

COSC345

Week 11
Introduction to Refactoring (A)

Example

● I have a Smalltalk library.

● There is an Image class with several
subclasses.

● anImage draw: aGeometric object

– calls aGeometricObject drawOn: anImage

– which calls back to anImage

● I recently added a Plotter class to interface to
the GNU plotutils library

Example continued

● aPlotter draw: aGeometricObject

– calls aGeometricObject drawOn: aPlotter

– which calls back to aPlotter

● I have have one class or the other in a program but
not both, because the bodies of #drawOn: are
difference.

● Solution 1:

– Rename draw: and drawOn: to plot: and plotOn:

– Works but unsatisfactory.

Example (3)

● Solution 2: keep draw: and drawOn: because
there is common meaning there

● Refactor drawOn: to just unpack the necessary
private data and forward it to new methods like
drawLineSegmentFrom: x1 y: y1 to: x2 y: y2

● Implement the new methods in Image and in
Plotter.

● But what order should we do this?

One step at a time

● Implement drawLineSegmentFrom:y:to:y: in one class.

● Test it.

● Implement it in the other class.

● Test it.

● Refactor LineSegment>>drawOn: to use the new
interface.

● Test it.

● Repeat with other methods.

Don't use seven-league boots

● From fairy-tales: a league is an hour's walk,
seven-league boots let you travel a day's walk
in each step.

● Programming analogue: a big change that takes
you a long distance.

● If I rewrite 200 lines of code, I have lots of
opportunities to make mistakes; how do I figure
out what I broke?

● Small steps mean I can find a mistake quickly.

Change a constant

● Add a new named constant

– only a problem if it clashes with another name

● Remove a named constant

– what do you do about existing uses?

● Change the value of a named constant

– Shouldn't be a problem; the reason for named constants is
to allow this.

● Change the type of a constant
– Have to address all uses

Change a variable

● Add, remove, change initial value, change type

– similar to constants

● Protect (add 'const' to exported interface)

– have to do something about all changes

● Change variable to function

– Hard in language using f(), easy if using f

– Can you do f() := e?

– Setter functions can log and check changes.

Types

● Ada has subtype T is Old_Type (alias) and

● type T is new Old_Type (new incompatible type
with same representation)

● Go uses type T = Old_Type (alias) and

● type T Old_Type (new incompatible type).

● Add and remove like constants and variables.

● Changing really needs aliases (C typedef).

● Changing types in Java is really hard.

Functions/procedures

● Add, remove, and rename similar.

● Changing the body of a method does not affect
any interfaces, but may silently break code.
Must test after such changes.

● Add an argument.

– Easier if language allows optional parameters.

● Remove an argument.

● Change the type of an argument.

Take several steps.

● Make a new function with the same interface as
the old one.

● Move the old body to the new function.

● Make the new function call the old one.

● Test.

● Change the interface of the new function and
change the old function's body to match.

● Test.

Take several steps (2)

● Change the old calls a few at a time to call the
new function with the changed interface.

● Test as you go.

● Keep the old function and mark it deprecated.

● Delete deprecated functions when no uses
remain.

