COSC345

Week 11
Introduction to Refactoring (A)

Example

| have a Smalltalk library.

There is an Image class with several
subclasses.

anlmage draw: aGeometric object
— calls aGeometricObject drawOn: anlmage
— which calls back to anlmage

| recently added a Plotter class to interface to
the GNU plotutils library

Example continued

e aPlotter draw: aGeometricObject

— calls aGeometricObject drawOn: aPlotter
— which calls back to aPlotter

e | have have one class or the other in a program but
not both, because the bodies of #drawOn: are
difference.

e Solution 1:

— Rename draw: and drawOn: to plot: and plotOn:
— Works but unsatisfactory.

Example (3)

Solution 2: keep draw: and drawOn: because
there iIs common meaning there

Refactor drawOn: to just unpack the necessary
private data and forward it to new methods like
drawLineSegmentFrom: X1 y: y1 to: X2 y: y2

Implement the new methods in Image and in
Plotter.

But what order should we do this?

One step at a time

Implement drawLineSegmentFrom:y:to:y: in one class.
Test It.

Implement it in the other class.

Test it.

Refactor LineSegment>>drawOn: to use the new
Interface.

Test it.
Repeat with other methods.

Don't use seven-league boots

e From fairy-tales: a league is an hour's walk,
seven-league boots let you travel a day's walk
In each step.

* Programming analogue: a big change that takes
you a long distance.

e If | rewrite 200 lines of code, | have lots of
opportunities to make mistakes; how do | figure
out what | broke?

« Small steps mean | can find a mistake quickly.

Change a constant

Add a new named constant

— only a problem if it clashes with another name
Remove a named constant

— what do you do about existing uses?
Change the value of a named constant

— Shouldn't be a problem; the reason for named constants is
to allow this.

Change the type of a constant

— Have to address all uses

Change a variable

 Add, remove, change initial value, change type
— similar to constants
 Protect (add 'const' to exported interface)
— have to do something about all changes
e Change variable to function
- Hard in language using f(), easy if using f
— Canyou do f() ;= e?
— Setter functions can log and check changes.

Types

Ada has subtype T is Old_Type (alias) and

type T is new Old_Type (new incompatible type
with same representation)

Go uses type T = Old_Type (alias) and

type T Old_Type (new incompatible type).
Add and remove like constants and variables.
Changing really needs aliases (C typedef).
Changing types in Java is really hard.

Functions/procedures

Add, remove, and rename similar.

Changing the body of a method does not affect
any interfaces, but may silently break code.
Must test after such changes.

Add an argument.

— Easier Iif language allows optional parameters.
Remove an argument.

Change the type of an argument.

Take several steps.

Make a new function with the same interface as
the old one.

Move the old body to the new function.
Make the new function call the old one.
Test.

Change the interface of the new function and
change the old function's body to match.

Test.

Take several steps (2)

Change the old calls a few at a time to call the
new function with the changed interface.

Test as you go.
Keep the old function and mark it deprecated.

Delete deprecated functions when no uses
remain.

