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Modelling the movements of planets

Ptolemy’s geocentric model Copernicus’ heliocentric model

Which model is better?

Which model is more correct?
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In this lecture...

Broadly speaking, machine learning (ML) is about finding patterns in data.

Typically:

• these patterns are not known;

• these patterns are not obvious;

• these patterns are noisy.

How do we know that our ML methods find the correct patterns?
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Mathematical framework

• x - input/sensory data (given)

• y - desired output (given in supervised learning)

• f(x,β) - model/hypothesis (needs to be chosen appropriately for the problem)

• β - parameters (need to derive through the learning process)

Terminology:

Hypothesis - specific f(x,β∗) for given choice of β∗

Hypothesis space - all possible f(x,β) for different choices of β
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Measuring the learner’s performance

Supervised learning

The task in supervised learning is to find f(x,β) that models the relationship between

given input x and output y.

Loss function L(f(x,β), y) gives learner a score for given set of values β :

• Classification

L(f(x,β), y) =

!
0 f(x,β) = y

1 f(x,β) ∕= y

• Regression

L(f(x,β), y) =
"
f(x,β)− y

#2

• Cross-entropy

L(f(x,β), y) = −y ln f(x,β)− (1− y) ln
"
1− f(x,β)

#
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Training

The process of training modifies β so as to minimise the loss L(f(x,β), y) . It will give
a set of parameters β∗

.
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Risk

True risk

True risk is the expectation of the loss (performance of the hypotheis on all possible

data):

R(β∗) =

$
p(x, y)L

%
f(x,β∗), y

&
dxdy

Not computable!!!

Empirical risk

Empirical risk is the average of the loss computed from available data (performance of

the hypotheis on the data we have):

Remp(β
∗) =

1

N

N'

n=1

L

%
f(xn,β

∗), yn
&
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Generalisation

Consistency

A hypothesis that gives small loss on training data is said to be consistent.

Generalisation

A hypothesis where Remp(β
∗) ≈ R(β∗) is said to generalise well.

Since R(β∗) is not computable, it’s impossible to guarantee good generalisation. The

best we can do is to examine guarantees in probability of a good generalisation?
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Generalisation guarantees in probability: the principle

Hoeffding’s inequality

This inequality give an upper bound in probability of an average of m samples being

different from its expectation by more than ".

P (Am ≤ E[Am]− ") ≤ e
−2m!2

Subbing Remp(β
∗) for Am we have:

• Am = Remp(β
∗)

• E[Am] = E[Remp(β
∗)] = R(β∗)

and thus the probability of Remp(β
∗) being more than " outside of R(β∗).
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Generalisation guarantees in probability: single hypothesis

Using Hoeffding’s inequality:

P
"
Remp(β

∗) ≤ R(β∗)− "
#
≤ e

−2m!2

or with probability at most e
−2m!2

the empirical risk is more than " outside of true risk.

Defining q = P
"
Remp(β

∗) ≤ R(β∗)− "
#
, and after some rearranging we get the

following expression:

R(β∗) < Remp(β
∗) +

(
ln(1/q)

2m

with probability 1− q.
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Generalisation guarantees in probability: finite hypothesis

space

What about assurances of generalisation for the choice of model f(x,β) before we

start training (we don’t know β∗
)? Assuming there is a finite number of choices for β,

we have a finite hypothesis space. Let’s denote this set of hypotheses H and the

number of hypotheses |H|.

The upper bound on risk being out of empirical risk by " is the sum of probabilities of

every hypothesis having empirical error ". And thus:

R(β) ≤ Remp(β) +

(
ln |H|+ ln(1/q)

2m

with probability 1− q.
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Generalisation guarantees in probability: complexity of H

The expression ln |H| is a rough measure of complexity of H. A more accurate

measure of complexity of a hypothesis space is VC-dimension, denoted as d. With

VC-dimension complexity measure we have:

R(β) ≤ Remp(β) +O

)(
d lnm/d+ ln(1/q)

m

*

with probability 1− q.

Generalisation principle

Choosing a hypothesis space with smaller VC-dimension guarantees (in probability)

better generalisation. In other words, the simpler the model, the better chance of

generalisation.
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VC-dimension

VC-dimension is the maximum number of points that a hypothesis can shatter. It

measures the complexity of a hypothesis space in terms of its representational power.

https://en.wikipedia.org/wiki/VC_dimension
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Exercise: computing the VC-dimension

• Linear classifier?

• Axis-alined rectangles?

• A sinusoid?

• A neural network?
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VC-dimension and margin

Theorem 5.1 Vapnik’s ”The Nature of Statistical Learning Theory” [1]

VC-dimension of hyperplane with margin M is;

d ≤ min

+
1

M2
, n

,
+ 1

Increasing the margin of separation between classes reduces VC-dimension of a

hyperplane classifier.
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VC-dimension and Support Vector Machines

Recall from previous lecture that SVMs maximises the margin subject to constraints:

max
β,β0

M

subject to
1

||β||
yi(β

TXi + β0) ≥ M.

Support Vector Machine minimises the VC-dimension of the separating hyperplane

with constraints that ensure the hyperplane separates the data as desired.
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VC-dimension and deep learning

• A single hidden layer (shallow) neural network is a universal function approximator.

• Since both shallow and deep networks can do anything, why bother then with

deep?

• For certain types of functions (i.e. types of problems), when approximated to the

same accuracy by a shallow and deep network, the deeper network has a lower

VC-dimension.

• Deep network generally generalise much better than the VC dimension bound

would suggest.

COSC470 Lecture 4: Learning Theory 17



Maximum margin and boosting

• Generalisation in boosting improves the more weak classifiers are used (is this at

odds with the generalisation principle?)

• Adding weak classifiers in boosting is equivalent to increasing the margin of

separation [2]

• It turns out the distribution of the points around the margin play a role in

generalisation too - the more point lying on the margin the better generalisation

[3]
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Maximum margin and neural networks

• Is maximising margin at the penultimate layer of a neural network is meaningless

in deep architectures?

• Does, as is the case with boosting, the distribution of points around the margin

(or equivalently maximisation of a normalised margin) improve generalisation?
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Other complexity measures

VC-dimension is not the only complexity measure of H [4]:

• Rademacher complexity - measures the ability of the model to fit random noise

• Covering number - measures the size of the hypothesis space.
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