
COSC345 Software Engineering
Property-based testing, and coverage

Richard A. O’Keefe

July 18, 2017



Test Coverage

I Q. How do we evaluate a set of tests?

I A. Untested code is untrusted code. We
evaluate how much of the code is exercised by
tests.

I This is what test coverage measures.



Levels of Coverage

I Class/module

I Method/function

I Statement

I Branch

I Path



Class/module coverage

I Is there are least one test case for each class
(or module)?

I Is there a specification you can write a test
case for?

I Can you tell whether an object/module is in a
consistent state? (Invariant.)

I Who is responsible for testing?



Method/function coverage

I Is each method or function called in at least
one test?

I Is there a specification you can write a test
case for?

I What must you do to set up a test for that
function? E.g., to test adding to a set, you
must start by creating a set.

I Watch out for #ifdef.



Statement coverage

I Is each statement executed at least once by
some test?

I This is what gcov does. Example pop2lex.txt

I (gcov also gives us function coverage.)

I If a statement isn’t executed, construct a test
case to force it to be executed.

I Error handling code is particularly likely to be
untested.

I Watch out for #ifdef.



Branch coverage

I Consider “if (a && b) c()”.

I It has two statements, statement coverage.
I But there are three cases:

I a false, b who cares?
I a true, b false
I a true, b true

I Each branch should go both ways in some test.

I Fixed.hs example



Path coverage

I Is every path through a function tested?

I When there are loops, the set of paths may be
infinite, so not always practical.

I Branch coverage gets part way.

I Watch out for off-by-one errors.



Unit testing

I XUnit family of testing frameworks, began with
SUnit for Smalltalk. See
https://en.wikipedia.org/wiki/SUnit and
especially http://wiki.c2.com/?SmalltalkUnit

I Set up a fixture, which is a collection of data
etc used by the tests. Run the cases. Tear
down the fixture.

I Test case ensures method precondition
satisfied. Calls method. Checks result.

I Need precondition, normal postcondition,
exception postconditions.



Property-based testing

I Began with Koen Claessen’s QuickCheck for
Haskell.

I See
www.cs.tufts.edu/∼nr/cs257/archive/john-
hughes/quick.pdf

I Programmer states properties that should be
true.

I System generates test data at random.

I Uses types to choose generator.



Simple examples

prop RevUnit x =
reverse [x] == [x]

prop RevApp xs ys =
reverse (xs++ys) == reverse xs ++ reverse ys

prop RevRev xs =
reverse (reverse xs) == xs

Main> quickCheck prop RevApp
OK: passed 100 tests.



What does that do?

I The type of prop RevApp is [x] → [x] → Bool

I Making a random list, not so hard.

I Making a random element of unknown type,
can’t do that.

I Need an explicit type.

I prop RevApp :: [Int] → [Int] → Bool

I Generates 100 pairs of random lists, calls
prop RevApp, checks that it comes out True
each time.



Without types

I You have to tell the library somehow what
generator to use. If you can’t use the types,
you must explicitly call a generator.

I PropEr for Erlang does this.
See http://proper.softlab.ntua.gr/Tutorials/
PropEr introduction to Property-
Based Testing.html

I Extended example in class.


	Lecture

