
Fast Algorithms for Sorting and Searching Strings

Jon L. Bentley* Robert Sedgewick#

Abstract

We present theoretical algorithms for sorting and
searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-
rithms date back at least to the 1960s, but their practical
utility has been overlooked. We also present extensions to
more complex string problems, such as partial-match
searching.

1. Introduction

Section 2 briefly reviews Hoare’s [9] Quicksort and
binary search trees. We emphasize a well-known isomor-
phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of n
vectors with k components each. Like regular Quicksort, it
partitions its input into sets less than and greater than a
given value; like radix sort, it moves on to the next field
once the current input is known to be equal in the given
field. A node in a ternary search tree represents a subset of
vectors with a partitioning value and three pointers: one to
lesser elements and one to greater elements (as in a binary
search tree) and one to equal elements, which are then pro-
cessed on later fields (as in tries). Many of the structures
and analyses have appeared in previous work, but typically
as complex theoretical constructions, far removed from
practical applications. Our simple framework opens the
door for later implementations.

The algorithms are analyzed in Section 4. Many of the
analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from
the algorithms. The first program is a sorting algorithm

* Bell Labs, Lucent Technologies, 700 Mountain Avenue, Murray Hill,
NJ 07974; jlb@research.bell-labs.com.

Princeton University, Princeton, NJ, 08544; rs@cs.princeton.edu.

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,
and searches use hashing or binary search trees. These do
not take advantage of the properties of string keys, which
are widely used in practice. Our algorithms provide a nat-
ural and elegant way to adapt classical algorithms to this
important class of applications.

Section 6 turns to more difficult string-searching prob-
lems. Partial-match queries allow ‘‘don’t care’’ characters
(the pattern ‘‘so.a’’, for instance, matches soda and sofa).
The primary result in this section is a ternary search tree
implementation of Rivest’s partial-match searching algo-
rithm, and experiments on its performance. ‘‘Near neigh-
bor’’ queries locate all words within a given Hamming dis-
tance of a query word (for instance, code is distance 2
from soda). We give a new algorithm for near neighbor
searching in strings, present a simple C implementation,
and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background

Quicksort is a textbook divide-and-conquer algorithm.
To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and
greater elements are on the other, and then recursively sort
the two subarrays. But what happens to elements equal to
the partitioning value? Hoare’s partitioning method is
binary: it places lesser elements on the left and greater ele-
ments on the right, but equal elements may appear on
either side.

Algorithm designers have long recognized the desir-
ability and difficulty of a ternary partitioning method.
Sedgewick [22] observes on page 244: ‘‘Ideally, we would
like to get all [equal keys] into position in the file, with all

- 2 -

the keys with a smaller value to their left, and all the keys
with a larger value to their right. Unfortunately, no
efficient method for doing so has yet been devised....’’
Dijkstra [6] popularized this as ‘‘The Problem of the Dutch
National Flag’’: we are to order a sequence of red, white
and blue pebbles to appear in their order on Holland’s
ensign. This corresponds to Quicksort partitioning when
lesser elements are colored red, equal elements are white,
and greater elements are blue. Dijkstra’s ternary algorithm
requires linear time (it looks at each element exactly once),
but code to implement it has a significantly larger constant
factor than Hoare’s binary partitioning code.

Wegner [27] describes more efficient ternary partition-
ing schemes. Bentley and McIlroy [2] present a ternary
partition based on this counterintuitive loop invariant:

= < ? > =

a b c d

The main partitioning loop has two inner loops. The first
inner loop moves up the index b: it scans over lesser ele-
ments, swaps equal elements to a, and halts on a greater
element. The second inner loop moves down the index c
correspondingly: it scans over greater elements, swaps
equal elements to d, and halts on a lesser element. The
main loop then swaps the elements pointed to by b and c,
increments b and decrements c, and continues until b and
c cross. (Wegner proposed the same invariant, but main-
tained it with more complex code.) Afterwards, the equal
elements on the edges are swapped to the middle of the
array, without any extraneous comparisons. This code par-
titions an n-element array using n − 1 comparisons.

Quicksort has been extensively analyzed by authors
including Hoare [9], van Emden [26], Knuth [11], and
Sedgewick [23]. Most detailed analyses involve the har-
monic numbers H n = Σ 1≤i≤n

1/ i.

Theorem 1. [Hoare] A Quicksort that partitions
around a single randomly selected element sorts n dis-
tinct items in 2nH n + O(n) ∼∼ 1. 386n lg n expected
comparisons.

A common variant of Quicksort partitions around the
median of a random sample.

Theorem 2. [van Emden] A Quicksort that partitions
around the median of 2t + 1 randomly selected ele-
ments sorts n distinct items in 2nH n / (H 2t + 2 − H t + 1)
+ O(n) expected comparisons.

By increasing t, we can push the expected number of com-
parisons close to n lg n + O(n).

The theorems so far deal only with the expected perfor-
mance. To guarantee worst-case performance, we partition

31 41 59 26 53

26 31 41 59 53

26 41 59 53

53 59

53

31

26 41

59

53

Figure 1. Quicksort and a binary search tree

around the true median, which can be computed in cn com-
parisons. (Schoenhage, Paterson and Pippenger [20] give a
worst-case algorithm that establishes the constant c = 3;
Floyd and Rivest [8] give an expected-time algorithm with
c = 3/2.)

Theorem 3. A Quicksort that partitions around a
median computed in cn comparisons sorts n elements
in cn lg n + O(n) comparisons.

The proof observes that the recursion tree has about lg n
levels and does at most cn comparisons on each level.

The Quicksort algorithm is closely related to the data
structure of binary search trees (for more on the data struc-
ture, see Knuth [11]). Figure 1 shows the operation of
both on the input sequence ‘‘31 41 59 26 53’’. The tree on
the right is the standard binary search tree formed by
inserting the elements in input order. The recursion tree on
the left shows an ‘‘ideal partitioning’’ Quicksort: it parti-
tions around the first element in its subarray and leaves ele-
ments in both subarrays in the same relative order. At the
first level, the algorithm partitions around the value 31, and
produces the left subarray ‘‘26’’ and the right subarray
‘‘41 59 53’’, both of which are then sorted recursively.

Figure 1 illustrates a fundamental isomorphism
between Quicksort and binary search trees. The (unboxed)
partitioning values on the left correspond precisely to the
internal nodes on the right in both horizontal and vertical
placement. The internal path length of the search tree is
the total number of comparisons made by both structures.
Not only are the totals equal, but each structure makes the
same set of comparisons. The expected cost of a success-
ful search is, by definition, the internal path length divided
by n. We combine that with Theorem 1 to yield

Theorem 4. [Hibbard] The average cost of a success-
ful search in a binary search tree built by inserting ele-
ments in random order is 2H n + O(1) ∼∼ 1. 386 lg n
comparisons.

An analogous theorem corresponds to Theorem 2: we can
reduce the search cost by choosing the root of a subtree to
be the median of 2t + 1 elements in the subtree. By anal-
ogy to Theorem 3, a perfectly balanced subtree decreases
the search time to about lg n.

- 3 -

3. The Algorithms

Just as Quicksort is isomorphic to binary search trees,
so (most-significant-digit) radix sort is isomorphic to digi-
tal search tries (see Knuth [11]). These isomorphisms are
described in this table:

__
Algorithm Data Structure____________________________________

Quicksort Binary Search Trees
Multikey Quicksort Ternary Search Trees
MSD Radix Sort Tries____________________________________ 






This section introduces the algorithm and data structure in
the middle row of the table. Like radix sort and tries, the
structures examine their input field-by-field, from most
significant to least significant. But like Quicksort and
binary search trees, the structures are based on field-wise
comparisons, and do not use array indexing.

We will phrase the problems in terms of a set of n vec-
tors, each of which has k components. The primitive oper-
ation is to perform a ternary comparison between two com-
ponents. Munro and Raman [18] describe an algorithm for
sorting vector sets in-place, and their references describe
previous work in the area.

Hoare [9] sketches a Quicksort modification due to P.
Shackleton in a section on ‘‘Multi-word Keys’’: ‘‘When it
is known that a segment comprises all the items, and only
those items, which have key values identical to a given
value over the first n words, in partitioning this segment,
comparison is made of the (n + 1)th word of the keys.’’
Hoare gives an awkward implementation of this elegant
idea; Knuth [11] gives details on Shackleton’s scheme in
Solution 5.2.2.30.

A ternary partitioning algorithm provides an elegant
implementation of Hoare’s multikey Quicksort. This
recursive pseudocode sorts the sequence s of length n that
is known to be identical in components 1 ..d − 1; it is origi-
nally called as sort(s, n, 1).

sort(s, n, d)
if n ≤ 1 or d > k return;
choose a partitioning value v;
partition s around value v on component d to form

sequences s < , s = , s > of sizes n < , n = , n > ;
sort(s < , n < , d);
sort(s = , n = , d + 1);
sort(s > , n > , d);

The partitioning value can be chosen in many ways, from
computing the true median of the specified component to
choosing a random value in the component.

Ternary search trees are isomorphic to this algorithm.
Each node in the tree contains a split value and pointers to
low and high (or left and right) children; these fields per-

i

b

a

s

t

e

y

h

e

s

n t

o

n

f r

t

o

as at be by he in is it of on or to

Figure 2. A ternary search tree for 12 two-letter words

form the same roles as the corresponding fields in binary
search trees. Each node also contains a pointer to an equal
child that represents the set of vectors with values equal to
the split value. If a given node splits on dimension d, its
low and high children also split on d, while its equal child
splits on d + 1. As with binary search trees, ternary trees
may be perfectly balanced, constructed by inserting ele-
ments in random order, or partially balanced by a variety
of schemes.

In Section 6.2.2, Knuth [11] builds an optimal binary
search tree to represent the 31 most common words in
English; twelve of those words have two letters. Figure 2
shows the perfectly balanced ternary search tree that results
from viewing those words as a set of n = 12 vectors of k = 2
components. The low and high pointers are shown as solid
lines, while equal pointers are shown as dashed lines. The
input word is shown beneath each terminal node. This tree
was constructed by partitioning around the true median of
each subset.

A search for the word ‘‘is’’ starts at the root, proceeds
down the equal child to the node with value ‘‘s’’, and stops
there after two comparisons. A search for ‘‘ax’’ makes
three comparisons to the first letter (‘‘a’’) and two compar-
isons to the second letter (‘‘x’’) before reporting that the
word is not in the tree.

This idea dates back at least as far as 1964; see, for
example, Clampett [5]. Prior authors had proposed repre-
senting the children of a trie node by an array or by a
linked list; Clampett represents the set of children with a
binary search tree; his structure can be viewed as a ternary
search tree. Mehlhorn [17] proposes a weight-balanced
ternary search tree that searches, inserts and deletes ele-
ments in a set of n strings of length k in O(log n + k)
time; a similar structure is described in Section III.6.3 of
Mehlhorn’s text [16].

Bentley and Saxe [4] propose a perfectly balanced ter-
nary search tree structure. The value of each node is the
median of the set of elements in the relevant dimension;
the tree in Figure 1 was constructed by this criterion.
Bentley and Saxe present the structure as a solution to a

- 4 -

problem in computational geometry; they derive it using
the geometric design paradigm of multidimensional
divide-and-conquer. Ternary search trees may be built in a
variety of ways, such as by inserting elements in input
order or by building a perfectly balanced tree for a com-
pletely specified set. Vaishnavi [25] and Sleator and Tar-
jan [24] present schemes for balancing ternary search trees.

4. Analysis

We will start by analyzing ternary search trees, and
then apply those results to multikey Quicksort. Our first
theorem is due to Bentley and Saxe [4].

Theorem 5. [Bentley and Saxe] A search in a perfectly
balanced ternary search tree representing n k-vectors
requires at most  lg n + k scalar comparisons, and
this is optimal.

Proof Sketch. For the upper bound, we start with n
active vectors and k active dimensions; each compari-
son halves the active vectors or decrements the active
dimensions. For the lower bound, consider a vector set
in which all elements are equal in the first k − 1 dimen-
sions and distinct in the k th dimension.

Similar search times for the suffix tree data structure are
reported by Manber and Myers [14].

We will next consider the multikey Quicksort that
always partitions around the median element of the subset.
This theorem corresponds to Theorem 3.

Theorem 6. If multikey Quicksort partitions around a
median computed in cn comparisons, it sorts n k-
vectors in at most cn(lg n + k) scalar comparisons.

Proof. Because the recursion tree is perfectly bal-
anced, no node is further than  lg n + k from the root
by Theorem 5. Each level of the tree contains at most n
elements, so by the linearity of the median algorithm,
at most cn scalar comparisons are performed at each
level. Multiplication yields the desired result.

A multikey Quicksort that partitions around a randomly
selected element requires at most n(2H n + k + O(1)) com-
parisons, by analogy with Theorem 1. We can further
decrease that number by partitioning around a sample
median.

Theorem 7. A multikey Quicksort that partitions
around the median of 2t + 1 randomly selected ele-
ments sorts n k-vectors in at most 2nH n /
(H 2t + 2 − H t + 1) + O(kn) expected scalar comparisons.

Proof Sketch. Combine Theorem 2 with the observa-
tion that equal elements strictly decrease the number of
comparisons. The additive cost of O(kn) accounts for
inspecting all k keys.

By increasing the sample size t, one can reduce the
time to near n lg n + O(kn). (Munro and Raman [18]
describe an in-place vector sort with that running time.)

We will now turn from sorting to analogous results
about building ternary search trees. We can build a tree
from scratch in the same time bounds described above:
adding ‘‘bookkeeping’’ functions (but no additional primi-
tive operations) augments a sort to construct a tree as well.
Given sorted input, the tree can be built in O(kn) compar-
isons.

Theorem 6 describes the worst-case cost of searching
in a totally balanced tree. The expected number of com-
parisons used by a successful search in a randomly built
tree is 2H n + k + O(1); partitioning around a sample
median tightens that result.

Theorem 8. The expected number of comparisons in a
successful search in a ternary search tree built by parti-
tioning around the median of 2t + 1 randomly selected
elements is 2H n / (H 2t + 2 − H t + 1) + k + O(1).

Proof Sketch. Use Theorem 7 and the isomorphism
between trees and sort algorithms.

5. String Programs

The ideas underlying multikey Quicksort and ternary
search trees are simple and old, and they yield theoretically
efficient algorithms. Their utility for the case when keys
are strings has gone virtually unnoticed, which is unfortu-
nate because string keys are common in practical applica-
tions. In this section we show how the idea of ternary
recursive decomposition, applied character-by-character on
strings, leads to elegant and efficient C programs for sort-
ing and searching strings. This is the primary practical
contribution of this paper.

We assume that the reader is familiar with the C pro-
gramming language described by Kernighan and Ritchie
[10]. C represents characters as small integers, which can
be easily compared. Strings are represented as vectors of
characters. The structures and theorems that we have seen
so far apply immediately to sets of strings of a fixed length.
Standard C programs, though, use variable-length strings
that are terminated by a null character (the integer zero).

We will now use multikey Quicksort in a C function to
sort strings.* The primary sort function has this declara-
tion:

void ssort1main(char *x[], int n)

It is passed the array x of n pointers to character strings;
its job is to permute the pointers so the strings occur in lex-

* The program (and other related content) is available at
http://www.cs.princeton.edu/˜rs/strings.

- 5 -

icographically nondecreasing order. We will employ an
auxiliary function that is passed both of those arguments,
and an additional integer depth to tell which characters
are to be compared. The algorithm terminates either when
the vector contains at most one string or when the current
depth ‘‘runs off the end’’ of the strings.

The sort function uses these supporting macros.

#define swap(a, b) { char *t=x[a]; \
x[a]=x[b]; x[b]=t; }

#define i2c(i) x[i][depth]

The swap macro exchanges two pointers in the array and
the i2c macro (for ‘‘integer to character’’) accesses char-
acter depth of string x[i]. A vector swap function
moves sequences of equal elements from their temporary
positions at the ends of the array back to their proper place
in the middle.

void vecswap(int i, int j, int n, char *x[])
{ while (n-- > 0) {

swap(i, j);
i++;
j++;

}
}

The complete sorting algorithm is in Program 1; it is
similar to the code of Bentley and McIlroy [2]. The func-
tion is originally called by

void ssort1main(char *x[], int n)
{ ssort1(x, n, 0); }

After partitioning, we recursively sort the lesser and
greater segments, and sort the equal segment if the corre-
sponding character is not zero.

We can tune the performance of Program 1 using stan-
dard techniques such as those described by Sedgewick
[21]. Algorithmic speedups include sorting small subar-
rays with insertion sort and partitioning around the median
of three elements (and on larger arrays, the median of three
medians of three) to exploit Theorem 7. Standard C cod-
ing techniques include replacing array indices with point-
ers. This table gives the number of seconds required to
sort a /usr/dict/words file that contains 72,275
words and 696,436 characters.
_ __ ___

Machine MHz System Simple Tuned Radix_ ___
MIPS R4400 150 .85 .79 .44 .40
MIPS R4000 100 1.32 1.30 .68 .62
Pentium 90 1.74 .98 .69 .50
486DX 33 8.20 4.15 2.41 1.74_ ___ 







The third column reports the time of the system qsort
function, and the fourth column reports the time of Pro-
gram 1. Our simple code is always as fast as the (general-
purpose but presumably highly tuned) system function, and
sometimes much faster. The fifth column reports the time

void ssort1(char *x[], int n, int depth)
{ int a, b, c, d, r, v;

if (n <= 1)
return;

a = rand() % n;
swap(0, a);
v = i2c(0);
a = b = 1;
c = d = n-1;
for (;;) {

while (b <= c && (r = i2c(b)-v) <= 0) {
if (r == 0) { swap(a, b); a++; }
b++;

}
while (b <= c && (r = i2c(c)-v) >= 0) {

if (r == 0) { swap(c, d); d--; }
c--;

}
if (b > c) break;
swap(b, c);
b++;
c--;

}
r = min(a, b-a); vecswap(0, b-r, r, x);
r = min(d-c, n-d-1); vecswap(b, n-r, r, x);
r = b-a; ssort1(x, r, depth);
if (i2c(r) != 0)

ssort1(x + r, a + n-d-1, depth+1);
r = d-c; ssort1(x + n-r, r, depth);

}

Program 1. A C program to sort strings

of our tuned sort, which is always substantially faster than
the simple version. As a benchmark, the final column
describes the run time of the highly tuned radix sort of
McIlroy, Bostic and McIlroy [15]; it is the fastest string
sort that we know.

We also ran the four sorts on two data sets of library
call numbers used in the DIMACS Implementation Chal-
lenge.* We extracted from each file the set of unique keys
(about 86,000 in each file), each of which is a card number
(‘‘LAC____59.7_K_24_1976’’, for instance); the keys had
an average length of 22.5 characters. On the MIPS
machines, our tuned sort was twenty percent faster than the
radix sort; on the Intel machines, it was a few percent
slower. Multikey Quicksort might prove faster than radix
sort in other contexts, as well.

The primary challenge in implementing practical radix
sorts is the case when the number of distinct keys is much
less than the number of bins (either because the keys are all
equal or because there are not many of them). Multikey
Quicksort may be thought of as a radix sort that gracefully
adapts to handle this case, at the cost of slightly more work
when the bins are all full.

We turn now to implementing a string symbol table
with the ternary search trees depicted in Figure 2. Each
node in the tree is represented by this C structure:

* We retrieved the DIMACS library call number data sets from
http://theory.stanford.edu/˜csilvers/libdata/.

- 6 -

int search1(char *s)
{ Tptr p;

p = root;
while (p) {

if (*s < p->splitchar)
p = p->lokid;

else if (*s == p->splitchar) {
if (*s++ == 0)

return 1;
p = p->eqkid;

} else
p = p->hikid;

}
return 0;

}

Program 2. Search a ternary search tree

Tptr insert1(Tptr p, char *s)
{ if (p == 0) {

p = (Tptr) malloc(sizeof(Tnode));
p->splitchar = *s;
p->lokid = p->eqkid = p->hikid = 0;

}
if (*s < p->splitchar)

p->lokid = insert1(p->lokid, s);
else if (*s == p->splitchar) {

if (*s != 0)
p->eqkid = insert1(p->eqkid, ++s);

} else
p->hikid = insert1(p->hikid, s);

return p;
}

Program 3. Insert into a ternary search tree

typedef struct tnode *Tptr;
typedef struct tnode {

char splitchar;
Tptr lokid, eqkid, hikid;

} Tnode;

The value stored at the node is splitchar, and the three
pointers represent the three children. The root of the tree is
declared to be Tptr root;.

Program 2 returns 1 if string s is in the tree and 0 oth-
erwise. It starts at the root, and moves down the tree. The
lokid and hikid branches are obvious. Before it takes
a eqkid branch, it returns 1 if the current character is the
end-of-string character 0. After the loop, we know that we
ran off the tree while still looking for the string, so we
return 0.

Program 3 inserts a new string into the tree (and does
nothing if it is already present). We insert the string s
with the code root = insert(root, s). The first if
statement detects running off the end of the tree; it then
makes a new node, initializes it, and falls through to the
standard case. Subsequent code takes the appropriate
branch, but branches to eqkid only if characters remain
in the string.

We tested the search performance on the same dictio-
nary used for testing sorting. We inserted each of the
72,275 words into the tree, and then measured the average

number of branches taken over all possible successful
searches in the tree. The results are presented in this table:

_ ___ __
Input Branches
Order

Nodes
Lo Eq Hi Total_ __

Balanced 285,807 4.39 9.64 3.91 17.94
Tournament 285,807 5.04 9.64 4.62 19.30
Random 285,807 5.26 9.64 5.68 20.58
Dictionary 285,807 0.06 9.64 31.66 41.36
Sorted 285,807 0 9.64 57.72 67.36
Reversed 285,807 37.40 9.64 0 47.04_ __ 






















The rows describe six different methods of inserting
the strings into the tree. The first column immediately sug-
gests this theorem.

Theorem 11. The number of nodes in a ternary search
tree is constant for a given input set, independent of the
order in which the nodes are inserted.

Proof. There is a unique node in the tree correspond-
ing to each unique string prefix in the set. The relative
positions of the nodes within the tree can change as a
function of insertion order, but the number of nodes is
invariant.

Notice that a standard search trie (without node com-
paction) would have exactly the same number of nodes. In
this data set, the number of nodes is only about 41 percent
of the number of characters.

The average word length (including delimiter charac-
ters) is 696 , 436/72 , 275 ∼∼ 9.64 characters. The average
number of equal branches in a successful search is pre-
cisely 9.64, because each input character is compared to an
equal element once. The balanced tree always chooses the
root of a subtree to be the median element in that collec-
tion. In that tree, the number of surplus (less and greater)
comparisons is only 8.30 (about half the worst-case bound
of 16 of Theorem 5), so the total number of comparisons is
just 17.94.

To build the tournament tree, we first sort the input set.
The recursive build function inserts the middle string of its
subarray, and then recursively builds the left and right sub-
arrays. This tree uses about eight percent more compar-
isons than the balanced tree. The randomly built tree uses
just fifteen percent more comparisons.

The fourth line of the table describes inserting the
words in dictionary order (which isn’t quite sorted due to
capital letters and special characters). The final two lines
describe inserting the words in sorted order and in reverse
sorted order. These inputs slow down the search by a fac-
tor of at most four; in a binary search tree, they slow down
the search by a factor of over 2000. Ternary search trees
appear to be quite robust.

- 7 -

We conducted simple experiments to see how ternary
search trees compare to other symbol table structures
described by Knuth [11]. We first measured binary search,
which can be viewed as an implementation of perfectly
balanced binary search trees. For the same input set,
binary search uses 15.19 string comparisons and inspects
51.74 characters, on the average (the average string com-
parison inspects 3.41 characters). On all computers we
tested, a highly tuned binary search took about twice the
time of Program 2 (on a tournament tree).

The typical implementation of symbol tables is hash-
ing. To represent n strings, we will use a chained hash
table of size tabsize = n. The hash function is from
Section 6.6 of Kernighan and Ritchie [10]; it is reasonably
efficient and produces good spread.

int hashfunc(char *s)
{ unsigned n = 0;

for (; *s; s++)
n = 31 * n + *s;

return n % tabsize;
}

Here is the body of the search function:

for (p = tab[hashfunc(s)]; p; p = p->next)
if (strcmp(s, p->str) == 0)

return 1;
return 0;

For fair timing, we replaced the string comparison function
strcmp with inline code (so this hash and tree search
functions used the same coding style).

On the same dictionary, the average successful hash
search requires 1.50 string comparisons (calls to the str-
cmp function) and 10.17 character comparisons (a success-
ful search requires one comparison to the stored string, and
half a comparison to the string in front of it, which almost
always ends on the first character). In addition, every
search must compute the hash function, which usually
inspects every character of the input string.

These simple experiments show that ternary search
trees are competitive with the best known symbol table
structures. There are, however, many ways to improve ter-
nary search trees. The search function in Program 2 is
reasonably efficient; tuning techniques such as saving the
difference between compared elements, reordering tests,
and using registers squeeze out at most an additional ten
percent. This table compares the time of the resulting pro-
gram with a similarly tuned hash function:

__
Successful Unsuccessful

Machine MHz
TST Hash TST Hash___

MIPS R4400 150 .44 .43 .27 .39
MIPS R4000 100 .66 .61 .42 .54
Pentium 90 .58 .65 .38 .50
486DX 33 2.21 2.16 1.45 1.55___ 


















The times are the number of seconds required to perform a
search for every word in the dictionary. For successful
searches, the two structures have comparable search times.
We generated unsuccessful searches by incrementing the
first character of the word (so bat is transformed to the
word cat , and cat is transformed to the nonword dat).
Ternary search trees are faster than hashing for this simple
model and others. Models for unsuccessful search are
application-dependent, but ternary search trees are likely to
be faster than hashing for unsuccessful search in applica-
tions because they can discover mismatches after examin-
ing only a few characters, while hashing always processes
the entire key.

For the long keys typical of some applications, the
advantage is even more important than for the simple dic-
tionary considered here. On the DIMACS library call
number data sets, for instance, our program took less than
one-fifth the time of hashing.

The insert function in Program 3 has much room for
improvement. Tournament tree insertion (inserting the
median element first, and then recursively inserting the
lesser and greater elements) provides a reasonable tradeoff
between build and search times. Replacing the call to the
memory allocation function malloc with a buffer of
available nodes almost eliminates the time spent in mem-
ory allocation. Other common techniques also reduced the
run time: transforming recursion to iteration, keeping a
pointer to a pointer, reordering tests, saving a difference in
a comparison, and splitting the single loop into two loops.
The combination of these techniques sped up Program 3 by
a factor of two on all machines we have been considering,
and much more in environments with a slow malloc. In
our experiments, the cost of inserting all the words in the
dictionary is never more than about fifty percent greater
than searching for all words with Program 2. The efficient
insertion routine requires 35 lines of C; it can be found on
our Web page cited earlier.

The main drawback of ternary search trees compared to
hashing is their space requirements. Our ternary search
tree uses 285,807 16-byte nodes for a total of 4.573 mega-
bytes. Hashing uses a hash table of 72,275 pointers,
72,275 8-byte nodes, and 696,436 bytes of text, for 1.564
megabytes. An alternative representation of ternary search
trees is more space-efficient: when a subtree contains a sin-
gle string, we store a pointer to the string itself (and each
node stores three bits telling whether its children point to
nodes or strings). This leads to slower and more complex
code, but it reduces the number of tree nodes from 285,807
to 94,952, which is close to the space used by hashing.

Ternary search trees can efficiently answer many kinds
of queries that require linear time in a hash table. As in
most ordered search trees, logarithmic-time searches can

- 8 -

find the predecessor or successor of a given element or
count the number of strings in a range. Similarly, a tree
traversal reports all strings in sorted order in linear time.
We will see more advanced searches in the next section.

In summary, ternary search trees seem to combine the
best of two worlds: the low overhead of binary search trees
(in terms of space and run time) and the character-based
efficiency of search tries. The primary challenge in using
tries in practice is to avoid using excessive memory for trie
nodes that are nearly empty. Ternary search trees may be
thought of as a trie implementation that gracefully adapts
to handle this case, at the cost of slightly more work for
full nodes. Ternary search trees are also easy to imple-
ment; compare our code, for instance, to Knuth’s imple-
mentation of ‘‘hash tries’’ [3] .

Ternary search trees have been used for over a year to
represent English dictionaries in a commercial Optical
Character Recognition (OCR) system built at Bell Labs.
The trees were faster than hashing for the task, and they
gracefully handle the 34,000-character set of the Unicode
Standard. The designers have also experimented with
using partial-match searching for word lookup: replace let-
ters with low probability of recognition with the ‘‘don’t
care’’ character.

6. Advanced String Search Algorithms

We will turn next to two search algorithms that have
not been analyzed theoretically. We begin with the vener-
able problem of ‘‘partial-match’’ searching: a query string
may contain both regular letters and the ‘‘don’t care’’ char-
acter ‘‘.’’. Searching the dictionary for the pattern
‘‘.o.o.o’’ matches the single word rococo, while the pat-
tern ‘‘.a.a.a’’ matches many words, including banana ,
casaba , and pajama .

This problem has been studied by many researchers,
including Appel and Jacobson [1] and Manber and Baeza-
Yates [13]. Rivest [19] presents an algorithm for partial-
match searching in tries: take the single given branch if a
letter is specified, for a don’t-care character, recursively
search all branches. Program 4 implements Rivest’s
method in ternary search trees; it is called, for instance, by

srchtop = 0;
pmsearch(root, ".a.a.a");

Program 4 has five if statements. The first returns
when the search runs off the tree. The second and fifth if
statements are symmetric; they recursively search the
lokid (or hikid) when the search character is the don’t
care ‘‘.’’ or when the search string is less (or greater) than
the splitchar. The third if statement recursively
searches the eqkid if both the splitchar and current
character in the query string are non-null. The fourth if

char *srcharr[100000];
int srchtop;

void pmsearch(Tptr p, char *s)
{ if (!p) return;

nodecnt++;
if (*s == ’.’ || *s < p->splitchar)

pmsearch(p->lokid, s);
if (*s == ’.’ || *s == p->splitchar)

if (p->splitchar && *s)
pmsearch(p->eqkid, s+1);

if (*s == 0 && p->splitchar == 0)
srcharr[srchtop++] =

(char *) p->eqkid;
if (*s == ’.’ || *s > p->splitchar)

pmsearch(p->hikid, s);
}

Program 4. Partial match search

statement detects a match to the query and adds the pointer
to the complete word (stored in eqkid because the
storestring flag in Program 4 is nonzero) to the out-
put search array srcharr.

Rivest states that partial-match search in a trie requires
‘‘time about O(n (k − s)/ k) to respond to a query word with s
letters specified, given a file of n k-letter words’’. Ternary
search trees can be viewed as an implementation of his
tries (with binary trees implementing multiway branching),
so we expected his results to apply immediately to our pro-
gram. Our experiments, however, led to a surprise:
unspecified positions at the front of the query word are dra-
matically more costly than unspecified characters at the
end of the word. For the same dictionary we have already
seen, Table 1 presents the queries, the number of matches,
and the number of nodes visited during the search in both a
balanced tree and a random tree.

To study this phenomenon, we have conducted experi-
ments on both the dictionary and on random data (which
closely models the dictionary). The page limit of these
proceedings does not allow us to describe those experi-
ments, which confirm the anecdotes in the above table.
The key insight is that the top levels of a trie representing
the dictionary have very high branching factor; a starting
don’t-care character usually implies 52 recursive searches.
Near the end of the word, though, the branching factor
tends to be small; a don’t-care character at the end of the
word frequently gives just a single recursive search. For
this very reason, Rivest suggests that binary tries should
‘‘branch on the first bit of the representation of each char-
acter ... before branching on the second bit of each’’. Fla-
jolet and Puech [7] analyzed this phenomenon in detail for
bit tries; their methods can be extended to provide a
detailed explanation of search costs as a function of
unspecified query positions.

- 9 -

_ __ ___
Nodes_ __________________Pattern Matches

Balanced Random_ ___
television 1 18 24
tele...... 17 261 265
t.l.v.s..n 1 153 164
....vision 1 36,484 37,178
banana 1 15 17
ban... 15 166 166
.a.a.a 19 2829 2746
...ana 8 14,056 13,756
abracadabra 1 21 17
.br.c.d.br. 1 244 266
a..a.a.a..a 1 1127 1104
xy....... 3 67 66
.......xy 3 156,145 157,449
.45 1 285,807 285,807_ ___ 






























































Table 1. Partial match search performance

We turn finally to the problem of ‘‘near-neighbor
searching’’ in a set of strings: we are to find all words in
the dictionary that are within a given Hamming distance of
a query word. For instance, a search for all words within
distance two of soda finds code, coma and 117 other
words. Program 5 performs a near neighbor search in a
ternary search tree. Its three arguments are a tree node, a
string, and a distance. The first if statement returns if the
node is null or the distance is negative. The second and
fourth if statements are symmetric: they search the appro-
priate child if the distance is positive or if the query char-
acter is on the appropriate side of splitchar. The third
if statement either checks for a match or recursively
searches the middle child.

We have conducted extensive experiments on the
efficiency of Program 5; space limits us to sketching just
one experiment. This table describes its performance on
two similar data sets:

void nearsearch(Tptr p, char *s, int d)
{ if (!p || d < 0) return;

nodecnt++;
if (d > 0 || *s < p->splitchar)

nearsearch(p->lokid, s, d);
if (p->splitchar == 0) {

if ((int) strlen(s) <= d)
srcharr[srchtop++] =

(char *) p->eqkid;
} else

nearsearch(p->eqkid, *s ? s+1:s,
(*s==p->splitchar) ? d:d-1);

if (d > 0 || *s > p->splitchar)
nearsearch(p->hikid, s, d);

}

Program 5. Near neighbor search

_ ___ __
Dictionary Random

D
Min Mean Max Min Mean Max_ __

0 9 17.0 22 9 17.1 22
1 228 403.5 558 188 239.5 279
2 1374 2455.5 3352 1690 1958.7 2155
3 6116 8553.7 10829 7991 8751.3 9255
4 15389 18268.3 21603 20751 21537.1 21998_ __ 




















The first line shows the costs for performing searches
of distance 0 from each word in the data set. The ‘‘Dictio-
nary’’ data represented the 10,451 8-letter words in the
dictionary in a tree of 55,870 nodes. A distance-0 search
was performed for every word in the dictionary. The
minimum-cost search visited 9 nodes (to find latticed) and
the maximum-cost search visited 22 nodes (to find wood-
note), while the mean search cost was 17.0. The ‘‘Ran-
dom’’ data represented 10,000 8-letter words randomly
generated from a 10-symbol alphabet in a tree of 56,886
nodes. Subsequent lines in the table describe search dis-
tances 1 through 4. This simple experiment shows that
searching for near neighbors is relatively efficient, search-
ing for distant neighbors grows more expensive, and that a
simple probabilistic model accurately predicts the time on
the real data.

7. Conclusions

Sections 3 and 4 used old techniques in a uniform pre-
sentation and analysis of multikey Quicksort and ternary
search trees. This uniform framework led to the code in
later sections.

Multikey Quicksort leads directly to Program 1 and its
tuned variant, which is competitive with the best known
algorithms for sorting strings. This does not, however,
exhaust the application of the underlying algorithm. We
believe that multikey Quicksort might also be practical in
multifield system sorts, such as that described by Linder-
man [12]. One might also use the algorithm to sort inte-
gers, for instance, by comparing them byte-by-byte.

Section 5 shows that ternary search trees provide an
efficient implementation of string symbol tables, and Sec-
tion 6 shows that the structures can quickly answer more
advanced queries. Ternary search trees are particularly
appropriate when search keys are long strings, and they
have already been incorporated into a commercial system.
Advanced searching algorithms based on ternary search
trees are likely to be useful in practical applications, and
they present a number of interesting problems in the analy-
sis of algorithms.

Acknowledgments

We are grateful for the helpful comments of Raffaele
Giancarlo, Doug McIlroy, Ian Munro and Chris Van Wyk.

- 10 -

References

1. Appel, A.W. and Jacobson, G.J. The World’s Fastest
Scrabble Program. Communications of the ACM 31,
5 (May 1988), 572-578.

2. Bentley, J.L. and McIlroy, M.D. Engineering A Sort
Function. Software-Practice and Experience 23, 1
(1993), 1249-1265.

3. Bentley, J.L., McIlroy, M.D., and Knuth, D.E. Pro-
gramming Pearls: A Literate Program. Communica-
tions of the ACM 29, 6 (June 1986), 471-483.

4. Bentley, J.L. and Saxe, J.B. Algorithms on Vector
Sets. SIGACT News 11, 9 (Fall 1979), 36-39.

5. Clampett, H.A. Jr. Randomized Binary Searching
with Tree Structures. Communications of the ACM 7,
3 (March 1964), 163-165.

6. Dijkstra, E.W. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

7. Flajolet, P. and Puech, C. Partial Match Retrieval of
Multidimensional Data. Journal of the ACM 33, 2
(April 1986), 371-407.

8. Floyd, R.W. and Rivest, R.L. Expected Time Bounds
for Selection. Communications of the ACM 18, 3
(March 1975), 165-172.

9. Hoare, C.A.R. Quicksort. Computer Journal 5, 1
(April 1962), 10-15.

10. Kernighan, B.W. and Ritchie, D.M. The C Program-
ming Language, Second Edition. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

11. Knuth, D.E. The Art of Computer Programming, vol-
ume 3: Sorting and Searching. Addison-Wesley,
Reading, MA, 1975.

12. Linderman, J.P. Theory and Practice in the Construc-
tion of a Working Sort Routine. Bell System Techni-
cal Journal 63, 8 (October 1984), 1827-1843.

13. Manber, U. and Baeza-Yates, R. An Algorithm for
String Matching with a Sequence of Don’t Cares.
Information Processing Letters 37, 3 (February 1991),
133-136.

14. Manber, U. and Myers, G. Suffix Arrays: A New

Method for On-Line String Searches. SIAM Journal
on Computing 22 (1993), 935-948.

15. McIlroy, P.M., Bostic, K., and McIlroy, M.D. Engi-
neering Radix Sort. Computing Systems 6, 1 (1993),
5-27.

16. Mehlhorn, K. Data Structures and Algorithms 1:
Sorting and Searching. Springer-Verlag, Berlin,
1984.

17. Mehlhorn, K. Dynamic Binary Search. SIAM Jour-
nal on Computing 8, 2 (May 1979), 175-198.

18. Munro, J.I. and Raman, V. Sorting Multisets and
Vectors In-Place. Proceedings of the Second Work-
shop on Algorithms and Data Structures, Springer
Verlag Lecture Notes in Computer Science 519
(1991), 473-480.

19. Rivest, R.L. Partial-Match Retrieval Algorithms.
SIAM Journal on Computing 5, 1 (1976), 19-50.

20. Schoenhage, A.M., Paterson, M., and Pippenger, N.
Finding the Median. Journal of Computer and Sys-
tems Sciences 13 (1976), 184-199.

21. Sedgewick, R. Implementing Quicksort Programs.
Communications of the ACM 21, 10 (October 1978),
847-857.

22. Sedgewick, R. Quicksort With Equal Keys. SIAM J.
Comp 6, 2 (June 1977), 240-267.

23. Sedgewick, R. The Analysis of Quicksort Programs.
Acta Informatica 7 (1977), 327-355.

24. Sleator, D.D. and Tarjan, R.E. Self-Adjusting Binary
Search Trees. Journal of the ACM 32, 3 (July 1985),
652-686.

25. Vaishnavi, V.K. Multidimensional Height-Balanced
Trees. IEEE Transactions on Computers C-33, 4
(April 1984), 334-343.

26. van Emden, M.H. Increasing the Efficiency of Quick-
sort. Communications of the ACM 13, 9 (September
1970), 563-567.

27. Wegner, L.M. Quicksort for Equal Keys. IEEE
Transactions on Computers C-34, 4 (April 1985),
362-367.

