
Lecture 7: Deep reinforcement learning
COSC470

Lech Szymanski
Department of Computer Science, University of Otago

September 11, 2018

“Shall we play a game?”

COSC470 Lecture 7: Deep reinforcement learning 2

Framework for RL [1]

Sequential decision problems are a framework for problems that consist of the
following:

• an environment discretised into states (field of play);

• an agent with some perception of the current state (player);

• a set of possible actions to choose from (player’s actions);

• a Markovian transition model where p(s′|s, a) is the probability of ending up in
state s′ when action a was taken from state s (rules of the game - often unknown
to the player)

• a reward associated with each state (the score);

COSC470 Lecture 7: Deep reinforcement learning 3

Framework for RL [1]

Sequential decision problems are a framework for problems that consist of the
following:

• an environment discretised into states (field of play);

• an agent with some perception of the current state (player);

• a set of possible actions to choose from (player’s actions);

• a Markovian transition model where p(s′|s, a) is the probability of ending up in
state s′ when action a was taken from state s (rules of the game - often unknown
to the player)

• a reward associated with each state (the score);

COSC470 Lecture 7: Deep reinforcement learning 3

Framework for RL [1]

Sequential decision problems are a framework for problems that consist of the
following:

• an environment discretised into states (field of play);

• an agent with some perception of the current state (player);

• a set of possible actions to choose from (player’s actions);

• a Markovian transition model where p(s′|s, a) is the probability of ending up in
state s′ when action a was taken from state s (rules of the game - often unknown
to the player)

• a reward associated with each state (the score);

COSC470 Lecture 7: Deep reinforcement learning 3

Framework for RL [1]

Sequential decision problems are a framework for problems that consist of the
following:

• an environment discretised into states (field of play);

• an agent with some perception of the current state (player);

• a set of possible actions to choose from (player’s actions);

• a Markovian transition model where p(s′|s, a) is the probability of ending up in
state s′ when action a was taken from state s (rules of the game - often unknown
to the player)

• a reward associated with each state (the score);

COSC470 Lecture 7: Deep reinforcement learning 3

Framework for RL [1]

Sequential decision problems are a framework for problems that consist of the
following:

• an environment discretised into states (field of play);

• an agent with some perception of the current state (player);

• a set of possible actions to choose from (player’s actions);

• a Markovian transition model where p(s′|s, a) is the probability of ending up in
state s′ when action a was taken from state s (rules of the game - often unknown
to the player)

• a reward associated with each state (the score);

COSC470 Lecture 7: Deep reinforcement learning 3

Uncertain world

A fully observable stochastic environment with a Markovian transition model is called a
Markov Decision Process (MDP)

p(s′|s, a) = Pr{St+1 = s′|St = s,At = a}

https://artint.info/html/ArtInt_224.html

COSC470 Lecture 7: Deep reinforcement learning 4

https://artint.info/html/ArtInt_224.html

Agent: what to do?

Policy is a function of current state st that recommends action a to take. It is
formalised as a probability distribution π(a|s).
For example:

π(At = N|St = �) = 0.3

π(At = E|St = �) = 0.2

π(At = S|St = �) = 0.4

π(At = W|St = �) = 0.1

The objective of the agent is to develop a policy to maximise its rewards.

COSC470 Lecture 7: Deep reinforcement learning 5

Agent: how well am I doing...?

The agent needs to maximise the total sum of future rewards.

Gt = r(st) + γr(st+1) + γ2r(st+2) + ...

= r(st) + γGt+1

where:

• st, r(st) denote the current state and reward,

• st+1, r(st+1) denote the next state and the next reward,

• 0 < γ ≤ 1 can be chosen to discount future rewards.

COSC470 Lecture 7: Deep reinforcement learning 6

Agent: how well am I doing...in an uncertain world?

There is an additional complication in that the world is assumed to be stochastic - that
picking action a while in state st may not lead always to the same outcome (recall
p(s′|st, a)).

The value (or utility) of a given state is the expected reward from the current state:

v(s) = E{Gt|St = s}

=
∑
a

π(a|s)
∑
s′

p(s′|a, s)
[
r(s′) + γv(s′)

]
=
∑
a

π(a|s)q(a, s),

where q(a, s) =
∑

s′ p(s
′|a, s)v(s′) is the expected value of action a when in state s.

COSC470 Lecture 7: Deep reinforcement learning 7

Value iteration algorithm

Given p(s′|a, s) and the recursive nature of the formula for v(s) (Bellman equation),
the policy can be found using Dynamic Programming (DP) methods.

Algorithm 1 Pseudocode for the value iteration algorithm

1: Initialise v(s) to 0 for all s ∈ S
2: repeat
3: for each non-terminal s ∈ S do
4: v(s)← maxa

∑
s′ p(s

′|s, a)
[
r(s′) + γv(s′)

]
5: end for
6: until converged

The state value is the same as the best action value v(s) = maxa q(s, a) and
q(a, s) =

∑
s′ p(s

′|a, s)v(s′).

Once the algorithm converges, the policy is given by argmaxa q(s, a).

COSC470 Lecture 7: Deep reinforcement learning 8

Example: Frozen lake

Environment:

• S = {0, . . . , 15}
• Start state s = 0

• r(s) = 0 for non-terminal
states; r(s) = ±1 for terminal
states

• γ = 0.8

• 4 actions - go N, E, S or W

• 80% chance of action’s
success, 20% chance of
slipping sideways

• Remain in the same state
when walking into the wall

States s ∈ {0, . . . , 15} Rewards r ∈ {−1, 0, 1}

p(s′|a, s)
State values
v(s) = maxa q(s, a)COSC470 Lecture 7: Deep reinforcement learning 9

Example: Frozen lake
Q-table:
s S E N W
0 0.044 0.027 0.034 0.036
1 -0.790 -0.030 0.030 -0.070
2 0.092 0.035 0.063 0.037
3 -0.791 -0.081 0.026 -0.039
4 0.046 -0.779 -0.067 0.059
5 0 0 0 0
6 0.136 -0.751 -0.141 -0.751
7 0 0 0 0
8 -0.743 0.221 0.095 0.046
9 0.495 0.291 -0.740 0.096

10 0.525 -0.716 0.027 0.401
11 0 0 0 0
12 0 0 0 0
13 0.408 0.680 0.290 -0.706
14 0.740 0.915 0.491 0.550
15 0 0 0 0

States s ∈ {0, . . . , 15} Rewards r(s) ∈ {−1, 0, 1}

p(s′|a, s)
State values
v(s) = maxa q(s, a)COSC470 Lecture 7: Deep reinforcement learning 10

Example: Frozen lake
Policy from the Q-table:
s π(S|s) π(E|s) π(N|s) π(W|s)
0 0.252 0.248 0.250 0.250
1 0.134 0.285 0.305 0.276
2 0.259 0.245 0.252 0.245
3 0.139 0.274 0.305 0.286
4 0.230 0.131 0.267 0.303
5 0.25 0.25 0.25 0.25
6 0.387 0.160 0.293 0.169
7 0.25 0.25 0.25 0.25
8 0.123 0.322 0.284 0.270
9 0.360 0.294 0.105 0.242

10 0.360 0.104 0.219 0.318
11 0.25 0.25 0.25 0.25
12 0.25 0.25 0.25 0.25
13 0.283 0.372 0.252 0.093
14 0.263 0.314 0.205 0.218
15 0.25 0.25 0.25 0.25

States s ∈ {0, . . . , 15} Rewards r ∈ {−1, 0, 1}

p(s′|a, s)
State values
v(s) = maxa q(s, a)COSC470 Lecture 7: Deep reinforcement learning 11

Reinforcement learning (RL)

Reinforcement learning (RL) solves a sequential decision problem without being given
the rules of the game, p(s′|a, s):
• It figures out what to do by acting in the world and discovering the rewards

through experience

• Exploitation - choosing the best options according to policy π(a|s)
• Exploration - choosing non-optimal actions just to see what happens

COSC470 Lecture 7: Deep reinforcement learning 12

Temporal difference learning

RL agent samples sequences of states actions and rewards by interacting with the
environment, which lends itself to Monte Carlo (MC) methods. Temporal difference
learning (TD) is a combination of DP and MC. Given action at was chosen in state st
and the result was state st+1 with reward r(st+1):

v(st)← v(st) + α
[
v∗ − v(st)],

where v∗ = r(st+1) + γv(st+1) is the target state value.

For Q-learning the TD update is:

q(s, at)← q(s, at) + α
[
q∗ − q(s, at)],

where q∗ = r(st+1) + γmaxa q(st+1, a) is the target action value.

COSC470 Lecture 7: Deep reinforcement learning 13

Q-learning

Algorithm 2 Pseudocode for the q-learning algorithm

1: Initialise q(s, a) to 0 for all a ∈ A in each s ∈ S
2: repeat
3: Reset for new episode s0,t← 0
4: while st is non-terminal do
5: Choose at according to π(at|st)← eq(at,st)∑

a eq(a,st)

6: Perform action at, get st+1 and r(st+1)
7: q∗ ← r(st+1) + γmaxa q(st+1, a)
8: q(st, at)← q(st, at) + α

[
q∗ − q(st, at)

]
9: t← t+ 1

10: end while
11: until converged

COSC470 Lecture 7: Deep reinforcement learning 14

Example: Frozen lake

Environment:

• S = {0, . . . , 15}
• Start state s = 0

• r(s) = −0.04 for
non-terminal states;
r(s) = ±1 for
terminal states

• γ = 0.8

• a ∈ {S,E,N,W}

Policy (left) according to Q-table (right)

COSC470 Lecture 7: Deep reinforcement learning 15

Policy gradient [2]

For problems where it is impossible to maintain a Q-table of all possible states, the
policy can be modelled with a a neural network, π(a|s,θ) where θ is the set of
parameters (network weight and biases). After a sequence of states and rewards has
been observed, the parameters θ are updated so as to minimise the following cost
function:

Jt(θ) = −Gt lnπ(at|st,θ),

Recall that Gt = r(st+1) + γGt+1 is the reward for each action in the episode. This
reward is often offset by a baseline value v̂(s,ω), which is the predicted reward coming
from a different model parametrised by ω:

Jt(θ) =
(
Gt − v̂(s,ω)

)
lnπ(at|st,θ)

Jt(ω) =
(
Gt − v̂(s,ω)

)2
COSC470 Lecture 7: Deep reinforcement learning 16

Example: Frozen lake

Environment:

• S = {0, . . . , 15}
• Start state s = 0

• r(s) = −0.04 for
non-terminal states;
r(s) = ±1 for
terminal states

• γ = 0.8

• a ∈ {S,E,N,W}

Policy (left) according to NN output (right)

COSC470 Lecture 7: Deep reinforcement learning 17

Actor-Critic

When v̂(s,ω) is updated using its prediction of the next states value (as opposed to
Gt) the twin model method is referred to as actor-critic method. The policy model
π(a|s,θ) is the actor and the value model v̂(s,ω) is the critic. The actor is trained by
minimising the following cost with respect to θ:

Jt(θ) =
(
Rt+1 + γv̂(st+1,ω)− v̂(s,ω)

)
lnπ(at|st,θ),

whereas the critic is trained by minimising the following cost with respect to ω:

Jt(ω) =
(
Rt+1 + γv̂(st+1,ω)− v̂(s,ω)

)2

COSC470 Lecture 7: Deep reinforcement learning 18

DQN [3]

A deep Q-network (DQN) agent is a neural network q̂(a, s,θ) which models the
Q-table. The cost function optimised is:

Jt(θ) =
(
q∗ − q̂(st, a,θ)

)2
,

where q∗ = Rt+1 + γmaxa q̂(St+1, a,θ).
The agent uses a number of tricks in order to stabilise the training:

• Experience replay

• Treating maxa q̂(St+1, a,θ) as a constant

• The error term q∗ − q̂(st, a,θ) was clipped to interval [−1, 1].

COSC470 Lecture 7: Deep reinforcement learning 19

References

[1] R. S. Sutton, and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
2ed draft http://incompleteideas.net/book/bookdraft2017nov5.pdf, 2017.

[2] R. J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning Machine Learning, 8(3-4): 229–256, 1992.

[3] V. Mnih, K Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
A. Riedmiller, Playing Atari with Deep Reinforcement Learning. CoRR,
http://arxiv.org/abs/1312.5602, 2013.

COSC470 Lecture 7: Deep reinforcement learning 20

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://arxiv.org/abs/1312.5602

