
COSC345 Software Engineering
Internationalisation and Localisation

Richard A. O’Keefe

August 15, 2017



From a Swedish hôtel room

Hjälp oss att värner om v̊ar miljö!
För att minska utsläpp av tvättmedel,
byter vi Er handduk bara när Ni vill:
1. Handduk p̊a golvet
— betyder att Ni vill ha byte
2. ...



The translation

Help us to care for our environment!
To reduce the use of laundry detergents,
we shall change your towel as follows:
1. Towel on the floor
— you want to have a new towel.
2. Towel hung up
— you want to use it again.



Languages by native speakers

Language Script Percent
Mandarin Chinese 14.1%
Spanish Latin 5.9%
English English 5.5%
Hindi Devanagari 4.5%
Arabic Arabic 4.2%
Portugues Latin 3.1%
Bengali Bangla 3.1%
Russian Cyrillic 2.4%

Source: Wikipedia, viewed 2016



Languages by total speakers

Language Family Number
English Indo-European 2.0e9
Mandarin Sino-Tibetan 1.1e9
Arabic Afro-Asiatic 0.6e9
Spanish Indo-European 0.5e9
Hindi Indo-European 0.5e9
Russian Indo-European 0.3e9
Bengali Indo-European 0.3e9
Portuguese Indo-European 0.3e9

Source: Wikipedia, viewed 2016



Let people use their own language!

I It’s just right not to make people struggle with
unfamiliar linguistic and cultural codes.

I Sensible people won’t pay for programs that
are hard to use.

I Internationalisation (I18N) means making a
program so that it does not enforce a particular
language or set of cultural conventions

I Localisation (L10N) means adapting an
internationalised program to a particular
language etc.

I All major operating systems support
internationalisation and localisation.



Characters

You know that there are 26 letters in 2 cases.
But Swedish has å, ä, ö, Å, Ä, and Ö (29 letters),
Croatian has d j, D j, D J, and others (3 cases),
German has ß, which has no single upper case
version (might be SS, might be SZ, both of which
are two letters), Latin-1 has 58 letters in 2 cases
(including 2 lower case letters with no upper case
version), Arabic letters have 4 contextual shapes
(beginning, middle, or end of word, or isolated),
which are not case variants (Greek has one such
letter, and Hebrew has several; even English used
to), and Chinese has tens of thousands of characters
in one case.



Characters continued
You know that blanks separate words, but they
don’t in Chinese, and Unicode (ISO 10646) contains
several zero-width characters, some of which are
separators (zero-width space, for example) and some
of which are not (zero-width joiner, for example).
You know that there are 10 decimal digits 0–9. But
Unicode 4.0 has no fewer than 37 versions of
“DIGIT THREE”: plain, subscript, superscript,
Arabic-Indic, Eastern Arabic-Indic, Devanagari,
Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayalam, Thai, Lao, Tibetan,
Myanmar, Ethiopic, Khmer, Mongolian, Limbu,
Osmanya, + decorated versions.
How do you know which digits to use in output?



A little history of character sets
I Baudot code (5 bits, 3 or 4 shifts), still used in

radio
I Fieldata and BCD (6 bits, no lower case letters)
I ASCII (7 bits, the-computer-is-a-typewriter

model)
I ISO 8859 family (8 bits, lots of ASCII

extensions)
I Unicode (21 bits, 136,690 chars)
I ISO 10646 (31 bits, Unicode was Basic

Multilingual Plane of this, planes 0, 1, 2, and
14 currently have characters).

I C and C++ have wchar t for wide characters,
Java has char (16 bits only, not enough any
more!), Ada has 8- 16- and 32-bit.



Added in Unicode 6.0

0840..085F Mandaic
1BC0..1BFF Batak
AB00..AB2F Ethiopic Extended-A

11000..1107F Brahmi
16800..16A3F Bamum Supplement
1B000..1B0FF Kana Supplement
1F0A0..1F0FF Playing Cards
1F300..1F5FF Miscellaneous Symbols And Pictographs
1F600..1F64F Emoticons
1F680..1F6FF Transport And Map Symbols
1F700..1F77F Alchemical Symbols
2B740..2B81F CJK Unified Ideographs Extension D



You know that ‘character’=‘code’

But glyph, grapheme, coded character, code, and
byte are five different concepts with no one-to-one
correspondence. In English, “é” is two graphemes
(a letter e + a stress mark); in French it’s one. A
single character may be one or two codes in
Unicode; a single code may be stored as 1–4 bytes
in UTF-8 (so character 6= code 6= byte). The letter
ÿ may be stored as U+00FF or U+0079,U+0308.
But Indic and Semitic scripts have a consonantal
skeleton with vowels “around” the consonants; one
“glyph” may be 2 “letters”.



How long is a string?

“Ljubljana” 7 codepoints 7 or 9 letters?
“Æneas” 5 codepoints 5 or 6 letters?
“~a” 2 codepoints 1 letter
“ë” 1 codepoint 1 letter
“ẍ” 2 cdepoints 1 letter
“ā” 1 codepoint 1 letter
“w̄” 2 codepoints 1 letter
“ώι” 1 codepoint 2 letters?



Character solution

Use library code for

I classifying codes

I stepping through strings by characters, words,
lines

I normalisation (so that “é” and “e”+“´” are
equal)

I comparison (the draft ISO standard was 150
pages)

whenever possible. There is useful stuff in C and
C++ (ctype.h, wctype.h) and really good
coverage in Java.



Dates and Times
I What date does 1/2/3 represent? USA: 2 Jan

2003; here: 1 Feb 2003; some places: 3 Feb
2001. Year number could be Gregorian, Julian,
Gregorian mod 100, Gregorian - 1900, regnal
year of Japanese emperor, year since the
founding of Rome (A.U.C.), and so on.

I Use library code to read and write dates
(strftime() in C writes: %x is date, %X is time,
%c is date and time, all according to locale’s
convention; strptime() reads).

I Tell library what locale to use. (Look up
LC TIME.) There are many calendars in use
other than the Gregorian one; it’s not just
names of months and days that differ.



Dates and Times 2
I Are times written as 14:30 (Europe), 1430 (US

Military), 2:30 p.m. (English), or 2.30 p.m.
(strictly 2.30 should be 2:18pm; this is the “I
don’t care if it’s stupid, it saves ink” notation).
Use locale-sensitive library code to give people
what they are used to.

I For machine/machine communication, use ISO
8601:
yyyy [.]mm[.]dd [T]hh[:]ii [:]ss[.sss][±timezone].
New Zealand timezone is +1200 (winter) or
+1300 (summer).
ISO8601.html summarises;
ISO8601-1988.pdf and ISO8601-2000.pdf

are obsolete editions.



Use date and time datatypes
I In SQL, use DATE, TIME, and TIMESTAMP

[WITH TIMEZONE] types whenever you can.
I in Smalltalk: Date, Time, DateAndTime,

Duration
I Scheme SRFI 19 has Date (includes time and

zone), Time (duration)
I C has clock t, time t, and struct tm; POSIX

adds more.
I Java has Instance, LocalDate, LocalDateTime,

ZonedDateTime, LocalTime, MonthDay, Year,
YearMonth, OffsetDateTime, OffsetTime,
Duration, and Period, plus non-Gregorian
calendars, and the older Date, Calendar, and
TimeZone classes.



A Warning about Dates

I Arithmetic on calendar dates is amazingly
tricky, especially when more than one calendar
is involved.

I To compute with dates, keep them as Julian
Day Numbers or Modified Julian Day Numbers.
Do arithmetic on these numbers. Convert back
to y/m/d when you want to produce output.
dates.c has code.

I The book “Calendrical Calculations” by
Nachum Dershowitz and Edward Reingold gives
calculations for many calendars; it’s in the
Central library.



Getting it wrong: an example
I Timestamps in a certain programming

language are represented as an absolute time in
UTC (year, month, day, hour, minute, second)
combined with a time zone offset.

I Error: the range of offsets is -12 hours to +12
hours, but the limit in the real world is +14
hours (the Line Islands). The language’s limit
does not even include the Chatham Islands.

I Problem: if you do arithmetic on a time stamp,
the zone offset does not change, meaning that
arithmetic that crosses Daylight Savings Time
changes arrives in the wrong zone.

I ISO 8601 lets you write local time but not
name the rules, that was the cause.



Numbers

I The decimal point might be ‘.’ or ‘,’ or ‘·’ (the
last is best).

I The thousands separator might be ‘,’ or ‘.’
(hence the DECIMAL POINT IS COMMA
option in COBOL) or ‘ ’ (the last is
unambiguous).

I Is the millions separator the same as the
thousands separator? Are digits grouped in 3s,
4s, or 5s, and are all groups the same width?

I Are negative numbers written as -nn, (nn), or
<RED>nn</RED>?



Money

I Is money written with a symbol $ (pound,
dollar, yen, general currency sign, euro, florin)
or in letters (GPB, NZD, EUR, SEK, Kr).

I Does it precede or follow the number?

I Is the negative sign the same as for numbers or
different?

I Are the digits the same as for numbers or
different?

I How are fractions shown?

I Is a cent sign used?



Numbers and Money 2

The C standard includes a function localeconv()
which returns a pointer to a record with fields
including mon decimal point, frac digits,
mon thousands sep, int frac digits, int curr symbol,
& currency symbol (money features), decimal point,
thousands sep, positive sign, negative sign,
p cs precedes, n cs precedes, p sep by space,
n sep by space, p sign posn, and n sign posn
(number features).
nl langinfo() is POSIX, not C, provides some
additional information.



Numbers and Money 3

I The C99 standard does not include any
functions for formatting numbers using this
information; you’ll have to write your own.

I strfmon() is POSIX, but not C89, C99, or C11.

I Which digits are used? English, real Arabic,
Indic (several sets), or what? Are they full
width or half width? Should symbols for
fractions be used, or decimal fractions?
localeconv() doesn’t tell you.



Words and Messages
I There are vocabulary differences between

dialects: stove/cooker, crib/bach/weekender,
hut/cubby, togs/swimming trunks/swim shorts,
tin/can, frying pan/frypan.

I Main issue: different languages. Natural
Language Generation from symbolic structures
can be done (see the ILEX project or Aarne
Ranta’s GF for examples) but is still difficult to
set up; simplest way is “Message Catalogue”.

I A message catalogue is basically a table
mapping a message identifier to a string.
These strings could be file names or even mini
programs, not just text.



Message Catalogues 1

I See catclose (3), catgets (3), catopen (3),
gencat (1), gettxt (3) in your UNIX manual.

I Beware: different languages may use different
scripts, different phrase orders (“insert X into
Y ” may become “into Y insert X”), and
different lengths. A box big enough for the
English message may be too small for other
languages. Strings in a catalogue could have
size codes if you choose.



Message Catalogues 2
I The Macintosh has had resource forks in the

file system since day 1. A file has data, plus a
resource map (like a message catalogue). An
application keeps a stack of resource forks,
typically document (on top), application, and
system (at bottom). Resources are identified
by type, id code, and possibly an index.
Resources can be strings, icons, keyboard
layout, window layout, comparison methods,
date/time formats, etc.

I Applications were localised using the ResEdit
program, but one copy of an application could
only handle one locale. One machine = one
user = one locale = one resource fork.



Message Catalogues 3

I In the NTFS Windows file system, a file can
have a list of attributes with associated values
attached to it. Programs can have resource
data (from .rc files) compiled in; resources are
also identified by language. Basically the
MacOS model.

I There is a very good book on
internationalisation for Windows.



Message catalogues 4
I UNIX “resources” are held outside the program

in the file system as message catalogues.
Several programs can share a catalogue. One
program can be used by many people at once,
each using messages from a different catalogue
(LC LANG is part of the environment, not the
program). Use the LC * environment variables
to customise your locale.

I C-defined locale data (character set, character
classification, comparison, number, money, and
date-time formatting) uses a different
mechanism that applies to all programs (most
of this stuff was in the operating system’s own
resource fork in old MacOS).



Java

https://docs.oracle.com/javase /tutorial/i18n/is a
tutorial for Java internationalisation.
Java “Resource Bundles” are message catalogues.



General themes

I Know what can vary

I Work through (standard) libraries

I Avoid literal strings

I Text can change size and order

I Native speaker for final polishing, please

I Know your libraries! There is special support
for this in C and C++, and a lot of support in
Java.



X/Open

I All in ∼ok/ANSI-standards/

I X:Open-IGV2.pdf Internationalization Guide
(all)

I X:Open-C616.pdf Portable Layout Services
See Chapter 2 about un-Western scripts

I X:Open-E401.pdf (Unicode) Coëxistence &
Migration

I X:Open-E408.pdf Internationalization of
X/Open Specifications
See Chapters 2 and 4 overview and
interworking



Resources

I file names mentioned in this lecture can be
found in the top level of the cosc345 web site.

I The Unicode web site http://www.unicode.org
is a major resource.

I Part of that is the Unicode “Common Locale
Data Repository”,
http://www.unicode.org/cldr/.

I “Unicode Demystified” book.


