and unlocked, so the parent task will not take very long to fetch
the value of the graph.

The advantage of the evaluate-and-die model is that blocking only occurs when the parent and
child actually collide. In all other cases, the parent’s execution continues unhindered. Notice
that the blocking mechanism is the only form of inter-task communication and synchronisation.
Once a piece of graph has been evaluated to WHNF any number of tasks can simultaneously
inspect it without contention.

An example

We begin with a sample execution of the simplest parallel program:

main = par I (I 3)

As we will shortly see, the two reductions of the identity function can take place in parallel.

A good compiler will produce the following code for the main supercombinator1:

e1 ++ par
where e1 = [Pushint 3, Pushglobal "I", Mkap, Push 0]

par = [Par, Pushglobal "I", Mkap, Update 0, Pop 0, Unwind]

Initially, there is only one task executing; it is constructing the sub-expression (I 3). After
executing the code sequence e1, the machine will be in the state shown in diagram (a) of
Figure 5.1.

After executing e1 the machine encounters a Par instruction. This causes it to create a new
task to evaluate the node pointed to from the top of the stack. We will refer to the new task as

1Your compiler might not produce this code if it is not sophisticated enough.
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Figure 5.2: State after Task 1 executes [Pushglobal I, Mkap]

Task 2; the original task will be labelled Task 1. This situation is illustrated in diagram (b) of
Figure 5.1.

In diagram (c) (Figure 5.2), we see Task 1 continuing with its evaluation; it is performing a
Pushglobal I instruction. The newly created task – Task 2 – starts with the code sequence:
[Unwind]; it therefore starts to unwind the graph it has been assigned to evaluate. Diagram
(d) shows Task 1 completing the instantiation of the body of main, and Task 2 completing its
unwinding.

Its body instantiated, Task 1 overwrites the redex node, which is main. Task 2 performs a
Push 0 instruction, this being the first instruction in the code for the I supercombinator. This
is shown in diagram (e) (Figure 5.3). In diagram (f) we see Task 1 commence unwinding its
spine, whilst Task 2 performs its updating.

In Figure 5.4, we see Task 2 run to completion. The remainder of the execution of Task 1 is
the same as the sequential G-machine, so we omit it.

This concludes a brief overview of the parallel G-machine’s execution with concurrent tasks. We
now provide a minimal parallel G-machine.
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Figure 5.4: State after Task 1 executes [Unwind, Unwind]

5.2 Mark 1: A minimal parallel G-machine

The first machine we present can be based on any of the G-machines from Chapter 3, except
the Mark 1; we need this restriction to ensure that updating is done. To this basic machine we
need to add the machinery for parallelism. We make the following basic assumptions.

1. There is a shared global graph, which all processors can access.

2. There are an infinite number of processors. This means that there is always a processor
available to execute a task.

3. There is no locking of graph nodes. This means that it is possible that different tasks will
re-evaluate the same expression.

5.2.1 Data type definitions

We will be making considerable use of state access functions in this chapter. Although they are
not particularly interesting, for completeness they are included in this section.
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In a parallel machine the state pgmState is split into two components: a global component,
pgmGlobalState; and a local component, pgmLocalState. The pgmLocalState contains the
processors that will execute the program. The pgmGlobalState contains global data structures
– of which the heap is the most frequently used – that are manipulated by the processors.

> type PgmState = (PgmGlobalState, -- Current global state
> [PgmLocalState]) -- Current states of processors

The global state component

To accommodate all of the possible machines you might use as a basis for your parallel imple-
mentation, the global state consists of five components: gmOutput, which is the output printed
as the answer to the evaluation of the program; gmHeap, which is the heap; gmGlobals, which is
used to point to the unique node in the heap for each supercombinator; gmSparks, which is the
task pool and will be used to hold tasks before we begin to execute them; and gmStats, which
is a global clock.

> type PgmGlobalState = (GmOutput, -- output stream
> GmHeap, -- Heap of nodes
> GmGlobals, -- Global addresses in heap
> GmSparks, -- Sparked task pool
> GmStats) -- Statistics

We consider each of these components in turn.

• The gmOutput component was introduced in the Mark 6 G-machine (see Section 3.8). It
is used to accumulate the result of executing programs that can generate structured data,
and is simply a string.

> type GmOutput = [Char]

The function to get the gmOutput from a pgmState is pgmGetOutput is:

> pgmGetOutput :: PgmState -> GmOutput
> pgmGetOutput ((o, heap, globals, sparks, stats), locals) = o

• The heap data structure is the same as we used for the sequential G-machine.

> type GmHeap = Heap Node

To get the heap from a pgmState we use pgmGetHeap.

> pgmGetHeap :: PgmState -> GmHeap
> pgmGetHeap ((o, heap, globals, sparks, stats), locals) = heap
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• The addresses of global nodes in the heap are stored in gmGlobals; this too is the same
structure we used in the sequential G-machine.

> type GmGlobals = ASSOC Name Addr

Obtaining the gmGlobals from a pgmState is performed using the pgmGetGlobals func-
tion.

> pgmGetGlobals :: PgmState -> GmGlobals
> pgmGetGlobals ((o, heap, globals, sparks, stats), locals) = globals

• The spark pool is represented by the gmSparks component. It holds the addresses of nodes
in the graph which have been marked by the par annotation as needing to be evaluated
concurrently.

> type GmSparks = [Addr]

Access to this component is achieved by using the function pgmGetSparks.

> pgmGetSparks :: PgmState -> GmSparks
> pgmGetSparks ((o, heap, globals, sparks, stats), locals) = sparks

• Finally, in the parallel G-machine we will hold the accumulated statistics in the global
component. It is represented as a list of numbers; these detail how long each task in the
machine ran for, before it completed.

> type GmStats = [Int]

Access to this component is accomplished using pgmGetStats.

> pgmGetStats :: PgmState -> GmStats
> pgmGetStats ((o, heap, globals, sparks, stats), locals) = stats

The local state component

The local component of the parallel G-machine consists of a list of processors; a processor is
represented as a task. Again, to make the parallel machine capable of executing with any
G-machine as its basis, we make the state of each processor a 5-tuple:

> type PgmLocalState = (GmCode, -- Instruction stream
> GmStack, -- Pointer stack
> GmDump, -- Stack of dump items
> GmVStack, -- Value stack
> GmClock) -- Number of ticks the task
> -- has been active

We now consider each component in turn.
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• The code sequence is simply a list of instructions.

> type GmCode = [Instruction]

• As in the sequential G-machine, the stack is a list of addresses in heap.

> type GmStack = [Addr]

• If you are using a Mark 4 G-machine (or any later mark) as a basis for your parallel
implementation, then a dump is needed. This is used as a stack of dump items, each of
type gmDumpItem.

> type GmDump = [GmDumpItem]
> type GmDumpItem = (GmCode, GmStack)

• If you have used the Mark 7 G-machine as the basis of your implementation you will need
a V-stack for each processor.

> type GmVStack = [Int]

• We also provide each processor with a clock. This records how many instructions the task
has executed:

> type GmClock = Int

State access functions

Although we have already defined some state access functions for the parallel machine, we will
find it convenient to define a few more. Each processor will make one state transition, during
which it behaves as if it were a sequential machine. If we make the state gmState a pair consisting
of the global component of the current machine state and a single processor state, then we have
a superset of the state components of any of the sequential G-machines.

> type GmState = (PgmGlobalState, PgmLocalState)

It follows that we can simply redefine the state access functions we used in the sequential machine
to work with the new type of state. Here are the type signatures of the global put functions:

> putOutput :: GmOutput -> GmState -> GmState
> putHeap :: GmHeap -> GmState -> GmState
> putSparks :: GmSparks -> GmState -> GmState
> putStats :: GmStats -> GmState -> GmState

The corresponding get functions have type-signatures:
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> getOutput :: GmState -> GmOutput
> getHeap :: GmState -> GmHeap
> getGlobals :: GmState -> GmGlobals
> getSparks :: GmState -> GmSparks
> getStats :: GmState -> GmStats

For access to the components local to a processor we need put functions with the following
type-signatures:

> putCode :: GmCode -> GmState -> GmState
> putStack :: GmStack -> GmState -> GmState
> putDump :: GmDump -> GmState -> GmState
> putVStack :: GmVStack -> GmState -> GmState
> putClock :: GmClock -> GmState -> GmState

The get functions have types:

> getCode :: GmState -> GmCode
> getStack :: GmState -> GmStack
> getDump :: GmState -> GmDump
> getVStack :: GmState -> GmVStack
> getClock :: GmState -> GmClock

Exercise 5.1. Write the access functions with the types given above.

GOT HERE ZZZZ KH

5.2.2 The evaluator

The structure of the evaluator eval will be familiar; it is the similar to the one used in the
G-machine.

> eval :: PgmState -> [PgmState]
> eval state = state: restStates
> where
> restStates | gmFinal state = []
> | otherwise = eval (doAdmin (steps state))

The difference is that we call steps instead of step. The steps function must run down the
list of processors doing a single step on each. The precise sequence of events is:

1. First we extract the addresses that were sparked in the previous call to steps, from the
state.

2. Next, we turn them into processes. This is labelled newtasks.
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3. The spark pool component of the state is set to empty.

4. We increment the clock for each processor that is about to execute.

5. Finally, we use mapAccuml to perform a sequence of step transitions, one for each processor.

> steps :: PgmState -> PgmState
> steps state
> = mapAccuml step global’ local’
> where ((out, heap, globals, sparks, stats), local) = state
> newtasks = [makeTask a | a <- sparks]
> global’ = (out, heap, globals, [], stats)
> local’ = map tick (local ++ newtasks)

To create a task to evaluate a node at address addr you must define a makeTask function. For
machines based on G-machines 2 or 3 this will be:

> makeTask :: Addr -> PgmLocalState
> makeTask addr = ([Unwind], [addr], [], [], 0)

For later marks of the G-machine we use:

> makeTask addr = ([Eval], [addr], [], [], 0)

Incrementing the clock component of a processor is accomplished using tick.

> tick (i, stack, dump, vstack, clock) = (i, stack, dump, vstack, clock+1)

The machine has terminated when there are no more sparks in the spark pool, and there are no
more processors executing tasks.

> gmFinal :: PgmState -> Bool
> gmFinal s = second s == [] && pgmGetSparks s == []

We use the step function to perform a single step on a processor.

> step :: PgmGlobalState -> PgmLocalState -> GmState
> step global local = dispatch i (putCode is state)
> where (i:is) = getCode state
> state = (global, local)

The doAdmin function eliminates processors that have finished executing. A processor has fin-
ished when the code component is empty. When this is the case, we must update the statistics
component of the state, with the number of instructions it took the processor to complete its
task.
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> doAdmin :: PgmState -> PgmState
> doAdmin ((out, heap, globals, sparks, stats), local)
> = ((out, heap, globals, sparks, stats’), local’)
> where (local’, stats’) = foldr filter ([], stats) local
> filter (i, stack, dump, vstack, clock) (local, stats)
> | i == [] = (local, clock:stats)
> | otherwise = ((i, stack, dump, vstack, clock): local, stats)

We now consider the new instruction transitions.

The transition for the Par instruction

The only new instruction that must be added is Par. Its effect is to mark the node at the top of
the stack so that the machine may create a task to evaluate the node to WHNF. To do this, the
instruction must modify the global component of the state by adding the address of the node
to the spark pool.

(5.1)
〈h m t 〉 〈Par : i a : s〉

=⇒ 〈h m a : t〉 〈 i s〉

The first tuple – consisting of h, m and t – is the global state component, with h, m and t being
the heap, global address map and spark pool respectively. The second tuple – consisting of an
instruction stream and a stack – is a particular task’s local state; depending on the version of
the G-machine you have used as a basis you may need to add other components to the local
state.

The effect of Par is to add the address a to the spark pool. It is implemented as follows:

> par :: GmState -> GmState
> par s = s

Exercise 5.2. Modify showInstruction, dispatch and instruction so that Par is correctly handled.

5.2.3 Compiling a program

A simple compiler can be constructed for a parallel machine based on any of the sequential
machines (except the Mark 7), by providing a compiled primitive for the par function. More
extensive modifications are required for the Mark 7 based machines.

The other modification required lies in the compile function, where the various components are
now to be found in different locations, and of course there are now a number of processors. The
new definition is:

> compile :: CoreProgram -> PgmState
> compile program
> = (([], heap, globals, [], []), [initialTask addr])
> where (heap, globals) = buildInitialHeap program
> addr = aLookup globals "main" (error "main undefined")
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This sets the global component to hold the heap and global map, as used in the sequential
G-machine. We also place a task in the local component, to initiate the execution.

> initialTask :: Addr -> PgmLocalState
> initialTask addr = (initialCode, [addr], [], [], 0)

If you use the Mark 2 or Mark 3 sequential G-machine as a basis you need to define initialCode
as:

> initialCode :: GmCode
> initialCode = [Unwind]

For the Mark 4 or Mar 5 machine this is changed to:

> initialCode = [Eval]

And, to deal with data structures, the Mark 6 and Mark 7 machine has the following
initialCode:

> initialCode = [Eval, Print]

We now consider how to add par to the primitive functions of the machine. We begin by
considering those machines based on sequential G-machines Marks 2 through to 6.

Using the Marks 2–6 G-machine as a basis

We need to include the following in the definition of compiledPrimitives:

> ("par", 2, [Push 1, Push 1, Mkap, Push 2, Par, Update 2, Pop 2, Unwind])

This rather cryptic piece of code performs the following task when the function par is applied
to the two arguments: E1 and E2.

1. First we construct the application of E1 to E2; this is the job of the sequence:

[Push 1, Push 1, Mkap]

2. Next, Push 2 makes a copy of the pointer to E2. The Par instruction then adds this
address to the spark pool.

3. Finally, we perform the usual updating and tidying-up after an instantiation.
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Using the Mark 7 G-machine as a basis

As mentioned above, this is a slightly trickier operation. We need to modify the compiler
functions compileR and compileE to recognise the special cases involving par. First compileR
needs the following case added:

> compileR (EAp (EAp (EVar "par") e1) e2) args
> = compileC e2 args ++ [Push 0, Par] ++
> compileC e1 (argOffset 1 args) ++ [Mkap, Update n, Pop n, Unwind]
> where n = #args

This uses the C scheme to compile e2, which is then sparked. The expression e1 is compiled
using the C scheme, before we make the application node. Finally, we perform the updating and
tidying-up of the stack.

Next, we modify compileE so that it has a case:

> compileE (EAp (EAp (EVar "par") e1) e2) args
> = compileC e2 args ++ [Push 0, Par] ++
> compileC e1 (argOffset 1 args) ++ [Mkap, Eval]

This only differs from the case given for compileR because it uses Eval to force the application
node that is created to WHNF.

With these two modifications to the compiler, it suffices to add the following to the primitives:

> ("par", ["x","y"], (EAp (EAp (EVar "par") (EVar "x")) (EVar "y")))

Notice that we could use this approach with the Mark 5 or Mark 6 based machines.

Exercise 5.3. Make the modifications to your compiler, so that there is a par function defined.

Exercise 5.4. Why do we perform the sparking of the graph for the second argument before constructing
the first argument in the special cases for
compileR and compileE?

5.2.4 Printing the results

Once we have computed the states of the machine we control the display of them by using
showResults. This prints out: the code for the supercombinators, the state transitions and the
statistics. It has type:

> showResults :: [PgmState] -> [Char]

To print the supercombinator code we use the same showSC functions as that for the G-machine;
it has type:

> showSC :: PgmState -> (Name, Addr) -> Iseq
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The function showState is used to display the state of local processes during the transitions.
Because we have a parallel machine there is now likely to be more than one task executing at
once. It has type:

> showState :: PgmState -> Iseq

Two other functions need to be modified: showStats and showOutput. They have types:

> showStats :: PgmState -> Iseq
> showOutput :: GmOutput -> Iseq

Exercise 5.5. Modify the functions: showResults, showSC, showState, showStats and showOutput.
Define a new display function showSparks with type:

> showSparks :: GmSparks -> Iseq

Exercise 5.6. Try running the parallel G-machine on the following program.

main = par (S K K) (S K K 3)

How long does it take in machine cycles? How long does it take for the equivalent sequential
program:

main = S K K (S K K 3)

Exercise 5.7. What happens when we run the program:

main = par I (I 3)

Is the use of par justified in this program?

5.3 Mark 2: The evaluate-and-die model

A problem with the Mark 1 machine is that it risks creating many tasks to reduce the same
node in the heap, thereby duplicating the work done by the machine. The way to prevent this
is to lock the nodes during unwinding. This will block any other task that encounters the same
node. We must also remember to unlock nodes once they become free again; this allows blocked
tasks to resume.

The only instruction that causes an unlocked node to become locked is Unwind; it does this
to each node on the spine that it encounters. The reason we choose this instruction, rather
than Eval, is that it is possible to encounter a locked node part way through unlocking a spine;
using Eval we would not catch this case. Similarly, the only instruction that will block a task
is Unwind. After all, it is the only instruction that needs to inspect a node’s value.

Conversely, the only instruction that will unlock a locked node is Update. A previously locked
node is unlocked when it is known to be in WHNF. But we know that all nodes in the spine
below the redex are in WHNF, when we are about to update the redex, and hence we should
unlock all nodes below the root of the redex.
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5.3.1 The node data structure

The improvements we intend to incorporate require very few changes to be made to the machine’s
data structures. First, we must add two sorts of new nodes to the node data type: these will be
NLAp, the locked application nodes; and NLGlobal, locked supercombinator nodes. We will see
how they are used in the section on the new instruction transitions.

> data Node = NNum Int -- Numbers
> | NAp Addr Addr -- Applications
> | NGlobal Int GmCode -- Globals
> | NInd Addr -- Indirections
> | NConstr Int [Addr] -- Constructors
> | NLAp Addr Addr -- Locked applications
> | NLGlobal Int GmCode -- Locked globals

Exercise 5.8. Rewrite the showNode function to deal with the new locked nodes.

5.3.2 The instruction set

The only change that needs to be made is to lock and unlock nodes at the right places. We must
lock application nodes and supercombinators with zero arguments as we unwind them. When a
node is updated all of the nodes in the spine below it must be unlocked. We use two functions
to perform locking and unlocking of heap nodes. The lock function turns an unlocked, but
possibly updatable, node into a locked one. The nodes that need to be locked are application
nodes, and global nodes with no arguments.

> lock :: Addr -> GmState -> GmState
> lock addr state
> = putHeap (newHeap (hLookup heap addr)) state
> where
> heap = getHeap state
> newHeap (NAp a1 a2) = hUpdate heap addr (NLAp a1 a2)
> newHeap (NGlobal n c) | n == 0 = hUpdate heap addr (NLGlobal n c)
> | otherwise = heap

When we unlock a locked application node we need to ensure that the spine that it points to is
also unlocked; unlock is therefore recursive.

> unlock :: Addr -> GmState -> GmState
> unlock addr state
> = newState (hLookup heap addr)
> where
> heap = getHeap state
> newState (NLAp a1 a2)
> = unlock a1 (putHeap (hUpdate heap addr (NAp a1 a2)) state)
> newState (NLGlobal n c)

218



> = putHeap (hUpdate heap addr (NGlobal n c)) state
> newState n = state

The new step transitions for Unwind and Update should be defined in terms of lock and unlock;
these transitions are now defined. In the Rule 5.2, we see that apart from locking the application
node – which is represented by *NAp – Unwind has the same transition as it did in the Mark 1
machine.

(5.2)
〈h[a : NAp a1 a2] m t〉 〈[Unwind] a : s〉

=⇒ 〈h[a : *NAp a1 a2] m t〉 〈[Unwind] a1 : a : s〉

The same is also true of the transition rule for Unwind when it has a supercombinator of arity
zero on top of the stack. In this case *NGlobal is a locked global node.

(5.3)
〈h[a : NGlobal 0 c] m t〉 〈[Unwind] a : s〉

=⇒ 〈h[a : *NGlobal 0 c] m t〉 〈 c a : s〉

In the new transition rule for Update, when we update the root of the redex, whose address is a,
we must unlock all of the nodes in the spine descending from a. The transition rule is therefore:

(5.4)

〈h



a ′
1 : NGlobal n c
a ′
2 : *NAp a ′

1 a1
· · ·

a ′
n−1 : *NAp a ′

n−2 an−2
an : *NAp a ′

n−1 an−1


 m t〉 〈Update n : i a : a1 : . . . : an : s〉

=⇒ 〈h



a ′
1 : NGlobal n c
a ′
2 : NAp a ′

1 a1
· · ·

a ′
n−1 : NAp a ′

n−2 an−2
an : NInd a


 m t〉 〈 i a1 : . . . : an : s〉

Exercise 5.9. Modify the definitions of the transition functions unwind and update. You should use
the lock and unlock functions in your code.
You will also need to ‘look through’ locked nodes on rearranging the stack, so getArg becomes:

> getArg (NLAp a1 a2) = a2

Exercise 5.10. Try running this program on your machine:

main = twice’ (twice’ (twice’ (S K K))) 3
twice’ f x = par f (f x)

Exercise 5.11. A divide-and-conquer program executes a par instruction in each running process every
thirty instructions. The processes do not die. How many simulated clock ticks pass before we have
one task for each electron in the universe? (Hint: there are approximately 1085 electrons in the
universe.)

Exercise 5.12. If a processor costs £0.01, how long can the program of Exercise 5.11 run before nobody
can afford the machine? (Hint: the US federal budget is approximately £5× 1012.)

219



5.4 Mark 3: A realistic parallel G-machine

As Exercises 5.11 and 5.12 will have shown there are physical and economic limitations to the
amount of parallelism available in the real world. The model of parallelism that we are using is
not very realistic. We are creating a new processor to execute each parallel task, and in the real
world we will very quickly run out of resources.

5.4.1 Scheduling policy

A more realistic model must involve restricting the amount of parallelism to that provided by
the hardware. This is easily accomplished by placing an upper limit on the number of processors
that can run at any one time. As a consequence, whenever there are no processors available to
execute a task, the task will remain unchanged.

When there are more processors than tasks, some processors will be idle. On the other hand,
when the reverse is the case, we will be faced with the problem of deciding which task we will
execute next. This decision is called a scheduling policy.

5.4.2 Conservative and speculative parallelism

Some tasks will be more important than others. We can usefully classify tasks into one of two
groups:

• tasks whose results will definitely be needed; and

• tasks whose results may be needed.

We refer to tasks in the first category as conservative tasks, whilst those in the second are termed
speculative tasks.

If we choose to allow speculative parallel tasks, then we must address issues of priority in
scheduling tasks. That is: we must rank the tasks in order of importance. We must also allow
different tasks with the same priority the same amount of computing time. To see why this is
desirable, consider evaluating two branches of a case expression – e1 and e2 – in parallel with
the evaluation of the discriminant expression e0.

case e0 of
<1> -> e1
<2> -> e2

Until e0 has completed its evaluation, we do not know which of e1 or e2 will be required; it
therefore makes sense to try to evaluate an equal amount of each. This sort of scheduling policy
is termed fair scheduling. Notice, in this example, that once e0 has completed, one of the tasks
(e1 or e2) will become needed, and the other should be killed. The priorities of a task therefore
need to be adjusted during the execution of a task.

In this book we make no attempt to implement a machine suitable for speculative parallelism.
We make the excuse that this is a ‘hard problem’, and leave the matter alone. Henceforth, all
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uses of the par primitive are assumed to occur in situations which give rise only to conservative
parallelism.

In the Mark 3 parallel G-machine, we will only have a limited number of active tasks within
the machine. These are executed by the processors in the machine. There will be only a fixed
number of processors. This fixed number is: machineSize, which we have currently set to 4.

> machineSize :: Int
> machineSize = 4

The major change to the evaluator lies in the steps function, which does not just add all of the
tasks that were created into the machine. Instead it now uses scheduler to pick replacement
tasks for any task that cannot proceed.

1. First, we extract the sparks in the task pool from the global state component.

2. New tasks are then created for the sparks, and are added to the already executing tasks.

3. The scheduler function then selects which tasks to execute.

Here is the way we code steps:

> steps :: PgmState -> PgmState
> steps state
> = scheduler global’ local’
> where ((out, heap, globals, sparks, stats), local) = state
> newtasks = [makeTask a | a <- sparks]
> global’ = (out, heap, globals, [], stats)
> local’ = local ++ newtasks

The scheduling policy is very simple: we select the first machineSize tasks and run them. These
tasks are then placed at the end of the scheduling queue. This scheduling policy is usually called
a round-robin scheduling policy.

> scheduler :: PgmGlobalState -> [PgmLocalState] -> PgmState
> scheduler global tasks
> = (global’, nonRunning ++ tasks’)
> where running = map tick (take machineSize tasks)
> nonRunning = drop machineSize tasks
> (global’, tasks’) = mapAccuml step global running

Exercise 5.13. What happens if the tasks that are executed are not placed at the end of the scheduling
queue for the next step. (Hint: try it!)

Exercise 5.14. One improvement we can make is to create tasks from the spark pool only when there
are idle processors. Modify steps to do this.
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Exercise 5.15. Another improvement is only to schedule tasks that can proceed. At the moment we
schedule tasks to evaluate nodes that are already in WHNF. We also schedule tasks that are blocked
because they are attempting to unwind locked nodes. Modify scheduler so that this no longer
happens.

Exercise 5.16. Investigate the use of other scheduling strategies. For example, try scheduling the last
task in the task pool.
Does the scheduling strategy make any difference to the execution time of the program?

5.5 Mark 4: A better way to handle blocking

So far we have left blocked tasks in the machine’s local state, and required the scheduler
function to select runnable tasks. This means that the scheduler function may have to skip
over a considerable number of blocked tasks before coming across one that it can run.

We can do better than this! It would be a much better idea to attach a blocked task to the
node That caused it to block. Because a locked node can cause an arbitrary number of tasks
to block, we will need to allow a list of tasks to be placed on the locked node. We call this the
pending list.

How do we use the pending list?

1. When a node is locked, it has its pending list set to [].

2. When a task encounters a locked node, the task places itself on the pending list of the
locked node.

3. When a locked node is unlocked, all of the tasks in its pending list become runnable, and
are transferred to the machine’s local state.

To implement the Mark 4 machine we must make the following changes to the data structures
of the machine.

5.5.1 Data structures

First, each locked node must now have a pending list; this means that the node data type is
now:

> data Node = NNum Int -- Numbers
> | NAp Addr Addr -- Applications
> | NGlobal Int GmCode -- Globals
> | NInd Addr -- Indirections
> | NConstr Int [Addr] -- Constructors
> | NLAp Addr Addr PgmPendingList -- Locked applications
> | NLGlobal Int GmCode PgmPendingList -- Locked globals

A pending list is just a list of tasks. The tasks in a locked node’s pending list will be those that
have been blocked on the locked node.
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> type PgmPendingList = [PgmLocalState]

Exercise 5.17. Modify showNode to work with the new definition of node.

The other change is to the type of gmSparks. Instead of being a list of addresses – as it was in
previous parallel G-machines – this is now a list of tasks.

> type GmSparks = [PgmLocalState]

Exercise 5.18. Modify the par transition so that it places tasks into the spark pool and not addresses.
You should modify showSparks function to print the number of tasks in the spark pool, and the
steps function will need to be modified because it no longer needs to turn items in the spark pool
into tasks.

5.5.2 Locking and unlocking

We have been building up to a new way to handle locking and unlocking of nodes. Let us first
consider what happens when a locked node is about to be updated. The Update instruction will
be implemented using a call to unlock. Each node in the spine of the expression about to be
overwritten will need to have the tasks in its pending list transferred to the spark pool. To do
this we define the following function that transfers tasks to the spark pool:

> emptyPendingList :: [PgmLocalState] -> GmState -> GmState
> emptyPendingList tasks state
> = putSparks (tasks ++ getSparks state) state

Exercise 5.19. Modify the unlock function so that it empties the tasks in the pending lists into the
spark pool.

The locking operation occurs as part of the Unwind instruction. As previously, we use the lock
function to perform the locking operation. Now it must give each newly locked node an empty
pending list.

Exercise 5.20. Modify the lock function so that it gives locked nodes an empty pending list.

Finally, we discuss what happens when a task attempts to unwind a locked node. Clearly, we
place the task onto the node’s pending list. But what do we replace the task with? Remember
that the type of step is:

> step :: gmState -> gmState

The solution we have adopted is to replace the task with an emptyTask:

> emptyTask :: PgmLocalState
> emptyTask = ([], [], [], [], 0)
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So we need two new transitions for Unwind. We begin with the one for locked application nodes,
in which we see that the task is placed on the node’s pending list and we see that the task is
replaced by the emptyTask.

(5.5)
〈h[a : *NAp a1 a2 pl ] m t〉 〈[Unwind] a : s〉

=⇒ 〈h[a : *NAp a1 a2 〈[Unwind], a : s〉 : pl ] m t〉 emptyTask

The rule for locked global nodes is similar: we see that the task is placed onto the node’s pending
list, and is itself replaced by the emptyTask.

(5.6)
〈h[a : *NGlobal 0 c pl ] m t〉 〈[Unwind] a : s〉

=⇒ 〈h[a : *NGlobal 0 c 〈[Unwind], a : s〉 : pl ] m t〉 emptyTask

Exercise 5.21. Modify the unwind function to implement the new transitions for the Unwind instruction.
You will also need to make the getArg function:

> getArg (NLAp a1 a2 pl) = a2

Exercise 5.22. Modify the scheduler function to place non-running tasks into the spark pool.

Exercise 5.23. Modify the doAdmin function to filter out emptyTask’s from the local state.

5.6 Conclusions

This chapter has shown that, in principle, a shared memory implementation of lazy functional
languages is straightforward. Of course, we have also seen that there are payoffs to be had by
carefully considering optimisations to the simple scheme we used initially in the Mark 1 machine.
In all of our parallel machines, the graph acts as a communication and synchronisation medium;
and in the Mark 2 and Mark 3 machines, individual processes will be blocked when trying to
access locked nodes in the heap.

So where are the current challenges in the parallel implementation of lazy functional languages?
The mechanisms for parallelism included in this book do not handle the deletion of processes.
If speculative parallelism is going to be used then realistic implementations will need to deal
with this problem. On the other hand, finding the non-speculative parallelism is often difficult,
and in large programs this may even be intractable. Attempts have been made to use abstract
interpretation for this purpose, and although the results look promising, they should be regarded
tentatively.

One final area that we have not covered is that of distributed memory parallel machines. Again,
in principle they are similar to shared memory machines, but the practicalities are quite different.
Arranging the message passing so as to avoid deadlock is something of a black art.
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Chapter 6

Lambda Lifting

6.1 Introduction

In this chapter1 we will be looking at ways to extend the set of programs that are acceptable to
the machines we have looked at previously in the book. The extension that we introduce is to
allow local function definitions. We are then faced with alternative approaches:

• add a mechanism to the machines to deal with environments; or

• transform the program so that there are no local function definitions; instead all functions
are defined as supercombinators.

In this book we have always assumed that the second approach would be taken.

This chapter is also an appropriate point at which to introduce the concept of full laziness. Again,
this desirable optimisation of functional languages is achieved using a program transformation.

6.2 Improving the expr data type

Before we begin the program proper, we must import the language and utilities modules.

> module Lambda where
> import Utils
> import Language

Unfortunately, the data types defined there (coreExpr, coreProgram and so on) are insufficiently
flexible for our needs in this chapter, so we will attend to this problem first. Many compiler
passes add information to the abstract syntax tree, and we need a systematic way to represent
this information. Examples of analyses which generate this sort of information are: free-variable
analysis, binding level analysis, type inference, strictness analysis and sharing analysis.

1Some of the material in this chapter was first published in [Peyton Jones and Lester 1991].
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The most obvious way to add such information is to add a new constructor for annotations to
the expr data type, thus:

> expr * = EVar name
> | ...
> | EAnnot annotation (expr *)

together with an auxiliary data type for annotations, which can be extended as required:

> annotation ::= FreeVars (set name)
> | Level num

This allows annotations to appear freely throughout the syntax tree, which appears admirably
flexible. In practice, it suffers from two major disadvantages:

• It is easy enough to add annotation information in the form just described, but writing
a compiler pass which uses information placed there by a previous pass is downright
awkward. Suppose, for example, that a pass wishes to use the free-variable information
left at every node of the tree by a previous pass. Presumably this information is attached
immediately above every node, but the data type would permit several annotation nodes to
appear above each node, and worse still none (or more than one) might have a free-variable
annotation.

Even if the programmer is prepared to certify that there is exactly one annotation node
above every tree node, and that it is a free-variable annotation, the implementation will
still perform pattern matching to check these assertions when extracting the annotation.

Both of these problems, namely the requirement for uncheckable programmer assertions
and some implementation overhead, are directly attributable to the fact that every an-
notated tree has the rather uninformative type expr, which says nothing about which
annotations are present.

• The second major problem is that further experimentation reveals that two distinct forms
of annotation are required. The first annotates expressions as above, but the second
annotates the binding occurrences of variables; that is, the occurrences on the left-hand
sides of let(rec) definitions, and the bound variables in lambda abstractions or case
expressions. We will call these occurrences binders. An example of the need to annotate
binders comes in type inference, where the compiler infers a type for each binder, as well
as for each sub-expression.

It is possible to use the expression annotation to annotate binders, but it is clumsy and
inconvenient to do so.

We will address the second problem first, since it has an easy solution. Recall from Section 1.3
that the expr type was parameterised with respect to the type of its binders; we repeat its
definition here as a reminder:

> expr *
> ::= EVar name || Variables

226



> | ENum num || Numbers
> | EConstr num num || Constructor tag arity
> | EAp (expr *) (expr *) || Applications
> | ELet || Let(rec) expressions
> isRec || boolean with True = recursive,
> [(*, expr *)] || Definitions
> (expr *) || Body of let(rec)
> | ECase || Case expression
> (expr *) || Expression to scrutinise
> [alter *] || Alternatives
> | ELam [*] (expr *) || Lambda abstractions

The type coreExpr is a specialised form of expr in which the binders are of type name. This is
expressed using a type synonym (also repeated from Section 1.3):

> coreExpr == expr name

The advantage of parameterising expr is that we can also define other specialised forms. For
example, typedExpr is a data type in which binders are names annotated with a type:

> typedExpr = expr (name, typeExpr)

where typeExpr is a data type representing type expressions.

Returning to annotations on expressions, we can reuse the same technique by parameterising the
data type of expressions with respect to the annotation type. We want to have an annotation on
every node of the tree, so one possibility would be to add an extra field to every constructor with
the annotation information. This is inconvenient if, for example, you simply want to extract the
free-variable information at the top of a given expression without performing case analysis on
the root node. This leads to the following idea:

each level of the tree is a pair, whose first component is the annotation, and whose
second component is the abstract syntax tree node.

Here are the corresponding Miranda data type definitions:

> type AnnExpr a b = (b, AnnExpr’ a b)

> data AnnExpr’ a b = AVar Name
> | ANum Int
> | AConstr Int Int
> | AAp (AnnExpr a b) (AnnExpr a b)
> | ALet Bool [AnnDefn a b] (AnnExpr a b)
> | ACase (AnnExpr a b) [AnnAlt a b]
> | ALam [a] (AnnExpr a b)
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> type AnnDefn a b = (a, AnnExpr a b)

> type AnnAlt a b = (Int, [a], (AnnExpr a b))

> type AnnProgram a b = [(Name, [a], AnnExpr a b)]

Notice the way that the mutual recursion between annExpr and annExpr’ ensures that every
node in the tree carries an annotation. The sort of annotations carried by an expression are
now manifested in the type of the expression. For example, an expression annotated with free
variables has type annExpr name (set name).

It is a real annoyance that annExpr’ and expr have to define two essentially identical sets of
constructors. There appears to be no way around this within the Hindley-Milner type system. It
would be possible to abandon the expr type altogether, because the expr * is nearly isomorphic
to annExpr * **, but there are two reasons why we choose not to do this. Firstly, the two types
are not quite isomorphic, because the latter distinguishes ((), ⊥ ) from ⊥ while the former
does not. Secondly (and more seriously), it is very tiresome to write all the ()’s when building
and pattern matching on trees of type annExpr * **.

This completes our development of the central data type. The discussion has revealed some
of the strengths, and a weakness, of the algebraic data types provided by modern functional
programming languages.

Exercise 6.1. Our present pretty-printing function, pprint, defined in Section 1.5, is only able to print
corePrograms. In order to print out intermediate stages in the lambda lifter we will need a
function pprintGen which can display values of type program *. (The ‘Gen’ is short for ‘generic’.)
pprintGen needs an extra argument to tell it how to print the binders:

> pprintGen :: (* -> iseq) || function from binders to iseq
> -> program * || the program to be formatted
> -> [char] || result string

For example, once we have written pprintGen we can define pprint in terms of it:

> pprint prog = pprintGen iStr prog

Write a definition for pprintGen, and its associated functions pprExprGen, and so on.

Exercise 6.2. Do a similar job for printing values of type annProgram * **. Here you will need two
extra arguments, one for formatting the binders and one for formatting the annotations:

> pprintAnn :: (* -> iseq) || function from binders to iseq
> -> (** -> iseq) || function from annotations to iseq
> -> annProgram * ** || program to be displayed
> -> [char] || result string

Write a definition for pprintAnn and its associated auxiliary functions.
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6.3 Mark 1: A simple lambda lifter

Any implementation of a lexically scoped programming language has to cope with the fac-
t that a function or procedure may have free variables. Unless these are removed in some
way, an environment-based implementation has to manipulate linked environment frames, and
a reduction-based system is made significantly more complex by the need to perform renaming
during substitution. A popular way of avoiding these problems, especially in graph reduction
implementations, is to eliminate all free variables from function definitions by means of a trans-
formation known as lambda lifting. Lambda lifting is a term coined by [Johnsson 1985], but the
transformation was independently developed by [Hughes 1983].

In our context, lambda lifting transforms a Core-language program into an equivalent one in
which there are no embedded lambda abstractions. To take a simple example, consider the
program

f x = let g = \y. x*x + y in (g 3 + g 4)
main = f 6

The \y abstraction can be removed by defining a new supercombinator $g which takes x as an
extra parameter, but whose body is the offending abstraction, and replacing the \y abstraction
with an application of $g, giving the following set of supercombinator definitions:

$g x y = x*x + y
f x = let g = $g x in (g 3 + g 4)
main = f 6

How did we decide to make just x into the extra parameter to $g? We did it because x is a free
variable of the abstraction \y. x*x + y:

Definition. An occurrence of a variable v in an expression e is said to be free in e
if the occurrence is not bound by an enclosing lambda or let(rec) expression in e.

On the other hand, y is not free in (\y. x*x + y), because its occurrence is in the scope of an
enclosing lambda abstraction which binds it.

Matters are no more complicated when recursion is involved. Suppose that g was recursive,
thus:

f x = letrec g = \y. cons (x*y) (g y) in g 3
main = f 6

Now x and g are both free in the \y abstraction, so the lambda lifter will make them both into
extra parameters of $g, producing the following set of supercombinators:

$g g x y = cons (x*y) (g y)
f x = letrec g = $g g x in g 3
main = f 6
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Notice that the definition of g is still recursive, but the lambda lifter has eliminated the local
lambda abstraction. The program is now directly implementable by most compiler back ends;
and in particular by all of the abstract machines in this book.

There one final gloss to add: there is no need to treat other top-level functions as extra param-
eters. For example, consider the program

h p q = p*q
f x = let g = \y. (h x x) + y in (g 3 + g 4)
main = f 6

Here we do not want to treat h as a free variable of the \y abstraction, because it is a constant
which can be referred to directly from the body of the new $g supercombinator. The same
applies, of course, to the + and * functions! In short, only supercombinator arguments, and
variables bound by lambda abstractions or let(rec) expressions, are candidates for being free
variables.

It is worth noting in passing that the lexical-scoping issue is not restricted to functional lan-
guages. For example, Pascal allows a function to be declared locally within another function,
and the inner function may have free variables bound by the outer scope. On the other hand,
the C language does not permit such local definitions. In the absence of side effects, it is simple
to make a local function definition into a global one: all we need do is add the free variables as
extra parameters, and add these parameters to every call. This is exactly what lambda lifting
does.

6.3.1 Implementing a simple lambda lifter

We are now ready to develop a simple lambda lifter. It will take a coreProgram and return an
equivalent coreProgram in which there are no occurrences of the ELam constructor.

> lambdaLift :: CoreProgram -> CoreProgram

The lambda lifter works in three passes:

• First, we annotate every node in the expression with its free variables. This is used by
the following pass to decide which extra parameters to add to a lambda abstraction. The
freeVars function has type

> freeVars :: CoreProgram -> AnnProgram Name (Set Name)

The type set * is a standard abstract data type for sets, whose definition is given in
Appendix A.4.

• Second, the function abstract abstracts from each lambda abstraction \x1 . . . xn.e its free
variables v1 . . . vm , replacing the lambda abstraction with an expression of the form

(let sc = \v1 . . . vm x1 . . . xn. e in sc) v1 . . . vm

We could use a direct application of the lambda abstraction to the free variables, but we
need to give the new supercombinator a name, so we take the first step here by always
giving it the name sc. For example, the lambda abstraction
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(\x. y*x + y*z)

would be transformed to

(let sc = (\y z x. y*x + y*z) in sc) y z

abstract has the type signature:

> abstract :: AnnProgram Name (Set Name) -> CoreProgram

Notice, from the type signature, that abstract removes the free variable information,
which is no longer required.

• Now we traverse the program giving a unique name to each variable. This will have the
effect of making unique all the sc variables introduced by the previous pass. Indeed, the
sole purpose of introducing the extra let expressions in the first place was to give each
supercombinator a name which could then be made unique. As a side effect, all other
names in the program will be make unique, but this does not matter, and it will turn out
to be useful later.

> rename :: CoreProgram -> CoreProgram

• Finally, collectSCs collects all the supercombinator definitions into a single list, and
places them at the top level of the program.

> collectSCs :: CoreProgram -> CoreProgram

The lambda lifter itself is the composition of these three functions:

> lambdaLift = collectSCs . rename . abstract . freeVars

To make it easier to see what is happening we define the a function runS (the ‘S’ stands for
‘simple’) to integrate the parser and printer:

> runS = pprint . lambdaLift . parse

It would of course be possible to do all the work in a single pass, but the modularity provided
by separating them has a number of advantages: each individual pass is easier to understand,
the passes may be reusable (for example, we reuse freeVars below) and modularity makes it
easier to change the algorithm somewhat.

As an example of the final point, some compilers are able to generate better code by omitting the
collectSCs pass, because more is then known about the context in which the supercombinator
is applied [Peyton Jones 1991]. For example, consider the following expression, which might be
produced by the abstract pass:

let f = (\v x. v-x) v
in ...f...f...
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Here abstract has removed v as a free variable from the \x abstraction2. Rather than compiling
the supercombinator independently of its context, a compiler could construct a closure for f,
whose code accesses v directly from the closure and x from the stack. The calls to f thus do
not have to move v onto the stack. The more free variables there are the more beneficial this
becomes. Nor do the calls to f become less efficient because the definition is a local one; the
compiler can see the binding for f and can jump directly to its code.

In the following sections we give definitions for each of these passes. We omit the equations for
case expressions, which appear as Exercise 6.4.

6.3.2 Free variables

The core of the free-variable pass is function freeVars_e which has type

> freeVars_e :: (Set Name) -- Candidates for free variables
> -> CoreExpr -- Expression to annotate
> -> AnnExpr Name (Set Name) -- Annotated result

Its first argument is the set of local variables which are in scope; these are the possible free
variables. The second argument is the expression to be annotated, and the result is the annotated
expression. The main function freeVars just runs down the list of supercombinator definitions,
applying freeVars_e to each:

> freeVars prog = [ (name, args, freeVars_e (setFromList args) body)
> | (name, args, body) <- prog
> ]

The freeVars_e function runs over the expression recursively; in the case of numbers there are
no free variables, so this is what is returned in the annotated expression.

> freeVars_e lv (ENum k) = (setEmpty, ANum k)

In the case of a variable, we check to see whether it is in the set of candidates to decide whether
to return the empty set or a singleton set:

> freeVars_e lv (EVar v) | setElementOf v lv = (setSingleton v, AVar v)
> | otherwise = (setEmpty, AVar v)

The case for applications is straightforward: we first annotate the expression e1 with its free
variables, then annotate e2, returning the union of the two sets of free variables as the free
variables of EAp e1 e2.

> freeVars_e lv (EAp e1 e2)
> = (setUnion (freeVarsOf e1’) (freeVarsOf e2’), AAp e1’ e2’)
> where e1’ = freeVars_e lv e1
> e2’ = freeVars_e lv e2

2We are ignoring the let expression which abstract introduces to name the supercombinator.
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In the case of a lambda abstractions we need to add the args to the local variables passed in,
and subtract them from the free variables passed out:

> freeVars_e lv (ELam args body)
> = (setSubtraction (freeVarsOf body’) (setFromList args), ALam args body’)
> where body’ = freeVars_e new_lv body
> new_lv = setUnion lv (setFromList args)

The equation for let(rec) expressions has rather a lot of plumbing, but is quite straightforward.
The local variables in scope that are passed to the body is body_lv; the set of local variables
passed to each right-hand side is rhs_lv. Next we annotate each right-hand side with its free
variable set, giving rhss’, from this we can construct the annotated definitions: defns’. The
annotated body of the let(rec) is body’. The free variables of the definitions is calculated to
be defnsFree, and those of the body are bodyFree.

> freeVars_e lv (ELet is_rec defns body)
> = (setUnion defnsFree bodyFree, ALet is_rec defns’ body’)
> where binders = bindersOf defns
> binderSet = setFromList binders
> body_lv = setUnion lv binderSet
> rhs_lv | is_rec = body_lv
> | otherwise = lv
>
> rhss’ = map (freeVars_e rhs_lv) (rhssOf defns)
> defns’ = zip2 binders rhss’
> freeInValues = setUnionList (map freeVarsOf rhss’)
> defnsFree | is_rec = setSubtraction freeInValues binderSet
> | otherwise = freeInValues
> body’ = freeVars_e body_lv body
> bodyFree = setSubtraction (freeVarsOf body’) binderSet

The function zip2 in the definition of defns’ is a standard function which takes two lists
and returns a list consisting of pairs of corresponding elements of the argument lists. The set
operations setUnion, setSubtraction and so on are defined in the utilities module, whose
interface is given in Appendix A.4.

We postpone dealing with case and constructor expressions:

> freeVars_e lv (ECase e alts) = freeVars_case lv e alts
> freeVars_e lv (EConstr t a) = error "freeVars_e: no case for constructors"
> freeVars_case lv e alts = error "freeVars_case: not yet written"

freeVarsOf and freeVarsOf_alt are simple auxiliary functions:

> freeVarsOf :: AnnExpr Name (Set Name) -> Set Name
> freeVarsOf (free_vars, expr) = free_vars
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> freeVarsOf_alt :: AnnAlt Name (Set Name) -> Set Name
> freeVarsOf_alt (tag, args, rhs)
> = setSubtraction (freeVarsOf rhs) (setFromList args)

6.3.3 Generating supercombinators

The next pass merely replaces each lambda abstraction, which is now annotated with its free
variables, with a new abstraction (the supercombinator) applied to its free variables.

> abstract prog = [ (sc_name, args, abstract_e rhs)
> | (sc_name, args, rhs) <- prog
> ]

As usual, we define an auxiliary function abstract_e to do most of the work:

> abstract_e :: AnnExpr Name (Set Name) -> CoreExpr

It takes an expression annotated with the free variable information and returns an expression
with each lambda abstraction replaced by a new abstraction applied to the free variables. There
is little to say about the first four cases, they just recursively abstract each expression.

> abstract_e (free, AVar v) = EVar v
> abstract_e (free, ANum k) = ENum k
> abstract_e (free, AAp e1 e2) = EAp (abstract_e e1) (abstract_e e2)
> abstract_e (free, ALet is_rec defns body)
> = ELet is_rec [ (name, abstract_e body) | (name, body) <- defns]
> (abstract_e body)

The function foldll is a standard function, defined in Appendix A.5; given a dyadic function ⊕,
a value b, and a list xs = [x1, ..., xn ], foldll ⊕ b xs computes (. . . ((b ⊕ x1) ⊕ x2) ⊕ . . . xn).
Notice the way that the free-variable information is discarded by the pass, since it is no longer
required.

The final case we show is the heart of the abstract_e function. First we create a list of free
variables: fvList. We recall that there is no ordering implicit in a set; the function setToList
has induced an ordering on the elements, but we do not much care what order this is. Next we
make a new supercombinator. This involves

1. applying abstract_e to the body of the lambda expression; and

2. augmenting the argument list, by prefixing the original one with the free-variable list.

Next, to allow the collectSCs pass to detect this new supercombinator, we wrap it into a let
expression. Finally, we apply the new supercombinator to each free variable in turn.

> abstract_e (free, ALam args body)
> = foldll EAp sc (map EVar fvList)
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> where
> fvList = setToList free
> sc = ELet nonRecursive [("sc",sc_rhs)] (EVar "sc")
> sc_rhs = ELam (fvList ++ args) (abstract_e body)

case expressions and constructors are deferred:

> abstract_e (free, AConstr t a) = error "abstract_e: no case for Constr"
> abstract_e (free, ACase e alts) = abstract_case free e alts
> abstract_case free e alts = error "abstract_case: not yet written"

It is worth observing that abstract_e treat-
s the two expressions (ELam args1 (ELam args2 body)) and (ELam (args1++args2) body)
differently. In the former case, the two abstractions will be treated separately, generating two
supercombinators, while in the latter only one supercombinator is produced. It is clearly ad-
vantageous to merge directly nested ELams before performing lambda lifting. This is equivalent
to the η-abstraction optimisation noted by [Hughes 1983].

6.3.4 Making all the variables unique

Next, we need to make each variable so that all the sc variables introduced by abstract are
unique. The auxiliary function, rename_e, takes an environment mapping old names to new
names, a name supply and an expression. It returns a depleted name supply and a new expres-
sion.

> rename_e :: ASSOC Name Name -- Binds old names to new
> -> NameSupply -- Name supply
> -> CoreExpr -- Input expression
> -> (NameSupply, CoreExpr) -- Depleted supply and result

Now we can define rename in terms of rename_e, by applying the latter to each supercombinator
definition, plumbing the name supply along with mapAccuml.

> rename prog
> = second (mapAccuml rename_sc initialNameSupply prog)
> where
> rename_sc ns (sc_name, args, rhs)
> = (ns2, (sc_name, args’, rhs’))
> where
> (ns1, args’, env) = newNames ns args
> (ns2, rhs’) = rename_e env ns1 rhs

The function newNames takes a name supply and a list of names as its arguments. It allocates
a new name for each old one from the name supply, returning the depleted name supply, a list
of new names and an association list mapping old names to new ones.
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> newNames :: NameSupply -> [Name] -> (NameSupply, [Name], ASSOC Name Name)
> newNames ns old_names
> = (ns’, new_names, env)
> where
> (ns’, new_names) = getNames ns old_names
> env = zip2 old_names new_names

The definition of rename_e is now straightforward, albeit dull. When we meet a variable, we
look it up in the environment. For top-level functions and built-in functions (such as +) we will
find no substitution for it in the environment, so we just use the existing name:

> rename_e env ns (EVar v) = (ns, EVar (aLookup env v v))

Numbers and applications are easy.

> rename_e env ns (ENum n) = (ns, ENum n)
> rename_e env ns (EAp e1 e2)
> = (ns2, EAp e1’ e2’)
> where
> (ns1, e1’) = rename_e env ns e1
> (ns2, e2’) = rename_e env ns1 e2

When we meet an ELam we need to invent new names for the arguments, using newNames, and
augment the environment with the mapping returned by newNames.

> rename_e env ns (ELam args body)
> = (ns1, ELam args’ body’)
> where
> (ns1, args’, env’) = newNames ns args
> (ns2, body’) = rename_e (env’ ++ env) ns1 body

let(rec) expressions work similarly:

> rename_e env ns (ELet is_rec defns body)
> = (ns3, ELet is_rec (zip2 binders’ rhss’) body’)
> where
> (ns1, body’) = rename_e body_env ns body
> binders = bindersOf defns
> (ns2, binders’, env’) = newNames ns1 binders
> body_env = env’ ++ env
> (ns3, rhss’) = mapAccuml (rename_e rhsEnv) ns2 (rhssOf defns)
> rhsEnv | is_rec = body_env
> | otherwise = env

We leave case expressions as an exercise:

> rename_e env ns (EConstr t a) = error "rename_e: no case for constructors"
> rename_e env ns (ECase e alts) = rename_case env ns e alts
> rename_case env ns e alts = error "rename_case: not yet written"
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6.3.5 Collecting supercombinators

Finally, we have to name the supercombinators and collect them together. The main function,
collectSCs_e, therefore has to return the collection of supercombinators it has found, as well
as the transformed expression.

> collectSCs_e :: CoreExpr -> ([CoreScDefn], CoreExpr)

collectSCs is defined using mapAccuml to do all the plumbing:

> collectSCs prog
> = concat (map collect_one_sc prog)
> where
> collect_one_sc (sc_name, args, rhs)
> = (sc_name, args, rhs’) : scs
> where
> (scs, rhs’) = collectSCs_e rhs

The code for collectSCs_e is now easy to write. We just apply collectSCs_e recursively to
the sub-expressions, collecting up the supercombinators thus produced.

> collectSCs_e (ENum k) = ([], ENum k)
> collectSCs_e (EVar v) = ([], EVar v)
> collectSCs_e (EAp e1 e2) = (scs1 ++ scs2, EAp e1’ e2’)
> where
> (scs1, e1’) = collectSCs_e e1
> (scs2, e2’) = collectSCs_e e2

> collectSCs_e (ELam args body) = (scs, ELam args body’)
> where
> (scs, body’) = collectSCs_e body
> collectSCs_e (EConstr t a) = ([], EConstr t a)
> collectSCs_e (ECase e alts)
> = (scs_e ++ scs_alts, ECase e’ alts’)
> where
> (scs_e, e’) = collectSCs_e e
> (scs_alts, alts’) = mapAccuml collectSCs_alt [] alts
> collectSCs_alt scs (tag, args, rhs) = (scs++scs_rhs, (tag, args, rhs’))
> where
> (scs_rhs, rhs’) = collectSCs_e rhs

The case for let(rec) is the interesting one. We need to process the definitions recursively
and then split them into two groups: those of the form v = \args. e (the supercombinators),
and the others (the non-supercombinators). The supercombinators are returned as part of the
supercombinator list, and a new let(rec) is formed from the remaining non-supercombinators:

> collectSCs_e (ELet is_rec defns body)
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> = (rhss_scs ++ body_scs ++ local_scs, mkELet is_rec non_scs’ body’)
> where
> (rhss_scs,defns’) = mapAccuml collectSCs_d [] defns
>
> scs’ = [(name,rhs) | (name,rhs) <- defns’, isELam rhs ]
> non_scs’ = [(name,rhs) | (name,rhs) <- defns’, not (isELam rhs)]
> local_scs = [(name,args,body) | (name,ELam args body) <- scs’]
>
> (body_scs, body’) = collectSCs_e body
>
> collectSCs_d scs (name,rhs) = (scs ++ rhs_scs, (name, rhs’))
> where
> (rhs_scs, rhs’) = collectSCs_e rhs

The auxiliary function isELam tests for an ELam constructor; it is used to identify supercombi-
nators.

> isELam :: Expr a -> Bool
> isELam (ELam args body) = True
> isELam other = False

The mkELet function just builds an ELet expression:

> mkELet is_rec defns body = ELet is_rec defns body

6.4 Mark 2: Improving the simple lambda lifter

This completes the definition of the simple lambda lifter. We now consider some simple im-
provements.

6.4.1 Simple extensions

Exercise 6.3. The simple lambda lifter generates lots of let expressions with an empty list of bindings,
because collectSCs removes the single binding from each of the supercombinator let expressions
introduced by abstract. Modify mkELet to elide these redundant let expressions.

Exercise 6.4. Give definitions for freeVars_case, abstract_case and collectSCs_case, and test
them.

6.4.2 Eliminating redundant supercombinators

Consider the Core-language program

f = \x. x+1
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This will be transformed by lambdaLift to

f = $f
$f x = x+1

It would be nicer to avoid introducing the redundant definition. This improvement will become
rather more significant when we come to consider full laziness, because many supercombinators
of this form will be introduced.

Exercise 6.5. Add a special case to the function collect_one_sc (in collectSCs), to behave differently
when rhs is a lambda abstraction. You should be able to avoid introducing a new supercombinator
in this situation.

6.4.3 Eliminating redundant local definitions

A similar situation can arise with local definitions. Consider the Core-language program

f x = let g = (\y. y+1) in g (g x)

The lambda lifter will produce the program

f x = let g = $g in g (g x)
$g y = y+1

Exercise 6.6. Improve the definition of collectSCs_d (in the ELet case of collectSCs_e), so that it
gives special treatment to definitions whose right-hand side is a lambda abstraction. For the above
example you should generate

f x = g (g x)
g y = y+1

6.5 Mark 3: Johnsson-style lambda lifting

There is an interesting variant of the lambda lifting technique, which was discovered by
[Johnsson 1985]. One slight problem with our current technique is that it produces programs
in which many of the calls are to functions which are passed in as arguments. For example,
consider the recursive example in Section 6.3:

f x = letrec g = \y. cons (x*y) (g y) in g 3
main = f 6

Our current lambda lifter produces the following set of supercombinators:

$g g x y = cons (x*y) (g y)
f x = letrec g = $g g x in g 3
main = f 6

239



Notice that $g makes a call to its argument g. In some implementations it would be more
efficient if $g was directly recursive, like this:

$g x y = cons (x*y) ($g x y)
f x = $g x 3
main = f 6

The inner letrec has vanished altogether, and the supercombinator g has become directly
recursive.

To get a more detailed idea of how to do Johnsson-style lambda lifting, we will look at a slightly
more complicated example:

f x y = letrec
g = \p. ...h...x...
h = \q. ...g...y...

in
...g...h...

Here, g is meant to be a function which calls h, and mentions the variable x; similarly h calls g
and mentions y. The first step is to transform the definition like this:

f x y = letrec
g = \x y p. ...(h x y)...x...
h = \x y q. ...(g x y)...y...

in
...(g x y)...(h x y)...

This transformation, which we call the abstraction step, is a little tricky. It does the following:

• take the free variables of the right-hand sides of the letrec, namely g, h, x and y;

• exclude the variables being bound (g and h) to leave just x and y;

• make these variables into extra arguments of each right-hand side;

• and replaced all occurrences of g with (g x y), similarly for h.

It is important that we make y into an extra parameter of g even though y does not occur
directly in its right-hand side, because g will need it to pass to h. In general, each member of
the mutually recursive group must take as extra arguments the free variables of all the members
together.

Now all we need do is float the definitions of g and h out to the top level, leaving:

f x y = ...(g x y)...(h x y)...
g x y p = ...(h x y)...x...
h x y q = ...(g x y)...y...
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One last point. Before doing this process it is important that all binders are unique. Otherwise
name clashes could arise, in two ways. The obvious way is that two supercombinators could
have the same name. The less obvious way is illustrated by the following variant of the same
example:

f x y = letrec
g = \p. ...h...x...
h = \x. ...g...y...

in
...g...h...

Now h uses the same name for its argument as f, which will cause trouble when we try to make
the free variable of g, namely x, into an extra argument to h! All in all, it is much easier simply
to rename the program before starting work.

6.5.1 Implementation

The Johnsson-style lambda lifter can be implemented in several passes:

• The first pass renames the program so that all binders are unique. We can reuse the
rename function for this purpose.

• Next, we annotate the program with its free-variable information, using the existing func-
tion freeVars.

• Now comes the main abstraction step discussed above:

> abstractJ :: AnnProgram Name (Set Name) -> CoreProgram

• Finally, we can collect supercombinators with collectSCs.

The full Johnsson-style lambda lifter is just the composition of these stages:

> lambdaLiftJ = collectSCs . abstractJ . freeVars . rename
> runJ = pprint . lambdaLiftJ . parse

6.5.2 Abstracting free variables in functions

The only new function we need is abstractJ. The abstraction process makes substitutions as it
goes along, replacing g with g v1 . . . vn , where g is one of the new supercombinators and v1, . . . , vn
are the free variables of its declaration group. It follows that the auxiliary function abstractJ_e
needs to take an environment mapping each supercombinator g to the free variables of its group
v1, . . . , vn :

> abstractJ_e :: ASSOC Name [Name] -- Maps each new SC to
> -- the free vars of its group
> -> AnnExpr Name (Set Name) -- Input expression
> -> CoreExpr -- Result expression
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To be fair, it looks as though the first argument could be of type assoc name coreExpr but,
as we shall see, we need to make use of the environment in another way as well, which leads to
the type we suggest here.

It is now easy to define abstractJ in terms of abstractJ_e, by applying the latter to each
top-level definition:

> abstractJ prog = [ (name,args,abstractJ_e [] rhs)
> | (name, args, rhs) <- prog]

Now we come to abstractJ_e. The cases for constants and applications are easy.

> abstractJ_e env (free, ANum n) = ENum n
> abstractJ_e env (free, AConstr t a) = EConstr t a
> abstractJ_e env (free, AAp e1 e2) = EAp (abstractJ_e env e1)
> (abstractJ_e env e2)

When we come to a variable g , we look it up in the environment, getting back a list of variables
v1, . . . , vn . We then return the application g v1 . . . vn . If g does not appear in the environment
we return the empty list from the environment lookup, and hence the ‘application’ we construct
will simply be the variable g !

> abstractJ_e env (free, AVar g)
> = foldll EAp (EVar g) (map EVar (aLookup env g []))

Sometimes we may find a lambda abstraction on its own; for example:

f xs = map (\x. x+1) xs

The \x-abstraction is not the right-hand side of a let(rec) definition, so we treat it in just
same way as we did in the simple lambda lifter (see the ELam case of abstract).

There is just one important difference. Since abstractJ_e is simultaneously performing a sub-
stitution on the expression, the free-variables information does not reflect the post-substitution
state of affairs. Rather, we need to perform the substitution on the free-variable set too, to find
what variables are free in the result. This is done by the function actualFreeList, which is
defined at the end of this section. It was the need to perform this operation on the free-variable
information which guided our choice of environment representation.

> abstractJ_e env (free, ALam args body)
> = foldll EAp sc (map EVar fv_list)
> where
> fv_list = actualFreeList env free
> sc = ELet nonRecursive [("sc",sc_rhs)] (EVar "sc")
> sc_rhs = ELam (fv_list ++ args) (abstractJ_e env body)

Lastly, we treat let(rec) expressions. Each variable bound to a lambda abstraction will be
turned into a supercombinator, while the others (not bound to a lambda abstraction) will not.
It follows that we need to treat separately these two kinds of definitions, which we call ‘function
definitions’ and ‘variable definitions’ respectively.
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> abstractJ_e env (free, ALet isrec defns body)
> = ELet isrec (fun_defns’ ++ var_defns’) body’
> where
> fun_defns = [(name,rhs) | (name,rhs) <- defns, isALam rhs ]
> var_defns = [(name,rhs) | (name,rhs) <- defns, not (isALam rhs)]

Now that we have separated the function definitions from the variable definitions we can compute
the set of variables to abstract from the functions. We take the union of the free variables of
the function definitions, remove from this set the function names being bound, and then use
actualFreeList (for the same reason as in the ELam equation) to get the result:

> fun_names = bindersOf fun_defns
> free_in_funs = setSubtraction
> (setUnionList [freeVarsOf rhs | (name,rhs)<-fun_defns])
> (setFromList fun_names)
> vars_to_abstract = actualFreeList env free_in_funs

Next, we compute the new environment, to be used in the right-hand sides and in the body of
the let(rec):

> body_env = [(fun_name, vars_to_abstract) | fun_name <- fun_names] ++ env
> rhs_env | isrec = body_env
> | otherwise = env

Lastly, we compute the new function definitions, variable definitions and body, by recursively
using abstractJ_E with the appropriate environment:

> fun_defns’ = [ (name, ELam (vars_to_abstract ++ args)
> (abstractJ_e rhs_env body))
> | (name, (free, ALam args body)) <- fun_defns
> ]
> var_defns’ = [(name, abstractJ_e rhs_env rhs) | (name, rhs) <- var_defns]
> body’ = abstractJ_e body_env body

The function actualFreeList takes the environment and a set of free variables, applies the
environment to the set, and returns a list (without duplicates) of the post-substitution free
variables.

> actualFreeList :: ASSOC Name [Name] -> Set Name -> [Name]
> actualFreeList env free
> = setToList (setUnionList [ setFromList (aLookup env name [name])
> | name <- setToList free
> ])

The function isALam identifies ALam constructors.

> isALam :: AnnExpr a b -> Bool
> isALam (free, ALam args body) = True
> isALam other = False
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This concludes the Johnsson-style lambda lifter.

Exercise 6.7. Add a case for case expressions to the function abstractJ_e.

6.5.3 A tricky point†

When a letrec contains a mixture of function and variable definitions, the lambda lifter we
have designed may introduce some redundant parameters. For example, consider the definition

f x y = letrec
g = \p. h p + x ;
h = \q. k + y + q;
k = g y

in
g 4 ;

The free variables of the g/h group are x, y and k, so we will transform to:

f x y = letrec
k = g x y k y

in
g 4

g x y k p = h x y k p + x ;
h x y k q = k + y + q;

Here the extra parameter x is not actually used in h, so better definitions for g and h would be

g x y k p = h y k p + x ;
h y k q = k + y + q;

Exercise 6.8. †Modify abstractJ to solve perform this more sophisticated transformation. Warning:
this is quite a difficult job!

6.6 Mark 4: A separate full laziness pass

We now turn our attention to an important property of functional programs called full laziness.
Previous accounts of full laziness have invariably linked it to lambda lifting, by describing ‘fully
lazy lambda lifting’, which turns out to be rather a complex process. [Hughes 1983] gives an
algorithm, but it is extremely subtle and does not handle let(rec) expressions. On the other
hand, [Peyton Jones 1987] does cover let(rec) expressions, but the description is only informal
and no algorithm is given.

In this section we show how full laziness and lambda lifting can be cleanly separated. This
is done by means of a transformation involving let expressions. Lest it be supposed that we
have simplified things in one way only by complicating them in another, we also show that
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performing fully lazy lambda lifting without let(rec) expressions risks an unexpected loss of
laziness. Furthermore, much more efficient code can be generated for let(rec) expressions in
later phases of most compilers than for their equivalent lambda expressions.

6.6.1 A review of full laziness

We begin by briefly reviewing the concept of full laziness. Consider again the example given in
Section 6.3.

f x = let g = \y. x*x + y in (g 3 + g 4)
main = f 6

The simple lambda lifter generates the program:

$g x y = x*x + y
f x = let g = $g x in (g 3 + g 4)
main = f 6

In the body of f there are two calls to g and hence to $g. But ($g x) is not a reducible
expression, so x*x will be computed twice. But x is fixed in the body of f, so some work is
being duplicated. It would be better to share the calculation of x*x between the two calls to
$g. This can be achieved as follows: instead of making x a parameter to $g, we make x*x into
a parameter, like this:

$g p y = p + y
f x = let g = $g (x*x) in (g 3 + g 4)

(we omit the definition of main from now on, since it does not change). So a fully lazy lambda
lifter will make each maximal free sub-expresssion (rather than each free variable) of a lambda
abstraction into an argument of the corresponding supercombinator. A maximal free expression
(or MFE) of a lambda abstraction is an expression which contains no occurrences of the variable
bound by the abstraction, and is not a sub-expression of a larger expression with this property.

Full laziness corresponds precisely to moving a loop-invariant expression outside the loop, so
that it is computed just once at the beginning rather than once for each loop iteration.

How important is full laziness for ‘real’ programs? No serious studies have yet been made of this
question, though we plan to do so. However, recent work by Holst suggests that the importance
of full laziness may be greater than might at first be supposed [Holst 1990]. He shows how to
perform a transformation which automatically enhances the effect of full laziness, to the point
where the optimisations obtained compare favourably with those gained by partial evaluation
[Jones et al. 1989], though with much less effort.

6.6.2 Fully-lazy lambda lifting in the presence of let(rec)s

Writing a fully lazy lambda lifter, as outlined in the previous section, is surprisingly difficult.
Our language, which includes let(rec) expressions, appears to make this worse by introducing
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a new language construct. For example, suppose the definition of g in our running example was
slightly more complex, thus:

g = \y. let z = x*x
in let p = z*z
in p + y

Now, the sub-expression x*x is an MFE of the \y-abstraction, but sub-expression z*z is not
since z is bound inside the \y-abstraction. Yet it is clear that p depends only on x (albeit
indirectly), and so we should ensure that z*z is only computed once.

Does a fully lazy lambda lifter spot this if let expressions are coded as lambda applications?
No, it does not. The definition of g would become

g = \y. (\z. (\p. p+y) (z*z)) (x*x)

Now, x*x is free as before, but z*z is not. In other words, if the compiler does not treat let(rec)
expressions specially, it may lose full laziness which the programmer might reasonably expect to
be preserved.

Fortunately, there is a straightforward way to handle let(rec) expressions – described in
[Peyton Jones 1987, Chapter 15] – namely to ‘float’ each let(rec) definition outward until
it is outside any lambda abstraction in which it is free. For example, all we need do is transform
the definition of g to the following:

g = let z = x*x
in let p = z*z
in \y. p + y

Now x*x and z*z will each be computed only once. Notice that this property should hold
for any implementation of the language, not merely for one based on lambda lifting and graph
reduction. This is a clue that full laziness and lambda lifting are not as closely related as at
first appears, a topic to which we will return in the next section.

Meanwhile, how can we decide how far out to float a definition? It is most easily done by using
lexical level numbers (or de Bruijn numbers). There are three steps:

• First, assign to each lambda-bound variable a level number, which says how many lambdas
enclose it. Thus in our example, x would be assigned level number 1, and y level number
2.

• Now, assign a level number to each let(rec)-bound variable (outermost first), which is
the maximum of the level numbers of its free variables, or zero if there are none. In our
example, both p and z would be assigned level number 1. Some care needs to be taken to
handle letrecs correctly.

• Finally, float each definition (whose binder has level n, say) outward, until it is outside the
lambda abstraction whose binder has level n + 1, but still inside the level-n abstraction.
There is some freedom in this step about exactly where between the two the definition
should be placed.
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Each mutually recursive set of definitions defined in a letrec should be floated out together,
because they depend on each other and must remain in a single letrec. If, in fact, the definitions
are not mutually recursive despite appearing in the same letrec, this policy might lose laziness
by retaining in an inner scope a definition which could otherwise be floated further outwards.
The standard solution is to perform dependency analysis on the definitions in each letrec
expression, to break each group of definitions into its minimal subgroups. We will look at this
in Section 6.8.

Finally, a renaming pass should be carried out before the floating operation, so that there is no
risk that the bindings will be altered by the movement of the let(rec) definitions. For example,
the expression

\y. let y = x*x in y

is obviously not equivalent to

let y = x*x in \y->y

All that is required is to give every binder a unique name to eliminate the name clash.

6.6.3 Full laziness without lambda lifting

At first it appears that the requirement to float let(rec)s outward in order to preserve full
laziness merely further complicates the already subtle fully lazy lambda lifting algorithm sug-
gested by Hughes. However, a simple transformation allows all the full laziness to be achieved
by let(rec) floating, while lambda lifting is performed by the original simple lambda lifter.

The transformation is this: before floating let(rec) definitions, replace each MFE e with the
expression let v = e in v. This transformation both gives a name to the MFE and makes it
accessible to the let(rec) floating transformation, which can now float out the new definitions.
Ordinary lambda lifting can then be performed. For example, consider the original definition of
g:

f x = let g = \y. x*x + y
in (g 3 + g 4)

main = f 6

The sub-expression x*x is an MFE, so it is replaced by a trivial let expression:

f x = let g = \y. (let v = x*x in v) + y
in (g 3 + g 4)

main = f 6

Now the let expression is floated outward:

f x = let g = let v = x*x in \y. v + y
in (g 3 + g 4)

in
f 6
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Finally, ordinary lambda lifting will discover that v is free in the \y-abstraction, and the resulting
program becomes:

$g v y = v + y
f x = let g = let v = x*x in $g v

in (g 3 + g 4)
main = f 6

A few points should be noted here. Firstly, the original definition of a maximal free expression
was relative to a particular lambda abstraction. The new algorithm we have just developed
transforms certain expressions into trivial let expressions. Which expressions are so trans-
formed? Just the ones which are MFEs of any enclosing lambda abstraction. For example, in
the expression:

\y. \z. (y + (x*x)) / z

two MFEs are identified: (x*x), since it is an MFE of the \y-abstraction, and (y + (x*x)),
since it is an MFE of the \z-abstraction. After introducing the trivial let bindings, the expres-
sion becomes

\y. \z. (let v1 = y + (let v2 = x*x in v2) in v1) / z

Secondly, the newly introduced variable v must either be unique, or the expression must be
uniquely renamed after the MFE-identification pass.

Thirdly, in the final form of the program v is only referenced once, so it would be sensible
to replace the reference by the right-hand side of the definition and eliminate the definition,
yielding exactly the program we obtained using Hughes’s algorithm. This is a straightforward
transformation, and we will not discuss it further here, except to note that this property will
hold for all let definitions which are floated out past a lambda. In any case, many compiler back
ends will generate the same code regardless of whether or not the transformation is performed.

6.6.4 A fully lazy lambda lifter

Now we are ready to define the fully lazy lambda lifter. It can be decomposed into the following
stages:

• First we must make sure that each ELam constructor and supercombinator definition binds
only a single argument, because the fully lazy lambda lifter must treat each lambda indi-
vidually. It would be possible to encode this in later phases of the algorithm, by dealing
with a list of arguments, but it turns out that we can express an important optimisation
by altering this pass alone.

> separateLams :: CoreProgram -> CoreProgram

• First we annotate all binders and expressions with level numbers, which we represent by
natural numbers starting with zero:
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> type Level = Int
> addLevels :: CoreProgram -> AnnProgram (Name, Level) Level

• Next we identify all MFEs, by replacing them with trivial let expressions. Level numbers
are no longer required on every sub-expression, only on binders.

> identifyMFEs :: AnnProgram (Name, Level) Level -> Program (Name, Level)

• A renaming pass makes all binders unique, so that floating does not cause name-capture
errors. This must be done after identifyMFEs, which introduces new bindings. Sadly, this
means that we cannot use our current rename function because it works on a coreProgram,
whereas identifyMFEs has produced a program (name, level). We invent a new func-
tion renameL for the purpose:

> renameL :: Program (Name, a) -> Program (Name, a)

• Now the let(rec) definitions can be floated outwards. The level numbers are not required
any further.

> float :: Program (Name,Level) -> CoreProgram

• Finally, ordinary lambda lifting can be carried out, using lambdaLift from Section 6.3.1.

The fully lazy lambda lifter is just the composition of these passes:

> fullyLazyLift = float . renameL . identifyMFEs . addLevels . separateLams
> runF = pprint . lambdaLift . fullyLazyLift . parse

As before, we leave most of the equations for case expressions as an exercise.

6.6.5 Separating the lambdas

We define separateLams in terms of an auxiliary function separateLams_e, which recursively
separates variables bound in lambda abstractions in expressions:

> separateLams_e :: CoreExpr -> CoreExpr
> separateLams_e (EVar v) = EVar v
> separateLams_e (EConstr t a) = EConstr t a
> separateLams_e (ENum n) = ENum n
> separateLams_e (EAp e1 e2) = EAp (separateLams_e e1) (separateLams_e e2)
> separateLams_e (ECase e alts)
> = ECase (separateLams_e e) [ (tag, args, separateLams_e e)
> | (tag, args, e) <- alts
> ]
>
> separateLams_e (ELam args body) = mkSepLams args (separateLams_e body)
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>
> separateLams_e (ELet is_rec defns body)
> = ELet is_rec [(name, separateLams_e rhs) | (name,rhs) <- defns]
> (separateLams_e body)

> mkSepLams args body = foldr mkSepLam body args
> where mkSepLam arg body = ELam [arg] body

Now we return to the top-level function separateLams. The interesting question is what to do
about supercombinator definitions. The easiest thing to do is to turn them into the equivalent
lambda abstractions!

> separateLams prog = [ (name, [], mkSepLams args (separateLams_e rhs))
> | (name, args, rhs) <- prog
> ]

6.6.6 Adding level numbers

There are a couple of complications concerning annotating an expression with level numbers. At
first it looks as though it is sufficient to write a function which returns an expression annotated
with level numbers; then for an application, for example, one simply takes the maximum of
the levels of the two sub-expressions. Unfortunately, this approach loses too much information,
because there is no way of mapping the level number of the body of a lambda abstraction to the
level number of the abstraction itself. The easiest solution is first to annotate the expression
with its free variables, and then use a mapping freeSetToLevel from variables to level numbers,
to convert the free-variable annotations to level numbers.

> freeSetToLevel :: ASSOC Name Level -> Set Name -> Level
> freeSetToLevel env free
> = foldll max 0 [aLookup env n 0 | n <- setToList free]
> -- If there are no free variables, return level zero

The second complication concerns letrec expressions. What is the correct level number to
attribute to the newly introduced variables? The right thing to do is to take the maximum
of the levels of the free variables of all the right-hand sides without the recursive variables, or
equivalently map the recursive variables to level zero when taking this maximum. This level
should be attributed to each of the new variables. let expressions are much simpler: just
attribute to each new variable the level number of its right-hand side.

Now we are ready to define addLevels. It is the composition of two passes, the first of which
annotates the expression with its free variables, while the second uses this information to generate
level-number annotations.

> addLevels = freeToLevel . freeVars

We have defined the freeVars function already, so it remains to define freeToLevel. The
main function will need to carry around the current level, and a mapping from variables to level
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numbers, so as usual we define freeToLevel in terms of freeToLevel_e which does all the
work.

> freeToLevel_e :: Level -> -- Level of context
> ASSOC Name Level -> -- Level of in-scope names
> AnnExpr Name (Set Name) -> -- Input expression
> AnnExpr (Name, Level) Level -- Result expression

We represent the name-to-level mapping as an association list, with type assoc name level.
The interface of association lists is given in Appendix A, but notice that it is not abstract. It
is so convenient to use all the standard functions on lists, and notation for lists, rather than to
invent their analogues for associations, that we have compromised the abstraction.

Now we can define freeToLevel, using an auxiliary function to process each supercombinator
definition. Remember that separateLams has removed all the arguments from supercombinator
definitions:

> freeToLevel prog = map freeToLevel_sc prog
>
> freeToLevel_sc (sc_name, [], rhs) = (sc_name, [], freeToLevel_e 0 [] rhs)

For constants, variables and applications, it is simpler and more efficient to ignore the free-
variable information and calculate the level number directly.

> freeToLevel_e level env (free, ANum k) = (0, ANum k)
> freeToLevel_e level env (free, AVar v) = (aLookup env v 0, AVar v)

> freeToLevel_e level env (free, AConstr t a) = (0, AConstr t a)

> freeToLevel_e level env (free, AAp e1 e2)
> = (max (levelOf e1’) (levelOf e2’), AAp e1’ e2’)
> where
> e1’ = freeToLevel_e level env e1
> e2’ = freeToLevel_e level env e2

The same cannot be done for lambda abstractions; so we must compute the level number of
the abstraction using freeSetToLevel. We also assign a level number to each variable in the
argument list. At present we expect there to be only one such variable, but we will allow there
to be several and assign them all the same level number. This works correctly now, and turns
out to be just what is needed to support a useful optimisation later (Section 6.7.3).

> freeToLevel_e level env (free, ALam args body)
> = (freeSetToLevel env free, ALam args’ body’)
> where
> body’ = freeToLevel_e (level + 1) (args’ ++ env) body
> args’ = [(arg, level+1) | arg <- args]
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let(rec) expressions follow the scheme outlined at the beginning of this section.

> freeToLevel_e level env (free, ALet is_rec defns body)
> = (levelOf new_body, ALet is_rec new_defns new_body)
> where
> binders = bindersOf defns
> rhss = rhssOf defns
>
> new_binders = [(name,max_rhs_level) | name <- binders]
> new_rhss = map (freeToLevel_e level rhs_env) rhss
> new_defns = zip2 new_binders new_rhss
> new_body = freeToLevel_e level body_env body
>
> free_in_rhss = setUnionList [free | (free,rhs) <- rhss]
> max_rhs_level = freeSetToLevel level_rhs_env free_in_rhss
>
> body_env = new_binders ++ env
> rhs_env | is_rec = body_env
> | otherwise = env
> level_rhs_env | is_rec = [(name,0) | name <- binders] ++ env
> | otherwise = env

Notice that the level of the whole let(rec) expression is that of the body. This is valid provided
the body refers to all the binders directly or indirectly. If any definition is unused, we might
assign a level number to the letrec which would cause it to be floated outside the scope of some
variable mentioned in the unused definition. This is easily fixed, but it is simpler to assume that
the expression contains no redundant definitions; the dependency analysis which we look at in
the next section will eliminate such definitions.

case expressions are deferred:

> freeToLevel_e level env (free, ACase e alts)
> = freeToLevel_case level env free e alts
> freeToLevel_case free e alts = error "freeToLevel_case: not yet written"

Lastly the auxiliary functions levelOf extracts the level from an expression:

> levelOf :: AnnExpr a Level -> Level
> levelOf (level, e) = level

6.6.7 Identifying MFEs

It is simple to identify MFEs, by comparing the level number of an expression with the level of
its context. This requires an auxiliary parameter to give the level of the context.

> identifyMFEs_e :: Level -- Level of context
> -> AnnExpr (Name, Level) Level -- Input expression
> -> Expr (Name, Level) -- Result
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> identifyMFEs prog = [ (sc_name, [], identifyMFEs_e 0 rhs)
> | (sc_name, [], rhs) <- prog
> ]

Once an MFE e has been identified, our strategy is to wrap it in a trivial let expression of the
form let v = e in v; but not all MFEs deserve special treatment in this way. For example, it
would be a waste of time to wrap such a let expression around an MFE consisting of a single
variable or constant. Other examples are given in Section 6.7.3. We encode this knowledge of
which MFEs deserve special treatment in a function notMFECandidate.

> notMFECandidate (AConstr t a) = True
> notMFECandidate (ANum k) = True
> notMFECandidate (AVar v) = True
> notMFECandidate ae = False -- For now everything else
> -- is a candidate

identifyMFEs_e works by comparing the level number of the expression with that of its con-
text. If they are the same, or for some other reason the expression is not a candidate for
special treatment, the expression is left unchanged, except that identifyMFEs_e1 is used to
apply identifyMFEs_e to its sub-expressions; otherwise we use transformMFE to perform the
appropriate transformation.

> identifyMFEs_e cxt (level, e)
> | level == cxt || notMFECandidate e = e’
> | otherwise = transformMFE level e’
> where
> e’ = identifyMFEs_e1 level e

> transformMFE level e = ELet nonRecursive [(("v",level), e)] (EVar "v")

identifyMFEs_e1 applies identifyMFEs_e to the components of the expression.

> identifyMFEs_e1 :: Level -- Level of context
> -> AnnExpr’ (Name,Level) Level -- Input expressions
> -> Expr (Name,Level) -- Result expression

> identifyMFEs_e1 level (AConstr t a) = EConstr t a
> identifyMFEs_e1 level (ANum n) = ENum n
> identifyMFEs_e1 level (AVar v) = EVar v
> identifyMFEs_e1 level (AAp e1 e2)
> = EAp (identifyMFEs_e level e1) (identifyMFEs_e level e2)

When identifyMFEs_e1 encounters a binder it changes the ‘current’ level number carried down
as its first argument, as we can see in the equations for lambda abstractions and let(rec)
expressions:
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> identifyMFEs_e1 level (ALam args body)
> = ELam args (identifyMFEs_e arg_level body)
> where
> (name, arg_level) = hd args

> identifyMFEs_e1 level (ALet is_rec defns body)
> = ELet is_rec defns’ body’
> where
> body’ = identifyMFEs_e level body
> defns’ = [ ((name, rhs_level), identifyMFEs_e rhs_level rhs)
> | ((name, rhs_level), rhs) <- defns
> ]

case expressions are deferred:

> identifyMFEs_e1 level (ACase e alts) = identifyMFEs_case1 level e alts
> identifyMFEs_case1 level e alts = error "identifyMFEs_case1: not written"

6.6.8 Renaming variables

As we remarked above, it would be nice to use the existing rename function to make the binders
unique, but it has the wrong type. It would be possible to write renameL by making a copy of
rename and making some small alterations, but it would be much nicer to make a single generic
renaming function, renameGen, which can be specialised to do either rename or renameL.

What should the type of renameGen be? The right question to ask is: ‘what use did we make in
rename of the fact that each binder was a simple name?’ or, alternatively, ‘what operations did
we perform on binders in rename?’.

There is actually just one such operation, which constructs new binders. In rename_e this
function is called newNames; it takes a name supply and a list of names, and returns a depleted
name supply, a list of new names and an association list mapping old names to new ones:

> newNames :: nameSupply -> [name] -> (nameSupply, [name], assoc name name)

Since renameGen must be able to work over any kind of binder, not just those of type name,
we must pass the new-binders function into renameGen as an extra argument. So the type of
renameGen is:

> renameGen :: (NameSupply -> [a] -> (NameSupply, [a], ASSOC Name Name))
> -- New-binders function
> -> Program a -- Program to be renamed
> -> Program a -- Resulting program

Notice that the type of the binders is denoted by the type variable *, because renameGen is
polymorphic in this type. Using renameGen, we can now redefine the original rename function,
by passing newNames to renameGen as the new-binders function.
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> rename :: CoreProgram -> CoreProgram
> rename prog = renameGen newNames prog

renameL is rather more interesting. Its binders are (name,level) pairs so we need to define a
different new-binders function:

> renameL :: Program (Name,Level) -> Program (Name,Level)
> renameL prog = renameGen newNamesL prog

The function newNamesL does just what newNames does, but it does it for binders whose type is
a (name,level) pair:

> newNamesL ns old_binders
> = (ns’, new_binders, env)
> where
> old_names = [name | (name,level) <- old_binders]
> levels = [level | (name,level) <- old_binders]
> (ns’, new_names) = getNames ns old_names
> new_binders = zip2 new_names levels
> env = zip2 old_names new_names

Now we can turn our attention to writing renameGen. As usual we need an auxiliary function
renameGen_e which carries around some extra administrative information. Specifically, like
rename_e, it needs to take a name supply and old-name to new-name mapping as arguments,
and return a depleted supply as part of its result. It also needs to be passed the new-binders
function:

> renameGen_e :: (NameSupply -> [a] -> (NameSupply, [a], ASSOC Name Name))
> -- New-binders function
> -> ASSOC Name Name -- Maps old names to new ones
> -> NameSupply -- Name supply
> -> Expr a -- Expression to be renamed
> -> (NameSupply, Expr a) -- Depleted name supply
> -- and result expression

Using renameGen_e we can now write renameGen. Just like rename, renameGen applies a local
function rename_sc to each supercombinator definition.

> renameGen new_binders prog
> = second (mapAccuml rename_sc initialNameSupply prog)
> where
> rename_sc ns (sc_name, args, rhs)
> = (ns2, (sc_name, args’, rhs’))
> where
> (ns1, args’, env) = new_binders ns args
> (ns2, rhs’) = renameGen_e new_binders env ns1 rhs
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Exercise 6.9. Write the function renameGen_e. It is very like rename_e, except that it takes the binder-
manipulation functions as extra arguments. In the equations for ELet, ELam and ECase (which each
bind new variables), the function newBinders can be used in just the same way as it is in rename_sc
above.
Test your definition by checking that the simple lambda lifter still works with the new definition
of rename.

Exercise 6.10. The type signature we wrote for renameL is actually slightly more restrictive than it
need be. How could it be made more general (without changing the code at all)? Hint: what use
does renameL make of the fact that the second component of a binder is of type level?

This section provides a good illustration of the way in which higher-order functions can help us
to make programs more modular.

6.6.9 Floating let(rec) expressions

The final pass floats let(rec) expressions out to the appropriate level. The auxiliary func-
tion, which works over expressions, has to return an expression together with the collection of
definitions which should be floated outside the expression.

> float_e :: Expr (Name, Level) -> (FloatedDefns, Expr Name)

There are many possible representations for the floatedDefns type, and we will choose a simple
one, by representing the definitions being floated as a list, each element of which represents a
group of definitions, identified by its level, and together with its isRec flag.

> type FloatedDefns = [(Level, IsRec, [(Name, Expr Name)])]

Since the definitions in the list may depend on one another, we add the following constraint:

a definition group may depend only on definition groups appearing earlier in the
floatedDefns list.

We can now proceed to a definition of float_e. The cases for variables, constants and applica-
tions are straightforward.

> float_e (EVar v) = ([], EVar v)
> float_e (EConstr t a) = ([], EConstr t a)
> float_e (ENum n) = ([], ENum n)
> float_e (EAp e1 e2) = (fd1 ++ fd2, EAp e1’ e2’)
> where
> (fd1, e1’) = float_e e1
> (fd2, e2’) = float_e e2

How far out should a definition be floated? There is more than one possible choice, but here we
choose to install a definition just inside the innermost lambda which binds one its free variables
(recall from Section 6.6.6 that all variables bound by a single ELam construct are given the same
level):
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> float_e (ELam args body)
> = (fd_outer, ELam args’ (install fd_this_level body’))
> where
> args’ = [arg | (arg,level) <- args]
> (first_arg,this_level) = hd args
> (fd_body, body’) = float_e body
> (fd_outer, fd_this_level) = partitionFloats this_level fd_body

The equation for a let(rec) expression adds its definition group to those floated out from its
body, and from its right-hand sides. The latter must come first, since the new definition group
may depend on them.

> float_e (ELet is_rec defns body)
> = (rhsFloatDefns ++ [thisGroup] ++ bodyFloatDefns, body’)
> where
> (bodyFloatDefns, body’) = float_e body
> (rhsFloatDefns, defns’) = mapAccuml float_defn [] defns
> thisGroup = (thisLevel, is_rec, defns’)
> (name,thisLevel) = hd (bindersOf defns)
>
> float_defn floatedDefns ((name,level), rhs)
> = (rhsFloatDefns ++ floatedDefns, (name, rhs’))
> where
> (rhsFloatDefns, rhs’) = float_e rhs

We defer case expressions:

> float_e (ECase e alts) = float_case e alts
> float_case e alts = error "float_case: not yet written"

The auxiliary function partitionFloats takes a floatedDefns and a level number, and sepa-
rates it into two: those belonging to an outer level and those belonging to the specified level (or
an inner one):

> partitionFloats :: Level -> FloatedDefns -> (FloatedDefns, FloatedDefns)
> partitionFloats this_level fds
> = (filter is_outer_level fds, filter is_this_level fds)
> where
> is_this_level (level,is_rec,defns) = level >= this_level
> is_outer_level (level,is_rec,defns) = level < this_level

The function install wraps an expression in a nested set of let(rec)s containing the specified
definitions:

> install :: FloatedDefns -> Expr Name -> Expr Name
> install defnGroups e
> = foldr installGroup e defnGroups
> where
> installGroup (level, is_rec, defns) e = ELet is_rec defns e
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Finally, we can define the top-level function, float. It uses float_sc to apply float_e to
each supercombinator, yielding a list of supercombinators, in just the same way as collectSCs
above.

> float prog = concat (map float_sc prog)

The function float_sc takes a supercombinator definition to a list of supercombinator defini-
tions, consisting of the transformed version of the original definition together with the level-zero
definitions floated out from its body:

> float_sc (name, [], rhs)
> = [(name, [], rhs’)] ++ concat (map to_scs fds)
> where
> (fds, rhs’) = float_e rhs
> to_scs (level, is_rec, defns) = map make_sc defns
> make_sc (name, rhs) = (name, [], rhs)

The top level of a program is implicitly mutually recursive, so we can drop the isRec flags. We
also have to give each floated definition an empty argument list, since it is now a supercombinator
definition.

6.7 Mark 5: Improvements to full laziness

That completes the definition of the fully lazy lambda lifter. Its output is always correct, but it
is larger and less efficient than it need be. In this section we discuss some ways to improve the
full laziness transformation.

6.7.1 Adding case expressions

Exercise 6.11. Write definitions for freeToLevel_case, identifyMFEs_case1 and float_case. All
of them work in an analogous way to lambda abstractions. Hint: in float_case take care with
alternatives whose argument list is empty.

6.7.2 Eliminating redundant supercombinators

Consider the Core-language expression

\x. \y. x+y

Here the \y-abstraction has no MFEs apart from x itself, so the full-laziness pass will not affect
the expression at all. Unfortunately, the simple lambda lifter, lambdaLift, will then generate
two supercombinators, one for each lambda, whereas only one is needed. It would be better to
combine nested ELam expressions into a single ELam before passing the program to lambdaLift,
so that the latter would then generate just one supercombinator. We could do this in a separate
pass, but it saves work to do it as part of the work of float.
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Exercise 6.12. Modify the definition of the ELam case of float so that it combines nested ELam con-
structors. Hint: make use of the function:

> mkELam :: [Name] -> CoreExpr -> CoreExpr
> mkELam args (ELam args’ body) = ELam (args++args’) body
> mkELam args other_body = ELam args other_body

6.7.3 Avoiding redundant full laziness

Full laziness does not come for free. It has two main negative effects:

• Multiple lambda abstractions, such as \x y. E, turn into one supercombinator under
the simple scheme, but may turn into two under the fully lazy scheme. Two reductions
instead of one are therefore required to apply it to two arguments, which may well be more
expensive.

• Lifting out MFEs removes sub-expressions from their context, and thereby reduces oppor-
tunities for a compiler to perform optimisations. Such optimisations might be partially
restored by an interprocedural analysis which figured out the contexts again, but it is
better still to avoid creating the problem.

These points are elaborated by [Fairbairn 1985] and [Goldberg 1988]. Furthermore, they point
out that often no benefit arises from lifting out every MFE from every lambda abstraction. In
particular:

• If no partial applications of a multiple abstraction can be shared, then nothing is gained
by floating MFEs out to between the nested abstractions.

• Very little is gained by lifting out an MFE that is not a reducible expression. No work is
shared thereby, though there may be some saving in storage because the closure need only
be constructed once. This is more than outweighed by the loss of compiler optimisations
caused by removing the expression from its context.

These observations suggest some improvements to the fully lazy lambda lifter, and they turn
out to be quite easy to incorporate:

• If a multiple abstraction is not separated into separate ELam constructors by the
separateLam pass, then all the variables bound by it will be given the same level number.
It follows that no MFE will be identified which is free in the inner abstraction but not
the outer one. This ensures that no MFEs will be floated out to between two abstractions
represented by a single ELam constructor.

All that is required is to modify the separateLams pass to keep in a single ELam constructor
each multiple abstraction of which partial applications cannot be shared. This sharing
information is not trivial to deduce, but at least we have an elegant way to use its results
by modifying only a small part of our algorithm.

This is one reason why we allow ELam constructors to take a list of binders.
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• identifyMFEs uses a predicate notMFECandidate to decide whether to identify a particular
sub-expression as an MFE. This provides a convenient place to add extra conditions to
exclude from consideration expressions which are not redexes. This condition, too, is
undecidable in general, but a good approximation can be made in many cases; for example
(+ 3) is obviously not a redex.

This concludes the presentation of the full laziness transformation.

6.8 Mark 6: Dependency analysis†

Consider the Core-language definition

f x = let
g = \y. letrec

h = y+1 ;
k = x+2

in
h+k

in
g 4

The inner letrec is not recursive at all! The program is equivalent to the following:

f x = let
g = \y. let h = y+1 in

let k = x+2 in
h+k

in
g 4

This transformation, which breaks up let(rec) blocks into minimal-sized groups, and always
uses let in preference to letrec, is called dependency analysis.

We have already alluded to the fact that better code can be generated if the program has been
subjected to a dependency analysis. This has shown up in two places:

• In Johnsson-style lambda lifting, we treated the free variables for a letrec block of def-
initions as a single entity. If we could in fact break the letrec up into smaller blocks,
then there would be fewer free variables in each block. This will then reduce the number
of free variables that must be added to a function definition by the abstractJ function.

• In the full-laziness transformation we always kept the declarations in a let(rec) block
together. If we first do dependency analysis, to break the declarations into small groups,
then perhaps some of the groups could be floated further out than before.

This section explores how to do dependency analysis on Core programs.
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6.8.1 Strongly connected components

In order to discuss the dependency analysis we need to understand some graph theory. We
therefore begin with a definition.

Definition 6.1 A directed graph is a tuple (V , E ) of two components:

• a set of vertices (or nodes), V ;

• a set of edges, E. Each edge is a pair: (v0, v1); where v0 ∈ V is the source of the edge,
and v1 ∈ V is the target.

In the following expression we say that x depends on y and z, z depends on x and y, but that
y does not depend on any other variable.

letrec
x = y + 7 * tl z;
y = 5
z = (x,y)

in e

The graph we construct for this definition block has three vertices, {x, y, z}, and the edges:

{(x, y), (x, z), (z, x), (z, y)}

The interpretation of the first edge is that x depends on y, and the absence of any edges from y
means that y does not depend on any other variables. Pictorially, the graph is as follows:

❂✇

✛

✲

y

zx

Because we are not concerned with multiple edges between the same pairs of vertices, we can
instead formulate the information about the edges as a map: outs.

Definition 6.2
outs v = {v ′ | (v , v ′) ∈ E}

The set outs v is therefore the set of vertices that are targets for an edge whose source is v . In
the example we have just looked at outs x = {y, z}, outs y = {} and outs z = {x, y}.

We can construct a similar map, ins, which is dual to the outs map.

Definition 6.3
ins v = {v ′ | (v ′, v) ∈ E}
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This is the set of vertices that are the source of an edge pointing to v . In the example we have
just looked at ins x = {z}, insy = {x, z} and insz = {x}.

Definition 6.4 The map r∗ is the transitive closure of the map r. It can be defined recursively
as:

• a ∈ r∗ a,

• if b ∈ r∗ a, then r b ⊆ r∗ a.

The set outs∗ a is the set of all vertices that can be reached from the vertex a, by following the
edges of the graph. We say that b is reachable from a whenever b ∈ outs∗ a. The set ins∗ a is
the set of all vertices that can reach the vertex a by following the edges of the graph.

Using the running example, we have outs∗ x = {x, y, z}, outs∗ y = {y}, and outs∗ z = {x, y, z}.
We also have ins∗ x = {x, z}, ins∗ y = {x, y, z}, and ins∗ z = {x, z}.

We are now in a position to define a strongly connected component of a graph. Informally, the
vertices a and b are in the same component whenever a is reachable from b and b is reachable
from a.

Definition 6.5 The strongly connected component of the graph containing the vertex a is the
set of vertices scc a, defined as:

scc a = outs∗ a ∩ ins∗ a

That is: a vertex b is in scc a if and only if it is reachable from a and if a is reachable from b.
The graph in the running example has two strongly connected components: {x, z} and {y}.

Exercise 6.13. Prove that the relation ‘in the same strongly connected component’ partitions the set
of vertices into equivalence classes.

Topological sorting

An ordering on vertices can be induced by considering the maps ins∗ and outs∗. This is a partial
order which we will represent as #.

Definition 6.6 The vertex a is topologically less than or equal to the vertex b, written a # b,
if and only if:

b ∈ outs∗ a

In our example x # x, x # y, x # z, y # y, z # x, z # y and z # z.

Because the strongly connected components are disjoint, a similar ordering is induced on them
by considering the action of # on their elements. In our running example the two components
are ordered as: {x, z} # {y}.

Definition 6.7 A sequence of vertices (or strongly connected components) are topologically sort-
ed if, for all a and b in the sequence, a precedes b whenever a # b.
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So, one possible topologically sorted sequence would be: [x, z, y]. The other is [z, x, y].

Having now determined that the two strongly connected components are ordered as {x, z} # {y},
we may transform the original expression into the following one:

letrec
y = 5

in letrec
x = y + 7 + second z
z = (x, y)

in e

We next consider efficient ways to implement the strongly connected component algorithm.

6.8.2 Implementing a strongly connected component algorithm

Depth first search

We will first consider the problem of implementing a depth first search of a graph. The function
depthFirstSearch is parameterised over the map from vertices to their offspring; this permits
us to reverse the direction in which the edges are traversed. Furthermore, we choose to make
the maps ins and outs into functions from vertices to sequences of vertices. The reason for this
change is that we have to traverse the offspring in some order and this is easier to arrange if we
have a sequence rather than a set.

> depthFirstSearch :: Ord a =>
> (a -> [a]) -> -- Map
> (Set a, [a]) -> -- State: visited set,
> -- current sequence of vertices
> [a] -> -- Input vertices sequence
> (Set a, [a]) -- Final state

The function depthFirstSearch updates a state as it runs down the input vertex sequence,
using foldll. The state consists of two parts: in the first we keep track of all of the vertices
that we have so far visited; in the second we construct the sequence of vertices that we will
output.

> depthFirstSearch
> = foldll . search
> where

The key part of the depth first search is coded into search: if we have already visited the vertex
then the state is unchanged.

> search relation (visited, sequence) vertex
> | setElementOf vertex visited = (visited, sequence ) -- KH
> -- KH Was: = (visited, sequence ), setElementOf vertex visited
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On the other hand, if this is the first time we have visited the vertex, then we must proceed to
search from this vertex. When the state is returned from this search, we must add the current
vertex to the sequence.

> | otherwise = (visited’, vertex: sequence’) -- KH
> -- KH Was: = (visited’, vertex: sequence’), otherwise
> where

The visited set must be updated with the current vertex, before we begin the search, and the
list of vertices to search from is determined by applying the map relation.

> (visited’, sequence’)
> = depthFirstSearch relation
> (setUnion visited (setSingleton vertex), sequence)
> (relation vertex)

The result will be a set of vertices visited, and a sequence of these visited vertices, in topological
sort order.

Exercise 6.14. Prove the following theorem:

depthFirstSearch outs ({}, [])S = (V , S ′)

where S is a sequence of vertices, V =
⋃

v∈S outs v , and S
′ is a topologically sorted sequence of

the vertices in V .

Spanning search

The function spanningSearch is a slight adaptation of the function depthFirstSearch, in which
we retain the structuring information obtained during the search.

> spanningSearch :: Ord a =>
> (a -> [a]) -> -- The map
> (Set a, [Set a]) -> -- Current state: visited set,
> -- current sequence of vertice sets
> [a] -> -- Input sequence of vertices
> (Set a, [Set a]) -- Final state

Again, it is defined in terms of an auxiliary function search

> spanningSearch

> = foldll . search
> where

If the current vertex has been visited already then we return the current state.
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> search relation (visited, setSequence) vertex
> | setElementOf vertex visited = (visited, setSequence ) -- KH
> -- KH Was: = (visited, setSequence ), setElementOf vertex visited

Alternatively, if this is the first time we have visited the current vertex, then we search – using
depthFirstSearch – from the current vertex. The sequence that is returned constitutes the
component associated with the current vertex. We therefore add it to the sequence of sets that
we are constructing.

> | otherwise = (visited’, setFromList (vertex: sequence): setSequence) -- KH
> -- KH Was: = (visited’, setFromList (vertex: sequence): setSequence)
> where
> (visited’, sequence)
> = depthFirstSearch relation
> (setUnion visited (setSingleton vertex), [])
> (relation vertex)

Strongly connected components

The strongly connected component algorithm can now be implemented as the following function:

> scc :: Ord a =>
> (a -> [a]) -> -- The "ins" map
> (a -> [a]) -> -- The "outs" map
> [a] -> -- The root vertices
> [Set a] -- The topologically sorted components

The function scc consists of two passes over the graph.

> scc ins outs
> = spanning . depthFirst

In the first we construct a topologically sorted sequence of the vertices of the graph.

> where depthFirst = second . depthFirstSearch outs (setEmpty, [])

In the second pass we construct the reverse of the topologically sorted sequence of strongly
connected components.

> spanning = second . spanningSearch ins (setEmpty, [])

Let us consider what happens when we construct the first component. At the head of the
sequence is the vertex a. Any other vertices that satisfy a # b will occur later in the sequence.
There are no vertices satisfying b # a. The call to spanningSearch with ins as its relational
parameter, will construct ins∗ a. The visited set will be augmented with each vertex in the
component.

In the example we considered earlier, we will be applying spanning to the list [x, z, y]. This
expands to:
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second (search ins (search ins (search ins ({},[]) x) z) y)

Expanding the inner search we obtain:

second (search ins (search ins (vs, [setFromList (x:s)]) z) y)
where (vs,s) = depthFirstSearch ins ({x},[]) (ins x)

But ins x = [z]; this means that vs = {x, z} and s = [z]. Hence we reduce the expression to:

second (search ins (search ins ({x,z}, [{x,z}]) z) y)

Because z is already in the visted set, this becomes:

second (search ins ({x,z}, [{x,z}]) y)

The search expands as:

second (vs, [setFromList (y:s), {x,z}])
where (vs,s) = depthFirstSearch ins ({x,y,z},[]) (ins y)

But ins y = [x, z]; both of which are already visited, so vs = {x, z, y} and s = [].

The final form of the expression becomes:

[{y}, {x,z}]

The visited set in spanningSearch represents those vertices that have already been
assigned to a strongly connected component.

When we come across a vertex in the input sequence that is already in the visited set, it behaves
as if it had been deleted from further consideration. Suppose that the vertex b is the next vertex
in the input sequence that has not already been visited. When we come to compute

depthFirstSearch ins ({b} ∪ visited, []) (ins b)

This will produce a new visited set (which will be scc a ∪ scc b) and a sequence whose elements
are the vertices in scc b.

Note that the strongly connected components are output in reverse topological order.

Exercise 6.15. Let
scc ins outs R = S ,

and V =
⋃
{ins∗ v | v ∈ R}. Prove that

• firstly, that the sequence S contains all of the strongly connected components, i.e.

setFromList S =
⋃

{scc v | v ∈ V };

• secondly, that these components are in reverse topological order, i.e. if a # b then b occurs
before a in the sequence S .
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6.8.3 A dependency analysis

We can now perform a dependency analysis on the program. Whenever we come across a
let(rec) block we must split it into strongly connected components. In the case of let, this is
simple; there are no dependencies so we simply separate the list of definitions into a singleton
list for each definition.

The dependency analysis is performed by the function dependency. This uses information from
a prior pass of freeVars to rearrange let(rec)s; this information is then used by the auxiliary
function depends.

> dependency :: CoreProgram -> CoreProgram
> dependency = depends . freeVars

> runD = pprint . dependency . parse

> depends :: AnnProgram Name (Set Name) -> CoreProgram
> depends prog = [(name,args, depends_e rhs) | (name, args, rhs) <- prog]

The work is done by depends_e, whose only interesting case is that for let(rec).

> depends_e :: AnnExpr Name (Set Name) -> CoreExpr
> depends_e (free, ANum n) = ENum n
> depends_e (free, AConstr t a) = EConstr t a
> depends_e (free, AVar v) = EVar v
> depends_e (free, AAp e1 e2) = EAp (depends_e e1) (depends_e e2)
> depends_e (free, ACase body alts) = ECase (depends_e body)
> [ (tag, args, depends_e e)
> | (tag, args, e) <- alts
> ]
> depends_e (free, ALam ns body) = ELam ns (depends_e body)

In the case of letrecs we must construct the dependency graph, and then apply the scc function
to determine the way to split the definitions. If defnGroups is [d1, d2, . . . , dn ] – and we are
processing a letrec – then the letrec will be transformed to:

letrec d1 in letrec d2 in . . . letrec dn in body.

> depends_e (free, ALet is_rec defns body)
> = foldr (mkDependLet is_rec) (depends_e body) defnGroups
> where
> binders = bindersOf defns

The set of variables that we are interested in is derived from the binders, and is called the
binderSet.
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> binderSet | is_rec = setFromList binders
> | otherwise = setEmpty

From this we can construct the edges of the dependency graph.

> edges = [(n, f) | (n, (free, e)) <- defns,
> f <- setToList (setIntersection free binderSet)]

And thus the functions ins and outs required by the strongly connected component algorithm.

> ins v = [u | (u,w) <- edges, v==w]
> outs v = [w | (u,w) <- edges, v==u]

The resulting list of sets is converted into a list of lists, called components.

> components = map setToList (scc ins outs binders)

We construct the defnGroups by looking up the expression bound to each binder in the original
definitions, defns:

> defnGroups = [ [ (n, aLookup defns n (error "defnGroups"))
> | n <- ns]
> | ns <- components
> ]

Finally, to join together each group in defnGroups, we define mkDependLet, which recursively
does dependency analysis on each right-hand side, and then builds the results into a let(rec)
expression: A simple definition is:

> mkDependLet is_rec dfs e = ELet is_rec [(n, depends_e e) | (n,e) <- dfs] e

Exercise 6.16. In addition to the definition groups from non-recursive lets we sometimes get non-
recursive definitions arising in letrec’s. This is the case for y in the example we have used.
Redefine mkDependLet to make such bindings with a let and not a letrec. Hint: use the free-
variable information present in the right-hand sides of the definitions passed to mkDependLet.

6.9 Conclusion

It is interesting to compare our approach to full laziness with Bird’s very nice paper [Bird 1987]
which addresses a similar problem. Bird’s objective is to give a formal development of an efficient
fully lazy lambda lifter, by successive transformation of an initial specification. The resulting
algorithm is rather complex, and would be hard to write down directly, thus fully justifying the
effort of a formal development.

In contrast, we have expressed our algorithm as a composition of a number of very simple phases,
each of which can readily be specified and written down directly. The resulting program has a
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constant-factor inefficiency, because it makes many traversals of the expression. This is easily
removed by folding together successive passes into a single function, eliminating the intermediate
data structure. Unlike Bird’s transformations, this is a straightforward process.

Our approach has the major advantage that is is modular. For example:

• We were able to reuse existing functions on several occasions (freeVars, rename,
collectSCs and so on).

• The multi-pass approach means that each pass has a well-defined, simple purpose, which
makes it easier to modify. For example, we modified the identifyMFEs algorithm to be
more selective about where full laziness is introduced (Section 6.7.3).

• We could use the major phases in various combinations to ‘snap together’ a variety of
transformations. For example, we could choose whether or not to do dependency analysis
and full laziness, and which lambda lifter to use, simply by composing the appropriate
functions at the top level.

The main disadvantage of our approach is that we are unable to take advantage of one optimisa-
tion suggested by Hughes, namely ordering the parameters to a supercombinator to reduce the
number of MFEs. The reason for this is that the optimisation absolutely requires that lambda
lifting be entwined with the process of MFE identification, while we have carefully separated
these activities! Happily for us, the larger MFEs created by this optimisation are always par-
tial applications, which should probably not be identified as MFEs because no work is shared
thereby (Section 6.7.3). Even so, matters might not have fallen out so fortuitously, and our
separation of concerns has certainly made some sorts of transformation rather difficult.
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Appendix A

Utilities module

This appendix gives definitions for various useful types and functions used throughout the book.

> module Utils where

> -- The following definitions are used to make some synonyms for routines
> -- in the Gofer prelude to be more Miranda compatible
> shownum n = show n
> hd :: [a] -> a
> hd = head -- in Gofer standard prelude
> tl :: [a] -> [a]
> tl = tail -- in Gofer standard prelude
> zip2 :: [a] -> [b] -> [(a,b)]
> zip2 = zip -- in Gofer standard prelude
> -- can’t do anything about # = length, since # not binary.

A.1 The heap type

The abstract data types heap and addr are used to represent the GHarbage-collected heap of
nodes for each of our implementations.

A.1.1 Specification

A heap of * is a collection of objects of type *, each identified by a unique address of type addr.
The following operations are provided:

> hInitial :: Heap a
> hAlloc :: Heap a -> a -> (Heap a, Addr)
> hUpdate :: Heap a -> Addr -> a -> Heap a
> hFree :: Heap a -> Addr -> Heap a
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hInitial returns an initialised empty heap. hAlloc takes a heap and an object, and returns
a new heap and an address; the new heap is exactly the same as the old one, except that the
specified object is found at the address returned. hUpdate takes a heap, an address and an
object; it returns a new heap in which the address is now associated with the object. hFree
takes a heap and an address and returns a new heap with the specified object removed.

> hLookup :: Heap a -> Addr -> a
> hAddresses :: Heap a -> [Addr]
> hSize :: Heap a -> Int

hLookup takes a heap and an address and returns the object associated with that address.
hAddresses returns the addresses of all the objects in the heap. hSize returns the number of
objects in the heap.

> hNull :: Addr
> hIsnull :: Addr -> Bool

hNull is an address guaranteed to differ from every address returned by hAlloc; hIsnull tells
whether an address is this distinguished value.

Finally, we add a show function so that addresses can be printed easily.

> showaddr :: Addr -> [Char]

By giving it the name show followed by the name of the type (addr), we inform Miranda that
when Miranda’s built-in show function encounters an object of type addr, it should use showaddr
to convert it to a list of characters.

A.1.2 Representation

The heap is represented as a triple, containing:

• the number of objects in the heap;

• a list of unused addresses;

• an association list mapping addresses to objects.

Addresses are represented as numbers.

> type Heap a = (Int, [Int], [(Int, a)])
> type Addr = Int

We implement the operations in a (fairly) obvious manner.

> hInitial = (0, [1..], [])
> hAlloc (size, (next:free), cts) n = ((size+1, free, (next,n) : cts),next)
> hUpdate (size, free, cts) a n = (size, free, (a,n) : remove cts a)
> hFree (size, free, cts) a = (size-1, a:free, remove cts a)
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> hLookup (size,free,cts) a
> = aLookup cts a (error ("can’t find node " ++ showaddr a ++ " in heap"))
>
> hAddresses (size, free, cts) = [addr | (addr, node) <- cts]
>
> hSize (size, free, cts) = size

> hNull = 0
> hIsnull a = a == 0
> showaddr a = "#" ++ shownum a -- Print # to identify addresses

The auxiliary function remove removes an item from a heap contents:

> remove :: [(Int,a)] -> Int -> [(Int,a)]
> remove [] a = error ("Attempt to update or free nonexistent address #" ++
> shownum a)
> remove ((a’,n):cts) a | a == a’ = cts
> | a /= a’ = (a’,n) : remove cts a

A.2 The association list type

An association list associates keys to values. It is represented by a list of (key,value) pairs, using
a type synonym. It is not an abstract type because it turns out to be so convenient to use
list-manipulation operations on it.

> type ASSOC a b = [(a,b)]

You can use one association list, e1, to extend another, e2, using ordinary list append, thus
e1 ++ e2. A lookup in this extended environment will search e1 first and then e2.

GHiven a key, k , you can find the associated value using aLookup.

The call aLookup alist key default searches the association list alist starting from the head of
the list; if it finds a (key , val) pair it returns val , otherwise it returns default .

> aLookup [] k’ def = def
> aLookup ((k,v):bs) k’ def | k == k’ = v
> | k /= k’ = aLookup bs k’ def

The functions aDomain and aRange find the range and domain of the association list, respectively:

> aDomain :: ASSOC a b -> [a]
> aDomain alist = [key | (key,val) <- alist]
>
> aRange :: ASSOC a b -> [b]
> aRange alist = [val | (key,val) <- alist]
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aEmpty is the empty association list:

> aEmpty = []

A.3 Generating unique names

In Chapter 6 we need to generate unique names for newly generated supercombinators. The
abstract data type nameSupply acts as a supply of unique names.

> getName :: NameSupply -> [Char] -> (NameSupply, [Char])
> getNames :: NameSupply -> [[Char]] -> (NameSupply, [[Char]])
> initialNameSupply :: NameSupply

There are three operations. getName takes a name supply and a prefix string, and returns a
depleted name supply together with a string which is a new unique name; this string has the
specified prefix. getNames does the same thing for a list of prefixes. Finally, initialNameSupply
is the initial, undepleted name supply.

A.3.1 Representation

A name supply is represented by a single integer.

> type NameSupply = Int
> initialNameSupply = 0
> getName name_supply prefix = (name_supply+1, makeName prefix name_supply)
> getNames name_supply prefixes
> = (name_supply + length prefixes, zipWith makeName prefixes [name_supply..])

> makeName prefix ns = prefix ++ "_" ++ shownum ns

A.4 Sets

The abstract data type of sets has the following signature.

> setFromList :: (Ord a) => [a] -> Set a
> setToList :: (Ord a) => Set a -> [a]
> setUnion :: (Ord a) => Set a -> Set a -> Set a
> setIntersection :: (Ord a) => Set a -> Set a -> Set a
> setSubtraction :: (Ord a) => Set a -> Set a -> Set a
> setElementOf :: (Ord a) => a -> Set a -> Bool
> setEmpty :: (Ord a) => Set a
> setIsEmpty :: (Ord a) => Set a -> Bool
> setSingleton :: (Ord a) => a -> Set a
> setUnionList :: (Ord a) => [Set a] -> Set a
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A.4.1 Representation

In this implementation, sets are represented by ordered lists.

> type Set a = [a] -- Ordered by the sort function

The implementation of the operations is straightforward.

> setEmpty = []
> setIsEmpty s = null s
> setSingleton x = [x]

> setFromList = rmdup . sort
> where rmdup [] = []
> rmdup [x] = [x]
> rmdup (x:y:xs) | x == y = rmdup (y:xs)
> | x /= y = x: rmdup (y:xs)

> setToList xs = xs

> setUnion [] [] = []
> setUnion [] (b:bs) = (b:bs)
> setUnion (a:as) [] = (a:as)
> setUnion (a:as) (b:bs) | a < b = a: setUnion as (b:bs)
> | a == b = a: setUnion as bs
> | a > b = b: setUnion (a:as) bs

> setIntersection [] [] = []
> setIntersection [] (b:bs) = []
> setIntersection (a:as) [] = []
> setIntersection (a:as) (b:bs) | a < b = setIntersection as (b:bs)
> | a == b = a: setIntersection as bs
> | a > b = setIntersection (a:as) bs

> setSubtraction [] [] = []
> setSubtraction [] (b:bs) = []
> setSubtraction (a:as) [] = (a:as)
> setSubtraction (a:as) (b:bs) | a < b = a: setSubtraction as (b:bs)
> | a == b = setSubtraction as bs
> | a > b = setSubtraction (a:as) bs

> setElementOf x [] = False
> setElementOf x (y:ys) = x==y || (x>y && setElementOf x ys)

> setUnionList = foldll setUnion setEmpty
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A.5 Other useful function definitions

The definitions of fst and snd are present in later versions of Miranda, but not earlier ones.
We always use first and second instead to avoid compatibility problems.

> first (a,b) = a
> second (a,b) = b

The function zipWith zips together two lists, combining corresponding elements with a given
function. The resulting list is as long as the shorter of the two input lists.

> -- zipWith is defined in standard prelude

The definition of foldl differs between different versions of Miranda, so we avoid the problem
by writing our own function foldll, which does the following: GHiven a dyadic function ⊗, a
value b and a list xs = [x1, ..., xn ], foldll ⊗ b xs computes (. . . ((b ⊗ x1) ⊗ x2) ⊗ . . . xn).
Section 1.5.1 contains a simple example of foldll in action, together with a picture.

> foldll :: (a -> b -> a) -> a -> [b] -> a
> foldll = foldl -- in Gofer standard prelude.

Finally, the function mapAccuml is a rather useful combination of map and foldll. It is given a
function, an accumulator and a list. For each element of the list it applies the function to the
current accumulator and that list element, which gives a new value of the accumulator and a
new list element. The result of mapAccuml is the final value of the accumulator, and the list of
all the results. The ‘l’ in the function name says that the accumulator is passed along from left
to right. Section 2.3.4 has an example of mapAccuml in action, together with a picture.

> mapAccuml :: (a -> b -> (a, c)) -- Function of accumulator and element
> -- input list, returning new
> -- accumulator and element of result list
> -> a -- Initial accumulator
> -> [b] -- Input list
> -> (a, [c]) -- Final accumulator and result list
>
> mapAccuml f acc [] = (acc, [])
> mapAccuml f acc (x:xs) = (acc2, x’:xs’)
> where (acc1, x’) = f acc x
> (acc2, xs’) = mapAccuml f acc1 xs

> sort [] = []
> sort [x] = [x]
> sort (x:xs) = [ y | y <- xs, y < x] ++ x : [ y | y <- xs, y >= x ]

> space n = take n (repeat ’ ’)
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Appendix B

Example Core-language programs

In this Appendix we give a few Core-language programs which are useful for testing some of the
implementations developed in the book. They assume that the functions defined in the prelude
(Section 1.4) are defined.

B.1 Basic programs

The programs in this section require only integer constants and function application.

B.1.1 Ultra-basic tests

This program should return the value 3 rather quickly!

main = I 3

The next program requires a couple more steps before returning 3.

id = S K K ;
main = id 3

This one makes quite a few applications of id (how many?).

id = S K K ;
main = twice twice twice id 3

B.1.2 Testing updating

This program should show up the difference between a system which does updating and one
which does not. If updating occurs, the evaluation of (I I I) should take place only once;
without updating it will take place twice.

main = twice (I I I) 3
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B.1.3 A more interesting example

This example uses a functional representation of lists (see Section 2.8.3) to build an infinite list
of 4’s, and then takes its second element. The functions for head and tail (hd and tl) return
abort if their argument is an empty list. The abort supercombinator just generates an infinite
loop.

cons a b cc cn = cc a b ;
nil cc cn = cn ;
hd list = list K abort ;
tl list = list K1 abort ;
abort = abort ;

infinite x = cons x (infinite x) ;

main = hd (tl (infinite 4))

B.2 let and letrec

If updating is implemented, then this program will execute in fewer steps than if not, because
the evaluation of id1 is shared.

main = let id1 = I I I
in id1 id1 3

We should test nested let expressions too:

oct g x = let h = twice g
in let k = twice h
in k (k x) ;

main = oct I 4

The next program tests letrecs, using ‘functional lists’ based on the earlier definitions of cons,
nil, etc.

infinite x = letrec xs = cons x xs
in xs ;

main = hd (tl (tl (infinite 4)))

B.3 Arithmetic

B.3.1 No conditionals

We begin with simple tests which do not require the conditional.
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main = 4*5+(2-5)

This next program needs function calls to work properly. Try replacing twice twice with
twice twice twice or twice twice twice twice. Predict what the result should be.

inc x = x+1;
main = twice twice inc 4

Using functional lists again, we can write a length function:

length xs = xs length1 0 ;
length1 x xs = 1 + (length xs) ;

main = length (cons 3 (cons 3 (cons 3 nil)))

B.3.2 With conditionals

Once we have conditionals we can at last write ‘interesting’ programs. For example, factorial:

fac n = if (n==0) 1 (n * fac (n-1)) ;
main = fac 5

The next program computes the greatest common divisor of two integers, using Euclid’s algo-
rithm:

gcd a b = if (a==b)
a

if (a<b) (gcd b a) (gcd b (a-b)) ;
main = gcd 6 10

The nfib function is interesting because its result (an integer) gives a count of how many
function calls were made during its execution. So the result divided by the execution time gives
a performance measure in function calls per second. As a result, nfib is quite widely used as
a benchmark. The ‘nfib-number’ for a particular implementation needs to be taken with an
enormous dose of salt, however, because it is critically dependent on various rather specialised
optimisations.

nfib n = if (n==0) 1 (1 + nfib (n-1) + nfib (n-2)) ;
main = nfib 4

B.4 Data structures

This program returns a list of descending integers. The evaluator should be expecting a list as
the result of the program. cons and nil are now expected to be implemented in the prelude as
Pack{2,2} and Pack{1,0} respectively.
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downfrom n = if (n == 0)
nil
(cons n (downfrom (n-1))) ;

main = downfrom 4

The next program implements the Sieve of Eratosthenes to generate the infinite list of primes,
and takes the first few elements of the result list. If you arrange that output is printed incre-
mentally, as it is generated, you can remove the call to take and just print the infinite list.

main = take 3 (sieve (from 2)) ;

from n = cons n (from (n+1)) ;

sieve xs = case xs of
<1> -> nil ;
<2> p ps -> cons p (sieve (filter (nonMultiple p) ps)) ;

filter predicate xs
= case xs of

<1> -> nil ;
<2> p ps -> let rest = filter predicate ps

in
if (predicate p) (cons p rest) rest ;

nonMultiple p n = ((n/p)*p) ˜= n ;

take n xs = if (n==0)
nil
(case xs of

<1> -> nil ;
<2> p ps -> cons p (take (n-1) ps))
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algebraic data types, see data structures, 12
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list comprehension, 33
lists, 13, 72, 76, 186
local definitions, 11
local environment
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local function definitions, 217
locking, of node, 209, 214
look through, of application nodes, 105

machine language instructions, 83
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marker, 173
maximal free expression, 237
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Spineless Tagless G-machine, 192
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stack locations
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stack underflow check, 46
standard prelude, 10, 19
state transition rules, 147
state transition system, 48
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strongly connected components, 253
structured data, see data structures, 12

in TIM, 183
structured types, 12
subroutine call and return, 111
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reduction, 51
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tag
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task, 198
communication, 196
concurrent, 196
synchronization, 196

tasks
interleaving, 196

template instantiation, 42, 58
template instantiation machine
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of G-machine, 85

Three Instruction Machine, see TIM
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tokens, 28
topological sorting, 254
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in template-instantiation machine, 63
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updating indirection, 174
updating indirections, 176
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value stack, 152

in G-machine, 131
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vertical bar, 32
virtual processor, 198

weak head normal form, 45, 111
WHNF, see weak head normal form
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Code index

This index indicates the point of definition of every Miranda function defined in the book (under-
lined entries), and every reference to typewriter-font material in running text (non-underlined
entries).
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abort, 73, 269
abstract, 222, 223, 224, 226, 227, 230, 234
abstractJ, 233, 234, 236, 252
abstype, 22
ACase, 219
aCompile, 87, 88
AConstr, 219
actualFreeList, 234, 235
Add, 66, 74, 111, 113, 119, 122, 126, 136, 137
add, 181
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addr, 53, 76, 79, 205, 262, 263
aDomain, 264, 265
aEmpty, 265
aEval, 87, 88
aExpr, 86–88
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aInterpret, 86, 87, 88
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alloc, 107, 108
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allocatePrim, 67
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aLookup, 59, 264
amToClosure, 156, 190, 191
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annotation, 218
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ANum, 219
applyToStats, 54, 156
apStep, 57, 68
aRange, 264, 265
Arg, 148–150, 169, 171, 174, 178, 180, 182,

187, 193, 194
argOffset, 98

args, 225
arithmetic1, 116
arithmetic2, 116, 117
assembleOp, 39
assoc, 54

binders, 259
binderSet, 259
bindersOf, 18
Blue, 13–15
body, 62, 259
bodyFree, 225
box, 116
boxBoolean, 117, 129, 130
boxInteger, 115
Branch, 13–15
buildInitialHeap, 55, 56, 66, 67, 96, 97,

136
builtInDyadic, 121

case, 11, 12, 14, 15, 17, 19, 24, 36, 37, 39, 59,
68–71, 73, 123, 128, 138–140, 183–
187, 189, 193, 194, 224, 225, 227,
228, 236, 241, 244, 246, 249, 250,
275

Casejump, 126, 127, 128, 135, 139, 140
caseList, 68, 72, 73
casePair, 68, 71, 72
clex, 28–30
closures, 191
Code, 106, 148–150, 151, 166, 169, 171, 174,

175, 178, 180, 184, 187, 193, 194
codeLookup, 153
codeStore, 190, 192
collectSCs, 223, 226, 229, 230, 231, 233,

250, 261
colour, 13, 14
comp, 108, 128
comparison, 117, 129
compile, 52, 53, 55, 74, 96, 118, 129, 135,

151, 154, 164, 188, 190–192, 206,
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compileA, 155, 191
compileAlts, 128, 138
compileArgs, 108, 109
compileC, 96, 98, 99, 108, 109, 110, 129
compiled, 97
compiledPrimitives, 99, 118, 119, 154,

155, 163–165, 207
compileE, 121, 128, 129, 208
compileLet, 108
compileLetrec, 108, 110
compileR, 96, 98, 99, 104, 109, 121, 140, 155,

170, 171, 175, 187, 208
compileSC, 154, 155, 160, 175, 182
compileSc, 96, 97, 98, 109
compileU, 179
complex, 13, 14
components, 260
compose, 146, 148, 175
compose2, 145–147, 160
Cond, 113, 117–119, 122, 126, 132, 135, 137,

139, 140, 163, 164, 165, 167, 186
Cons, 13, 72, 73, 76, 123
cons, 183, 269, 270
Constr, 129
coreExpr, 10, 18, 21, 26, 105, 108, 217, 219
coreProgram, 10, 19, 20, 28, 36, 217, 220,

222, 241

Data, 184, 187, 189, 194
data, 18, 24, 26, 39, 53, 54, 63, 66, 69, 77,

79, 86, 87, 90, 91, 103, 113, 124,
126, 151, 152, 159, 164, 210, 214,
219

dataStep, 71
defnGroups, 259, 260
defns, 260
defnsFree, 225
defs, 62, 108
dependency, 259
depends, 259
depthFirstSearch, 255, 256–258
digit, 29, 30
dispatch, 57, 63, 67, 71, 93, 104, 106, 108,

117, 127, 135, 206
Div, 66, 113, 126, 164
doAdmin, 56, 76, 77, 92, 156, 205, 206, 216
Done, 79

double, 11
dropwhile, 29
dsum, 197, 198
dumpItem, 112

e2s, 22
EAnnot, 218
EAp, 18, 22, 38, 86, 219
ECase, 18, 123, 130, 219, 248
EConstr, 18, 69, 123, 130, 219
edges, 260
ELam, 18, 219, 222, 227, 228, 230, 234, 235,

240, 248, 250, 251
ELet, 18, 26, 62, 105, 175, 219, 230, 231, 248
emptyPendingList, 215
emptyTask, 215, 216
Enter, 147–150, 151, 156, 164, 166, 168, 169,

171, 174–176, 178, 180, 189, 190,
192–194, 278

ENum, 18, 37, 219
env, 61, 98, 108
Eq, 113, 126, 164
error, 73
evacuateStack, 81
Eval, 111, 113, 114, 115, 117, 121, 122, 126,

127, 138, 139, 208, 209
eval, 52, 56, 59, 61, 92, 151, 155, 156, 204
evalMult, 50
EVar, 18, 37, 219
expr, 16, 18, 217, 218, 219, 220
extraPreludeDefs, 55, 70, 74, 75

fac, 132
fac20, 48
fAlloc, 153
False, 69, 70, 75, 117, 129, 132
fGet, 153
findDumpRoots, 76
findGlobalRoots, 76
findRoots, 77
findStackRoots, 76, 78
first, 267
flatten, 24, 25, 26, 28
fList, 153
float, 241, 250, 251
floatedDefns, 248, 249
foldl, 22, 267
foldll, 22, 226, 255, 267
foldr, 19
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FoundOp, 39
frame, 188
FrameInt, 152
FrameNull, 152
FramePtr, 164
framePtr, 152
freeSetToLevel, 242, 243
freeToLevel, 242, 243
FreeVars, 218
freeVars, 222, 223, 224, 233, 242, 259, 261
freeVarsOf, 225
fst, 72, 267
Full, 159
fullRun, 151
fullyLazyLift, 241
fUpdate, 153
fvList, 226

Ge, 113, 126
Gen, 220
Get, 132, 134, 135, 137
get, 90, 204
getArg, 94, 95, 105, 211, 216
getArgs, 58, 67
getargs, 58
getClock, 204
getCode, 90, 204
getDump, 112, 204
getGlobals, 92, 204
getHeap, 91, 204
getName, 265
getNames, 265
getOutput, 124, 204
getSparks, 204
getStack, 91, 204
getStats, 92, 204
getVStack, 133, 204
globals, 55, 93, 96, 130
gmCode, 90
gmCompiler, 98
gmDumpItem, 203
gmEnvironment, 98
gmFinal, 92, 93, 205
gmGlobals, 91, 102, 201, 202
gmHeap, 201
gmOutput, 124, 129, 201
gmSparks, 201, 202, 215
gmStack, 90

gmState, 89, 203
gmStats, 92, 201
gmVStack, 133
gNode, 131
goodbye, 31
Gr, 164
Greater, 70, 71
GreaterEq, 70
Green, 13–15
GrEq, 164
Gt, 113, 126
guest, 8

hAddresses, 61, 77, 263, 264
hAlloc, 263, 264
head, 73, 127, 189
heap, 54, 61, 89, 93, 262
hello, 31
hFree, 76, 77, 263, 264
hInitial, 55, 56, 263, 264
hIsnull, 263, 264
hLookup, 67, 263, 264
hNull, 79, 80, 107, 263, 264
hSize, 76, 263, 264
hUpdate, 63, 67, 68, 77, 263, 264

IAppend, 24, 25, 26
iAppend, 22, 23, 24, 25
iConcat, 23, 24
id1, 269
identifyMFEs, 241, 245, 252, 261
iDisplay, 22, 24, 25, 26, 28
iFWNum, 27
IIndent, 25, 26
iIndent, 22, 23, 24, 25, 26
iInterleave, 23, 24
iLayn, 27
import, 16, 41, 82, 142, 195, 217
IMult, 86, 87
indent, 26
INewline, 25, 26
iNewline, 22, 23, 24, 26
INil, 24–26
iNil, 22, 24
initialArgStack, 154, 164
initialCode, 97, 118, 129, 207
initialDump, 154, 175
initialNameSupply, 265
initialTask, 207
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initialTiDump, 53, 66
initialValueStack, 154, 163
ins, 257, 258, 260
install, 249, 250
instance, 90, 103, 124
instantiate, 58, 59, 61, 62, 64, 69, 83, 85,

86
instantiateAndUpdate, 64
instantiateAndUpdateConstr, 70
instantiateConstr, 59, 69, 70
instantiateLet, 59
instantiateVar, 70
instruction, 90, 93, 107, 163, 170, 175, 206
intCode, 149, 163, 164, 173
IntConst, 148–150, 151, 166, 169, 178, 180,

194
IntVConst, 164, 166, 194
INum, 86, 87
iNum, 27
IPlus, 86, 87
isALam, 235, 236
isAtomicExpr, 19
isDataNode, 57, 67, 70
isELam, 230
iseq, 22–28, 59, 159, 160
iseqRep, 24, 25
isIdChar, 30
isRec, 18, 248, 250
IStr, 24, 25, 26
iStr, 22, 23, 24, 26
isWhiteSpace, 30

keywords, 36

Label, 148, 149, 151, 190–192
lambdaLift, 222, 223, 231, 241, 250
lambdaLiftJ, 233
language, 53
layn, 27, 50
Le, 113, 126
Leaf, 13–15
length, 6, 72, 123, 126, 127
Less, 70
LessEq, 70
let, 11, 12, 17, 18, 23, 36, 39, 46, 47, 62, 88,

106, 109, 122, 137, 139, 140, 167–
171, 178–180, 193, 223, 224, 226,
230, 236, 238–242, 245, 252, 259,
260, 269, 277

let(rec), 18, 59, 62, 64, 105, 106, 121, 136,
138, 150, 167, 171, 174, 176–180,
184, 190, 218, 221, 222, 225, 228,
229, 234–239, 241, 244, 245, 248,
249, 252, 259, 260, 277

letrec, 11, 12, 17, 18, 23, 39, 46, 47, 62,
88, 109–111, 122, 137, 139, 140, 170,
178, 193, 232, 236, 238, 239, 242,
244, 252, 259, 260, 269, 277

letter, 30
Level, 218
level, 248
levelOf, 244
lex, 28, 30
lock, 210, 211, 215
Lt, 113, 126, 164
LtEq, 164

machineSize, 213
main, 11, 43, 55, 64, 73, 96, 97, 160, 164,

199, 200, 237
makeName, 265
makeTask, 205
map, 19, 267
mapAccuml, 55, 97, 205, 227, 229, 267
markFrom, 77, 78, 79–81
markFromDump, 78
markFromGlobals, 78
markFromStack, 78, 81
markState, 79
member, 30
mid, 197
Mkap, 85, 88, 90, 94, 97, 103, 109, 113, 126,

192
mkap, 94
Mkbool, 134, 139
mkDependLet, 260
mkELam, 251
mkELet, 230
mkEnter, 175, 176
mkIndMode, 171
Mkint, 131, 132, 134, 139
mkMultiAp, 21, 22
MkNumPair, 14, 15
mkSepLams, 242
mkUpdIndMode, 175
module, 16, 41, 82, 142, 195, 217, 262
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Move, 168–171, 177, 178, 180, 184, 185, 187,
189, 193, 194

Mul, 66, 113, 119, 126, 132
Mult, 86, 164
multFinal, 50

name, 18, 54, 192, 219, 246
nameSupply, 265
NAp, 51, 65, 66, 69, 73, 74, 79, 80, 91, 94, 95,

103, 106, 124, 210, 211, 214
NConstr, 124, 126, 127, 134, 135, 210, 214
NData, 69, 70, 71, 75, 77, 79, 80
Ne, 113, 126
Neg, 65, 113, 115, 122, 126, 134, 137, 164
negate, 16, 67, 121, 122, 137, 139
newBinders, 248
newNames, 227, 228, 246, 247
newNamesL, 247
newState, 95
newtasks, 205
nfib, 270
NForward, 81
NGlobal, 91, 93, 96, 103, 106, 121, 124, 131,

210, 211, 214
Nil, 13, 72, 73
nil, 183, 269, 270
NInd, 63, 66, 69, 77, 78, 79, 80, 103, 104,

124, 210, 211, 214
NLAp, 210, 214
NLGlobal, 210, 214
NMarked, 77, 79, 80, 81
NNum, 51, 54, 63, 65, 66, 67, 68, 69, 70, 73,

77, 79, 80, 91, 94, 95, 102, 111, 114,
115, 117, 118, 127, 129, 134, 135

node, 54, 60, 63, 69, 70, 75, 77, 80, 81, 124,
214, 215

None, 159
nonRecursive, 18
not, 16, 70, 138
NotEq, 70, 164
notMFECandidate, 245, 252
NPrim, 66, 67, 69, 75, 77, 79, 80
NSupercomb, 51, 54, 55, 60, 63, 66, 69, 77,

79, 80, 91, 192
nTerse, 160
num, 13, 192
numPair, 14
numStep, 57, 67, 68, 71

numval, 36

offsets, 191
Op, 164
outs, 260

Pack, 14, 15, 17, 69, 71, 123, 126, 128, 130,
131, 139, 183, 185, 187, 193, 270

pAexpr, 37
pair, 182
pAlt, 32
pApply, 35, 36–38
Par, 199, 200, 206, 207
par, 198, 202, 206, 207–209, 211, 213, 215
parse, 29, 52, 53, 151
partialExpr, 39
partitionFloats, 249
pEmpty, 34, 35
pExpr, 38
pExpr1, 39
pExpr1c, 39
pgmGetGlobals, 202
pgmGetHeap, 201, 202
pgmGetOutput, 201
pgmGetSparks, 202
pgmGetStats, 202
pgmGlobalState, 201
pgmLocalState, 201
pgmState, 201, 202
pGreeting, 33, 34
pGreetings, 34
pGreetingsN, 35
pHelloOrGoodbye, 32, 33
pLit, 31, 32, 35
Plus, 86
pNum, 36, 37
Polar, 13–15
pOneOrMore, 34, 36
pOneOrMoreWithSep, 35
Pop, 102, 103, 104, 113, 122, 126, 137, 140
pprAExpr, 21, 24, 27
pprDefn, 23
pprDefns, 23
pprExpr, 21, 23, 24–27
pprExprGen, 220
pprint, 20, 21, 24, 37, 220
pprintAnn, 220
pprintGen, 220
pProgram, 36, 37
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pprProgram, 24
preludeDefs, 20, 55, 64, 73
primAdd, 67
primArith, 68, 71
PrimCasePair, 72
primComp, 71
PrimConstr, 69–71
primConstr, 69, 71
primDyadic, 71
primIf, 71
primitive, 66, 67, 69, 70, 72, 74
primitive1, 116, 117
primitive2, 116, 117
primitives, 67, 70, 74, 75, 136, 208
primNeg, 67
primStep, 67, 68, 69, 71, 74, 75
Print, 73, 74, 126, 127, 129, 188
pSat, 35, 36
pSc, 37
psum, 196, 197
pThen, 32, 33
pThen3, 34
pThen4, 34
Push, 84, 90, 94, 95, 97, 103, 105, 109, 113,

126, 147–150, 151, 156, 164, 166,
168, 169, 180, 182, 187, 190, 192–
194, 278

push, 94
Pushbasic, 132, 134, 137
Pushglobal, 90, 93, 97, 102, 103, 109, 113,

126, 130, 131
pushglobal, 93, 94, 131
Pushint, 90, 94, 97, 102, 103, 109, 113, 122,

126, 139
pushint, 94, 102
PushMarker, 172–175, 177, 178, 191, 194
PushV, 163, 164, 166, 194
put, 90, 203, 204
putClock, 204
putCode, 90, 204
putDump, 112, 204
putGlobals, 102
putHeap, 91, 204
putOutput, 124, 204
putSparks, 204
putStack, 91, 204
putStats, 92, 204
putVStack, 133, 204

pVar, 32, 35–37
pZeroOrMore, 34

quadruple, 11

read, 28
README, 8
rearrange, 106
Rect, 13–15
recursive, 18
Red, 13–15
relation, 256
remove, 264
rename, 223, 227, 233, 241, 246, 247, 248,

261
renameGen, 246, 247
renameL, 241, 246, 247, 248
Return, 138, 162, 163, 164, 166, 169, 172,

173, 175, 181, 185, 193
ReturnConstr, 185–187, 193
rhs, 231
rhssOf, 18, 19
run, 52, 89, 151
runD, 259
runF, 241
runJ, 233
runProg, 52, 89, 151
runS, 223

scan, 80
scanHeap, 77
scavengeHeap, 81
scc, 257, 258, 259
scheduler, 213, 214, 216
scStep, 58, 61, 63, 64, 85
search, 255, 256, 258
second, 267
separateLam, 251
separateLams, 240, 241, 242, 243, 251
setElementOf, 265, 266
setEmpty, 265, 266
setFromList, 258, 265, 266
setIntersection, 265, 266
setIsEmpty, 265, 266
setSingleton, 265, 266
setSubtraction, 225, 265, 266
setToList, 226, 265, 266
setUnion, 225, 265, 266
setUnionList, 265, 266
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shortShowInstructions, 114
shortShowStack, 114
show, 192, 263
showAddr, 61
showaddr, 263, 264
showArg, 160
showClosure, 158, 159
showDump, 113, 114, 158
showDumpItem, 114
showFrame, 158
showFramePtr, 158, 159
showFullResults, 151, 157, 189
showFWAddr, 61
showInstruction, 100, 103, 107, 113, 125,

126, 135, 160, 164, 170, 175, 206
showInstructions, 100, 159, 160
showNode, 60, 63, 66, 70, 101, 103, 125, 210,

215
shownum, 262
showOutput, 125, 209
showResults, 52, 59, 61, 99, 100, 151, 157,

189, 208, 209
showSC, 100, 157, 208, 209
showSCDefns, 157, 190, 191
showSparks, 209, 215
showStack, 60, 101, 158
showStackItem, 101
showState, 60, 61, 100, 101, 113, 125, 133,

134, 157, 158, 209
showStats, 61, 101, 159, 209
showStkNode, 60
showValueStack, 158
showVStack, 134
Slide, 88, 90, 95, 97–99, 102, 103, 106, 107,

109, 122, 126–128, 139
slide, 95
snd, 72, 267
sort, 267
spaces, 26, 27
spanning, 257
spanningSearch, 256, 257, 258
Split, 126, 127, 128, 139, 140
sqrt, 47
square, 43, 44
ssum, 197
statGetSteps, 92, 153, 154
statIncSteps, 92, 153, 154
statInitial, 92, 153, 154

step, 56, 57, 67, 71, 92, 93, 156, 164, 170,
175, 204, 205, 215

stepMult, 50
steps, 204, 205, 213, 215
Stop, 73, 74, 156
Sub, 66, 74, 113, 126, 164
sub, 161–163
sum, 184, 189
Switch, 184–187, 189, 193, 194
syntax, 28, 29, 36, 37

tail, 73, 127
Take, 147–150, 156, 160, 167–170, 172, 181,

182, 185, 187, 191–193
take, 22, 271
takewhile, 29
Terse, 159
tick, 205
tiDump, 66
tiFinal, 56, 57, 68, 73, 75
tiGlobals, 91
timAMode, 151, 156, 168, 192
timFinal, 156
tiState, 52, 53, 74
tiStatGetSteps, 54
tiStatIncSteps, 54
tiStatInitial, 54
tiStats, 54
token, 30
topCont, 188
transformMFE, 245
tree, 13, 14
True, 29, 30, 69, 70, 75, 117, 129
tup, 145
twice, 64, 181
twoCharOps, 30
type, 18, 19, 29, 31, 50, 53, 54, 66,

75, 90–92, 97, 98, 112, 124, 133,
152–155, 163, 175, 190, 201–203,
215, 219, 220, 241, 248, 263–266

typedExpr, 219
typeExpr, 219

unbox, 116
unboxInteger, 115, 116, 117
unlock, 210, 211, 215
Unwind, 85, 88, 95–97, 99, 102, 104–106, 113,

114, 115, 121, 122, 126, 127, 131,
138, 140, 209, 211, 215, 216
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unwind, 95, 211, 216
Update, 102, 103, 104, 105, 107, 109, 113,

122, 126, 131, 137, 139, 140, 209,
211, 215

update, 211
UpdateMarkers, 181–183, 185, 187, 193
utils, 53, 54, 91

valueAMode, 164
visited, 258
Visits, 79

where, 11, 12, 55

xor, 70

zcat, 8
zip2, 225, 262
zipWith, 267
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